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ABSTRACT 

 

Due to its complexity, rail buckling is a mathematically nonlinear phenomenon affected 

by a wide range of service conditions, including but not limited to field temperature, track 

geometry, tie-ballast interactions, material properties of the structural components, train-induced 

lift-off, and different types of boundary conditions. Although several research studies have 

focused on this issue, it is still challenging to model this problem efficiently while maintaining 

both simplicity and accuracy. In this research, a finite element (FE) computer code based on the 

Euler-Bernoulli beam theory is developed to account for all the above phenomena, thereby 

resulting in a Python-based FE program that only requires a few minutes of runtime to complete 

one rail buckling simulation. 

Building on the previous work by Musu, Allen, and Fry, this study extends the model’s 

development by including the displacement-control based solving algorithm, as well as 

modifying the tie-ballast interface resistance formulation, and restructuring the variational 

formulation of the governing differential equations. 

The key focus of this research is to demonstrate the application of the displacement-

control algorithm for modeling rail buckling problems. Additionally, the study analyzes the 

impact of initial rail misalignments on buckling behavior. A nonlinear tie-ballast resistance 

formulation is incorporated into the model to replicate single-tie push test (STPT) experimental 

outputs, enhancing the realism of the results. The findings indicate that an increase in 

misalignment or a decrease in the maximum lateral tie-ballast resistance value significantly 

reduces the critical rail buckling load, highlighting these factors as crucial in predicting rail 

buckling. 
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NOMENCLATURE 

 

𝐴 Cross-sectional area of the rail 

DOF Degrees of freedom 

𝑑𝑚𝑖𝑠 Misalignment value 

𝑑𝑡𝑖𝑒 Tie-spacing 

𝐸 Young’s modulus of the rail 

FEM Finite Element Method 

FRA Federal Railroad Administration 

𝑭 Force vector of the global system 

𝑭𝒆 Force vector of element e 

𝐹𝑥 Longitudinal tie-ballast resistance 

𝐹𝑦 Lateral tie-ballast resistance 

𝐹𝑦,𝑙𝑡 Limit lateral tie-ballast resistance 

𝐹𝑦,𝑝𝑘 Peak lateral tie-ballast resistance 

𝑓𝑥 Longitudinal tie-ballast resistance per unit length 

𝑓𝑦 Lateral tie-ballast resistance per unit length 

𝑰𝒆 Finite element system functional matrix of element 𝑒 

𝐼𝑦𝑦 Moment of inertia of the rail about the y-axis 

𝐼𝑧𝑧 Moment of inertia of the rail about the 𝑧-axis 

𝑲 Stiffness matrix of the global system 

𝑲𝒆 Stiffness matrix of element e 
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𝑘𝑧 Track modulus of the rail ballast system 

𝐿 Buckled region length of the rail 

𝐿𝑒  Generic element length in the discretized domain 

𝑀𝑦 Resultant moment about the 𝑦-axis 

𝑀𝑧 Resultant moment about the 𝑧-axis 

𝑚𝑧 Fastener rotational resistance per unit length 

𝑁 Vertical normal load value 

𝑁𝑆𝑇𝑃𝑇 Vertical normal load value during the STPT 

𝑁𝑡𝑖𝑒 Weight of one single tie 

𝑛𝑟𝑎𝑖𝑙 Rail weight per unit length 

𝑃 Axial force resultant along the 𝑥-axis 

𝑃𝑇 Thermally induced axial force resultant along the 𝑥-axis 

𝑃𝑐𝑟 Critical buckling load 

𝑃𝑚𝑖𝑛 Minimum buckling load 

𝑝𝑥 Externally applied distributed force per unit length along the 𝑥-axis 

𝑝𝑦 Externally applied distributed force per unit length along the 𝑦-axis 

𝑝𝑧 Externally applied distributed force per unit length along the 𝑧-axis 

𝒒 Displacement vector of the global system 

𝒒𝒆 Displacement vector of element 𝑒 

𝑹𝒎 Force residual vector at iteration 𝑚 

RNT Rail neutral temperature 

𝑆 Fastener rotational stiffness 
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STPT Single-tie push test 

𝑡 Time 

𝑢  Displacement of the rail's centroid along the 𝑥-axis (or analogous 

 tie longitudinal displacements measured during STPT testing) 

𝑢𝑖
𝑒  Axial displacement component at the 𝑖-th end of element 𝑒 

𝑉𝑦 Lateral force resultant along the 𝑦-axis 

𝑉𝑧 Vertical force resultant along the 𝑧-axis 

𝑣 Displacement of the rail's centroid along the 𝑦-axis (or analogous 

 tie lateral displacements measured during STPT testing) 

𝑣𝑖
𝑒  Lateral displacement component at the 𝑖-th end of element 𝑒 

𝑣𝑙𝑡  Limit Lateral Tie-Ballast displacement 

𝑣𝑝𝑘 Peak Lateral Tie-Ballast Displacement 

𝑤 Displacement of the rail's centroid along the 𝑧-axis 

𝑤𝑖
𝑒  Vertical displacement component at the 𝑖-th end of element 𝑒 

𝑥 Coordinate axis along the longitudinal direction of the rail 

𝑦 Coordinate axis along the vertical direction of the rail 

𝑦̅ Horizontal distance from the centroid 

𝑧  Coordinate axis along the vertical direction of the rail 

𝑧̅ Vertical distance from the centroid 

𝑧∗ Vertical distance between the centroid and the rail bottom 

𝛼 Coefficient of thermal expansion of the rail 

Δ𝑇 Temperature change from the rail neutral temperature 
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𝜀𝑥𝑥 Axial strain within the rail 

𝜆𝑖 Tie-ballast resistance scaling factor of the 𝑖 direction 

𝜇 Coefficient of friction at the tie-ballast interface 

𝜇𝑆𝑇𝑃𝑇 Coefficient of friction at the tie-ballast interface during the STPT 

𝜃𝑦 Rotation of the rail’s neutral surface about the 𝑦-axis 

𝜃𝑦,𝑖
𝑒  Rotation component about the 𝑦-axis at the 𝑖-th end of element 𝑒 

𝜃𝑧 Rotation of the rail’s neutral surface about the 𝑧-axis 

𝜃𝑧,𝑖
𝑒  Rotation component about the 𝑧-axis at the 𝑖-th end of element 𝑒 

𝜎𝑥𝑥 Axial stress within the rail 

Τ𝑧 Fastener rotational resistance 

𝜏𝑦 Distributed moment in the 𝑥-𝑧 plane caused by longitudinal tie-ballast 

 resistance 

𝜏𝑧 Fastener rotational resistance per unit length 

𝜉𝑛 Hermitian shape function of the axial displacements 

𝜂𝑛 Hermitian shape function of the lateral displacements 

𝜁𝑛 Hermitian shape function of the vertical displacements 
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CHAPTER I 

INTRODUCTION 

 

Rail buckling is a catastrophic event that can cause serious safety issues in the rail 

industry. According to studies (Federal Railroad Administration, 2024), around 11% of the total 

railroad accidents within the 2021 to 2023 could be related to buckling. These accidents can 

result in billions of dollars lost and even lead to human casualties. However, today, there are still 

no clear guidelines for protecting against rail buckling. 

 

 

Figure 1 Photograph showing thermally induced buckling of a railway (reprinted with 

permission from ABproTWE, CC BY-SA 3.0, via Wikimedia Commons) 

 

Buckling is a type of structural instability oftentimes induced by thermal effects in the 

rail industry. Railroad engineers note that buckling usually happens in summer and during the 
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day when the ambient temperature is high, and it is often referred to as a “sun kink”. Notable 

examples include the 2002 Amtrak Auto Train derailment in Florida, which resulted in multiple 

fatalities due to heat-induced rail buckling (National Transportation Safety Board, 2003), and the 

derailment of the Amtrak Capitol Limited in Maryland the same year, caused by similar 

conditions (National Transportation Safety Board, 2004). These incidents underscore the 

importance of addressing this issue comprehensively. However, field observations also show that 

rail misalignments (track-walk), broken fasteners (spikes), weak tie-ballast resistance 

performance, and other imperfections could also affect whether a rail would buckle or not. Even 

though modern commercial finite element software can model this problem, the expense, the 

training needed, and the necessary computation time obviate deployment of commercially 

available codes in the field. Accordingly, an efficient method, which nonetheless includes a 

minimum level of complexity, needs to be developed to prevent rail buckling. 

The body of literature on this subject is extensive. In the 18th century, the first concise 

beam-bending model was reported (Euler, 1744). Two centuries later, Timoshenko applied this 

procedure to predict deformations of railroad structures (Timoshenko, 1915, 1927). Though not 

specific to rails, the vertical deformation of a beam on an elastic foundation has also been 

investigated (Oden, 1967), providing an analytic solution to estimate how rails can deform 

vertically under train load. 

More recently, Kerr formulated a detailed rail-response-predicting model utilizing beam 

theory (Kerr, 1974; Kerr et al., 1976), and soon thereafter, the rail buckling problem started to 

gain more attention. A finite element model deploying the previously mentioned formulation was 

used to analyze the relation between buckling temperature, initial lateral imperfections, and 

elastic-plastic type ballast resistance (Tvergaard and Needleman, 1981). Lift-off problems and 
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wheel-track interaction were also examined, revealing that vehicle speed and axle load are 

crucial factors influencing wheel-rail impact loads (Dong et al., 1994). A series of experimental 

and numerical studies on the stability of continuously welded rail (CWR) and thermal buckling 

led to significant advancements in this field, including the development of Fourier analysis 

models that incorporate vehicle loads or operate without them (Kish et al., 1982, 1985; Kish and 

Samavedam, 1991, 2013). Research indicates that vertical displacements impact rail buckling, 

highlighting that describing the problem as 2D may be an oversimplification (Lim et al., 2003). 

Post-buckling analyses conducted using shooting techniques concluded that lateral tie-ballast 

resistance plays a more dominant role compared to longitudinal tie-ballast resistance (Li and 

Batra, 2007; Yang and Bradford, 2016). 

As it is gaining popularity, commercial finite element software is used to analyze rail 

buckling problems (Pucillo, 2016; Miri et al., 2021). However, some shortcomings of current 

solving procedures, such as solving an overly simplified boundary value problem, extended 

runtime, operating difficulty, and limited flexibility, must be resolved to provide practical and 

prompt support to railroad safety inspectors. 

With these objectives in mind, this research develops a finite element computational 

algorithm designed to deliver readily accessible yet accurate predictions of rail buckling under a 

wide range of environmental factors. Building on the work of Musu (2023), which emphasized 

lift-off effects, the updated model incorporates displacement control into the nonlinear solving 

procedure. This enhancement not only significantly improves computational efficiency but also 

facilitates accurate post-buckling analysis and provides deeper insights into the system's 

response. Additionally, the model updates several nonlinear effect formulations to better reflect 

real-world conditions and integrates practical input parameters, including but not limited to, 
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initial rail misalignment, rail weight, tie-spacing, and tie-ballast interface friction coefficient. A 

comprehensive sensitivity study has been conducted to evaluate the significance of these 

parameters. Capable of generating results within minutes on a standard Intel i7 laptop, this 

efficient and versatile tool provides a practical and accessible solution for advancing rail safety. 
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CHAPTER II 

MODEL DEVELOPMENT 

 

This section outlines the assumptions underlying the development of the model used in 

this research, which is based on thermoelastic Euler-Bernoulli beam theory. Unlike the typical 

formulation, this model incorporates large strain effects and additional influences such as 

nonlinear tie-ballast resistance to enhance its accuracy and applicability for rail applications. 

 

Overview of the Track Structure 

As illustrated in Figure 2, the rail is affixed to the crossties using fasteners (spikes). The 

ballast, composed of crushed stone aggregate, is deposited on the rail bed beneath the ties 

(sleepers), which are typically embedded within it. In some rail systems, tie plates may clip onto 

the sides of the ties, enhancing the rigidity of the structure, but their effects will not be analyzed 

separately and will instead be incorporated into the tie-ballast interaction within this research.  

Note that the coordinate axes 𝑥, 𝑦, and 𝑧 correspond to the axial (longitudinal), lateral, and 

vertical directions relative to the direction of travel. 
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Figure 2 Generic rail with right-handed coordinate system as shown (reprinted with 

Permission from Allen and Fry, 2017) 
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Effects on the Track 

Tie-Ballast Resistance 

The ties attached to the rail provide resistance to help prevent the rail from deforming, 

and research has shown that this can be a highly nonlinear effect (Samavedam et al., 1995). 

For lateral resistance (𝐹𝑦), this research has deployed the results of single-tie push tests 

(STPT) (Wilk, 2024). STPTs are experiments that apply a lateral load to a single tie embedded 

within the track structure to measure the force-displacement relationship, as depicted in Figure 3. 

A load cell is connected to the tie, and as it pushes away from a fixed location, the lateral 

displacement of the tie (𝑣) is measured. 

 

 

Figure 3 Photograph showing the operation of a single-tie push test experiment conducted 

by MxV Rail, Pueblo, CO 
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Although the tie is disconnected from the original track, it remains embedded in the 

ballast, meaning the measured resistance arises solely from the tie-ballast interaction. As the 

relationship between 𝐹𝑦 and 𝑣 can be highly nonlinear, it is generally categorized based on the 

ballast condition. 

In the first case, known as the disturbed condition, the track has been recently tamped. 

Tamping, a process used to align and level the track, inevitably disrupts and loosens the ballast 

structure. This disturbance results in a force-displacement relationship that can typically be 

represented by a bilinear curve, characterized by an initially stiff slope indicating high resistance 

to small displacements, which eventually levels off to a constant value as 𝑣 increases. 

In the second case, referred to as the compacted condition, the track system has 

undergone sufficient usage, leading to ballast consolidation. Over time, the ballast aggregates 

interlock with one another, resulting in a higher peak resistance value. The force-displacement 

relationship in this condition can typically be represented by a trilinear curve. Initially, 𝐹𝑦 

increases linearly with 𝑣, reflecting the high stiffness of the interlocked ballast. Once the peak 

resistance is reached, 𝐹𝑦 gradually decreases at a steady rate before stabilizing at a negligible 

value as 𝑣 continues to increase. 

The mathematical curve-fitting formulations for the two different conditions are 

expressed as follows: 
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• Disturbed condition (bilinear formulation): 

 𝐹𝑦(𝑣) = {

𝐹𝑦,𝑙𝑡

𝑣𝑙𝑡
⋅ |𝑣| ⋅ sgn(−𝑣), |𝑣| ≤ 𝑣𝑙𝑡

𝐹𝑦,𝑙𝑡 ⋅ sgn(−𝑣), |𝑣| > 𝑣𝑙𝑡

 (1) 

Here, 𝐹𝑦,𝑙𝑡 represents the constant limit force, and 𝑣𝑙𝑡 denotes the corresponding lateral 

displacement. 

• Compacted condition (trilinear formulation): 

𝐹𝑦(𝑣) =

{
 
 

 
 

𝐹𝑦,𝑝𝑘

𝑣𝑝𝑘
⋅ |𝑣| ⋅ sgn(−𝑣), |𝑣| ≤ 𝑣𝑝𝑘

[𝐹𝑦,𝑝𝑘 +
𝐹𝑦,𝑙𝑡 − 𝐹𝑦,𝑝𝑘

𝑣𝑙𝑡 − 𝑣𝑝𝑘
⋅ (|𝑣| − 𝑣𝑝𝑘)] ⋅ sgn(−𝑣), 𝑣𝑝𝑘 < |𝑣| ≤ 𝑣𝑙𝑡

𝐹𝑦,𝑙𝑡 ⋅ sgn(−𝑣), |𝑣| > 𝑣𝑙𝑡

 (2) 

The term 𝐹𝑦,𝑝𝑘 represents the peak force, and 𝑣𝑝𝑘 denotes the corresponding lateral 

displacement. Additionally, the force directions are defined to oppose the displacement 

directions. Therefore, the magnitude values are multiplied by sgn(−𝑣) to represent the correct 

direction. It is worth noting that Equation (2) becomes identical to Equation (1) when 𝐹𝑦,𝑙𝑡 =

𝐹𝑦,𝑝𝑘. As a result, the disturbed condition can be regarded as a simplified version of the 

compacted formulation. 
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Figure 4 Demonstration of actual STPT experiment results alongside the corresponding 

curve-fitting model for the displacement-resistance relationship 

 

The behaviors of both cases are illustrated together in Figure 4, where the bilinear and 

trilinear curves demonstrate the differences between the disturbed and compacted condition. 

Note that the force-resistance relationship shown in the graph represents magnitude values only, 

and the direction of the force relative to displacement is not depicted. 

The relation between longitudinal resistance (𝐹𝑥) and axial displacement (𝑢) can be 

measured with a similar procedure. While previous research has shown that the 𝐹𝑥-𝑢 relationship 

is inherently nonlinear (Tvergaard and Needleman, 1981; Nobakht et al., 2022), the precise 

mechanism governing this type of load has not yet been determined. For simplicity, 𝐹𝑥 is 

assumed to vary linearly with 𝑢 in this study, as illustrated below: 



 

11 

 

 𝐹𝑥(𝑢) = −𝑘𝑥 ⋅ 𝑢 (3) 

Here, 𝑘𝑥 is the longitudinal tie-ballast resistance coefficient and is independent of 𝑢. 

