Master of Science in Business Analytics Online

The 100% online Master of Science in Business Analytics (MSBA) program from the University of Texas Rio Grande Valley AACSB-accredited Robert C. Vackar College of Business & Entrepreneurship enables data-driven thinkers develop their abilities to transform complex data into insights that guide their organizations in making more educated, actionable decisions – skills required for success in today's competitive job market.

Apply Now Continue Your Application
Business Analytics Master's Student

About the Program

The Master of Science in Business Analytics program will prepare students to solve problems in business and organizational contexts which require the application of information systems to carry out sophisticated business analytics techniques. Students will be knowledgeable and skilled in data selection, collection, preparation and storage, visualization, and analysis using data analytics techniques such as data mining, machine learning, text mining, social media analytics, big data, and enterprise analytics. Students will obtain hands-on experience with cutting-edge analytics tools and software such as R, Python and Tableau. Our graduates can find diverse careers in the business analytics profession such as data analysts, business analytics consultants, business intelligence analysts, business analytics manager, big data analytics specialists, data scientists and predictive modelers.

Contact Us

Courses

An introduction to statistical methodology to include probability concepts, inference techniques, analysis of variance, regression analysis, chi square and other non-parametric analyses. This course focuses on the use of the computer in performing statistical analysis.
This course discusses the process of business analytics by developing a business intelligence solution, including problem definition, data preparation, descriptive and predictive analyses, evaluation of results, implementation and deployment. Data-oriented methods using spreadsheet and structured query language (SQL) are emphasized for business transaction capturing, data aggregation and online analytic processing (OLAP). Students will employ a variety of software tools in the development of a data warehouse, including ETL (extraction, transformation and loading) and visual data representations (e.g., data cubes).
Novel problems require innovative solutions - this course introduces students to the power and flexibility of programming and scripting languages such as R and Python, applied to problems in business analytics. Students will learn how to acquire and deploy software packages relevant to their problem, then use them together with tools such as SQL to collect and prepare data, customized analyses according to specific needs, and create outputs which effectively communicate the results.
This course introduces students to the concept of social media analytics and techniques used to analyze social media data such as texts, networks, actions, hyperlinks, mobile, location and search engine data. Students will learn how businesses align social media analytics with their business strategies and gain insights on trends and user behaviors. An emphasis is placed on using various software tools to analyze real-world social media data.
This course introduces students to data visualization and dashboarding. Students will learn best practices in data visualization, data retrieval using structured query language (SQL), polish analytical skills, and learn how to design dashboards to support managerial decisions. Students will have the opportunity to gain hands-on experience in data retrieval and visualization. Students will use Tableau as their main tool for data visualization and dashboarding but will develop transferable skills which can apply to most common software packages in the field.
This course provides students with knowledge and skills in the various decision analytical techniques for managerial decision making including big data analytics. A number of well-defined data mining techniques such as classification, estimation, prediction, affinity grouping and clustering, and data visualization will be covered. The Cross Industry Standard Process for Data Mining (CRISP-DM) will also be discussed. The data mining techniques will be applied to diverse business applications including: target marketing, credit risk management, credit scoring, fraud detection, medical informatics, telecommunications and web analytics. Prerequisite: QUMT 6303 or QUMT 3341 or equivalent
This course introduces students to various prescriptive analytic techniques and tools that can be used to analyze business decision problems and create business value. Topics may include deploy analytics such as aggregate planning models and complex problem solving. Analytical packages and modeling software such as Excel solver for linear and integer programming will be extensively used throughout the course. The emphasis of this course will be placed on the application of techniques and interpretation of the results.
This course introduces the principles and techniques of prescriptive analytics. These provide business entities and policy makers with fundamental rationality in evaluating performance, making decisions, designing strategies, and managing risk. Students will learn how to use analytical models to evaluate uncertainty that is prevalent in many business decisions. Since business problems often have alternative solutions, students will learn how to use analytical models to assess various business solutions and identify the best course of action. This course involves a hands-on learning experience with spreadsheet modeling and other analytical packages. The emphasis is on how to employ these analytical methods to facilitate managerial decision-making in diverse industries and functional areas.
An introduction to statistical methodology to include probability concepts, inference techniques, analysis of variance, regression analysis, chi square and other non-parametric analyses. This course focuses on the use of the computer in performing statistical analysis.
This course discusses the process of business analytics by developing a business intelligence solution, including problem definition, data preparation, descriptive and predictive analyses, evaluation of results, implementation and deployment. Data-oriented methods using spreadsheet and structured query language (SQL) are emphasized for business transaction capturing, data aggregation and online analytic processing (OLAP). Students will employ a variety of software tools in the development of a data warehouse, including ETL (extraction, transformation and loading) and visual data representations (e.g., data cubes).
Novel problems require innovative solutions - this course introduces students to the power and flexibility of programming and scripting languages such as R and Python, applied to problems in business analytics. Students will learn how to acquire and deploy software packages relevant to their problem, then use them together with tools such as SQL to collect and prepare data, customized analyses according to specific needs, and create outputs which effectively communicate the results.
This course introduces students to the concept of social media analytics and techniques used to analyze social media data such as texts, networks, actions, hyperlinks, mobile, location and search engine data. Students will learn how businesses align social media analytics with their business strategies and gain insights on trends and user behaviors. An emphasis is placed on using various software tools to analyze real-world social media data.
