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ABSTRACT 

 

 

Rodriguez, Oscar O., The Effect of Heat Generation in the Railroad Bearing Thermoplastic 

Elastomer Suspension Element on the Thermal Behavior of Railroad Bearing Assembly. Master 

of Science Engineering (MSE), May, 2018, 64 pp., 12 tables, 40 figures, 11 references.  

Understanding the internal heat generation of the railroad bearing elastomer suspension 

element during operation is essential to predict its dynamic response and structural integrity, as 

well as to predict the thermal behavior of the complete railroad bearing assembly including the 

bearing adapter. The latter is essential for sensor selection and placement within the adapter (e.g., 

typical temperature sensors have operating ranges of up to 125°C or 257°F). The internal heat 

generation is a function of the loss modulus, strain, and frequency. Based on experimental 

studies, estimations of internally generated heat within the thermoplastic elastomer pad were 

obtained. The calculations show that the pad internal heat generation is impacted by temperature 

and frequency. However, during service operation, exposure of the suspension pad to loading 

frequencies above 10 Hz is less likely to occur. Therefore, internal heat generation values that 

have a significant impact on the suspension pad steady-state temperature are less likely to be 

reached. An experimentally validated finite element thermal model that can be used to obtain 

temperature distribution maps of complete bearing assemblies in service operation conditions is 

presented. This thesis summarizes the work done to investigate the effect of the internal heat 

generation in the thermoplastic elastomer suspension element on the thermal behavior of the 

railroad bearing assembly. 
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CHAPTER I 

 

 

INTRODUCTION 

 

 

Reliable health monitoring of railroad bearings is essential to ensure the safe transport of 

commodities and goods, and to prevent catastrophic failures in the railroad industry. Between 

2010 and 2016, there were approximately 106 freight train derailments that were caused by the 

overheating of a bearing in one or multiple railcars [1]. To identify distressed bearings in service, 

conventional railroad bearing health monitoring systems rely on the bearing cup (outer ring) 

temperature as detected by wayside monitoring systems, spaced at specific distances alongside 

tracks, to warn of impending failure. Railroad bearing temperatures are monitored by wayside 

devices called hot-box detectors (HBDs), which use infrared sensors to take snapshots of bearing 

temperatures as they pass over the detectors to identify bearings that are operating at 

temperatures greater than 94.4ºC (170ºF) above ambient conditions [2]. Currently, most U.S. 

railroads tend to track the temperature of each bearing and compare it to the average temperature 

of all bearings on the same side of the train. Hence, bearings that are “trending” above normal 

can be identified without waiting for a hot-box detector to be triggered [3]. Railroad bearings that 

are found to be hot are removed from service for later disassembly and inspection. Generally, the 

overheating of the bearing can be correlated back to one or more of the common modes of 

bearing failure such as water or dirt contamination, spalling, broken internal components, 

damaged seals, improper lubrication, etc. However, in many cases, the hot bearings that are set
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out do not exhibit signs of any of the common causes (i.e. non-verified bearings). Researchers 

continue to place strong emphasis on issues such as the warm trending phenomenon that leads to 

the unnecessary and costly removal of non-verified bearings. These temperature health 

monitoring systems, such as the wayside hot-box detectors (HBDs), have helped to reduce the 

number of freight train derailments significantly since their implementation. However, their 

limited accuracy prevents them from being a true continuous health monitoring system. New 

technologies are focusing on a more frequent (i.e. continuous) method to track temperatures of 

railroad bearings. Since placing sensors directly on the bearing is not practical due to cup 

indexing during service, the next logical location for such sensors is the bearing adapter, which 

frequently interfaces with the thermoplastic elastomer suspension pad [4]. 

1.1 AdapterPlus™ and Thermoplastic Elastomer Suspension Pad 

Thermoplastic elastomers (TPE’s) are increasingly being used in rail service for load 

damping and other applications. Like traditional elastomers, they offer benefits including 

reduction in noise emissions and improved wear and abrasion resistance in metal components 

that are in contact with such parts, specifically in the bogie (also known as railcar). They are 

superior to traditional elastomers primarily in their ease of fabrication. The railroad bearing 

AdapterPlus™, which has replaced many conventional all metal bearing adapters, utilizes the 

thermoplastic elastomer suspension pad, as shown in Figure 1.1. 
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Figure 1.1. Configuration and location of AdapterPlus™ with thermoplastic elastomer steering 

pad (Blue) within wheel-axle-bearing assembly of the freight car suspension system [5]. 

 The elastomer steering pad, which is implemented in the wheel-axle-bearing assembly of 

a freight car, as seen in Figure 1.1 , has proved to be extremely beneficial. The purpose of the 

elastomer pad is to prevent metal-to-metal contact between the bearing adapter and the side 

frame of the truck. The main benefits of implementing the elastomer steering pad on top of the 
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bearing adapter include: improvement of axle-to-rail alignment which allows a controlled motion 

of the wheelset with reduced lateral force in curves, a wheelset life increase of 25%, and an 8% 

decrease in fuel consumption, among other benefits [5]. However, the suspension element also 

acts as a partial insulator of heat from the bearing and adapter to the components in contact 

above the pad. 