Before incorporating Equation (1) and (2) into the model, certain calibrations and 

modifications must be performed. 𝐹𝑦 comprises three major components (Li et al., 1997): the 

friction between the bottom of the ties and the ballast, the friction between the sides of the ties 

and the ballast, and the resistance of the ballast shoulder to lateral displacement, as shown in 

Figure 5. A similar approach applies to 𝐹𝑥. 

 

 

Figure 5 Illustration of the tie-ballast interaction, showing the three major lateral 

resistance components 

 

To ensure the applicability of the STPT experimental results across different tie weights, 

loading conditions, and friction coefficients (𝜇) associated with tie materials or surface 

conditions, modifications are required. The values of 𝜇 are assumed to be known a priori for both 

the STPT experiment and the modeled scenario. As vertical loads (𝑁)—such as those caused by 

tie weight or train loads—increase, it is assumed that the bottom friction changes proportionally, 

while the changes of the side friction and ballast shoulder resistance remain negligible. 
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Based on these assumptions, Coulomb’s friction law is used to determine a scaling factor 

(𝜆) for the tie-ballast resistance curve: 

 λ𝑖 =
𝐹𝑖 + 𝜇 ⋅ 𝑁 − 𝜇𝑆𝑇𝑃𝑇 ⋅ 𝑁𝑆𝑇𝑃𝑇

𝐹𝑖
 (4) 

Where subscripts 𝑖 denote the corresponding direction (longitudinal or lateral), and 

subscripts 𝑆𝑇𝑃𝑇 represent the values specific to the STPT experiments. 𝜆𝑖 must be calculated for 

each scenario and applied to modify the original tie-ballast resistance curve before simulation.  

In addition, the two resistances could be considered as point loads acting on the track. To 

facilitate model construction, the load values are divided by tie-spacing, and the final forms of 

the resistances are treated as distributive loads along the track, as shown below: 

 𝑓𝑥(𝑢) =
𝜆𝑥 ⋅ 𝐹𝑥
𝑑𝑡𝑖𝑒

 (5) 

 𝑓𝑦(𝑣) =
𝜆𝑦 ⋅ 𝐹𝑦

𝑑𝑡𝑖𝑒
 (6) 

Terms 𝑓𝑥 and 𝑓𝑦 represents the tie-ballast resistance per unit length in the corresponding 

longitudinal and lateral directions, respectively, and 𝑑𝑡𝑖𝑒 denotes the tie-spacing of the track 

system.  
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Vertical Support of the Ballast 

Contrary to the 𝑥 and 𝑦 directions, friction is assumed to be negligible in the 𝑧 direction. 

Nonetheless, the vertical support of the foundation (ballast) (𝑓𝑧) is assumed to be a linear 

function of the vertical displacements (𝑤) and can be expressed as: 

 𝑓𝑧(𝑤) = −𝑘𝑧 ⋅ 𝑤 (7) 

Where 𝑓𝑧 has units of force per unit length, and 𝑘𝑧 represents the track modulus, which is 

assumed to be constant and can be acquired from experimental data (Oden, 1967). 
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Fastener Rotational Resistance 

Fasteners are used to connect rails and ties, which can provide rotational resistance to 

prevent the rail from bending, as shown in Figure 6. Similar to 𝐹𝑥, the exact relationship between 

the rotation angle (𝜃𝑧) and the rotational resistance (Τ𝑧) provided by the fastener remains unclear. 

Additionally, this relationship may be nonlinear and highly dependent on the type of fastener 

used (Samavedam et al., 1993). In this study, however, Τ𝑧 is assumed to vary linearly with 𝜃𝑧, 

proportional to the rotational stiffness (𝑆), which is treated as a constant, as shown in Equation 

(8). 

 Τ𝑧(𝜃𝑧) = −𝑆 ⋅ 𝜃𝑧 (8) 

 

 

Figure 6 Demonstration of the rotational resistance induced by fasteners and ties 

(reprinted with permission from Allen and Fry, 2017) 
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In addition, Τ𝑧 is converted from a point moment formulation into a distributed moment 

formulation by dividing the equation by 𝑑𝑡𝑖𝑒. Similar to the approach used for tie-ballast 

resistance, this conversion simplifies its application to the model and expresses it in units of 

moment per unit length (𝜏𝑧), as shown below: 

 𝜏𝑧(𝜃𝑧) =
Τ𝑧
𝑑𝑡𝑖𝑒

 (9) 
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Thermal Effects 

Rail buckling is often induced by thermal effects, including high ambient temperature, 

direct sunlight, and/or frictional heating caused by vehicle operation. Thus, the thermal stresses 

caused by thermal expansion must be taken into consideration. Throughout this research, heat 

transfer effects will be neglected, and it is assumed that the rail temperature changes evenly, 

without any local variations. A linear thermoelastic constitutive equation is deployed within this 

model, given by: 

 𝜎𝑥𝑥 = 𝐸(𝜀𝑥𝑥 − 𝛼 ⋅ 𝛥𝑇) (10) 

Where 𝐸 is the Young’s modulus, 𝜀𝑥𝑥 is the axial strain, 𝛼 represents the coefficient of thermal 

expansion, and 𝛥𝑇 is the current temperature difference compared to the rail neutral temperature 

(RNT), implying that at RNT there will be no thermal stress applied to the system. 

Finally, other sources of loads or moments applied to the track, such as vehicle loads, 

could be described as distributed loads or concentrated point loads applied to the beam. The 

means by which these additional external loadings could affect rail buckling will be discussed in 

later sections. 
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Boundary Value Problem 

As the rail is slender, and the axial dimension is much greater than the lateral and vertical 

dimensions, the Euler-Bernoulli assumption is applied to this model, meaning that cross-sections 

of the rail always remain planar and normal to the centroidal axis. Based on the assumption, we 

have the following results: (1) transverse normal stress components 𝜎𝑦𝑦 and 𝜎𝑧𝑧, as shown in 

Figure 7, can be neglected compared to axial normal stress 𝜎𝑥𝑥; (2) the displacement fields at the 

centroidal axis of the rail cross-sections (𝑢, 𝑣, and 𝑤) are functions of 𝑥 only (Euler, 1744; Allen 

and Haisler, 1985; Grissom and Kerr, 2006). 

 

 

Figure 7 Demonstration of the normal stress components of an infinitesimal element within 

the rail (reprinted with permission from Allen and Fry, 2017) 
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According to field observations, rotation about the 𝑥-axis (torsion) is a relatively minor 

issue in rail buckling. Thus, a 3-D model with 5 degrees of freedom, excluding torsion, is 

developed herein. The 𝑥-𝑦 plane and 𝑥-𝑧 plane views of the free body diagram of the cut rail are 

shown in Figure 8 and Figure 9, respectively.  

 

 

Figure 8 𝒙-𝒚 plane view of the free body diagram of the cut rail 
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Figure 9 𝒙-𝒛 plane view of the free body diagram of the cut rail 

 

The symbols, 𝜎𝑥𝑥, 𝜎𝑦𝑦, 𝜎𝑧𝑧, 𝜎𝑥𝑦, and 𝜎𝑥𝑧, denote the stress components acting on the 

faces of the infinitesimal stress boxes located at the edges of the cut rail, while 𝑝𝑥, 𝑝𝑦, and 𝑝𝑧 

represent the external distributed loads acting in each respective direction. In addition, it can be 

noticed that stress components are not only functions of 𝑥 and time (𝑡), but also functions of 𝑦̅, 

representing the lateral distance, and 𝑧̅, representing the vertical distance, from the centroid. For 

simplification, the geometry of the rail cross-section is assumed to be symmetric about both the 

𝑥-𝑦 and 𝑥-𝑧 planes. Additionally, all the loads and moments in this model are assumed to act 

through the centroid. Since the rail is considered homogeneous, the centroid and the neutral axis 

of the beam remain aligned throughout the deformation process. Finally, as shown in Figure 9, 
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𝜏𝑦 represents the distributed moment caused by 𝑓𝑥, which acts at the bottom of the rail, and is 

given by: 

 𝜏𝑦(𝑥, 𝑡) = 𝑧∗ ⋅ 𝑓𝑥(𝑥, 𝑡) (11) 

Where 𝑧∗ is the moment arm, defined as the distance between the bottom of the rail and the 

centroid. 

It should be noted that the 𝑥-𝑦 plane in Figure 8 is depicted as a deformed body, while 

the 𝑥-𝑧 plane in Figure 9 remains undeformed. The reason is that due to the difference between 

the moments of inertia 𝐼𝑦𝑦 and 𝐼𝑧𝑧, buckling in the 𝑥-𝑦 plane happens much more frequently, and 

the geometric nonlinearity of this plane is also the main focus of this research. Even though 

vertical buckling can happen, but only when lateral displacements are constrained, it is rare. 

Thus, large vertical deformations are generally negligible and will not be considered in this 

research. 

In accordance with Euler-Bernoulli beam theory, the force and moment resultants in the 

𝑥-𝑦 and 𝑥-𝑧 planes are given as follows: 

 𝑃(𝑥, 𝑡) ≡ ∫𝜎𝑥𝑥
𝐴

𝑑𝐴 (12) 

 𝑉𝑦(𝑥, 𝑡) ≡ ∫𝜎𝑥𝑦
𝐴

𝑑𝐴 (13) 

 𝑉𝑧(𝑥, 𝑡) ≡ ∫𝜎𝑥𝑧
𝐴

𝑑𝐴 (14) 
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 𝑀𝑦(𝑥, 𝑡) ≡ ∫𝜎𝑥𝑥
𝐴

⋅ 𝑧̅𝑑𝐴 (15) 

 𝑀𝑧(𝑥, 𝑡) ≡ −∫𝜎𝑥𝑥
𝐴

⋅ 𝑦̅𝑑𝐴 (16) 

Here, 𝐴 is the cross-sectional area of the rail, 𝑃, 𝑉𝑦 and 𝑉𝑧 represent the axial, lateral and vertical 

resultant forces, respectively; and 𝑀𝑦 and 𝑀𝑧 are the resultant moments about the 𝑦-axis and z-

axis, respectively. Additionally, using Equations (10) and (12) and assuming that 𝐴 remains 

constant, the thermal load (𝑃𝑇) of the track due to Δ𝑇 can then be defined as: 

 𝑃𝑇 = 𝐸 ⋅ 𝐴 ⋅ 𝛼 ⋅ 𝛥𝑇 (17) 

By utilizing Equations (12) to (16), the effects of stress components can be replaced by 

the resultant forces and moments as shown in Figure 10 and Figure 11.  
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Figure 10 𝒙-𝒚 plane view of the resultant forces and moment applied to a differential 

element of the rail 
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Figure 11 𝒙-𝒛 plane view of the resultant forces and moment applied to a differential 

element of the rail 

 

Given that the track length is extremely large compared to the deflection amplitude, it is 

reasonable to assume that the rotational angles are small and can be described by: 

 𝜃𝑦 ≅ 𝑡𝑎𝑛(𝜃𝑦) = − 𝑙𝑖𝑚
𝛥𝑥→0

𝛥𝑤

𝛥𝑥
= −

𝑑𝑤

𝑑𝑥
 (18) 

 𝜃𝑧 ≅ 𝑡𝑎𝑛(𝜃𝑧) = 𝑙𝑖𝑚
𝛥𝑥→0

𝛥𝑣

𝛥𝑥
=
𝑑𝑣

𝑑𝑥
 (19) 
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Regarding axial strain, the formulation when considering large deformations is expressed 

as: 

 𝜀𝑥𝑥 =
𝑑𝑢

𝑑𝑥
+
1

2
[(
𝑑𝑢

𝑑𝑥
)
2

+ (
𝑑𝑣

𝑑𝑥
)
2

+ (
𝑑𝑤

𝑑𝑥
)
2

] (20) 

Since lateral displacements are significantly larger than the other two directions for the lateral 

bucking problem, the term 
1

2
(
𝑑𝑣

𝑑𝑥
)
2

 is the only second-order term that needs to be taken into 

consideration (Tvergaard and Needleman, 1981; Grissom and Kerr, 2006). Thus, the final strain-

displacement relationship utilized herein is simplified as: 

 𝜀𝑥𝑥 =
𝑑𝑢

𝑑𝑥
+
1

2
 (
𝑑𝑣

𝑑𝑥
)
2

 (21) 

Finally, since the problem is assumed to be quasi-static, 𝑡 is no longer treated as an 

independent variable. As a result, when analyzing the displacement field (rather than the stress 

field), 𝑥 remains the only independent variable for the problem. Applying all the detailed 

information above, we have constructed a well-posed initial quasi-static boundary value 

problem, as shown in Table 1: 
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Table 1: Initial boundary value problem for predicting rail response 

1. Independent variables: 𝑥  

2. Known inputs: 

Loads: 𝑝𝑥 = 𝑝𝑥(𝑥), 𝑝𝑦 = 𝑝𝑦(𝑥), 𝑝𝑧 = 𝑝𝑧(𝑥), 0 < 𝑥 < 𝐿 

Temperature change: Δ𝑇, known 

Geometry: 𝐴, 𝐼𝑦𝑦, 𝐼𝑧𝑧, 𝐿, 𝑧∗ 

Material properties: 𝐸, 𝛼 

Track parameters: 𝑘𝑥, 𝐹𝑦,𝑙𝑡, 𝐹𝑦,𝑝𝑘, 𝑣𝑙𝑡, 𝑣𝑝𝑘, 𝜆𝑥, 𝜆𝑦, 𝑑𝑡𝑖𝑒, 𝑘𝑧, 𝑆 

 

  

3. Dependent variables: 𝑢 = 𝑢(𝑥), 𝑣 = 𝑣(𝑥), 𝑤 = 𝑤(𝑥), 𝑃 = 𝑃(𝑥), 

Dependent variables: 𝑉𝑦 = 𝑉𝑦(𝑥), 𝑉𝑧 = 𝑉𝑧(𝑥), 𝑀𝑦 = 𝑀𝑦(𝑥), 𝑀𝑧 = 𝑀𝑧(𝑥) 

4. Field equations:  

 
𝑑𝑃

𝑑𝑥
= −𝑝𝑥 − 𝑓𝑥 (22) 

 
𝑑𝑉𝑦

𝑑𝑥
= −𝑝𝑦 − 𝑓𝑦 (23) 

 
𝑑𝑉𝑧
𝑑𝑥

= −𝑝𝑧 − 𝑓𝑧 (24) 

 
𝑑𝑀𝑦

𝑑𝑥
= 𝑉𝑧 + 𝑧

∗𝑓𝑥 (25) 

 
𝑑𝑀𝑧

𝑑𝑥
= −𝑉𝑦 + 𝑃

𝑑𝑣

𝑑𝑥
− 𝜏𝑧 (26) 

 𝑑𝑢

𝑑𝑥
=
𝑃 + 𝑃𝑇

𝐸𝐴
−
1

2
(
𝑑𝑣

𝑑𝑥
)
2

 (27) 

 
𝑑2𝑣

𝑑𝑥2
=
𝑀𝑧

𝐸𝐼𝑧𝑧
 (28) 

 
𝑑2𝑤

𝑑𝑥2
= −

𝑀𝑦

𝐸𝐼𝑦𝑦
 (29) 

5. Auxiliary equations: 𝑓𝑥(𝑢), 𝑓𝑦(𝑣), 𝑓𝑧(𝑤), 𝜏𝑧(𝜃𝑧), 𝑃
𝑇(Δ𝑇)  
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There are 8 equations and 5 additional auxiliary equations (tie-ballast resistances, ballast 

vertical support, fastener rotational resistance, and the thermal load derived by the thermoelastic 

constitutive relation) for solving the listed 8 dependent variables. Even though the problem is 

well-posed, the highly coupled relations make it nonetheless rather difficult to obtain analytical 

solutions without making certain simplifying assumptions. As a result, in order to avoid 

deploying these necessarily debilitating assumptions, a numerical solving procedure utilizing 

FEM is proposed herein. 
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CHAPTER III 

FINITE ELEMENT METHOD 

 

To solve the eight coupled equations simultaneously without introducing excessive 

simplifications, the FEM is employed in this study. The process involves several key steps. First, 

the variational method is applied to derive the weak form of the original governing equations. 

Next, shape functions are introduced into the weak form to determine the system's stiffness 

matrix. Finally, depending on the requirements, either a force-control algorithm or a 

displacement-control algorithm is utilized. Additionally, iterative methods are incorporated into 

the algorithm to ensure convergence of the solutions. The detailed implementation of these steps 

is discussed in this chapter. 
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Variational Method 

Since the governing differential equations are challenging to solve directly, the 

variational method reformulates them into integral forms, thereby weakening the solution in an 

averaged sense to effectively handle complex boundary conditions. 