This course introduces students to data visualization and dashboarding. Students will learn best practices in data visualization, data retrieval using structured query language (SQL), polish analytical skills, and learn how to design dashboards to support managerial decisions. Students will have the opportunity to gain hands-on experience in data retrieval and visualization. Students will use Tableau as their main tool for data visualization and dashboarding but will develop transferable skills which can apply to most common software packages in the field.
This course provides students with knowledge and skills in the various decision analytical techniques for managerial decision making including big data analytics. A number of well-defined data mining techniques such as classification, estimation, prediction, affinity grouping and clustering, and data visualization will be covered. The Cross Industry Standard Process for Data Mining (CRISP-DM) will also be discussed. The data mining techniques will be applied to diverse business applications including: target marketing, credit risk management, credit scoring, fraud detection, medical informatics, telecommunications and web analytics. Prerequisite: QUMT 6303 or QUMT 3341 or equivalent
This course introduces students to various prescriptive analytic techniques and tools that can be used to analyze business decision problems and create business value. Topics may include deploy analytics such as aggregate planning models and complex problem solving. Analytical packages and modeling software such as Excel solver for linear and integer programming will be extensively used throughout the course. The emphasis of this course will be placed on the application of techniques and interpretation of the results.
This course introduces the principles and techniques of prescriptive analytics. These provide business entities and policy makers with fundamental rationality in evaluating performance, making decisions, designing strategies, and managing risk. Students will learn how to use analytical models to evaluate uncertainty that is prevalent in many business decisions. Since business problems often have alternative solutions, students will learn how to use analytical models to assess various business solutions and identify the best course of action. This course involves a hands-on learning experience with spreadsheet modeling and other analytical packages. The emphasis is on how to employ these analytical methods to facilitate managerial decision-making in diverse industries and functional areas.
This course provides the knowledge about fundamentals of health information systems (HIS) and the role of information systems in efficient operation of healthcare organizations. The course specifically focuses on: evolution of HIS, HIS components and basic HIS functions, technology infrastructure for healthcare organizations, basic concepts such as EHR, HIE, CPOE, and COSS, HIS standards such as HIPAA, HL7, and DICOM, strategic information systems planning for healthcare organizations, systems analysis and project management, information security issues, and role of HIS professionals in health organizations.
This course introduces concepts, techniques, and tools for managing and understanding data in healthcare. The course focuses on teaching students to use healthcare data to make decisions, transform health care delivery, and improve public health. Students will learn how to collect, process, analyze, visualize, and report structured and unstructured clinical and operational data. Topics covered include healthcare data measurement, statistical analysis, and data mining. This course will also discuss challenges related to healthcare analytics such as data privacy, security and interoperability.
This course introduces students to the management and coordination of enterprise data resources to improve enterprise-wide decision-making. Students will learn how to identify key performance indicators from enterprise data, how to differentiate enterprise analytics from other forms of analytics, how to determine what proprietary data will provide analytical advantage to maximize the impact on the enterprise, recent technologies for analytics and best practices from recent cases. Students will engage in an iterative process of exploring data from multiple functional areas within an organization to derive actionable insights as well as communicate findings to help enterprises improve the quality of their decisions.
This course provides students with comprehensive understanding of problems and solutions related to information security and information assurance in organizational contexts. Students learn how to conduct quantitative and qualitative security risk assessment analyses related to site safety and security, hardware and software reliability and risks, and network reliability and security. Students will carry out data collection and analytics methodologies which address expected failures, incidence and severity of attacks, accidents and acts of nature, and their impacts on operations and budgets.
This course provides the knowledge about fundamentals of health information systems (HIS) and the role of information systems in efficient operation of healthcare organizations. The course specifically focuses on: evolution of HIS, HIS components and basic HIS functions, technology infrastructure for healthcare organizations, basic concepts such as EHR, HIE, CPOE, and COSS, HIS standards such as HIPAA, HL7, and DICOM, strategic information systems planning for healthcare organizations, systems analysis and project management, information security issues, and role of HIS professionals in health organizations.
This course introduces concepts, techniques, and tools for managing and understanding data in healthcare. The course focuses on teaching students to use healthcare data to make decisions, transform health care delivery, and improve public health. Students will learn how to collect, process, analyze, visualize, and report structured and unstructured clinical and operational data. Topics covered include healthcare data measurement, statistical analysis, and data mining. This course will also discuss challenges related to healthcare analytics such as data privacy, security and interoperability.
This course introduces students to the management and coordination of enterprise data resources to improve enterprise-wide decision-making. Students will learn how to identify key performance indicators from enterprise data, how to differentiate enterprise analytics from other forms of analytics, how to determine what proprietary data will provide analytical advantage to maximize the impact on the enterprise, recent technologies for analytics and best practices from recent cases. Students will engage in an iterative process of exploring data from multiple functional areas within an organization to derive actionable insights as well as communicate findings to help enterprises improve the quality of their decisions.
This course provides students with comprehensive understanding of problems and solutions related to information security and information assurance in organizational contexts. Students learn how to conduct quantitative and qualitative security risk assessment analyses related to site safety and security, hardware and software reliability and risks, and network reliability and security. Students will carry out data collection and analytics methodologies which address expected failures, incidence and severity of attacks, accidents and acts of nature, and their impacts on operations and budgets.

