skip to main content
UTRGV

The University of Texas Rio Grande Valley

Main Menu
Donate Now Directory myUTRGV

You are here:

Research Operations Anti-Icing LED Light Covers for Railroad Safety

University Transportation Center for Railway Safety (UTCRS) College of Engineering and Computer Science

  • Home
  • About
    • Message from Director
    • Mission
    • Visitor Information
  • News and Media
    • Program News
    • Newsletters and Stories
    • Photo Galleries
      • Gallery 2022
      • Gallery 2019
      • Gallery 2018
      • Gallery 2017
      • Gallery 2016
      • Gallery 2015
      • Gallery 2014
    • Video Galleries
  • Education and Outreach
    • Summer Experiences - College and Professionals
      • REU
      • RET
    • Summer Camps (K-12)
      • UTCRS Summer Camps
      • TESEP
    • Educator Resources
      • Borrowing Materials
      • STEM Curriculum
      • UTCRS Learning Module
    • Community Outreach
  • Workforce Development
    • Research Assistantships
    • DDETFP Fellowship
    • Professional Student Training
    • Professional Workshops
      • 2022 STEM Teacher National Workshop
      • 2019 STEM Teacher National Workshop
      • 2018 STEM Teacher National Workshop
      • 2017 STEM Teacher National Workshop
      • 2016 STEM Teacher National Workshop
    • Internships
      • UTRGV High Scholars Summer Program
      • Howard Hughes Medical Institute (HHMI)
  • Research
    • Mechanical
    • Operations
    • Infrastructure
    • Reports
    • Call for Proposals
  • Technology Transfer
    • Journal Articles
    • Conference Papers
    • Reports and Presentations
    • Theses and Dissertations
    • Educational Scholarship
    • Products
      • Bearing Lubricant Models
      • Conductive Pad
      • Single Bearing Tester
      • Four Bearing Tester
  • Key Personnel
    • Executive Officers
    • Executive Committee
    • Advisory Board
    • UTCRS Organizational Chart
University Transportation Center for Railway Safety (UTCRS)

Research - Related Links

  • Mechanical
    • Mechanical 2017
  • Operations
  • Infrastructure
  • Reports
  • Call for Proposals

Contact Us

Center for Railway Safety (UTCRS)
Engineering Portable
EPOB4 1.100
Email: railwaysafety@utrgv.edu
Phone: (956) 665-8878
Fax: (956) 665-8879
Facebook Twitter Youtube LinkedIn

Quick Links

USDOT FRA OST-R UTCs CUTC AAR/TTCI

Best Practices for Modeling Light Rail at Intersections

University  University of Nebraska-Lincoln (UNL)
Principal Investigators  John Sangster, Ph.D., P.E., PTOE, Civil  Engineering (PI)
PI Contact Information  330F WHIT
Lincoln: City Campus
Office (402) 472-0314
john.sangster@unl.edu
Funding Source(s) and Amounts Provided (by each agency or organization)  UTCRS (USDOT UTC Program): $72,250
NE Department of Roads: $36,125
Total Project Cost  $108,375
Agency ID or Contract Number  DTRT13-G-UTC59
Start and End Dates October 2016 - June 2018
Brief Description of Research Project  This research aims to provide guidelines for best practices in modeling urban light rail facilities within transportation simulation software packages, including VISSIM and Aimsun, and improve the understanding of engineers and planners considering light rail facilities. The case study location of four intersections in Denver, Colorado was analyzed thoroughly to monitor and capture the traffic demand and signal timing plans as a preliminary input for the simulation software environments. The traffic signal patterns of the intersections, including vehicular traffic, light rail, and pedestrian phases has been observed as accurately as possible using both on-site observations and review of video recordings. All the field observations have been documented in this report, and have been implemented faithfully in the simulation environment. Current versions of two of the most widely used simulation software packages were used, VISSIM and Aimsun, attempting to accurately reproduce the traffic conditions observed. While documenting the modeling steps of the simulation software packages, the authors take for granted that conventional road network modeling is known to the audience, and have instead focused on the modeling techniques specific to the light rail movement. Several screen shots of the functionalities regarding the modeling tools have been included. It is the authors’ intention that practitioners and researchers with limited or no prior experience will be able to model the light rail movement based on the documentation herein, and that ultimately, the observations and recommendations of signal timing techniques described in this report will enrich the state of practice for modeling light rail with traffic simulation software.
Keywords light rail, signal preemption, simulation modeling, multi-modal optimization.
Describe Implementation of Research Outcomes (or why not implemented) Place Any Photos Here See Report.
Impacts/Benefits of Implementation (actual, not anticipated) See Report.
Report http://www.utrgv.edu/railwaysafety/_files/documents/research/operations/utcrs_sangster_best-practices-for-modeling-light-rail_final-report.pdf
Project Website http://www.utrgv.edu/railwaysafety/research/operations/modeling-light-rail-intersections/index.htm
Jump to Top

UTRGV

  • Twitter
  • Facebook
  • LinkedIn
  • YouTube
  • CARES, CRRSAA and ARP Reporting
  • Site Policies
  • Contact UTRGV
  • Required Links
  • Fraud Reporting
  • Senate Bill 18 Reporting
  • UTRGV Careers
  • Clery Act Reports
  • Web Accessibility
  • Mental Health Resources
  • Sexual Misconduct Policy
  • Reporting Sexual Misconduct