First, Equations (22), (23), and (24) represent Newton’s Law of Motion along the three 

axes. By applying the Principle of Virtual Work, the three equations can be combined into the 

following single equation that needs to be solved: 

 

∫ [
𝑑𝑃

𝑑𝑥
+ 𝑝𝑥 + 𝑓𝑥]

𝐿

0

𝛿𝑢 𝑑𝑥 

+∫ [
𝑑𝑉𝑦

𝑑𝑥
+ 𝑝𝑦 + 𝑓𝑦]

𝐿

0

𝛿𝑣 𝑑𝑥 

+∫ [
𝑑𝑉𝑧
𝑑𝑥

+ 𝑝𝑧 + 𝑓𝑧]
𝐿

0

𝛿𝑤 𝑑𝑥 = 0 

(30) 

Here, the 𝛿 symbol preceding the displacements indicates virtual displacements.  
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By integrating by parts for the 
𝑑𝑃

𝑑𝑥
, 
𝑑𝑉𝑦

𝑑𝑥
, and 

𝑑𝑉𝑧

𝑑𝑥
 terms, the expression can be rewritten as: 

 

−∫ 𝑃
𝐿

0

𝛿
𝑑𝑢

𝑑𝑥
 𝑑𝑥 + [𝑃𝛿𝑢]0

𝐿 +∫ 𝑝𝑥

𝐿

0

𝛿𝑢 𝑑𝑥 + ∫ 𝑓𝑥

𝐿

0

𝛿𝑢 𝑑𝑥 

−∫ 𝑉𝑦

𝐿

0

𝛿
𝑑𝑣

𝑑𝑥
 𝑑𝑥 + [𝑉𝑦𝛿𝑣]0

𝐿
+∫ 𝑝𝑦

𝐿

0

𝛿𝑣 𝑑𝑥 + ∫ 𝑓𝑦

𝐿

0

𝛿𝑣 𝑑𝑥 

−∫ 𝑉𝑧

𝐿

0

𝛿
𝑑𝑤

𝑑𝑥
 𝑑𝑥 + [𝑉𝑧𝛿𝑤]0

𝐿 +∫ 𝑝𝑧

𝐿

0

𝛿𝑤 𝑑𝑥 + ∫ 𝑓𝑧

𝐿

0

𝛿𝑤 𝑑𝑥 = 0 

(31) 
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Next, by substituting Equations (25), (26), and (27) into the expression above, and through 

further rearrangements, we arrive at: 

 

−∫ [𝐸𝐴
𝑑𝑢

𝑑𝑥
+
𝐸𝐴

2
(
𝑑𝑣

𝑑𝑥
)
2

− 𝑃𝑇] δ
𝑑𝑢

𝑑𝑥

𝐿

0

 𝑑𝑥 

+∫
𝑑𝑀𝑧

𝑑𝑥

𝐿

0

δ
𝑑𝑣

𝑑𝑥
 𝑑𝑥 − ∫ [𝐸𝐴

𝑑𝑢

𝑑𝑥
+
𝐸𝐴

2
(
𝑑𝑣

𝑑𝑥
)
2

− 𝑃𝑇]
𝑑𝑣

𝑑𝑥

𝐿

0

δ
𝑑𝑣

𝑑𝑥
 𝑑𝑥 

−∫
𝑑𝑀𝑦

𝑑𝑥

𝐿

0

δ
𝑑𝑤

𝑑𝑥
 𝑑𝑥 

+∫ 𝑓𝑥  𝛿𝑢
𝐿

0

 𝑑𝑥 + ∫ 𝑓𝑦 𝛿𝑣
𝐿

0

 𝑑𝑥 + ∫ 𝑓𝑧 𝛿𝑤
𝐿

0

 𝑑𝑥 

+∫ 𝑧∗𝑓𝑥  𝛿
𝑑𝑤

𝑑𝑥

𝐿

0

 𝑑𝑥 + ∫ 𝜏𝑧 𝛿
𝑑𝑣

𝑑𝑥

𝐿

0

 𝑑𝑥 

+∫ 𝑝𝑥 δ𝑢
𝐿

0

 𝑑𝑥 + ∫ 𝑝𝑦 δ𝑣
𝐿

0

 𝑑𝑥 + ∫ 𝑝𝑧 δ𝑤
𝐿

0

 𝑑𝑥 

+[𝑃 δ𝑢]0
𝐿 + [𝑉𝑦 δ𝑣]0

𝐿
+ [𝑉𝑧 δ𝑤]0

𝐿 = 0 

(32) 
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By applying integration by parts once more to terms involving 
𝑑𝑀𝑦

𝑑𝑥
 and 

𝑑𝑀𝑧

𝑑𝑥
, and rearranging 

further, obtain: 

 

−∫ 𝐸𝐴
𝑑𝑢

𝑑𝑥
 𝛿
𝑑𝑢

𝑑𝑥

𝐿

0

 𝑑𝑥 − ∫ 𝑀𝑧

𝐿

0

𝛿
𝑑2𝑣

𝑑𝑥2
 𝑑𝑥 + ∫ 𝑀𝑦

𝐿

0

𝛿
𝑑2𝑤

𝑑𝑥2
 𝑑𝑥 

−∫
𝐸𝐴

2
(
𝑑𝑣

𝑑𝑥
)
2

 𝛿
𝑑𝑢

𝑑𝑥

𝐿

0

 𝑑𝑥 

−∫ 𝐸𝐴
𝑑𝑢

𝑑𝑥

𝑑𝑣

𝑑𝑥

𝐿

0

𝛿
𝑑𝑣

𝑑𝑥
 𝑑𝑥 − ∫

𝐸𝐴

2
(
𝑑𝑣

𝑑𝑥
)
3𝐿

0

𝛿
𝑑𝑣

𝑑𝑥
 𝑑𝑥 

+∫ 𝑃𝑇 𝛿
𝑑𝑢

𝑑𝑥

𝐿

0

 𝑑𝑥 + ∫ 𝑃𝑇
𝑑𝑣

𝑑𝑥

𝐿

0

𝛿
𝑑𝑣

𝑑𝑥
 𝑑𝑥 

+∫ 𝑓𝑥  𝛿𝑢
𝐿

0

 𝑑𝑥 + ∫ 𝑓𝑦 𝛿𝑣
𝐿

0

 𝑑𝑥 + ∫ 𝑓𝑧 𝛿𝑤
𝐿

0

 𝑑𝑥 

+∫ 𝑧∗𝑓𝑥  𝛿
𝑑𝑤

𝑑𝑥

𝐿

0

 𝑑𝑥 + ∫ 𝜏𝑧 𝛿
𝑑𝑣

𝑑𝑥

𝐿

0

 𝑑𝑥 

+∫ 𝑝𝑥 𝛿𝑢
𝐿

0

 𝑑𝑥 + ∫ 𝑝𝑦 𝛿𝑣
𝐿

0

 𝑑𝑥 + ∫ 𝑝𝑧 𝛿𝑤
𝐿

0

 𝑑𝑥 

+[𝑃 𝛿𝑢]0
𝐿 + [𝑉𝑦 𝛿𝑣]0

𝐿
+ [𝑉𝑧 𝛿𝑤]0

𝐿 − [𝑀𝑦 𝛿
𝑑𝑤

𝑑𝑥
]
0

𝐿

+ [𝑀𝑧 𝛿
𝑑𝑣

𝑑𝑥
]
0

𝐿

= 0 

(33) 
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Finally, applying Equations (18), (19), (28), and (29), we derive the final weak form that needs 

to be solved for the boundary value problem. 

 

−∫ 𝐸𝐴
𝑑𝑢

𝑑𝑥
𝛿
𝑑𝑢

𝑑𝑥

𝐿

0

 𝑑𝑥 − ∫ 𝐸𝐼𝑧𝑧
𝑑2𝑣

𝑑𝑥2

𝐿

0

𝛿
𝑑2𝑣

𝑑𝑥2
 𝑑𝑥 − ∫ 𝐸𝐼𝑦𝑦

𝐿

0

𝑑2𝑤

𝑑𝑥2
𝛿
𝑑2𝑤

𝑑𝑥2
 𝑑𝑥 

−∫
𝐸𝐴

2
(
𝑑𝑣

𝑑𝑥
)
2

𝛿
𝑑𝑢

𝑑𝑥

𝐿

0

 𝑑𝑥 

−∫ 𝐸𝐴
𝑑𝑢

𝑑𝑥

𝑑𝑣

𝑑𝑥

𝐿

0

𝛿
𝑑𝑣

𝑑𝑥
 𝑑𝑥 − ∫

𝐸𝐴

2
(
𝑑𝑣

𝑑𝑥
)
3𝐿

0

𝛿
𝑑𝑣

𝑑𝑥
 𝑑𝑥 

+∫ 𝑃𝑇  𝛿
𝑑𝑢

𝑑𝑥

𝐿

0

 𝑑𝑥 + ∫ 𝑃𝑇
𝑑𝑣

𝑑𝑥

𝐿

0

𝛿
𝑑𝑣

𝑑𝑥
 𝑑𝑥 

+∫ 𝑓𝑥 𝛿𝑢
𝐿

0

 𝑑𝑥 + ∫ 𝑓𝑦 𝛿𝑣
𝐿

0

 𝑑𝑥 + ∫ 𝑓𝑧 𝛿𝑤
𝐿

0

 𝑑𝑥 

+∫ 𝑧∗𝑓𝑥 𝛿
𝑑𝑤

𝑑𝑥

𝐿

0

 𝑑𝑥 + ∫ 𝜏𝑧 𝛿
𝑑𝑣

𝑑𝑥

𝐿

0

 𝑑𝑥 

+∫ 𝑝𝑥 𝛿𝑢
𝐿

0

 𝑑𝑥 + ∫ 𝑝𝑦 𝛿𝑣
𝐿

0

 𝑑𝑥 + ∫ 𝑝𝑧 𝛿𝑤
𝐿

0

 𝑑𝑥 

+[𝑃 𝛿𝑢]0
𝐿 + [𝑉𝑦 𝛿𝑣]0

𝐿
+ [𝑉𝑧 𝛿𝑤]0

𝐿 + [𝑀𝑦 𝛿𝜃𝑦]0
𝐿
+ [𝑀𝑧 𝛿𝜃𝑧]0

𝐿 = 0 

(34) 

As we can see, there are several different sources of nonlinearity such as: geometric 

nonlinearity (term 5 and term 6), nonlinearity caused by strain-displacement relationship (term 4, 

term 6), and nonlinearity caused by lateral tie-ballast resistance (term 10). In addition, though not 
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shown in the weak formulation, nonlinearities caused by point loads and moments will also be 

included in this model, entering the system by specifying realistic boundary conditions. 
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Shape Functions 

To solve the weak form with the finite element method, the global domain is first 

discretized into local elements, allowing the model to capture local displacement changes 

effectively, as shown in Figure 12. 

 

 

Figure 12 Schematic of the mesh showing local element displacements at the nodes 

 

To ensure smooth and accurate representations of bending deformations, Hermitian shape 

functions of cubic order (Allen and Haisler, 1985) are employed in this research. These functions 

can be used to describe displacements, expressed as: 

 𝑢𝑒 =∑𝜉𝑛𝑞𝑛
𝑒

10

𝑛=1

 (35) 

 𝑣𝑒 = ∑η𝑛𝑞𝑛
𝑒

10

𝑛=1

 (36) 



 

35 

 

 𝑤𝑒 = ∑ζ𝑛𝑞𝑛
𝑒

10

𝑛=1

 (37) 

The superscript 𝑒 on the displacements indicates local element displacements, represents the 

components of the local element displacement vector (𝒒𝑒), which has a size of 10. The vector is 

expressed as: 

 𝒒𝑒 = [𝑢1
𝑒 𝑣1

𝑒 𝑤1
𝑒 𝜃𝑦,1

𝑒 𝜃𝑧,1
𝑒 𝑢2

𝑒 𝑣2
𝑒 𝑤2

𝑒 𝜃𝑦,2
𝑒 𝜃𝑧,2

𝑒 ]𝑇 (38) 

Here, the subscripts 1 and 2 refer to the left end and right end of the local element, respectively. 

The Hermitian shape functions 𝜉𝑛, 𝜂𝑛, and 𝜁𝑛 are defined as follows: 

 𝜉𝑛 =

{
 
 

 
 1 −

𝑥

𝐿𝑒
, 𝑛 = 1 

𝑥

𝐿𝑒
, 𝑛 = 6

0, 𝑒𝑙𝑠𝑒

     , 𝑓𝑜𝑟 0 < 𝑥 < 𝐿𝑒 (39) 

 𝜂𝑛 =

{
 
 
 
 

 
 
 
 1 − 3(

𝑥

𝐿𝑒
)
2

+ 2(
𝑥

𝐿𝑒
)
3

, 𝑛 = 2 

𝑥 (1 −
𝑥

𝐿𝑒
)
2

, 𝑛 = 5

3 (
𝑥

𝐿𝑒
)
2

− 2(
𝑥

𝐿𝑒
)
3

, 𝑛 = 7

𝑥 [(
𝑥

𝐿𝑒
)
2

−
𝑥

𝐿𝑒
] , 𝑛 = 10

0, 𝑒𝑙𝑠𝑒

     , 𝑓𝑜𝑟 0 < 𝑥 < 𝐿𝑒 (40) 
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 𝜁𝑛 =

{
 
 
 
 

 
 
 
 1 − 3(

𝑥

𝐿𝑒
)
2

+ 2(
𝑥

𝐿𝑒
)
3

, 𝑛 = 3 

−𝑥 (1 −
𝑥

𝐿𝑒
)
2

, 𝑛 = 4

3 (
𝑥

𝐿𝑒
)
2

− 2(
𝑥

𝐿𝑒
)
3

, 𝑛 = 8

−𝑥 [(
𝑥

𝐿𝑒
)
2

−
𝑥

𝐿𝑒
] , 𝑛 = 9

0, 𝑒𝑙𝑠𝑒

     , 𝑓𝑜𝑟 0 < 𝑥 < 𝐿𝑒 (41) 

Where 𝐿𝑒 denotes the length of the local element. 
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Stiffness Matrix Derivation 

To solve the weak formulation, the shape functions are substituted into Equation (34), 

leading to the following relation: 

 ∑(𝐼𝑖
𝑒 − 𝐹𝑖

𝑒)

10

𝑖=1

 𝛿𝑞𝑖
𝑒 = 0 (42) 

where: 

 𝐼𝑖
𝑒 = 𝐼𝐿𝑖𝑛,𝑖

𝑒 + 𝐼LS,𝑖
𝑒 + 𝐼Geo,𝑖

𝑒 + 𝐼LS,Geo,𝑖
𝑒 + 𝐼T,𝑖

𝑒 + 𝐼Lon,𝑖
𝑒 + 𝐼𝐿𝑎𝑡,𝑖

𝑒 + 𝐼Bal,𝑖
𝑒 + 𝐼𝐹𝑎𝑠,𝑖

𝑒  (43) 

 𝐹𝑖
𝑒 = ∫ [𝑝𝑥𝜉𝑖 + 𝑝𝑦𝜂𝑖 + 𝑝𝑧𝜁𝑖 + 𝑃

𝑇
𝑑𝜉𝑖
𝑑𝑥
]

𝐿𝑒

0

𝑑𝑥 (44) 

Here, 𝐼𝑖
𝑒 is a functional that depends on functions defined by 𝑞𝑖

𝑒, and 𝐹𝑖
𝑒 represents the force 

vector capturing the effects of applied external loads (or temperature change). Each sub-term of 

𝐼𝑖
𝑒 is defined below: 

 

𝐼𝐿𝑖𝑛,𝑖
𝑒 = ∫ [

𝐿𝑒

0

𝐸𝐴
𝑑

𝑑𝑥
(∑ 𝜉𝑚

10

𝑚=1

𝑞𝑚
𝑒 )

𝑑𝜉𝑖
𝑑𝑥

+ 𝐸𝐼𝑧𝑧
𝑑2

𝑑𝑥2
(∑ 𝜂𝑚

10

𝑚=1

𝑞𝑚
𝑒 )

𝑑2𝜂𝑖
𝑑𝑥2

+ 𝐸𝐼𝑦𝑦
𝑑2

𝑑𝑥2
(∑ 𝜁𝑚

10

𝑚=1

𝑞𝑚
𝑒 )

𝑑2𝜁𝑖
𝑑𝑥2

]𝑑𝑥 

(45) 

 𝐼LS,𝑖
𝑒 = ∫ [

𝐸𝐴

2

𝑑

𝑑𝑥
(∑ 𝜂𝑚

10

𝑚=1

𝑞𝑚
𝑒 )

𝑑

𝑑𝑥
(∑𝜂𝑛

10

𝑛=1

𝑞𝑛
𝑒)
𝑑𝜉𝑖
𝑑𝑥
]

𝐿𝑒

0

𝑑𝑥 (46) 
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 𝐼𝐺𝑒𝑜,𝑖
𝑒 = ∫ [𝐸𝐴

𝑑

𝑑𝑥
(∑ 𝜉𝑚

10

𝑚=1

𝑞𝑚
𝑒 )

𝑑

𝑑𝑥
(∑𝜂𝑛

10

𝑛=1

𝑞𝑛
𝑒)
𝑑𝜂𝑖
𝑑𝑥
]

𝐿𝑒

0

𝑑𝑥 (47) 

𝐼LS,Geo,𝑖
𝑒 = ∫ [

𝐸𝐴

2

𝑑

𝑑𝑥
(∑ 𝜂𝑚

10

𝑚=1

𝑞𝑚
𝑒 )

𝑑

𝑑𝑥
(∑𝜂𝑛

10

𝑛=1

𝑞𝑛
𝑒)

𝑑

𝑑𝑥
(∑𝜂𝑟

10

𝑟=1

𝑞𝑟
𝑒)
𝑑𝜂𝑖
𝑑𝑥
]

𝐿𝑒

0

𝑑𝑥 (48) 

 𝐼T,𝑖
𝑒 = −∫ [𝑃𝑇

𝑑

𝑑𝑥
(∑ 𝜂𝑚

10

𝑚=1

𝑞𝑚
𝑒 )

𝑑𝜂𝑖
𝑑𝑥
]

𝐿𝑒

0

𝑑𝑥 (49) 

 𝐼𝐿𝑜𝑛,𝑖
𝑒 = −∫ 𝑓𝑥  𝜉𝑖

𝐿𝑒

0

 𝑑𝑥 − ∫ 𝑧∗𝑓𝑥
𝑑𝜁𝑖
𝑑𝑥

𝐿𝑒

0

 𝑑𝑥 (50) 

 𝐼𝐿𝑎𝑡,𝑖
𝑒 = −∫ 𝑓𝑦  𝜂𝑖

𝐿𝑒

0

 𝑑𝑥 (51) 

 𝐼𝐵𝑎𝑙,𝑖
𝑒 = −∫ 𝑓𝑧 𝜁𝑖

𝐿𝑒

0

 𝑑𝑥 (52) 

 𝐼𝐹𝑎𝑠,𝑖
𝑒 = −∫ 𝜏𝑧  

𝑑𝜂𝑖
𝑑𝑥

𝐿𝑒

0

 𝑑𝑥 (53) 

Here, 𝐼𝐿𝑖𝑛,𝑖
𝑒  represents the terms caused by axial stiffness and bending stiffness, which are linear. 