Moreover, viscoelastic materials, such as the railroad bearing thermoplastic elastomer 

suspension element (or elastomeric pad), are known to develop self-heating (hysteresis) under 

cyclic loading, which can lead to undesirable consequences [6]. In general, for viscoelastic 

materials subjected to a varying load, part of the deformation energy is stored and part is 

dissipated through internal molecular mechanisms as heat [7], [8]. This hysteresis heating in 

thermoplastic elastomer materials becomes particularly significant during cyclic loading and is a 

potential problem, specially, when there is limited opportunity for heat dissipation. The 

hysteretic dissipation of polymers increases with frequency so a thermal runaway is more likely 

to be present at higher loading frequencies. When the heat that is produced does not dissipate out 

of the system, the temperature of the material increases and may potentially impact the structural 

integrity of the thermoplastic elastomer suspension element and/or the thermal management of 

the railroad bearing assembly. That is, if no thermal runway is present for the heat to dissipate 

out of the suspension pad, and the pad is being subjected to high frequency loadings, the 

internally generated heat is significant and can cause the suspension pad to reach temperatures 

higher than those of any other component in the bearing assembly. Consequently, as the 

temperature increases, there is usually a significant decrease in the strength and stiffness of the 

material, otherwise known as softening. This may lead to the deterioration and degradation of the 

suspension pad and result in mechanical failure. The behavior of viscoelastic materials during 
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cyclic load induced failure depends on the material system, stress state, and thermal 

environment. 

1.2 Continuous Research 

The work conducted in this study focuses on the effect of the internal heat generation in 

the railroad thermoplastic elastomer suspension element on the thermal behavior of the railroad 

bearing assembly. Understanding the impact of the hysteresis heating of the railroad bearing 

elastomer suspension element during operation is essential to predict its dynamic response and 

structural integrity, as well as, to predict the thermal behavior of the railroad bearing assembly. 

For example, since the thermoplastic elastomer suspension element is known to develop 

hysteresis heating , understanding the thermal behavior of the bearing adapter in combination 

with the elastomeric pad during operation is essential for sensor selection and placement within 

the adapter (e.g., typical temperature sensors have operating ranges of up to 125°C or 257°F) [4]. 

Load and temperature sensors that were developed by the UTCRS research group are currently 

place right below the suspension element machined into the bearing adapter. The main purpose 

of these sensors is to continuously monitor the load applied to the railroad bearing and the 

temperatures of both the adapter and the railroad bearing assembly. If the internally generated 

heat of the thermoplastic elastomer suspension element is significant, an increase in the 

temperature of the pad is more likely to occur. As a result, this may affect the readings and can 

jeopardize the operation of such sensors placed on the adapter.  

The work is organized as follows: Chapter 2 presents the experimental studies conducted 

in order to determine the heat generation due to the hysteresis heating of the thermoplastic 

elastomer suspension element and the estimated heat generation values obtained. Chapter 3 

presents the laboratory experimental setups of the dynamic railroad bearing test rigs and the 
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operation conditions. Chapter 4 presents the finite element analysis (FEA) conducted in order to 

obtain temperature maps of the thermoplastic elastomer suspension element and of the railroad 

bearing assembly and adapter. Finally, Chapter 5 presents a summary of the main conclusions 

from this work.
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CHAPTER II 

 

 

HEAT GENERATION DUE TO HYSTERESIS HEATING 

 

 

Understanding the impact of the heat generation due to the hysteresis heating of the 

railroad bearing elastomer suspension element during operation is essential to predict its dynamic 

response and structural integrity, as well as, to predict the thermal behavior of the railroad 

bearing assembly. The following sections focus on the heat generation due to the hysteresis 

heating that occurs in elastomers used in the compliant suspension element. Experiments 

consisted of material characterization using a servohydraulic universal material testing system 

(MTS) and Dynamic Mechanical Analyzer (DMA). The aforementioned experimental 

characterization of the hysteresis heating was necessary for heat transfer calculations and 

simulations presented in the Chapter 4. 

2.1 MTS Hysteresis Testing 

Preliminary findings on the hysteresis heating of the suspension pad were determined by 

conducting experiments on different 6.3 cm (2.5 in) diameter cylindrical samples of virgin pad 

material and modified pad material with 5-15% Carbon Nano-Fiber (CNF), as seen in Figure 2.1, 

to determine the total conductivity of the virgin and modified pad material. The findings show 

that the 6.3 cm (2.5 in) diameter cylindrical sample of virgin pad material produced temperature 

increases as high as 25°C (45°F) under loadings ranging between 2.2 kN (500 lbf) and 24 kN 

(5500 lbf) in compression oscillating at a frequency of 10 Hertz at room temperature.
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Figure 2.1. Hysteresis heating cylindrical sample of virgin pad material with thermocouple 

inserted in the specified location (left) and Hysteresis heating test setup on 810 Material Test 

System (MTS) (right). 