Calendar

Start Date

Application Priority Deadline

Registration and Payment Deadline

Class Ends


Tuition & Financial Aid

UT Rio Grande Valley's 100% online accelerated graduate programs offer affordable tuition, and financial aid is available for those who qualify.

Total Program Cost

Per Credit Hour

Per 3-Credit-Course

*We estimate that tuition and fees will total no more than the rates shown above; however, rates are subject to change.

Scholarships

UTRGV is now offering a $1,000 Graduate Dean’s Accelerated Online Scholarship, a GRE/GMAT Test Fee Scholarship and much more to help make your graduate education a reality.  For more information, please visit our Scholarships page.

Financial Aid

UTRGV is an equal opportunity institution in the administration of its financial aid programs. In keeping with this policy, financial aid is extended to students without regard to race, creed, sex, national origin, veteran status, religion, age or disability. For additional information regarding funding please visit our Financial Aid for Accelerated Online Programs page.

Additional Fees

No Application Fee
Graduation Fee: $32


Admissions

Please review all the admission requirements for the Master of Science in Business Analytics Online degree program. For specific questions or more details, contact an enrollment specialist at 1-833-887-4842.

Admissions Criteria

Online Application

Submit your application online.

Official Transcript

Submit transcripts from all colleges/universities

GPA

3.0 (on a 4.0 scale)

GMAT or GRE

Required for admission. GMAT/GRE waiver available


Videos

Master of Science in Business Analytics Online

UTRGV offers an online Business Analytics (MS) degree that will enable data-driven thinkers to develop their abilities to transform complex data into insights that guide their organizations in making more educated, actionable decisions – skills required for success in today's competitive job market.


Defining Business Analytics

I would define business analytics as simply as the use of a set of components whether it is people, technologies and tools in order to transform data into insightful decisions and actions.

Murad Moqbel, Ph.D.