The terms 𝐼𝐿𝑆,𝑖
𝑒  account for large strain effects in the axial direction. While 𝐼𝐺𝑒𝑜,𝑖

𝑒  capture the 

effects of geometric nonlinearity, 𝐼𝐿𝑆,𝐺𝑒𝑜,𝑖
𝑒  represents the combined contributions of geometric 

nonlinearity when considering large strain effects. The terms 𝐼T,𝑖
𝑒 , 𝐼𝐿𝑜𝑛,𝑖

𝑒 , 𝐼𝐿𝑎𝑡,𝑖
𝑒 , 𝐼𝐵𝑎𝑙,𝑖

𝑒 , 𝐼𝐹𝑎𝑠,𝑖
𝑒  
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correspond to effects of secondary moments caused by thermal loads, longitudinal tie-ballast 

resistance, lateral tie-ballast resistance, vertical ballast resistance, and fastener rotational 

resistance, respectively. 

It is also important to note that the resultant force and moment terms at the boundaries 

have been omitted because they will cancel out each other when assembling from local form into 

global form. 

Since 𝛿𝑞𝑖
𝑒 should be mutually linear independent, and Equation (42) must hold for all 

cases, this leads to a system of 10 equations: 

 𝐼𝑖
𝑒 = 𝐹𝑖

𝑒,  for 𝑖 = 1 to 10 (54) 

To solve this system, a Taylor expansion is applied. If we expand against 𝐼𝑖
𝑒(𝑞𝑗

𝑒): 

 𝐼𝑖
𝑒(𝑞𝑗

𝑒 + 𝛥𝑞𝑗
𝑒) = 𝐼𝑖

𝑒(𝑞𝑗
𝑒) +

∂𝐼𝑖
𝑒

∂𝑞𝑗
𝑒 𝛥𝑞𝑗

𝑒 +
1

2

∂2𝐼𝑖
𝑒

∂𝑞𝑗
𝑒2
(𝛥𝑞𝑗

𝑒)
2
+ 𝐻.𝑂. 𝑇 (55) 

As the displacement increments between different time-steps are relatively small, we can neglect 

higher-order terms (𝐻.𝑂. 𝑇). Only considering zero and first-order terms, we obtain the 

following: 

 𝐾𝑖𝑗
𝑒𝛥𝑞𝑗

𝑒 = 𝐼𝑖
𝑒(𝑞𝑗

𝑒 + 𝛥𝑞𝑗
𝑒) − 𝐼𝑖

𝑒(𝑞𝑗
𝑒) (56) 

The Jacobian matrix of  𝐼𝑖
𝑒, or so-called the stiffness matrix, is defined by: 

 𝐾𝑖𝑗
𝑒 =

∂𝐼𝑖
𝑒

∂𝑞𝑗
𝑒 (57) 
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By combining Equations (43) and (57), 𝐾𝑖𝑗
𝑒  could also be split into sub-terms: 

𝐾𝑖𝑗
𝑒 = 𝐾𝐿𝑖𝑛,𝑖𝑗

𝑒 + 𝐾LS,𝑖𝑗
𝑒 + 𝐾Geo,𝑖𝑗

𝑒 + 𝐾LS,Geo,𝑖𝑗
𝑒 + 𝐾T,𝑖𝑗

𝑒 + 𝐾Lon,𝑖𝑗
𝑒 + 𝐾𝐿𝑎𝑡,𝑖𝑗

𝑒 + 𝐾Bal,𝑖𝑗
𝑒 + 𝐾𝐹𝑎𝑠,𝑖𝑗

𝑒  (58) 

Each sub-term of 𝐾𝑖
𝑒 is defined below: 

 𝐾𝐿𝑖𝑛,𝑖𝑗
𝑒 = ∫ [

𝐿𝑒

0

𝐸𝐴
𝑑𝜉𝑖
𝑑𝑥

𝑑𝜉𝑗

𝑑𝑥
+ 𝐸𝐼𝑧𝑧

𝑑2𝜂𝑖
𝑑𝑥2

𝑑2𝜂𝑗

𝑑𝑥2
+ 𝐸𝐼𝑦𝑦

𝑑2𝜁𝑖
𝑑𝑥2

𝑑2𝜁𝑗

𝑑𝑥2
]𝑑𝑥 (59) 

 𝐾LS,𝑖𝑗
𝑒 = ∫ [𝐸𝐴

𝑑

𝑑𝑥
(∑ 𝜂𝑚

10

𝑚=1

𝑞𝑚
𝑒 )

𝑑𝜉𝑖
𝑑𝑥

𝑑𝜂𝑗

𝑑𝑥
]

𝐿𝑒

0

𝑑𝑥 (60) 

 

𝐾𝐺𝑒𝑜,𝑖𝑗
𝑒 = ∫ [𝐸𝐴

𝑑

𝑑𝑥
(∑ 𝜂𝑚

10

𝑚=1

𝑞𝑚
𝑒 )

𝑑𝜂𝑖
𝑑𝑥

𝑑𝜉𝑗

𝑑𝑥
]

𝐿𝑒

0

𝑑𝑥

+ ∫ [𝐸𝐴
𝑑

𝑑𝑥
(∑ 𝜉𝑚

10

𝑚=1

𝑞𝑚
𝑒 )

𝑑𝜂𝑖
𝑑𝑥

𝑑𝜂𝑗

𝑑𝑥
]

𝐿𝑒

0

𝑑𝑥 

(61) 

𝐾LS,Geo,𝑖𝑗
𝑒 = ∫ [

3𝐸𝐴

2

𝑑

𝑑𝑥
(∑ 𝜂𝑚

10

𝑚=1

𝑞𝑚
𝑒 )

𝑑

𝑑𝑥
(∑𝜂𝑛

10

𝑛=1

𝑞𝑛
𝑒)
𝑑𝜂𝑖
𝑑𝑥

𝑑𝜂𝑗

𝑑𝑥
]

𝐿𝑒

0

𝑑𝑥 (62) 

 𝐾T,𝑖𝑗
𝑒 = −∫ [𝑃𝑇

𝑑𝜂𝑖
𝑑𝑥

𝑑𝜂𝑗

𝑑𝑥
]

𝐿𝑒

0

𝑑𝑥 (63) 

 𝐾𝐿𝑜𝑛,𝑖𝑗
𝑒 = −∫  𝜉𝑖

∂𝑓𝑥
∂𝑞𝑗

𝑒

𝐿𝑒

0

 𝑑𝑥 − ∫ 𝑧∗
𝑑𝜁𝑖
𝑑𝑥

∂𝑓𝑥
∂𝑞𝑗

𝑒

𝐿𝑒

0

 𝑑𝑥 (64) 
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 𝐾𝐿𝑎𝑡,𝑖𝑗
𝑒 = −∫ 𝜂𝑖

∂𝑓𝑦

∂𝑞𝑗
𝑒

𝐿𝑒

0

 𝑑𝑥 (65) 

 𝐾𝐵𝑎𝑙,𝑖𝑗
𝑒 = −∫ 𝜁𝑖

∂𝑓𝑧
∂𝑞𝑗

𝑒

𝐿𝑒

0

 𝑑𝑥 (66) 

 𝐾𝐹𝑎𝑠,𝑖𝑗
𝑒 = −∫

𝑑𝜂𝑖
𝑑𝑥

∂𝜏𝑧
∂𝑞𝑗

𝑒

𝐿𝑒

0

 𝑑𝑥 (67) 

It should be clear that 𝑓𝑥, 𝑓𝑧, and 𝜏𝑧 are all linear functions of the corresponding 

displacements as shown in Equations (3), (4), (5), (7), (8), and (9). Thus, the partial derivatives 

in 𝐾𝐿𝑜𝑛,𝑖
𝑒 , 𝐾𝐵𝑎𝑙,𝑖

𝑒 , and 𝐾𝐹𝑎𝑠,𝑖
𝑒  could be calculated directly, as shown: 

 𝐾𝐿𝑜𝑛,𝑖𝑗
𝑒 =

𝜆𝑥 ⋅ 𝑘𝑥
𝑑𝑡𝑖𝑒

⋅ [∫  𝜉𝑖  𝜉𝑗

𝐿𝑒

0

 𝑑𝑥 + ∫ 𝑧∗
𝑑𝜁𝑖
𝑑𝑥
 𝜉𝑗

𝐿𝑒

0

 𝑑𝑥] (68) 

 𝐾𝐵𝑎𝑙,𝑖𝑗
𝑒 =

𝑘𝑧
𝑑𝑡𝑖𝑒

∫ 𝜁𝑖𝜁𝑗

𝐿𝑒

0

 𝑑𝑥 (69) 

 𝐾𝐹𝑎𝑠,𝑖𝑗
𝑒 =

𝑆

𝑑𝑡𝑖𝑒
∫

𝑑𝜂𝑖
𝑑𝑥

𝑑𝜂𝑗

𝑑𝑥

𝐿𝑒

0

 𝑑𝑥 (70) 

For 𝐾𝐿𝑎𝑡,𝑖
𝑒 , the integrand contains the partial derivative of 𝑓𝑦, which is either a bilinear or 

trilinear function based on the given ballast condition. Due to this, additional treatment is 

required before 𝐾𝐿𝑎𝑡,𝑖
𝑒  can be calculated. First, the partial derivative is determined as follows: 

• Disturbed condition (bilinear formulation): 
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∂𝑓𝑦

∂𝑞𝑗
𝑒 = {

−
𝜆𝑦

𝑑𝑡𝑖𝑒

𝐹𝑦,𝑙𝑡

𝑣𝑙𝑡
𝜂𝑗 , |𝑣𝑒| ≤ 𝑣𝑙𝑡

0, |𝑣𝑒| > 𝑣𝑙𝑡

 (71) 

• Compacted condition (trilinear formulation): 

 
∂𝑓𝑦

∂𝑞𝑗
𝑒 =

{
 
 

 
 −

𝜆𝑦

𝑑𝑡𝑖𝑒

𝐹𝑦,𝑝𝑘

𝑣𝑝𝑘
𝜂𝑗 , |𝑣𝑒| ≤ 𝑣𝑝𝑘

−
𝜆𝑦

𝑑𝑡𝑖𝑒

𝐹𝑦,𝑙𝑡 − 𝐹𝑦,𝑝𝑘

𝑣𝑙𝑡 − 𝑣𝑝𝑘
𝜂𝑗 , 𝑣𝑝𝑘 < |𝑣

𝑒| ≤ 𝑣𝑙𝑡

0, |𝑣𝑒| > 𝑣𝑙𝑡

 (72) 

Based on this formulation, it is evident that 𝐾𝐿𝑎𝑡,𝑖
𝑒  can be calculated if split into several integrals. 

Since the disturbed condition is a simplified version of the compacted condition, the compacted 

condition is used as an example: 

 𝐾𝐿𝑎𝑡,𝑖𝑗
𝑒 =

𝜆𝑦 ⋅ 𝑘𝑦,1

𝑑𝑡𝑖𝑒
∫ 𝜂𝑖𝜂𝑗

𝐿1
𝑒

0

 𝑑𝑥 +
𝜆𝑦 ⋅ 𝑘𝑦,2

𝑑𝑡𝑖𝑒
∫ 𝜂𝑖𝜂𝑗

𝐿2
𝑒

0

 𝑑𝑥 (73) 

Here, 𝑘𝑦,1 and 𝑘𝑦,2 represent the slopes of the STPT curve-fitting result for different sections: 

 𝑘𝑦,1 =
𝐹𝑦,𝑝𝑘

𝑣𝑝𝑘
 (74) 

 𝑘𝑦,2 =
𝐹𝑦,𝑙𝑡 − 𝐹𝑦,𝑝𝑘

𝑣𝑙𝑡 − 𝑣𝑝𝑘
 (75) 

The lengths 𝐿1
𝑒  and 𝐿2

𝑒  correspond to the effective sections of the element satisfying the 

conditions |𝑣𝑒| ≤ 𝑣𝑝𝑘 and 𝑣𝑝𝑘 < |𝑣
𝑒| ≤ 𝑣𝑙𝑡, respectively. For this case, 𝑣𝑒 is assumed to vary 

linearly along the element, and can be written as: 
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 𝑣𝑒(𝑥) = 𝑣1
𝑒 +

𝑣2
𝑒 − 𝑣1

𝑒

𝐿𝑒
𝑥, 0 ≤ 𝑥 ≤ 𝐿𝑒  (76) 

A more detailed illustration is shown in Figure 13: 

 

Figure 13 Linear distribution of lateral displacements along the element, showing effective 

lengths for the compacted ballast condition 

 

Using the procedure described above, 𝐾𝐿𝑎𝑡,𝑖
𝑒  effectively captures the lateral tie-ballast 

resistance and addresses its nonlinearity. This process must be applied individually to each 

element. 

All sub-terms of 𝐾𝑖
𝑒 are now well-defined. Instead of using numerical integration 

methods such as quadrature, these terms can be computed a priori to reduce simulation time. 

Detailed calculation results for 𝐾𝑖
𝑒 and 𝐹𝑖

𝑒 are provided in Appendix A. 

Regarding Equation (54), we obtain the following final form of the incremental 

equilibrium equations: 
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 𝐾𝑖𝑗
𝑒𝛥𝑞𝑗

𝑒 = 𝛥𝐹𝑖
𝑒 (77) 

 𝛥𝐹𝑖
𝑒 = 𝐹𝑖

𝑒(𝑞𝑗
𝑒 + 𝛥𝑞𝑗

𝑒) − 𝐹𝑖
𝑒(𝑞𝑗

𝑒) (78) 

Utilizing the standard FE assembly method, the local stiffness matrices and force vectors 

are assembled into the global form, 𝐾𝑖𝑗 and Δ𝐹𝑖, to model the entire rail section: 

 𝐾𝑖𝑗𝛥𝑞𝑗 = 𝛥𝐹𝑖 (79) 

It is important to note that 𝐾𝑖𝑗 is a function of the global displacement vector, expressed as 𝐾𝑖𝑗 =

𝐾𝑖𝑗(𝑞𝑗), thereby incorporating the nonlinearities into the formulation.  
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Force-Control Algorithm 

The force-control algorithm is used to model rail buckling under either mechanical or 

thermal loads. In order to accurately account for the nonlinearities within 𝐾𝑖𝑗, the entire loading 

procedure is divided into multiple time-steps. At each time-step, an equal increment of load or 

temperature change is applied, and each step is assumed to remain quasi-static. The displacement 

values used to compute 𝐾𝑖𝑗 must be updated at every time-step, and for greater accuracy, 

iterative methods, such as Newton’s method are deployed within this model. The iterative 

version of Equation (79) for force control can be expressed as: 

 𝑅𝑖
𝑚 = 𝑅𝑖(𝛥𝑞𝑗

𝑚) = 𝐾𝑖𝑗
𝑚𝛥𝑞𝑗

𝑚 − 𝛥𝐹𝑖
𝑚 (80) 

where: 

 𝐾𝑖𝑗
𝑚 = 𝐾𝑖𝑗(𝑞𝑗

𝑚) (81) 

 𝑞𝑗
𝑚 = 𝑞𝑗,𝑜𝑙𝑑 +  𝛥𝑞𝑗

𝑚 (82) 

Here, the superscript 𝑚 denotes the iteration number within the time-step, and 𝑞𝑗,𝑜𝑙𝑑 refers to the 

global displacement vector from the previous time-step. The term 𝑅𝑖
𝑚 is the load residual, 

quantifying the imbalance between the applied load (𝛥𝐹𝑖
𝑚) and reaction load corresponding to 

the current displacement change (𝐾𝑖𝑗
𝑚𝛥𝑞𝑗

𝑚). The goal of the iterative process is to minimize 𝑅𝑚 

and ensure that the system reaches equilibrium. 

Before initiating the iterative process, the initial guess for Equation (131) (with 𝑚 = 1) 

must be provided. It can be obtained by: 
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 𝛥𝑞𝑗
1 = (𝐾𝑖𝑗

𝑜𝑙𝑑)
−1
𝛥𝐹𝑖 (83) 

Here, (𝐾𝑖𝑗
𝑜𝑙𝑑)

−1
 is the inverse of 𝐾𝑖𝑗

𝑜𝑙𝑑=𝐾𝑖𝑗(𝑞𝑗,𝑜𝑙𝑑). Once 𝛥𝑞𝑗
1 is obtained, the iterative process 

can proceed. 