Hysteresis tests were conducted on an 810 Material Testing System (MTS) with the setup 

pictured in Figure 2.1 The setup consisted of a cylindrical sample mounted in-between two MTS 

643 compression platens with a K-class thermocouple inserted fully to contact the center-middle 

area of the sample. The thermocouple is connected to an OMEGA® True RMS SUPERMETER®, 

which displays the temperature of the thermocouple measurement in degrees Celsius. The tests 

consisted of rapid repeated cycles of compression under loadings ranging between 2.2 kN (500 
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lbf) and 24 kN (5500 lbf) oscillating at frequencies of 2, 4, 10, 20, 30, and 50 Hertz at room 

temperature (20ºC or 68ºF). 

2.1.1 Low Frequency Hysteresis Tests 

The first set of tests were conducted at loading frequencies of 2, 4, 10, and 20 Hz. The 

initial temperature was documented at time zero before the test sample was loaded. Once loaded, 

temperature measurements were taken every 30 seconds for the first 5 minutes, followed by 

every minute for the next 5-10 minutes. A total of 10 minutes of data was collected for 2 and 4 

Hz, and 15 minutes of data for 10 and 20 Hz. Multiple tests were run approximately 20 minutes 

apart for the same oscillating frequency to check for errors and ensure reliability and 

repeatability. 

For loading frequencies of 2, 4, and 10 Hz, the resulting test data sets were neglected due 

to minimal temperature change (~1-3ºC) of the sample, indicating that regardless of the load 

magnitude, at frequencies below 10 Hz, the change in the sample’s temperature is not significant 

for short periods of time (i.e. 10-15 minutes). For the loading frequency of 20 Hz, multiple tests 

were run and the results were fairly similar, having a temperature increase of 5-6ºC (9-10.8ºF). 

Figure 2.2 displays the comparison curves of the temperature change for the 20 Hz experiments. 

Both runs for the sample loaded at 20 Hz show the same trend with approximately a 2ºC (3.6ºF) 

difference at every timed measurement. The difference seen in the equilibrium temperature is 

due to a combination of variation in the ambient temperature and the temperature of the 

contacting surfaces of the test fixtures as well as apparent changes in puck microstructure during 

cycling which increase the hysteretic effect on subsequent cycles. 
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Figure 2.2. Temperature change of cylindrical sample loaded at 20 Hz. 

2.1.2 High Frequency Hysteresis Tests 

The second set of tests were conducted at loading frequencies of 30 and 50 Hz. The 

initial temperature was documented at time zero before the test sample was loaded. Once loaded, 

temperature measurements were taken every 15 seconds for the first 2 minutes, followed by 

every 30 seconds for the next 3 minutes, and finally every minute for the last 10-15 minutes of 

testing. A total of 15 minutes of data was acquired for 30 Hz, and 20 minutes of data was 

collected for 50 Hz. Multiple tests were run approximately 20 minutes apart for the same 

oscillating frequency to check for errors and ensure reliability and repeatability. 

Figure 2.3 displays the comparison curves between the sample temperature change when 

exposed to loading frequencies of 30 and 50 Hz. When the sample is loaded at higher 

frequencies, it displays a significant increase in temperature. At 30 Hz, the sample had a 

temperature increase of 4ºC (7.2ºF), and when loaded at 50 Hz, the sample produced a 
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temperature increase of 12ºC (21.6ºF). The tests were run again allowing a 20 minute equipment 

and material cool down in between. This was done in order to check for repeatability and 

reliability of the results. The second set of experiments all showed a higher increase in 

temperature compared to the first run of experiments. When the sample was loaded at 30 Hz, it 

had a temperature increase of 8ºC (14.4ºF), and at 50 Hz, the sample had a temperature increase 

of 22ºC (39.6ºF). The average of both runs for each frequency are presented in Figure 2.4. The 

average sample temperature change is used in the model construction. 

 

Figure 2.3. Temperature change of cylindrical sample loaded at 30 and 50 Hz (two runs for each 

loading frequency). 
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Figure 2.4. Average sample temperature change for both runs of 30 and 50 Hz. 

2.2 Dynamic Mechanical Analysis (DMA) 

 In order to characterize and model the contribution of the elastomer pad to the system 

energy balance, thermal analysis tests were conducted on samples of virgin pad material. 

Specifically, the goal was to obtain the mechanical viscoelastic properties (modulus and energy 

dissipation) of the thermoplastic elastomer suspension pad material. Moreover, in order to 

measure the mechanical viscoelastic properties of the pad material, dynamic mechanical analysis 

(DMA) is the proper technique to follow, since DMA is ideal for evaluating time, frequency and 

temperature dependent material properties. DMA is a technique used to study the viscoelastic 

behavior of polymers and provides a broad characterization of the elastic (energy storage) and 

viscous (energy dissipation) behavior of the material over a large range of temperatures and 

frequencies. The technique subjects a specific sample to a steady-state oscillatory load or 

displacement while the samples’ response is measured. The relatively low thermal mass of the 
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sample and capabilities of the instrument permit rapid measurement of properties over a wide 

range of temperatures and frequencies. In a viscoelastic material, the response will have an in-

phase and a lagging response. Steady-state oscillation permits separation of these two responses 

and calculation of the material storage and loss moduli. 