The concept of Newton’s method is to use results from previous iterations to obtain an 

improved estimate for the next iteration. The procedure is terminated when it satisfies a 

convergence criterion related to the Euclidean norm of the residual, ||𝑅𝑖
𝑚||, which must fall 

below a pre-determined threshold, close to 0. 

Using Taylor’s Formula to expand 𝑅𝑖
𝑚 against 𝛥𝑞𝑗

𝑚 while neglecting higher order terms 

results in: 

 𝑅𝑖
𝑚 = −

∂𝑅𝑖
𝑚

∂𝛥𝑞𝑗
(𝛥𝑞𝑗

𝑚+1 − 𝛥𝑞𝑗
𝑚) (84) 

Here, 
∂𝑅𝑖

𝑚

∂𝛥𝑞𝑗
𝑚 is the Jacobian of the residual, which indicates the load residual change rate at 

iteration 𝑚. 

Equation (84) is then used to obtain the displacement change vector at iteration 𝑚+ 1, 

𝛥𝑞𝑗
𝑚+1. Equations (131) and (84) are solved repeatedly until ||𝑅𝑖

𝑚|| satisfied the convergence 

criterion, which is set to 6 × 10−6 in this research. 

Once this condition is satisfied, it indicates that the difference between 𝛥𝑞𝑗
𝑚 and 𝛥𝑞𝑗

𝑚+1 

is negligible, so convergence at the time-step is reached. The updated global displacement vector 

𝑞𝑗,𝑛𝑒𝑤, which will be used in the next step, can be obtained by combining the displacement 

vector from the previous step, 𝑞𝑗,𝑜𝑙𝑑, and the converged displacement change vector, 𝛥𝑞𝑗
𝑚: 



 

47 

 

 𝑞𝑗,𝑛𝑒𝑤 = 𝑞𝑗,𝑜𝑙𝑑 + 𝛥𝑞𝑗
𝑚 (85) 

In practice, calculating 
∂𝑅𝑖

𝑚

∂𝛥𝑞𝑗
 is time-consuming and non-efficient. Thus, the Krylov 

subspace method is applied (Knoll and Keyes, 2004), where it utilizes the Generalized Minimal 

RESidual method (GMRES) (Saad and Schultz, 1986) approximate the Jacobian matrix with 

sub-iterations. The Newton-Krylov method has proven to be a highly efficient nonlinear system-

solving procedure and has already been included in the current SciPy Module (Virtanen et al., 

2020), this research utilizes this well-known function to solve the problem demonstrated. 

As axial load is applied to the rail, The corresponding load vs. displacement curve can be 

found by tracking the displacements at each load step, as shown in Figure 14. 

 

 

Figure 14 Demonstration of the axial load vs. maximum lateral displacement curve for a 

rail buckling problem while using force control 
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As the applied load value increases, the slope of the curve abruptly decreases, a 

phenomenon referred to as softening. For most cases, the displacement path can experience snap-

through at the first unstable point as the load has reached its local maximum. In other cases, the 

curve could stiffen again, a process called progressive buckling and does not have a significant 

unstable trend. Some researchers have shown that the value of the lateral tie-ballast resistance 

could cause the difference between these two cases (Samavedam et al., 1993; Kish and 

Samavedam, 2013). In this research, we define the displacement where the slope of the load vs. 

displacement curve becomes 0 as the critical buckling displacement (𝑣𝑐𝑟) and the corresponding 

load as the critical buckling load (𝑃𝑐𝑟). 
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Displacement-Control Algorithm 

While the force-control algorithm is sufficient for determining 𝑃𝑐𝑟, the rail may buckle 

under lower axial loads if additional energy is introduced to the system, such as from loads 

caused by vehicle movement (Kish and Samavedam, 2013). Since the force-control algorithm 

does not permit negative load changes, it is incapable of capturing the equilibrium load vs. 

displacement path when softening occurs beyond the critical buckling point. Therefore, the 

displacement-control algorithm is utilized in this research. 

The displacement-control algorithm incrementally increases the lateral displacement at a 

specified point and calculates the corresponding axial load required to produce this change. In 

this study, the buckling geometry is assumed to be symmetric about the midpoint, making the 

midpoint—where the maximum lateral displacement occurs—the control point. The algorithm is 

adapted from the self-correcting method for displacement incrementation introduced by Haisler, 

Stricklin, and Key (1977), with modifications implemented to address the specific needs of rail 

buckling analysis. 

As with the force-control algorithm, the displacement-control process involves time-

stepping and iterative methods. The process begins with Equation (80), (81), and (82). However, 

since the applied force increment (𝛥𝐹𝑖
1) is an unknown, the initial displacement change vector, 

𝛥𝑞𝑗
1, cannot be determined using Equation (83). Instead, an alternative approach is applied: 

 𝐾𝑖𝑗
𝑜𝑙𝑑𝛥𝑞𝑗

1 = 𝛥𝐹𝑖
1 (86) 

By partitioning 𝐾𝑖𝑗
𝑜𝑙𝑑, 𝛥𝑞𝑗

1, and 𝛥𝐹𝑖
1 into sub-matrices and vectors, Equation (86) is rewritten as: 
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 𝐾𝑓𝑓,𝑖𝑗
𝑜𝑙𝑑 𝛥𝑞𝑓,𝑗

1 + 𝐾𝑓𝑐,𝑖𝑗
𝑜𝑙𝑑 𝛥𝑞𝑐,𝑗

1 = 𝛥𝐹𝑓,𝑖
1 = 𝛥𝑃1𝑓𝑓,𝑖 (87) 

 𝐾𝑐𝑓,𝑖𝑗
𝑜𝑙𝑑 𝛥𝑞𝑓,𝑗

1 + 𝐾𝑐𝑐,𝑖𝑗
𝑜𝑙𝑑 𝛥𝑞𝑐,𝑗

1 = 𝛥𝐹𝑐,𝑖
1 = 𝛥𝑃1𝑓𝑐,𝑖 (88) 

Here, Subscripts 𝑓 and 𝑐 represent “free” and “constrained” degrees of freedom, respectively. 

The vector 𝛥𝑞𝑓
1 contains nodal displacement change values that are free to vary during the 

simulation. While 𝛥𝑞𝑐
1 contains constrained nodal displacement changes, which are prescribed 

by displacement boundary conditions and the displacement control point, these values are 

known. 𝛥𝑃1 is a scalar representing the magnitude of the applied load, while 𝑓𝑓,𝑖 and 𝑓𝑐,𝑖 are 

vectors of 0s and 1s, indicating where load changes are applied. Since an external axial load is 

assumed to act only at the left end to induce rail buckling, 𝑓𝑐,𝑖 simplifies to a zero vector, and 𝑓𝑓,𝑖  

contains a single non-zero element with a value of 1, corresponding to the axial load at the left 

end. 

Rewriting Equation (87), 𝛥𝑞𝑓,𝑗
1  is expressed as: 

 𝛥𝑞𝑓,𝑗
1 = 𝐴𝑗 + 𝛥𝑃

1𝐵𝑗 (89) 

where 𝐴𝑗 and 𝐵𝑗 are defined as: 

 𝐾𝑓𝑓,𝑖𝑗
𝑜𝑙𝑑 𝐴𝑗 = −𝐾𝑓𝑐,𝑖𝑗

𝑜𝑙𝑑 𝛥𝑞𝑐,𝑗
1  (90) 

 𝐾𝑓𝑓,𝑖𝑗
𝑜𝑙𝑑 𝐵𝑗 = 𝑓𝑓,𝑖 (91) 
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By solving 𝐴𝑗 and 𝐵𝑗 and substituting into Equation (89), 𝛥𝑞𝑓,𝑗
1  expressed by Δ𝑃1 is obtained. 

Substituting this result into Equation (88) yields: 

 𝛥𝑃1(𝐾𝑐𝑓,𝑖𝑗
𝑜𝑙𝑑 𝐵𝑗 − 𝑓𝑐,𝑖) = −𝐾𝑐𝑓,𝑖𝑗

𝑜𝑙𝑑 𝐴𝑗 −𝐾𝑐𝑐,𝑖𝑗
𝑜𝑙𝑑 𝛥𝑞𝑐,𝑗

1  (92) 

Since both sides of Equation (92) are vectors of the same size, element-wise division is used to 

calculate 𝛥𝑃1. 

Using the predefined 𝛥𝑞𝑐,𝑗
1 , 𝑓𝑐,𝑖, and 𝑓𝑓,𝑖, along with 𝛥𝑞𝑐,𝑗

1  and 𝛥𝑃1 obtained above, the 

global displacement change vector 𝛥𝑞𝑗
1 and global load change vector 𝛥𝐹𝑖

1 at the first iteration 

can be determined. With 𝐾𝑖𝑗
1  updated using 𝛥𝑞𝑗

1, the force residual, 𝑅𝑖
1 is then calculated via 

Equation (80), completing the calculation for the first iteration (𝑚=1). 

If ||𝑅𝑖
1|| does not satisfy the convergence criterion specified in the force-control 

algorithm, the iteration process continues. For iteration 𝑚 > 1, 𝛥𝑞𝑗
𝑚 and 𝛥𝐹𝑖

𝑚 are determined 

using: 

 𝐾𝑖𝑗
𝑚−1𝛥𝑞𝑗

𝑚 = 𝛥𝐹𝑖
𝑚 (93) 

Introducing the displacement correction vector (𝛥𝛥𝑞𝑗
𝑚) and force correction vector (𝛥𝛥𝐹𝑖

𝑚): 

 𝛥𝛥𝑞𝑗
𝑚 = 𝛥𝑞𝑗

𝑚 − 𝛥𝑞𝑗
𝑚−1 (94) 

 𝛥𝛥𝐹𝑖
𝑚 = 𝛥𝐹𝑖

𝑚 − 𝛥𝐹𝑖
𝑚−1 (95) 

Equation (93) can be rewritten as: 
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 𝐾𝑖𝑗
𝑚−1𝛥𝛥𝑞𝑗

𝑚 = 𝛥𝛥𝐹𝑖
𝑚 − 𝑅𝑖

𝑚−1 (96) 

The equation above can be solved by similar procedures outlined in Equations (87) to (92). This 

process is repeated until the convergence criterion is satisfied. 

By utilizing the displacement-control algorithm, the simulation can continue even when 

softening occurs in rail buckling. Beyond the softening point, the load vs. displacement curve 

stiffens again, likely due to the nonlinear term 
1

2
(
𝑑𝑣

𝑑𝑥
)
2

 in the axial strain-displacement 

relationship. The point where the slope of the curve changes direction is referred to as the 

minimum buckling point, characterized by the minimum buckling load (𝑃𝑚𝑖𝑛) and the minimum 

buckling lateral displacement (𝑣𝑚𝑖𝑛). It is termed the minimum buckling point because axial 

loads lower than 𝑃𝑚𝑖𝑛 cannot induce buckling, even with external energy input, as no 

corresponding equilibrium state exists. 
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Model Verification 

The algorithm presented herein has been implemented in the Python code “AAR/TAMU 

Track Buckle Model”, and previously verified against several analytical solutions (Musu, 2021). 

However, with modifications to the model, additional test cases are introduced in this study. 

These test cases focus on simplified problems with known analytical solutions, allowing for a 

detailed comparison with FEM results to evaluate key features of the updated model. 
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Verification of the Longitudinal Tie-Ballast Resistance 

Given: 

A straight rail is subjected to constant axial point load 𝑃𝐿 = 1.0 × 10
7 𝑁 applied at the 

right end (𝑥 = 𝐿), and the left end (𝑥 = 0) is fixed, as shown in Figure 15. The rail parameters 

are as follows: 𝐿 = 10 𝑚, 𝐸 = 2.06 × 1011 𝑁/𝑚2, 𝐴 = 0.0172 𝑚2. The longitudinal tie-ballast 

resistance is defined by Equation (3) and (5), with 𝑘𝑥 = 1.0 × 107 𝑁/𝑚, 𝜆𝑥 = 1, and 𝑑𝑡𝑖𝑒 =

0.5 𝑚. Note that 𝑘𝑥 is intentionally set to an extremely large value, which is unrealistic but 

allows for a visible comparison to the rail’s already high axial stiffness (𝐸𝐴). 

 

 

Figure 15 Depiction of the longitudinal tie-ballast resistance verification problem 

 

Find: 

The analytical axial displacement 𝑢(𝑥) along the rail and compare the results with the 

FEM simulation. 

 

Solution: 

From Table 1, the equations governing this problem are: 
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𝑑𝑃(𝑥)

𝑑𝑥
=
𝜆𝑥 𝑘𝑥
𝑑𝑡𝑖𝑒

 𝑢(𝑥) (97) 

 
𝑑𝑢(𝑥)

𝑑𝑥
=
𝑃(𝑥)

𝐸𝐴
 (98) 

Combining the equations above yields: 

 
𝑑2𝑢(𝑥)

𝑑𝑥2
− 𝛼2 𝑢(𝑥) = 0  (99) 

where: 

 𝛼2 =
𝜆𝑥 𝑘𝑥
𝐸 𝐴 𝑑𝑡𝑖𝑒

 (100) 

The general solution to Equation (99) is: 

 𝑢(𝑥) = 𝐶1 𝑐𝑜𝑠ℎ(𝛼𝑥) + 𝐶2 𝑠𝑖𝑛ℎ(𝛼𝑥) (101) 

Using the given boundary conditions, 𝑢(0) = 0, and 𝑃(𝐿) = 𝑃𝐿, the particular solution is: 

 𝑢(𝑥) =
𝑃𝐿

𝐸 𝐴 𝛼 𝑐𝑜𝑠ℎ(𝛼𝐿)
 𝑠𝑖𝑛ℎ(𝛼𝑥) (102) 

A comparison of the analytical solution and the FEM results using 10 elements and 1 

time-step is shown in Figure 16. The axial displacement values at 𝑥 = 𝐿 differ by only 0.007%, 

demonstrating that the code accurately captures the longitudinal tie-ballast resistance effects 

under the given assumptions. 

To illustrate the influence of longitudinal resistance, Equation (102) is compared with the 

case where 𝑘𝑥 = 0. In this scenario, the displacement is: 
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 𝑢(𝑥) =
𝑃𝐿
𝐸𝐴

 𝑥 (103) 

This linear equation is a standard result in basic solid mechanics textbooks and will not be 

derived here. The comparison between these cases is also plotted in Figure 16, highlighting the 

effect of longitudinal resistance. 

 

 

Figure 16 Comparison of analytical and FEM solutions for axial displacement under 

constant axial load when affected by longitudinal tie-ballast resistance 

 

  



 

57 

 

Verification of the Lateral Tie-Ballast Resistance 

Although no analytical solution exists for comparison with the bilinear or trilinear lateral 

tie-ballast resistance formulations, the code can still be verified by making simplifying 

assumptions. 

For instance, considering the compacted ballast condition, if the slopes of the first two 

segments of the piecewise function are set to the same value, the lateral displacements of the rail 

can be compared to results derived from the beams-on-elastic-foundations theory (Oden, 1967). 

Under these conditions, the mathematical formulations are equivalent, provided the lateral 

displacement values remain below the limit. This validation approach is demonstrated in the 

following example problem. 

 

Given: 

A straight rail is subjected to constant lateral point load 𝑉𝑦,0,5𝐿 = 1.0 × 10
5 𝑁 applied at 

the midpoint, with both ends free to displace or rotate, as shown in Figure 17. The rail 

parameters are as follows: 𝐿 = 10 𝑚, 𝐸 = 2.06 × 1011 𝑁/𝑚2, 𝐴 = 0.0172 𝑚2, 𝐼𝑧𝑧 =

1.22 × 10−5 𝑚4. The ballast is compacted, and the lateral tie-ballast resistance is defined by 

Equation (2) and (6), with 𝐹𝑦,𝑝𝑘 = 25000 𝑁, 𝑣𝑝𝑘 = 1 𝑚, 𝐹𝑦,𝑙𝑡 = 50000 𝑁, 𝑣𝑙𝑡 = 2 𝑚, 𝜆𝑦 = 1, 

and 𝑑𝑡𝑖𝑒 = 0.5 𝑚. 
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Figure 17 Depiction of the lateral tie-ballast resistance verification problem 

 

Find: 

The analytical lateral displacement 𝑣(𝑥) along the rail and compare the results with the 

FEM simulation. 

 

Solution: 

The resistance parameters are related as follows: 

 
𝐹𝑦,𝑝𝑘

𝑣𝑝𝑘
=
𝐹𝑦,𝑙𝑡 − 𝐹𝑦,𝑝𝑘

𝑣𝑙𝑡 − 𝑣𝑝𝑘
= 𝑘𝑦 (104) 

Here, 𝑘𝑦 is the linear lateral tie-ballast resistance coefficient. Equation (6) can be simplified as: 

 𝑓𝑦(𝑣) = {
−
𝜆𝑦 𝑘𝑦

𝑑𝑡𝑖𝑒
 𝑣, |𝑣| ≤ 𝑣𝑙𝑡

0, |𝑣| > 𝑣𝑙𝑡

 (105) 

It has the same mathematical form as Equation (7) for |𝑣| ≤ 𝑣𝑙𝑡.  

Previously derived by Musu (2021), the vertical displacement of a beam resting on an 

elastic foundation subjected to a constant concentrated vertical load (𝑉𝑧,0.5𝐿) at midpoint can be 

expressed as: 
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𝑤(𝑥) = 𝛿𝐴 𝑐𝑜𝑠ℎ(𝛽 (𝐿 − 𝑥)) 𝑐𝑜𝑠(𝛽 (𝐿 − 𝑥))

+
𝜃𝐴
2𝛽
 (𝑠𝑖𝑛ℎ(𝛽 (𝐿 − 𝑥)) 𝑐𝑜𝑠(𝛽 (𝐿 − 𝑥))

+ 𝑐𝑜𝑠ℎ(𝛽 (𝐿 − 𝑥)) 𝑠𝑖𝑛(𝛽(𝐿 − 𝑥))) 

(106) 

where: 

 𝛽 = √
𝑘𝑧

4 𝐸 𝐼𝑦𝑦

4

 (107) 

 𝜃𝐴 = −𝛿𝐴 𝛽 (𝑡𝑎𝑛ℎ (
𝛽𝐿

2
) − 𝑡𝑎𝑛 (

𝛽𝐿

2
))  (108) 

 

𝛿𝐴 = 𝛽 𝑉𝑧,0  {𝑘𝑧  [𝑠𝑖𝑛ℎ (
𝛽𝐿

2
) 𝑐𝑜𝑠 (

𝛽𝐿

2
) + 𝑐𝑜𝑠ℎ (

𝛽𝐿

2
) 𝑠𝑖𝑛 (

𝛽𝐿

2
)

− (𝑡𝑎𝑛ℎ (
𝛽𝐿

2
) − 𝑡𝑎𝑛 (

𝛽𝐿

2
)) (𝑠𝑖𝑛ℎ (

𝛽𝐿

2
) 𝑠𝑖𝑛 (

𝛽𝐿

2
))]}

−1

 

(109) 

By substituting 𝑘𝑧 with 
𝜆𝑦 𝑘𝑦

𝑑𝑡𝑖𝑒
, 𝑉𝑦,0.5𝐿 with 𝑉𝑧,0.5𝐿, and 𝑤(𝑥) with 𝑣(𝑥), the analytical solution for 

the problem can be obtained. 
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Figure 18 Comparison of analytical and FEM solutions for lateral displacement under 

constant lateral shear when affected by linear lateral tie-ballast resistance 

 

As illustrated in Figure 18, the analytical solution aligns closely with the FEM simulation 

when using 20 elements and 1 time-step. The linear lateral tie-ballast resistance behaves 

similarly to an elastic foundation, effectively restraining the rail from displacing under the lateral 

shear load applied at the midpoint. As a result, the successful comparison confirms the correct 

implementation of the method in the computational code. 
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Verification of the Displacement-Control Algorithm 

As the force-control algorithm has already been established as reliable, the displacement-

control algorithm is verified by comparing its results with those obtained using the force-control 

algorithm for buckling cases with known analytical solutions. For simplicity in deriving the 

analytical solution, the linear strain-displacement relationship is used in the verification process. 

This is also achievable in the code, with a flag allowing the user to switch between the linear and 

nonlinear strain-displacement relationships. 

 

Given: 

A rail is subjected to an axial point load 𝑃 applied at left end (𝑥 = 0). Both ends are 

simply supported but axial displacements are permitted at 𝑥 = 0, as illustrated in Figure 19. The 

rail parameters are as follows: 𝐿 = 10 𝑚, 𝐸 = 2.06 × 1011 𝑁/𝑚2, 𝐴 = 0.0172 𝑚2, 𝐼𝑧𝑧 =

1.22 × 10−5 𝑚4. Tie-ballast resistances and the fastener rotational resistance are neglected for 

this specific case. 

 

 

Figure 19 Depiction of the displacement-control algorithm verification problem 
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Find: 

The analytical lateral buckling load of the rail and compare the results with the FEM 

simulations using both the force-control and displacement-control algorithms. 

 

Solution: 

The analytical solution to this problem is the well-known Euler-buckling formula for a 

pinned-end column (Allen and Haisler, 1985): 

 𝑃𝑐𝑟 =
𝜋2 𝐸 𝐼𝑧𝑧
𝐿2

 (110) 

Here, 𝑃𝑐𝑟 is the critical buckling load, which evaluates to 𝑃𝑐𝑟 = 248.8 𝐾𝑁. 

To obtain the FEM solution, initial geometric imperfections are introduced to the rail to 

account for geometric nonlinearity effects. This is done by applying a small lateral load at the 

midpoint, ensuring the misalignment remains minor enough to not influence the buckling load 

significantly. 

For both simulations, the rail is divided into 20 elements. The results are presented in 

Figure 20, demonstrating that both algorithms converge to a buckling load consistent with the 

analytical solution. Furthermore, the load vs. maximum displacement curves for the two solving 

methods show remarkable similarity. 

Thus, the displacement-control algorithm is verified and deemed suitable for buckling 

simulations. 
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Figure 20 Result of the applied axial load vs. maximum displacement curves for different 

solving procedures 
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CHAPTER IV 

RESULTS 

 

This chapter employs the developed finite element model to conduct sensitivity studies 

on rail buckling. Various factors influencing the buckling load are analyzed, including material 

properties, rail geometry, track modulus, fastener stiffness, and tie-ballast resistance. The 

sensitivity of these parameters is compared to identify the most critical factors affecting rail 

buckling behavior. 

A general base case is simulated, with each sensitivity study modifying one input 

parameter at a time. The International System of Units (SI) is used throughout this research, and 

conversions between SI units and imperial units are provided in Appendix B. Buckling 

simulations are performed on a constrained rail section of length 𝐿, where axial contraction is 

permitted while all other displacements and rotations are restricted at both ends. To induce 

buckling, mechanical axial loads are applied at both ends, as illustrated in Figure 21. These loads 

are assumed to be equivalent to thermal loads resulting from temperature changes relative to the 

RNT, as determined by Equation (17). 

 

 

Figure 21 Boundary conditions for a rail buckling problem 
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Due to the symmetry of the boundary conditions along the axial direction, the problem 

complexity can be reduced. By simulating only half of the rail buckle length and allowing lateral 

and vertical displacements at 𝑥 = 𝐿/2 while restricting axial displacements and rotations, the 

required number of elements is halved without affecting the results. This simplified boundary 

condition setup is illustrated in Figure 22. 

 

 

Figure 22 Boundary conditions applied in this research 

 

Initial lateral geometric imperfections, or misalignments, are also considered in the 

following cases, as secondary moments would be zero for a perfectly aligned rail. The 

misalignment shape is generated by applying a lateral point load at 𝑥 = 𝐿/2. This process can be 

performed using either the force-control or displacement-control algorithm. After the 

misalignment process, the displacement values used for tie-ballast resistance effects are reset to 

zero. This reset assumes the rail is at rest when buckling is initiated, indicating that the 

misalignment occurred prior to buckling. 

To ensure realistic buckling results, the geometry parameters are based on the AREMA 

136RE rail head section, including the moments of inertia in both directions and the rail cross-
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sectional area. Additionally, the material properties of steel are estimated according to industry 

specifications (Nippon Steel Corporation, 2020; Musu, 2021). Since the system consists of two 

aligned rails, geometric parameters, such as the cross-sectional area, are doubled before being 

applied to the model. Unless otherwise specified, the ballast condition is assumed to be 

disturbed. In this case, the lateral tie-ballast resistance curve can be fully characterized by the 

limit force value and its corresponding lateral displacement. A complete list of input parameters 

is provided in Table 2 and Table 3, expressed in SI units and imperial units, respectively. While 

these parameters are designed to approximate realistic conditions, they may vary and are 

intended primarily to demonstrate the capabilities of the code.  
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Table 2 Base case input parameters for the sensitivity study (SI units) 

Input Parameter Value Unit 

Rail Buckling Length, 𝐿 10.00 𝑚 

Cross-Section, 2𝐴 1.72 × 10−2 𝑚2 

Moment of Inertia, 2𝐼𝑦𝑦 7.90 × 10−5 𝑚4 

Moment of Inertia, 2𝐼𝑧𝑧 1.22 × 10−5 𝑚4 

Rail Weight Per Unit Length, 2𝑛𝑟𝑎𝑖𝑙 1.32 × 103 𝑁/𝑚 

Modeled Tie-Weight, 𝑁𝑡𝑖𝑒 1.00 × 103 𝑁 

Modeled Friction Coefficient, 𝜇 1.50  

Rail Young’s Modulus, 𝐸 2.06 × 1011 𝑁/𝑚2 

Rail Thermal Expansion Coefficient, 𝛼 1.05 × 10−5 1/℃ 

Tie-Spacing, 𝑑𝑡𝑖𝑒 0.50 𝑚 

Longitudinal Tie-Ballast Resistance Coefficient, 𝑘𝑥 2.00 × 106 𝑁/𝑚 

STPT Limit Lateral Force, 𝐹𝑦,𝑙𝑡 1.00 × 104 𝑁 

STPT Limit Lateral Displacement, 𝑣𝑙𝑡  5.00 × 10−3 𝑚 

Track Modulus, 𝑘𝑧 7.00 × 107 𝑁/𝑚2 

Fastener Rotational Stiffness, 𝑆 2.25 × 105 𝑁 ⋅ 𝑚/𝑟𝑎𝑑 

STPT Tie-Weight, 𝑁𝑡𝑖𝑒,𝑆𝑇𝑃𝑇 1.00 × 103 𝑁 

STPT Friction Coefficient, 𝜇𝑆𝑇𝑃𝑇  1.50  

Misalignment Value, 𝑑𝑚𝑖𝑠 4.00 × 10−2 𝑚 
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Table 3 Base case input parameters for the sensitivity study (imperial units) 

Input Parameter Value Unit 

Rail Buckling Length, 𝐿 393.70 𝑖𝑛 

Cross-Section, 2𝐴 26.66 𝑖𝑛2 

Moment of Inertia, 2𝐼𝑦𝑦 189.80 𝑖𝑛4 

Moment of Inertia, 2𝐼𝑧𝑧 29.27 𝑖𝑛4 

Rail Weight Per Unit Length, 2𝑛𝑟𝑎𝑖𝑙 7.54 𝑙𝑏𝑓/𝑖𝑛 

Modeled Tie-Weight, 𝑁𝑡𝑖𝑒 224.81 𝑙𝑏𝑓 

Modeled Friction Coefficient, 𝜇 1.50  

Rail Young’s Modulus, 𝐸 2.99 × 107 𝑝𝑠𝑖 

Rail Thermal Expansion Coefficient, 𝛼 5.83 × 10−6 1/℉ 

Tie-Spacing, 𝑑𝑡𝑖𝑒 19.69 𝑖𝑛 

Longitudinal Tie-Ballast Resistance Coefficient, 𝑘𝑥 11420.37 𝑙𝑏𝑓/𝑖𝑛 

STPT Limit Lateral Force, 𝐹𝑦,𝑙𝑡 2248.10 𝑙𝑏𝑓 

STPT Limit Lateral Displacement, 𝑣𝑙𝑡  0.20 𝑖𝑛 

Track Modulus, 𝑘𝑧 10152.73 𝑝𝑠𝑖 

Fastener Rotational Stiffness, 𝑆 1.99 × 106 𝑙𝑏𝑓 ⋅ 𝑖𝑛/𝑟𝑎𝑑 

STPT Tie-Weight, 𝑁𝑡𝑖𝑒,𝑆𝑇𝑃𝑇 224.81 𝑙𝑏𝑓 

STPT Friction Coefficient, 𝜇𝑆𝑇𝑃𝑇  1.50  

Misalignment Value, 𝑑𝑚𝑖𝑠 1.57 𝑖𝑛 
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Mesh and Step Size Convergence Studies 

The displacement-control algorithm is employed throughout the sensitivity study. 

Convergence studies are conducted for the entire buckling process, with axial load applied at 𝑥 =

0. The buckling load values are analyzed for varying mesh densities and displacement step sizes. 

The step size is initially set to a small value to ensure accuracy during the mesh convergence 

study. Once the optimal mesh size is determined, the step size is chosen by verifying 

convergence with increasing step sizes. 

  

Mesh Convergence Study 

The step size is initially set to 2 × 10−4 𝑚, and this value remains the same throughout 

the misalignment and buckling process. Only uniform meshes are considered, with the number of 

elements ranging from 10 to 80. The load vs. displacement curves for different cases are 

presented in Figure 23. 

The differences in the minimum buckling loads (𝑃𝑚𝑖𝑛) and the corresponding lateral 

displacements (𝑣𝑚𝑖𝑛) for each case are compared with the results from the finest mesh, as shown 

in Figure 24. The results demonstrate a clear convergence trend in both parameters as the number 

of elements increases. The differences for both parameters between 40 and 80 elements are under 

2%, indicating sufficient convergence. Based on these findings, the corresponding element 

length, 0.25 𝑚, is selected for subsequent simulations, and 40 elements will be used for all cases 

unless 𝐿 is modified. 
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Figure 23 Maximum lateral displacement vs. applied axial load curves for the mesh 

convergence study 

 

 

Figure 24 Convergence of minimum buckling load and corresponding lateral displacement 

relative to the finest mesh  
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Step Size Convergence Study 

With 40 elements selected based on previous simulations, various larger step sizes are 

tested and compared. The results, shown in Figure 25, indicate that when the step size is set to 

8 × 10−4 𝑚, the difference from the smallest step size (2 × 10−4 𝑚) for both 𝑃𝑚𝑖𝑛 and 𝑣𝑚𝑖𝑛 is 

under 2%. Therefore, a step size of 8 × 10−4 𝑚 is deemed sufficient and will be used in the 

sensitivity study. 

 

 

Figure 25 Convergence of minimum buckling load and corresponding lateral displacement 

relative to the finest step size 
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Sensitivity Study of Rail Misalignment  

Misalignment values (𝑑𝑡𝑖𝑒) varied from 0.02 𝑚 to 0.06 𝑚. Although additional force is 

required to deform the rail into its initial misaligned configuration, as illustrated in Figure 26, 

this process is assumed to have been completed beforehand and is not considered in the 

calculation of the buckling load. 

 

 

Figure 26 Illustration of the lateral displacements along the rail when it is misaligned 

 

The results for each case are presented in Figure 27 and Figure 28. 𝑃𝑚𝑖𝑛 is observed to be 

relatively insensitive to 𝑑𝑡𝑖𝑒. However, the critical buckling load (𝑃𝑐𝑟) exhibits a high sensitivity 

to small initial misalignments, converging to a lower value as 𝑑𝑡𝑖𝑒 increases. This highlights the 

practical importance of even small geometric imperfections: while a perfectly aligned track can 

sustain extremely high buckling load, 𝑃𝑐𝑟 drops significantly—by 22.5%—when 𝑑𝑡𝑖𝑒 increases 

from 0.02 𝑚 to 0.04 𝑚. 
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Figure 27 Maximum lateral displacement vs. applied axial load with various misalignment 

values applied to a typical rail structure 

 

 

Figure 28 Predicted effect of misalignment value change on buckling load of a typical rail 

structure 
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Sensitivity Study of the Longitudinal Tie-Ballast Resistance 

The effect of the longitudinal tie-ballast resistance (hereafter referred to as the 

longitudinal resistance) is analyzed by varying the resistance coefficient (𝑘𝑥), with the results 

shown in Figure 29 and Figure 30. 

 

 

Figure 29 Maximum lateral displacement vs. applied axial load with various longitudinal 

tie-ballast resistance coefficients applied to a typical rail structure 
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Figure 30 Predicted effect of longitudinal tie-ballast resistance coefficient change on 

buckling load of a typical rail structure 

 

As the rail's axial stiffness (𝐸𝐴) is large, it dominates the axial displacements before the 

critical buckling point. Consequently, the axial displacements remain small, as shown in Figure 

31, and the longitudinal resistance has negligible influence on the critical buckling load. 

However, after the critical buckling point, the rail structure softens, leading to rapid increases in 

axial displacement. At these larger displacement values, the longitudinal resistance becomes 

significant, and higher 𝑘𝑥 result in increased 𝑃𝑚𝑖𝑛. This indicates that, although the longitudinal 

resistance has minimal impact on 𝑃𝑐𝑟, it remains a crucial factor in rail buckling analysis. Its 

presence helps mitigate buckling risks when additional energy is introduced to the system, such 

as from trains passing through. 
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Figure 31 Demonstration of the axial displacement change of a rail when axial load is 

applied 
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Sensitivity Study of the Lateral Tie-Ballast Resistance  

As the lateral tie-ballast resistance (hereafter referred to as the lateral resistance) is highly 

nonlinear, three different scenarios are examined. The first two cases assume a disturbed ballast 

condition, where the lateral resistance curve is characterized by two parameters: the limit force 

of the resistance curve (𝐹𝑦,𝑙𝑡) and the corresponding lateral displacement (𝑣𝑙𝑡). The third case 

assumes a compacted ballast condition, introducing two additional parameters: the peak force of 

the resistance curve (𝐹𝑦,𝑝𝑘) and the corresponding lateral displacement (𝑣𝑝𝑘). 