Analysis was performed using a TA Instruments Model Q800 Dynamic Mechanical 

Analyzer (DMA), pictured in Figure 2.5, running the TA Rheology Advantage software. The 

Q800 DMA measures the viscoelastic properties of a material as it is being deformed under a 

controlled stress or strain. The most common operation mode is oscillation, where the sample is 

exposed to a sinusoidal stress or strain. The Q800 DMA capabilities also include creep or stress 

relaxation and controlled force or strain rate. The instrument allows any sample to be 

characterized in different deformation modes (e.g. shear, tension/compression, dual cantilever 

beam, 3-point bending, and single cantilever). The single cantilever configuration, as seen in 

Figure 2.5, was chosen for this study due to the smaller sample size required.  

DMA testing consisted of running samples under the DMA multi-frequency – strain 

mode and temperature step frequency sweep test. The DMA multi-frequency – strain mode 

consists of oscillating (deforming) the sample at different frequencies under a controlled (fixed) 

rate of deformation (strain percent). The temperature step frequency sweep test exposes the 

material sample to a series of increasing isothermal temperatures. At each temperature, the 

material sample is deformed at a constant amplitude (strain) over a set of frequencies and the 

mechanical properties (modulus and energy dissipation) are measured. 
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Figure 2.5. TA Instruments Q800 Dynamic Mechanical Analyzer (DMA) (left) and single 

cantilever configuration setup with calibration sample (right). 

2.2.1 DMA Sample Preparation 

 The effects of different sample fabrication methods were investigated to determine the 

role of load intensity, load frequency, and temperature on hysteretic dissipation. Samples were 

prepared by several methods to identify any process effects on the response of the material. The 

goal was to determine the simplest method of preparation that produced samples representative 

of manufactured thermoplastic elastomer suspension pads. The three types of sample 

preparations are transfer molded coupons, injection molded coupons, and coupons machined 

from an actual pad. The transfer molded samples were fabricated by shredding an elastomer 

suspension pad and then transfer molding them in a heated platen press. The resulting thin disks 
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were allowed to equilibrate for 36 hours and then cut into the appropriate size for DMA testing. 

This procedure is illustrated in Figure 2.6. 

 

Figure 2.6. Transfer molding process for DMA sample preparation. 

 The second type of sample was obtained by using the injection molding process as seen 

in Figure 2.7. New pellets of material were molded into standard flex or tensile bars using a 

BOY injection molding machine. These samples were then cut to length for use in the DMA. 

 

Figure 2.7. Injection molding process for DMA sample preparation. 
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Finally, the third type of sample was milled out from an actual elastomer suspension pad 

like the one shown in   using a vertical band saw cutter, as shown in Figure 2.8.  

 

Figure 2.8. Machined pad process for DMA sample preparation. 

2.2.2 Phase One Characterization 

The testing in phase one consisted of equilibrating the sample at 35°C (95ºF) for 10 

minutes. After that, the first frequency sweep was run. The frequency sweep subjects the sample 

to an oscillating load at frequencies varying from 0.1 to 100 Hertz; however, data analysis was 

only accounted for from 0.1 to 50 Hz. After each frequency sweep was completed, the 

temperature was incremented 10°C (18ºF), held for 10 minutes and then another sweep was run. 

The final sweep was performed at 165°C (329ºF), which is well above the maximum temperature 

an adapter is likely to see in service. These procedures were conducted for each of the different 

sample preparation samples: injection molded, transfer molded, and actual pad. Two runs were 

conducted for each process type to check for consistency and repeatability. Figure 2.9 

summarizes the procedure described in this section. 
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Figure 2.9. Phase one characterization DMA testing steps. 

2.2.3 Phase Two Characterization 

 The characterization testing phase two consisted of equilibrating the sample at 30°C 

(86ºF) for 10 minutes. After that, the first frequency sweep was run. The frequency sweep 

subjects the sample to an oscillating load at frequencies varying from 0.1 to 50 Hertz. After each 

frequency sweep was completed, the temperature was incremented 10°C (18ºF), held for 10 

minutes and then another sweep was run. The final sweep was performed at 160°C (320ºF), 

which is well above the maximum temperature an adapter is likely to see in service. These 

procedures were conducted only for the injection molded sample preparation samples since 

results consistently exhibited characteristics representative of manufactured pads. Four different 

samples were run, each at a different strain percent: 0.05%, 0.50%, 2.5%, and 12.5%; however, 

for the sample that was ran at 12.5% strain, the frequency range was reduced to 2 Hz due to load 

and displacement limitations of the software used to run DMA experiments. Multiple runs were 
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conducted to check for consistency and repeatability. Figure 2.10 summarizes the procedure 

described in this section. 

 

Figure 2.10. Phase two characterization DMA testing steps. 

2.3 Heat Generation Quantification 

 The total heat generation of the material was numerically estimated using DMA data that 

was obtained from samples of the suspension pad material. The data showed that the loss 

modulus decreases as the sample temperature increases, meaning that the heat generation will be 

dependent on temperature and the higher the temperature of the pad the lower the dissipation of 

energy as heat. Since the heat generation is a function of the loss modulus, strain percent, and 

frequency, Eq. 1 can be used with DMA results to calculate specific power [W/m3] dissipated at 

individual frequencies and temperatures. 
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Where P is the specific power in [W/m3], ω is the frequency in [s-1], εA
 is the deformation 

rate or strain percent in [cm/cm], and E" is the loss modulus in [MPa]. For the heat generation 

calculations, the applied strain of 0.05 cm/cm in the experiments was used in conjunction with 

the loss modulus data obtained from the DMA tests. The heat generation is also dependent on 

temperature, and at each frequency, values for the internally generated heat are calculated for 

temperatures ranging from 30 to 160ºC (86 to 320ºF) in increments of 10ºC (18ºF). Table 2.1 and 

Figure 2.11 display the heat generation values for all frequency ranges as a function of 

temperature. 

Table 2.1.Calculated heat generation values. 

 

50 Hz 30 Hz 20 Hz 10 Hz

Temperature 

[°C / °F]

Heat 

Generation 

[W/m
3
]

Heat 

Generation 

[W/m
3
]

Heat 

Generation 

[W/m
3
]

Heat 

Generation 

[W/m
3
]

30 / 86 14459 8053 4793 2070

40 / 104 10441 5842 3394 1428

50 / 122 7397 4165 2369 970

60 / 140 5065 2910 1615 641

70 / 158 3463 2068 1123 428

80 / 176 2493 1537 821 300

90 / 194 1836 1219 641 228

100 / 212 1457 1004 529 184

110 / 230 1191 859 455 155

120 / 248 1045 808 405 137

130 / 266 931 737 375 121

140 / 284 873 716 350 111

150 / 302 888 748 338 106

160 / 320 860 781 313 100
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Figure 2.11. Heat generation curves at different loading frequencies. 
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CHAPTER III 

 

 

EXPERIMENTAL METHODS AND PROCEDURES 

 

 

The development of an experimentally validated finite element analysis model requires a 

thorough thermal analysis of the railroad tapered-roller bearing. In order to conduct the finite 

element analysis and compare to the experimental results, a database of the temperature histories 

of all the railroad tapered-roller bearings, both defective and healthy, that has been assembled by 

the University Transportation Center for Railway Safety (UTCRS) at the University of Texas 

Rio Grande valley (UTRGV) was utilized. The laboratory experiments conducted at UTRGV 

were performed using two dynamic bearing test rigs, a single bearing tester (SBT) and a four-

bearing tester (4BT). The experimental setups were designed to recreate field service operation 

conditions. 

3.1 Single Bearing Tester Setup  

 The single bearing tester is specifically designed to closely mimic railroad service 

conditions which a railroad bearing experiences. The single bearing tester, shown in Figure 3.1, 

can apply lateral (axial), impact, and vertical loads on one Class F (6½"×12") or Class K 

(6½"×9") tapered-roller bearing. This test rig can provide up to 22 kN (5 kips) of lateral load, a 

variable frequency (0-3 Hz) 70g impact load, in addition to vertical loads of up to 267 kN (60 

kips) applied to a single railroad bearing. The vertical load is applied utilizing a hydraulic
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cylinder capable of applying loads ranging from 0 to 175% of full load. A fully loaded railcar 

(100% load) corresponds to an applied load of 153 kN (34.4 kips) per bearing for Class F and 

Class K bearings, whereas, an empty railcar (17% load) corresponds to an applied load of 26 kN 

(5.85 kips) per bearing as stated in AAR standards for Class F and K bearings [4]. The single 

bearing tester uses a variable-speed motor powered by a variable-frequency drive (VFD), which 

simulates train speeds ranging from 5-137 km/h (or 8-85 mph). Forced convection cooling is 

achieved with two industrial strength fans, as depicted in Figure 3.2, that produce an average air 

stream of 18 km/h (11.2 mph). The air stream produced by the fans is meant to simulate the 

airflow passing across the bearing in field service. 

 

Figure 3.1. Single bearing tester (SBT) with annotations. 
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3.2 Four-Bearing Tester Setup 

 The four bearing tester (4BT), shown in Figure 3.2, accommodates four of the 

abovementioned tapered-roller bearings (either Class K or Class F). Each bearing tested in the 

laboratory is assembled using AAR (Association of American Railroads) standards. The 

assembled bearings are then mounted onto the test axle by means of a 300-ton hydraulic press. 

Following the test rig assembly, bearings were labeled B1 to B4 in ascending order from the 

pulley side to the end cap side (reference Figure 3.3). The 4BT can only apply vertical loads with 

similar ranges to those of the SBT using a similar hydraulic cylinder. The load from the 

hydraulic cylinder is applied directly to the two centrally located bearings, referred to as “top-

loaded” bearings; the reaction load is then evenly distributed to the two outer bearings, referred 

to as “bottom-loaded” bearings. The four-bearing tester also uses a variable-speed motor 

powered by a variable-frequency drive (VFD), which simulates train speeds ranging from 5-137 

km/h (or 8-85 mph). Forced convection cooling is achieved with two industrial strength fans, as 

depicted in Figure 3.2, that produce an average air stream of 18 km/h (11.2 mph). The air stream 

produced by the fans is meant to simulate the airflow passing across the bearing in field service. 

The four-bearing tester is enclosed within a temperature-controlled environmental chamber 

capable of producing ambient temperature conditions as low as -40ºC (-40ºF) and as high as 

65.6ºC (150ºF).  
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Figure 3.2. Four bearing tester (4BT) with annotations. 

 

Figure 3.3. Schematic showing the top view of the four-bearing tester with test bearings labeled. 