 

First Case: Variation in Limit Force 

For the first scenario, 𝐹𝑦,𝑙𝑡 is varied from 5 𝑘𝑁 to 15 𝑘𝑁, and the results are presented in 

Figures 32 and 33. The findings demonstrate that 𝐹𝑦,𝑙𝑡 is a critical factor in rail buckling, 

significantly influencing both 𝑃𝑐𝑟 and 𝑃𝑚𝑖𝑛. The trend reveals that at lower 𝐹𝑦,𝑙𝑡 values, the 

difference between the 𝑃𝑐𝑟 and 𝑃𝑚𝑖𝑛 diminishes. This corresponds to previous research findings 

(Samavedam et al., 1993; Kish and Samavedam, 2013), suggesting that when the lateral 

resistance is weak, softening may not occur, and progressive buckling dominates. However, 

while the snap-through phenomenon is less likely in such cases, 𝑃𝑐𝑟 remains significantly 

reduced, highlighting the importance of avoiding such conditions. 
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Figure 32 Maximum lateral displacement vs. applied axial load with various limit lateral 

resistance values applied to a typical rail structure 

 

 

Figure 33 Predicted effect of changes in the limit lateral resistance value on buckling load 

of a typical rail structure 
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Second Case: Variation in Limit Displacement 

For the second scenario, 𝑣𝑙𝑡 is varied from 0.25 𝑐𝑚 to 0.75 𝑐𝑚, with the results shown in 

Figures 34 and 35. The results indicate that 𝑣𝑙𝑡 has minimal impact on both 𝑃𝑐𝑟 and 𝑃𝑚𝑖𝑛, only 

slightly altering the initial slope of the load-displacement curve. In practical STPT experiments, 

accurately capturing 𝑣𝑙𝑡 may be challenging. However, the results suggest that 𝐹𝑦,𝑙𝑡 is a more 

influential parameter affecting the buckling load and should be prioritized in analyses. 

 

 

Figure 34 Maximum lateral displacement vs. applied axial load with various limit lateral 

displacement values applied to a typical rail structure 
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Figure 35 Predicted effect of changes in the limit lateral displacement value on buckling 

load of a typical rail structure 
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Third Case: Compacted Ballast Condition 

In the third scenario, the trilinear resistance curve is applied to simulate the compacted 

ballast condition. 𝐹𝑦,𝑝𝑘 is varied from 10 𝑘𝑁 to 20 𝑘𝑁, while the other parameters are fixed as 

𝑣𝑝𝑘 = 0.5 𝑐𝑚, 𝐹𝑦,𝑙𝑡 = 10 𝑘𝑁, and 𝑣𝑙𝑡 = 5 𝑐𝑚. Note that the first case can be simplified as the 

disturbed ballast condition, where 𝐹𝑦,𝑝𝑘 = 𝐹𝑦,𝑙𝑡. The results, shown in Figures 36 and 37, 

indicate that 𝐹𝑦,𝑝𝑘 strongly affects 𝑃𝑐𝑟.  

 

 

Figure 36 Maximum lateral displacement vs. applied axial load with various peak lateral 

resistance values applied to a typical rail structure 
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Figure 37 Predicted effect of changes in the peak lateral resistance value on buckling load 

of a typical rail structure 

 

Comparing with previous results, it can be observed that for a compacted ballast 

condition (𝐹𝑦,𝑝𝑘 = 𝐹1 and 𝐹𝑦,𝑙𝑡 = 𝐹2), the critical buckling load falls between those for disturbed 

ballast cases where 𝐹𝑦,𝑙𝑡 = 𝐹1 and 𝐹𝑦,𝑙𝑡 = 𝐹2, shown in Figure 38. This relationship provides a 

useful estimation method for 𝑃𝑐𝑟 with fewer simulations needed. Additionally, the 𝑃𝑚𝑖𝑛 is less 

sensitive to changes in 𝐹𝑦,𝑝𝑘, provided 𝐹𝑦,𝑙𝑡 and 𝑣𝑙𝑡 remain constant. 
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Figure 38 Maximum lateral displacement vs. applied axial load curve comparison between 

different ballast conditions 
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Sensitivity Study of the Fastener Rotational Resistance  

The sensitivity of rail buckling to fastener rotational resistance is analyzed by varying the 

rotational stiffness (𝑆) between 112.5 𝑘𝑁 ⋅ 𝑚/𝑟𝑎𝑑 to 337.5 𝑘𝑁 ⋅ 𝑚/𝑟𝑎𝑑. Figures 39 and 40 

show the results. The initial slope of the load-displacement curve remains consistent across 

different values of 𝑆. However, as 𝑆 increases, both the 𝑃𝑐𝑟 and 𝑃𝑚𝑖𝑛 exhibit a linear increasing 

trend within the tested range, demonstrating the significant role of fastener rotational resistance 

in enhancing rail buckling stability. 

 

 

Figure 39 Maximum lateral displacement vs. applied axial load with various rotational 

stiffness values applied to a typical rail structure 
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Figure 40 Predicted effect of rotational stiffness value change on buckling load of a typical 

rail structure 

 

The effect of broken spikes (fasteners) was also examined in this study. Spikes, which are 

critical components connecting rails to ties, contribute significantly to providing rotational 

resistance. However, when spikes fail or are improperly installed, they lose their ability to 

provide rotational resistance. 

In this model, the rotational resistance is represented as distributed moments along the 

rail. To simulate the failure of spikes, the stiffness matrix was modified element-wise to reflect 

the loss of rotational resistance over specific rail sections. It was further assumed that all spikes 

connecting a single tie to the rail fail simultaneously. Failures were distributed symmetrically on 

either side of the constrained rail section, beginning from the center. It is further assumed that the 

longitudinal and lateral resistance remain unaffected, as the main focus of the sensitivity study is 

to analyze the discontinuous distribution of the rotational resistance effect. 



 

86 

 

The results, shown in Figures 41 and 42, indicate that the failure of a small number of 

spikes has a negligible effect on rail buckling loads. Noticeable reductions in buckling loads are 

only observed when a continuous series of spikes fails, a scenario that is unlikely under normal 

operating conditions. Thus, based on the assumptions used in this study, broken spikes are not 

expected to critically influence rail buckling loads in most practical situations. 

 

 

Figure 41 Maximum lateral displacement vs. applied axial load with various numbers of 

ties with broken spikes applied to a typical rail structure 
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Figure 42 Predicted effect of numbers of ties with broken spikes change on buckling load of 

a typical rail structure 
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Sensitivity Study of the Rail Buckling Length  

The constrained length (𝐿) is a critical factor in rail buckling behavior. In the FEM model 

presented herein, 𝐿 is a predefined value, making the selection of an appropriate 𝐿 extremely 

important. The results for varying 𝐿 are shown in Figures 41 and 42. It should be noted that for 

Figure 42, results are excluded for 𝐿 = 5 𝑚 and 𝐿 =  7.5 𝑚, as no clear buckling point is 

identified based on the defined criteria. 

 

 

Figure 43 Maximum lateral displacement vs. applied axial load with various buckling 

length values applied to a typical rail structure 
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Figure 44 Predicted effect of buckling length change on buckling load of a typical rail 

structure 

 

For small 𝐿 values, no distinct instability point is observed, and the system exhibits 

higher overall stiffness compared to cases with larger 𝐿. However, softening still occurs, and 

rapid deformation may happen if sufficient axial load is applied. In real-world scenarios, a 

strictly constrained length may not exist, and when a certain axial load is reached, the rail could 

buckle with a larger buckling length. 

The results also show that for sufficiently large 𝐿 values, there is minimal difference in 

the buckling load. This suggests that once 𝐿 exceeds a certain critical value, the buckling load 

becomes less sensitive to further increases in 𝐿. 

Figures 41 and 42 illustrate these findings, highlighting the importance of selecting an 

appropriate L for accurate modeling and realistic rail buckling simulations. 
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Sensitivity Study of Multi-Influential Factors 

Factors such as the friction coefficient of the tie-ballast interface (𝜇), tie-weight (𝑁𝑡𝑖𝑒), 

and tie-spacing (𝑑𝑡𝑖𝑒) influence multiple aspects of rail mechanics simultaneously. For instance, 

as shown in Equations (4),(5), and (6), all three factors impact both the longitudinal and lateral 

resistance, while 𝑑𝑡𝑖𝑒 also affects the rotational resistance, as indicated in Equations (4), (5), (6), 

and (9). Sensitivity studies are performed by varying these factors. 

The effect of 𝜇 and 𝑤𝑡𝑖𝑒 are directly related. Results of varying these factors are 

presented herein. For the base case, according to Coulomb’s friction law, 𝑤𝑡𝑖𝑒 contributes 15% 

of the total lateral resistance. This indicates that while 𝑤𝑡𝑖𝑒 does influence the buckling load, its 

effect is relatively limited, as shown in Figure 45 and Figure 46. 

 

 

Figure 45 Maximum lateral displacement vs. applied axial load with various tie weight 

values applied to a typical rail structure 
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Figure 46 Predicted effect of tie weight value change on buckling load of a typical rail 

structure 

 

In contrast, 𝜇 also impacts the lateral resistance contributed by rail weight and other normal 

forces, such as train weight. This also shows agreement with the results presented in Figure 47 

and Figure 48, demonstrating a more sensitive trend as 𝜇 varies. 
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Figure 47 Maximum lateral displacement vs. applied axial load with various friction 

coefficient values applied to a typical rail structure 

 

 

Figure 48 Predicted effect of friction coefficient value change on buckling load of a typical 

rail structure 
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In addition, while 𝑁𝑡𝑖𝑒 is less variable in daily use, 𝜇 can change due to environmental factors 

and tie conditions. For instance, 𝜇 may vary under different weather conditions, such as rain or 

mud accumulation. The model presented in this research demonstrates the potential effects of 𝜇 

and provides a framework for conducting further, more detailed studies once more data becomes 

available for this parameter. 

For 𝑑𝑡𝑖𝑒, typical values in the United States are approximately 19.5 inches (0.50 𝑚) for 

wooden ties and 24 inches (0.61 𝑚) for concrete ties. Sensitivity tests explore a range of 𝑑𝑡𝑖𝑒 

values spanning these standards. In this model, doubling 𝑑𝑡𝑖𝑒 effectively doubles the lateral, 

longitudinal, and rotational resistance, indicating a substantial impact on the rail buckling load, 

as shown in Figure 49 and Figure 50: 

 

 

Figure 49 Maximum lateral displacement vs. applied axial load with various tie-spacing 

values applied to a typical rail structure 
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Figure 50 Predicted effect of tie-spacing value change on buckling load of a typical rail 

structure 

 

These findings suggest that reducing 𝑑𝑡𝑖𝑒 in specific rail sections prone to buckling, such 

as areas experiencing frequent dramatic temperature changes, could be a viable strategy to 

mitigate buckling risks. 
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Sensitivity Comparison of the Rail Parameters 

The effects of several key rail buckling factors, including misalignment (𝑑𝑚𝑖𝑠), the limit 

lateral tie-ballast resistance (𝐹𝑦,𝑙𝑡), the rotational stiffness (𝑆), the bottom friction coefficient (𝜇), 

and tie-spacing (𝑑𝑡𝑖𝑒), were analyzed relative to a base case under the disturbed ballast condition. 

The results are plotted in Figure 51. 

 

 

Figure 51 Sensitivity analysis showing the percentage change in critical buckling load for 

various rail parameters compared to their base case values 

 

The results indicate that 𝑃𝑐𝑟 is most sensitive to 𝑑𝑡𝑖𝑒, with a 43% variation in 𝑃𝑐𝑟 between 

the highest and lowest values within the tested range. However, modifying 𝑑𝑡𝑖𝑒 in existing tracks 

is often impractical. Among the other factors, 𝑑𝑚𝑖𝑠 demonstrates the next highest sensitivity, 
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followed by the 𝐹𝑦,𝑙𝑡. Both of these factors have shown substantial influence on 𝑃𝑐𝑟 within the 

simulation range and should therefore be prioritized in rail buckling mitigation strategies. 
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CHAPTER V 

CONCLUSION 

 

Herein, a robust nonlinear finite element model for predicting rail buckling has been 

developed. By incorporating the displacement-control algorithm, the model enables post-

buckling analysis to determine both the critical and minimum buckling loads. Sensitivity studies 

have been conducted to evaluate various parameters, demonstrating the applicability of 

experimental results to the model. The findings highlight that rail misalignment plays a critical 

role in rail buckling, emphasizing the importance of addressing even small initial imperfections 

to prevent derailments caused by buckling. Additionally, the lateral tie-ballast resistance 

significantly influences the buckling load, with the ballast condition emerging as a key factor in 

determining rail stability. 

For future research, further sensitivity studies can be conducted if additional experimental 

data becomes available. Areas of interest include the effects of nonlinear fastener rotational 

stiffness and the friction coefficient of the tie-ballast interface. These investigations could 

provide deeper insights and enhance the model’s predictive capabilities. 
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APPENDIX A 

EXPANDED FORM OF THE STIFFNESS MATRIX AND THE FORCE VECTOR 

 

Expanded Form of the Stiffness Matrix 

The element stiffness matrix (𝐾𝑖𝑗
𝑒 ) is previously defined by Equation (58): 

𝐾𝑖𝑗
𝑒 = 𝐾𝐿𝑖𝑛,𝑖𝑗

𝑒 + 𝐾LS,𝑖𝑗
𝑒 + 𝐾Geo,𝑖𝑗

𝑒 + 𝐾LS,Geo,𝑖𝑗
𝑒 + 𝐾T,𝑖𝑗

𝑒 + 𝐾Lon,𝑖𝑗
𝑒 + 𝐾𝐿𝑎𝑡,𝑖𝑗

𝑒 + 𝐾Bal,𝑖𝑗
𝑒 + 𝐾𝐹𝑎𝑠,𝑖𝑗

𝑒  (58) 

The sub-terms of 𝐾𝑖𝑗
𝑒  is expanded and each element is shown as follows: 

𝐾𝐿𝑖𝑛,𝑖𝑗
𝑒 = ∫ [ 𝐸𝐴

𝑑𝜉𝑖
𝑑𝑥

𝑑𝜉𝑗

𝑑𝑥
+ 𝐸𝐼𝑧𝑧

𝑑2𝜂𝑖
𝑑𝑥2

𝑑2𝜂𝑗

𝑑𝑥2
+ 𝐸𝐼𝑦𝑦

𝑑2𝜁𝑖
𝑑𝑥2

𝑑2𝜁𝑗

𝑑𝑥2
] 𝑑𝑥

𝐿𝑒

0

=
𝐸

𝐿𝑒
 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝐴 0 0 0 0 −𝐴 0 0 0 0

0
12𝐼𝑧𝑧
(𝐿𝑒)2

0 0
6𝐼𝑧𝑧
𝐿𝑒

0 −
12𝐼𝑧𝑧
(𝐿𝑒)2

0 0
6𝐼𝑧𝑧
𝐿𝑒

0 0
12𝐼𝑦𝑦
(𝐿𝑒)2

−
6𝐼𝑦𝑦

𝐿𝑒
0 0 0 −

12𝐼𝑦𝑦
(𝐿𝑒)2

−
6𝐼𝑦𝑦

𝐿𝑒
0

0 0 −
6𝐼𝑦𝑦

𝐿𝑒
4𝐼𝑦𝑦 0 0 0

6𝐼𝑦𝑦

𝐿𝑒
2𝐼𝑦𝑦 0

0
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𝐿𝑒

0 0 4𝐼𝑧𝑧 0 −
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𝐿𝑒

0 0 2𝐼𝑧𝑧

−𝐴 0 0 0 0 𝐴 0 0 0 0

0 −
12𝐼𝑧𝑧
(𝐿𝑒)2

0 0 −
6𝐼𝑧𝑧
𝐿𝑒
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(𝐿𝑒)2

0 0 −
6𝐼𝑧𝑧
𝐿𝑒

0 0 −
12𝐼𝑦𝑦
(𝐿𝑒)2

6𝐼𝑦𝑦

𝐿𝑒
0 0 0

12𝐼𝑦𝑦
(𝐿𝑒)2

6𝐼𝑦𝑦

𝐿𝑒
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0 0 −
6𝐼𝑦𝑦

𝐿𝑒
2𝐼𝑦𝑦 0 0 0
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0
6𝐼𝑧𝑧
𝐿𝑒

0 0 2𝐼𝑧𝑧 0 −
6𝐼𝑧𝑧
𝐿𝑒

0 0 4𝐼𝑧𝑧 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(111) 

 



 

104 

 

𝐾LS,𝑖𝑗
𝑒 = ∫ [𝐸𝐴

𝑑

𝑑𝑥
(∑ 𝜂𝑚

10

𝑚=1

𝑞𝑚
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𝐾𝐺𝑒𝑜,𝑖𝑗
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∗ (𝑞2

𝑒 − 𝑞7
𝑒) − (𝑞5

𝑒 + 𝑞10
𝑒 ) 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

−(𝑞2
𝑒 − 𝑞7

𝑒) +
𝐿𝑒

3
∗ (𝑞5

𝑒 − 4𝑞10
𝑒 ) 0 0 0 0 (𝑞2

𝑒 − 𝑞7
𝑒) −

𝐿𝑒

3
∗ (𝑞5

𝑒 − 4𝑞10
𝑒 ) 0 0 0 0]

 
 
 
 
 
 
 
 
 
 
 
 
 

+ (𝑞1
𝑒 − 𝑞6

𝑒)
𝐸𝐴

10𝐿𝑒
 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
0 0 0 0 0 0 0 0 0 0

0 −
12

𝐿𝑒
0 0 −1 0

12

𝐿𝑒
0 0 −1

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 −1 0 0 −
4𝐿𝑒

3
0 1 0 0

𝐿𝑒

3
0 0 0 0 0 0 0 0 0 0

0
12

𝐿𝑒
0 0 1 0 −

12

𝐿𝑒
0 0 1

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 −1 0 0
𝐿𝑒

3
0 1 0 0 −

4𝐿𝑒

3 ]
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(113) 
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𝐾LS,Geo,𝑖𝑗
𝑒 = ∫ [