3.3 Instrumentation Setup 

Both dynamic bearing test rigs are equipped with a complete set of instrumentation that 

collects data from the test bearings. The data is acquired by K-type thermocouples, bayonet 
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thermocouples, 500g high-frequency accelerometers, a high-accuracy high precision load cell, 

and the 70g accelerometers devised by the UTCRS research group. Data collected were recorded 

utilizing a National Instruments (NI) data acquisition system (DAQ) programmed using 

LabVIEWTM. The NI PXIe-1062Q DAQ is equipped with a NI TB-2627 card to collect 

temperature data from the thermocouples and an 8-channel NI PXI-4472B card to record the 

accelerometers that were used in this study. The accelerometers were connected to the NI PXI-

4472B card via 10-32 coaxial jack and a BNC connection. The data analysis was performed 

using the mathematical software MATLAB™. 

3.3.1 Single Bearing Tester Instrumentation Setup 

The test bearing is equipped with Class F or K AdapterPlus™ bearing adapter, complete 

with an AdapterPlus™ thermoplastic elastomer suspension pad. The adapter is machined to 

accept three accelerometers, a flex circuit (Smart Adapter insert) with load and temperature 

sensing capabilities, four bayonet thermocouples, and an adapter K-type thermocouple. Figure 

3.4 indicates the accelerometer and thermocouple mounting locations on the AdapterPlus™ 

bearing adapter. To ensure the accuracy and reliability of the bayonet thermocouples, seven K-

type thermocouples were affixed by a hose clamp along the spacer ring region of the outer ring 

(cup) of the test bearing. Figure 3.5 displays the placement locations of the thermocouples on the 

outer ring of the test bearing. In addition to the thermocouples that monitored the temperature of 

the test bearing within the axle assembly of the test rig, two K-type thermocouples were placed 

along each side of the test bearing to monitor and record the surrounding ambient temperature. 
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Figure 3.4. Indicated accelerometer and thermocouple mounting locations on the AdapterPlus™ 

bearing adapter. 
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Figure 3.5. Indicated placement locations of the thermocouples on the outer ring of the test 

bearing (red) and on the AdapterPlus™ bearing adapter (black). 

3.3.2 Four-Bearing Tester Instrumentation Setup 

Each of the top-loaded bearings was equipped with a Class F or K AdapterPlus™ bearing 

adapter, complete with an AdapterPlus™ thermoplastic elastomer suspension pad. Similar to the 

instrumentation setup of the single bearing tester, the adapters are machined to house three 

accelerometers, a flex circuit (Smart Adapter insert) with load and temperature sensing 

capabilities, two bayonet thermocouples, and an adapter K-type thermocouple. Bottom-loaded 

bearings rested on all-steel adapters, machined to house two bayonets, and two accelerometers. 

The thermocouple and accelerometer placement locations on the AdapterPlus™ bearing adapter 

are similar to those of the single bearing tester (reference Figure 3.4). Each bayonet 

thermocouple was centered on each of the two outer ring (cup) raceways to measure the 
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temperature produced by each raceway. To ensure the accuracy and reliability of the bayonet 

thermocouples, one K-type thermocouple was affixed to the center of each bearing cup by a hose 

clamp aligned between the two bayonets. In addition to the thermocouples that monitored the 

temperatures of the four test bearings within the axle assembly of the test rig, two K-type 

thermocouples were placed along each side of the test axle to monitor and record the surrounding 

ambient temperature. A total of sixteen K-type thermocouples were employed to monitor and 

record the temperatures of the four-bearing test rig experimental setup. 

3.4 Laboratory Test Conditions 

 Field conditions were recreated in a laboratory setting utilizing both dynamic bearing test 

rigs. Tests included a combination of defect-free (healthy or control) and defective Class F/K 

bearings run at various speeds and loads. Table 3.1 and Table 3.2 display the laboratory 

operation condition loads and speeds, respectively. Table 3.3 displays the laboratory conditions 

that were labeled as normal and abnormal operation conditions for FEA data comparison. 

Table 3.1. Laboratory operation condition loads. 

 

Table 3.2. Laboratory operation condition speeds. 
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Table 3.3. Laboratory operation conditions for FEA comparison. 
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CHAPTER IV 

 

 

FINITE ELEMENT MODELING AND ANALYSIS 

 

 

A computer aided design (CAD) model was created and constructed in Solid Works™, 

which was then imported into ALGOR 20.3™ to create a finite element (FE) model to conduct 

heat transfer analysis. In order to determine if the heat generation values that were calculated are 

reasonable (reference Table 2.1), preliminary finite element modeling and analysis was 

performed on a model of the laboratory sample that was used for the hysteresis heating tests 

discussed in Chapter 2. Subsequently, the validated heat generation values were used in the finite 

element analysis (FEA) models of the suspension pad, and for the laboratory test rig bearing 

assembly. 