3𝐸𝐴

2

𝑑

𝑑𝑥
(∑ 𝜂𝑚

10

𝑚=1

𝑞𝑚
𝑒 )

𝑑

𝑑𝑥
(∑𝜂𝑛

10

𝑛=1

𝑞𝑛
𝑒)
𝑑𝜂𝑖
𝑑𝑥

𝑑𝜂𝑗

𝑑𝑥
]

𝐿𝑒

0

𝑑𝑥

=

[
 
 
 
 
 
 
 
 
 
 
0 0 0 0 0 0 0 0 0 0
0 𝑐2,2 0 0 𝑐2,5 0 𝑐2,7 0 0 𝑐2,10
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 𝑐5,2 0 0 𝑐5,5 0 𝑐5,7 0 0 𝑐5,10
0 0 0 0 0 0 0 0 0 0
0 𝑐7,2 0 0 𝑐7,5 0 𝑐7,7 0 0 𝑐7,10
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 𝑐10,2 0 0 𝑐10,5 0 𝑐10,7 0 0 𝑐10,10]

 
 
 
 
 
 
 
 
 
 

 

(114) 

Here: 

𝑐2,2 = 𝑐7,7 =
9𝐸𝐴

70(𝐿𝑒)3
[((𝑞5

𝑒)2 + (𝑞10
𝑒 )2)(𝐿𝑒)2 + 6(𝑞5

𝑒 + 𝑞10
𝑒 )(𝑞2

𝑒 − 𝑞7
𝑒)𝐿𝑒

+ 24(𝑞2
𝑒 − 𝑞7

𝑒)2] 

(115) 

𝑐2,5 = 𝑐5,2 =
3𝐸𝐴

280
[
36(𝑞2

𝑒 − 𝑞7
𝑒)2

(𝐿𝑒)2
+
24𝑞5

𝑒(𝑞2
𝑒 − 𝑞7

𝑒)

𝐿𝑒
+ (𝑞5

𝑒 + 𝑞10
𝑒 )2 − 2(𝑞5

𝑒)2] (116) 

𝑐2,7 = 𝑐7,2 = −
9𝐸𝐴

70(𝐿𝑒)3
[((𝑞5

𝑒)2 + (𝑞10
𝑒 )2)(𝐿𝑒)2 + 6(𝑞5

𝑒 + 𝑞10
𝑒 )(𝑞2

𝑒 − 𝑞7
𝑒)𝐿𝑒

+ 24(𝑞2
𝑒 − 𝑞7

𝑒)2] 

(117) 

𝑐2,10 = 𝑐10,2 =
3𝐸𝐴

280
[
36(𝑞2

𝑒 − 𝑞7
𝑒)2

(𝐿𝑒)2
+
24𝑞10

𝑒 (𝑞2
𝑒 − 𝑞7

𝑒)

𝐿𝑒
+ (𝑞5

𝑒 + 𝑞10
𝑒 )2 − 2(𝑞10

𝑒 )2] (118) 
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𝑐5,5 =
𝐸𝐴

140
[
18(𝑞2

𝑒 − 𝑞7
𝑒)2

𝐿𝑒
− 3(𝑞2

𝑒 − 𝑞7
𝑒)(𝑞5

𝑒 − 𝑞10
𝑒 )

+ (12(𝑞5
𝑒)2 − 3𝑞5

𝑒𝑞10
𝑒 + (𝑞10

𝑒 )2)𝐿𝑒] 

(119) 

𝑐5,7 = 𝑐7,5 = −
3𝐸𝐴

280
[
36(𝑞2

𝑒 − 𝑞7
𝑒)2

(𝐿𝑒)2
+
24𝑞5

𝑒(𝑞2
𝑒 − 𝑞7

𝑒)

𝐿𝑒
+ (𝑞5

𝑒 + 𝑞10
𝑒 )2 − 2(𝑞5

𝑒)2] (120) 

𝑐5,10 = 𝑐10,5 =
𝐸𝐴

280
[6(𝑞2

𝑒 − 𝑞7
𝑒)(𝑞5

𝑒 + 𝑞10
𝑒 ) − 3((𝑞5

𝑒)2 + (𝑞10
𝑒 )2)𝐿𝑒 + 4𝑞5

𝑒𝑞10
𝑒 𝐿𝑒] (121) 

𝑐7,10 = 𝑐10,7 = −
3𝐸𝐴

280
[
36(𝑞2

𝑒 − 𝑞7
𝑒)2

(𝐿𝑒)2
+
24𝑞10

𝑒 (𝑞2
𝑒 − 𝑞7

𝑒)

𝐿𝑒
+ (𝑞5

𝑒 + 𝑞10
𝑒 )2 − 2(𝑞10

𝑒 )2] (122) 

𝑐10,10 =
𝐸𝐴

140
[
18(𝑞2

𝑒 − 𝑞7
𝑒)2

𝐿𝑒
+ 3(𝑞2

𝑒 − 𝑞7
𝑒)(𝑞5

𝑒 − 𝑞10
𝑒 )

+ ((𝑞5
𝑒)2 − 3𝑞5

𝑒𝑞10
𝑒 + 12(𝑞10

𝑒 )2)𝐿𝑒] 

(123) 
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𝐾T,𝑖
𝑒 = −∫ [𝑃𝑇

𝑑𝜂𝑖
𝑑𝑥

𝑑𝜂𝑗

𝑑𝑥
]

𝐿𝑒

0

𝑑𝑥

= −𝑃𝑇  

[
 
 
 
 
 
 
 
 
 
 
 
 
 
0 0 0 0 0 0 0 0 0 0

0
6

5𝐿𝑒
0 0

1

10
0 −

6

5𝐿𝑒
0 0

1

10
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0
1

10
0 0

2𝐿𝑒

15
0 −

1

10
0 0 −

𝐿𝑒

30
0 0 0 0 0 0 0 0 0 0

0 −
6

5𝐿𝑒
0 0 −

1

10
0

6

5𝐿𝑒
0 0 −

1

10
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0
1

10
0 0 −

𝐿𝑒

30
0 −

1

10
0 0

2𝐿𝑒

15 ]
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(124) 
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𝐾𝐿𝑜𝑛,𝑖
𝑒 = −∫  𝜉𝑖

∂𝑓𝑥
∂𝑞𝑗

𝑒

𝐿𝑒

0

 𝑑𝑥 − ∫ 𝑧∗
𝑑𝜁𝑖
𝑑𝑥

∂𝑓𝑥
∂𝑞𝑗

𝑒

𝐿𝑒

0

 𝑑𝑥

=
𝜆𝑥 ⋅ 𝑘𝑥
𝑑𝑡𝑖𝑒

⋅ [∫  𝜉𝑖 𝜉𝑗

𝐿𝑒

0

 𝑑𝑥 + ∫ 𝑧∗
𝑑𝜁𝑖
𝑑𝑥
 𝜉𝑗

𝐿𝑒

0

 𝑑𝑥]

=
𝜆𝑥 𝑘𝑥
𝑑𝑡𝑖𝑒

[
 
 
 
 
 
 
 
 
 
 
 
𝐿𝑒

3
0 0 0 0

𝐿𝑒

6
0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
𝐿𝑒

6
0 0 0 0

𝐿𝑒

3
0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0]

 
 
 
 
 
 
 
 
 
 
 

+
𝜆𝑥 𝑘𝑥 𝑧

∗

𝑑𝑡𝑖𝑒

[
 
 
 
 
 
 
 
 
 
 
 
 
 
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

−
1

2
0 0 0 0 −

1

2
0 0 0 0

−
𝐿𝑒

12
0 0 0 0

𝐿𝑒

12
0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1

2
0 0 0 0

1

2
0 0 0 0

𝐿𝑒

12
0 0 0 0 −

𝐿𝑒

12
0 0 0 0

0 0 0 0 0 0 0 0 0 0]
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(125) 

  



 

110 

 

𝐾𝐿𝑎𝑡,𝑖
𝑒 = −∫ 𝜂𝑖

∂𝑓𝑦

∂𝑞𝑗
𝑒

𝐿𝑒

0

 𝑑𝑥 =
𝜆𝑦 ⋅ 𝑘𝑦,1

𝑑𝑡𝑖𝑒
∫ 𝜂𝑖𝜂𝑗

𝐿1
𝑒

0

 𝑑𝑥 +
𝜆𝑦 ⋅ 𝑘𝑦,2

𝑑𝑡𝑖𝑒
∫ 𝜂𝑖𝜂𝑗

𝐿2
𝑒

0

 𝑑𝑥

=  
𝜆𝑦

𝑑𝑡𝑖𝑒

𝐹𝑦,𝑝𝑘

𝑣𝑝𝑘

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0 0 0 0 0 0 0 0 0 0

0
13𝐿1

𝑒

35
0 0

11(𝐿1
𝑒)2

210
0

9𝐿1
𝑒

70
0 0 −

13(𝐿1
𝑒)2

420
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0
11(𝐿1

𝑒)2

210
0 0

(𝐿1
𝑒)3

105
0

13(𝐿1
𝑒)2

420
0 0 −

(𝐿1
𝑒)3

140
0 0 0 0 0 0 0 0 0 0

0
9𝐿1

𝑒

70
0 0

13(𝐿1
𝑒)2

420
0

13𝐿1
𝑒

35
0 0 −

11(𝐿1
𝑒)2

210
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 −
13(𝐿1

𝑒)2

420
0 0 −

(𝐿1
𝑒)3

140
0 −

11(𝐿1
𝑒)2

210
0 0

(𝐿1
𝑒)3

105 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

+
𝜆𝑦

𝑑𝑡𝑖𝑒

𝐹𝑦,𝑙𝑡 − 𝐹𝑦,𝑝𝑘

𝑣𝑙𝑡 − 𝑣𝑝𝑘

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0 0 0 0 0 0 0 0 0 0

0
13𝐿2

𝑒

35
0 0

11(𝐿2
𝑒 )2

210
0

9𝐿2
𝑒

70
0 0 −

13(𝐿2
𝑒 )2

420
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0
11(𝐿2

𝑒 )2

210
0 0

(𝐿2
𝑒 )3

105
0

13(𝐿2
𝑒 )2

420
0 0 −

(𝐿2
𝑒 )3

140
0 0 0 0 0 0 0 0 0 0

0
9𝐿2

𝑒

70
0 0

13(𝐿2
𝑒 )2

420
0

13𝐿2
𝑒

35
0 0 −

11(𝐿2
𝑒 )2

210
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 −
13(𝐿2

𝑒 )2

420
0 0 −

(𝐿2
𝑒 )3

140
0 −

11(𝐿2
𝑒 )2

210
0 0

(𝐿2
𝑒 )3

105 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(126) 

(Note that here, the trilinear formulation for lateral tie-ballast resistance is employed for 𝐾𝐿𝑎𝑡,𝑖
𝑒 ) 
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𝐾𝐵𝑎𝑙,𝑖
𝑒 = −∫ 𝜁𝑖

∂𝑓𝑧
∂𝑞𝑗

𝑒

𝐿𝑒

0

 𝑑𝑥 =
𝑘𝑧
𝑑𝑡𝑖𝑒

∫ 𝜁𝑖𝜁𝑗

𝐿𝑒

0

 𝑑𝑥

=  
𝑘𝑧
𝑑𝑡𝑖𝑒

 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0
13𝐿𝑒

35
−
11(𝐿𝑒)2

210
0 0 0

9𝐿𝑒

70

13(𝐿𝑒)2

420
0

0 0 −
11(𝐿𝑒)2

210

(𝐿𝑒)3

105
0 0 0 −

13(𝐿𝑒)2

420
−
(𝐿𝑒)3

140
0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0
9𝐿𝑒

70
−
13(𝐿𝑒)2

420
0 0 0

13𝐿𝑒

35

11(𝐿𝑒)2

210
0

0 0
13(𝐿𝑒)2

420
−
(𝐿𝑒)3

140
0 0 0

11(𝐿𝑒)2

210

(𝐿𝑒)3

105
0

0 0 0 0 0 0 0 0 0 0]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(127) 

 

𝐾𝐹𝑎𝑠,𝑖
𝑒 = −∫

𝑑𝜂𝑖
𝑑𝑥

∂𝜏𝑧
∂𝑞𝑗

𝑒

𝐿𝑒

0

 𝑑𝑥 =
𝑆

𝑑𝑡𝑖𝑒
∫

𝑑𝜂𝑖
𝑑𝑥

𝑑𝜂𝑗

𝑑𝑥

𝐿𝑒

0

 𝑑𝑥

=  
𝑆

𝑑𝑡𝑖𝑒
 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
0 0 0 0 0 0 0 0 0 0

0
6

5𝐿𝑒
0 0

1

10
0 −

6

5𝐿𝑒
0 0

1

10
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0
1

10
0 0

2𝐿𝑒

15
0 −

1

10
0 0 −

𝐿𝑒

30
0 0 0 0 0 0 0 0 0 0

0 −
6

5𝐿𝑒
0 0 −

1

10
0

6

5𝐿𝑒
0 0 −

1

10
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0
1

10
0 0 −

𝐿𝑒

30
0 −

1

10
0 0

2𝐿𝑒

15 ]
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(128) 
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Expanded Form of the Force Vector 

The external distributed load is assumed to vary linearly within the element, and the 

superscripts 0 and 𝐿 of 𝑝𝑥, 𝑝𝑦, and 𝑝𝑧 indicate the corresponding load values at 𝑥 = 0 and 𝑥 = 𝐿, 

respectively: 

 𝑝𝑥 = 𝑝𝑥
0 + (

𝑥

𝐿
) (𝑝𝑥

𝐿 − 𝑝𝑥
0) (129) 

 𝑝𝑦 = 𝑝𝑦
0 + (

𝑥

𝐿
) (𝑝𝑦

𝐿 − 𝑝𝑦
0) (130) 

 𝑝𝑧 = 𝑝𝑧
0 + (

𝑥

𝐿
) (𝑝𝑧

𝐿 − 𝑝𝑧
0) (131) 

These values should be defined a priori as boundary conditions. 

The force vector (𝐹𝑖
𝑒) due to external distributive loads (𝑝𝑥, 𝑝𝑦, 𝑝𝑧), is expanded as: 
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𝐹𝑖
𝑒 = ∫ [𝑝𝑥𝜉𝑖 + 𝑝𝑦𝜂𝑖 + 𝑝𝑧𝜁𝑖 + 𝑃

𝑇
𝑑𝜉𝑖
𝑑𝑥
]

𝐿𝑒

0

𝑑𝑥 =  

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝐿𝑒(2𝑝𝑥

0 + 𝑝𝑥
𝐿)

6
–  𝐸𝐴𝛼𝛥𝑇

𝐿𝑒(7𝑝𝑦
0 +  3𝑝𝑦

𝐿)

20
𝐿𝑒(7𝑝𝑧

0 +  3𝑝𝑧
𝐿)

20

−
(𝐿𝑒)2(3𝑝𝑧

0 +  2𝑝𝑧
𝐿)

60
(𝐿𝑒)2(3𝑝𝑦

0 +  2𝑝𝑦
𝐿)

60
𝐿𝑒(𝑝𝑥

0 +  2𝑝𝑥
𝐿)

6
+  𝐸𝐴𝛼𝛥𝑇

𝐿𝑒(3𝑝𝑦
0 +  7𝑝𝑦

𝐿)

20
𝐿𝑒(3𝑝𝑧

0 +  7𝑝𝑧
𝐿)

20
(𝐿𝑒)2(2𝑝𝑧

0 +  3𝑝𝑧
𝐿)

60

−
(𝐿𝑒)2(2𝑝𝑦

0 +  3𝑝𝑦
𝐿)

60 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (132) 

In addition, any external concentrated force or moment should be added directly to the 

force vector, ensuring that it corresponds to the appropriate degrees of freedom.  



 

114 

 

APPENDIX B 

UNIT CONVERSION 

 

The following tables provide the necessary multiplication factors for converting between 

commonly used units of force, length, pressure, and thermal expansion coefficients: 

 

Table 4 Multiplication factors for force unit conversion (3 significant digits) 

 

 

Table 5 Multiplication factors for length unit conversion (3 significant digits) 

 

 

                        To

     From
N kN lbf kips

N (Newton) 1.00 0.00100 0.225 0.000225

kN (Kilonewton) 1000 1.00 225 0.225

lbf (Pound) 4.45 0.00445 1.00 0.00100

kips (kilo-pound) 4450 4.45 1000 1.00

                        To

     From
m mm cm in ft

m (meter) 1.00 1000 100 39.4 3.28

mm (millimeter) 0.00100 1.00 0.100 0.0394 0.00328

cm (centimeter) 0.0100 10.0 1.00 0.394 0.0328

in (inch) 0.0254 25.4 2.54 1.00 0.0833

ft (foot) 0.305 305 30.5 12.0 1.00
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Table 6 Multiplication factors for pressure unit conversion (3 significant digits) 

 

 

Table 7 Multiplication Factors for thermal expansion coefficient unit conversion  

(3 significant digits) 

 

                        To

     From
Pa psi

Pa (Pascal) 1.00 0.000145

psi (pounds per

          square inch)
6900 1.00

                          To

     From
1/⁰C 1/⁰F

1/⁰C 1.00 0.556

1/⁰F 1.80 1.00