4.1 Hysteresis Heating Test Sample Finite Element Analysis (FEA) 

The finite element (FE) model of the hysteresis heating test sample is illustrated in Figure 

4.1. FEA of the laboratory hysteresis heating test sample was run in order to determine if the heat 

generation values that were numerically estimated from the data obtained by DMA (reference 

Chapter 2) are reasonable. Both, the steady state and the transient response analyses at different 

time periods were acquired in order to replicate the results from the laboratory hysteresis heating 

tests. The boundary conditions applied were convection load on the circumference lateral area, 

heat generation though out the model, and ambient temperature. Please note that in the following 

simulations, no heat transfer was allowed in the top and bottom surfaces of the cylindrical model 
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(i.e. insulated surfaces). Different sensitivity analyses were run to study the dependence of the 

results on the boundary conditions that were applied to validate the laboratory experiments. The 

volume heat generation was applied as a constant and temperature dependent boundary 

condition. For the convection coefficient, there is a broad range of values that can be selected; 

however, a sensitivity analysis was conducted on different convection coefficient values within 

the range of the free convection values for air. For the initial finite element analysis, an overall 

convection coefficient of 5 W·m-2·K-1 was selected and an ambient temperature of 23.1ºC was 

used. Material properties were sourced from BASF literature TPU using data from grades with 

the same shore durometer value. A thermal conductivity of 0.25 W·m-1·K-1 along with a mass 

density of 1160 kg·m-3 and a specific heat of 2.3 J·g-1·K-1 were selected as the specific 

properties.  

 

Figure 4.1. Hysteresis heating test sample FE model. 

First, in order to have reliable results, a sensitivity analysis on the mesh size of the model 

was run in order to determine whether or not there is convergence of the FEA results. Decreasing 

the mesh size increases the number of elements and nodes in the model changing the final result 
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every time until the result is similar to that of the exact solution [9]. In essence, the steady-state 

temperature analysis was used to run the model at different mesh sizes from 100% down to 25% 

of the original mesh size to compare the resulting temperature. After ensuring convergence of the 

model, a mesh size of 75% of the original mesh size was selected using brick elements, which 

resulted in 7721 total elements. To reduce the number of elements, symmetry was taken into 

consideration, where half of the sample was used, and later, only quarter of the test sample was 

used. Another sensitivity analysis on the mesh size was run for each symmetric model, and 

convergence was checked and verified. 

 Table 4.1 summarizes the results of the steady-state temperature of the cylindrical test 

sample with an applied heat generation produced by a 20 Hz cyclic loading. The results show 

that the use of a constant or temperature dependent heat generation model yield the same 

equilibrium temperature. Both equilibrium temperatures show a similar increase above ambient 

representative of the approximately 5°C measured in the laboratory (reference Figure 2.2). In 

addition, the time it takes to reach the steady-state temperature is approximately the same for 

both the constant and temperature dependent heat generation models.  Since the steady state 

temperature is below 30°C, the FEA of the temperature dependent model only applies the 30°C  

heat generation value, which is the same value used in the constant heat generation model. It can 

be said that the effect of the temperature dependent heat generation does not impact the model 

for low cyclic loading frequencies such as 20 Hz. 
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Table 4.1. Steady-state temperature and time of laboratory test sample FE model with an applied 

heat generation produced by a 20 Hz cyclic loading. 

 

To test for reliability, finite element analysis was conducted using the same test sample 

now with an applied heat generation produced by a 50 Hz cyclic loading. Table 4.2 presents the 

results that exhibit a trend where the constant heat generation case predicts a higher equilibrium 

temperature. In this case, it takes approximately 25% less time for the temperature to reach 

steady state using the constant heat generation model. The latter is due to the reduced amount of 

energy that is being generated at a specific temperature for the temperature dependent heat 

generation model.  

Table 4.2. Steady-state temperature and time of laboratory test sample FE model with an applied 

heat generation produced by a 50 Hz cyclic loading. 

 

Figure 4.2 displays the temperature map of the hysteresis heating test sample with plots 

of both loading frequencies: 20 and 50 Hz. The figure indicates that the highest temperature is in 

the center of the cylindrical test sample, and when applying symmetry, it can be seen that the 

peak temperature is located in the center-middle point of the cylindrical test sample. The center-

middle point of the test sample is the location where temperature measurements were taken 

during laboratory testing. 
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Figure 4.2. Temperature map of steady-state analysis of full cylindrical sample (left) and quarter 

symmetrical cylindrical sample (right) at frequency loadings of 20 Hz and 50 Hz. 

4.2 Thermoplastic Elastomer Suspension Pad Finite Element Analysis (FEA) 

Once the hysteresis heating test data was validated, and the heat generation values that 

were calculated from the data obtained by DMA were found to be reasonable, it was time to 

conduct FEA analysis on the thermoplastic elastomer suspension pad. The main goal is to 

analyze the effect of the heat generation due to the hysteresis heating of the suspension pad on 

the temperature distribution of the pad, and to obtain the temperature distribution maps resulting 

from different operation conditions. 

 From previous studies conducted on the thermoplastic elastomer steering pad, it is known 

that most of the heat from the bearing adapter is conducted to the central square area on the 

bottom side of the adapter pad [4]. The FE model used is the same as the one used in reference 

[4]. Sensitivity analyses were carried out to study the dependence of the results on boundary 

conditions and material properties including elastomer thermal conductivity. Figure 4.3 displays 

the FE model of the steering pad used for the different analyses performed fir this study. A mesh 

size of 75% was used, and the brick element type was selected. The final meshed model 

consisted of 5248 total elements. 
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Figure 4.3. FE model of thermoplastic elastomer suspension pad 
 Figure 2.11 clearly demonstrates that the internally generated heat decreases when 

temperature increases. Using the model illustrated in Figure 4.3, transient state analysis was 

conducted for a period of 12 hours. The latter was done in order to represent operation conditions 

in service during typical running times. A thermal conductivity of 0.25 W·m-1·K-1 along with a 

mass density of 1160 kg·m-3 and a specific heat of 2.3 J·g-1·K-1 were selected as the specific 

properties. An average convection coefficient of the pad can be obtained with a minimum 

airflow of 5 m·s-1, as calculated in previous studies [4]. This convection coefficient is only 

applied to those areas completely exposed to the air, and not the top and bottom surfaces that are 

in direct contact with other components [4]. The applied boundary conditions are: a convection 

coefficient of 17.9 W·m-2·K-1, temperature-dependent heat generation due to a loading frequency 

of 50 Hz, and an ambient temperature for both normal and abnormal operation conditions. Please 

note that in the following simulations, no heat transfer was allowed in the top and bottom 

surfaces of the cylindrical model (i.e. insulated surfaces). The obtained top and bottom surface 

temperatures were both used as reference temperatures to compare with previous studies [4].  For 

example, the temperature map of the thermoplastic elastomer suspension pad was obtained for 
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normal operation conditions from previous studies [4]. The study concluded that the bottom 

surface of the suspension pad conducts most of the heat from the adapter, reaching a temperature 

of about 50ºC (122ºF). However, for these FEA simulations (assuming no heat transfer to 

railcar), heat transfer will not flow from the pad to the adapter since the steering pad temperature 

increases to more than 50ºC as observed in the following results. 

Figure 4.4 shows the temperature distribution map during normal operation. The results 

show that when a temperature dependent heat generation value and ambient temperature of 

23.1ºC (73.6ºF) are applied, the peak temperature of the pad reaches 62ºC (143.6ºF). The peak 

temperature location is at the center-middle area of the suspension pad.  

 

Figure 4.4. Temperature map of thermoplastic elastomer suspension pad FE model subjected to 

normal boundary conditions. 

Now, when abnormal boundary conditions, such as an ambient temperature of 45ºC 

(113ºF) is applied, it can be seen from Figure 4.5 that the absolute temperature of the pad is 

significantly higher. This could mean that the heat generation does have a significant impact on 

the temperature of the suspension pad, which may compromise the structural integrity of the pad 

over 12 hours of harsh operation conditions. 
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Figure 4.5. Temperature map of thermoplastic elastomer suspension pad FE model subjected to 

abnormal boundary conditions. 

Further scenarios, such as applying a constant heat generation value under steady state 

analysis, were studied. Figure 4.6 shows the resulting temperature map of one of these scenarios. 

An ambient temperature of 45ºC (113ºF), and a constant heat generation value due to a frequency 

loading of 50 Hz were applied as the boundary conditions. The peak temperature of the 

suspension pad under the aforementioned conditions is approximately 137ºC (278.6ºF), which is 

clearly above the softening temperature of the pad material (i.e. 120ºC or 248ºF).  

 

Figure 4.6. Temperature map of thermoplastic elastomer suspension pad FE model subjected to 

worst-case scenario boundary conditions. 

 



38 

4.3 Laboratory Test Rig Bearing Assembly Finite Element Analysis (FEA) 

 The final step was to investigate the effect of the heat generation due to the hysteresis 

heating of the suspension pad on the thermal management of the railroad tapered-roller bearing. 

This section presents an experimentally validated finite element thermal model, depicted in 

Figure 4.7, that can be used to obtain temperature distribution maps of complete bearing 

assemblies in service conditions.  

 

Figure 4.7. Laboratory bearing assembly test rig FE model. 

4.3.1 FEA Modeling of Laboratory Test Rig Bearing Assembly 

A combination of bricks, wedges, pyramids, and tetrahedral elements were used to 

successfully mesh the complete model. The complete laboratory bearing assembly FE model 

includes a tapered-roller bearing that is pressed onto an axle and assumes that all rollers 

contribute the same amount of thermal load. The length of the axle accounts for the different 

thermal runways caused by the insulating properties of the thermoplastic elastomer suspension 

pad. Some of the boundary conditions as well as the overall heat transfer coefficients were 
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acquired from experimental and theoretical work performed previously and summarized in 

reference [3]. Four major boundary conditions were applied: conduction, convection, heat flux, 

and heat generation. Model simplifications were made including the following: no roller cages, 

seals, wear rings, or grease were included. The thermal resistances of both the grease and the 

polyamide cages are very large compared to that of the other bearing components, and their 

exclusion is justified in reference [2].  Other assumptions include the contact area of the roller to 

the cup (outer ring) and cone (inner ring) raceways and the thermal contact resistance between 

the bearing cup and the adapter. Since the roller-cone and roller-cup contact areas change 

whenever the bearing is loaded or unloaded, and during normal operation conditions only the 

upper hemisphere of the bearing is loaded, so larger contact areas exist in this region. Hence, an 

average value for the roller-cup and roller-cone contact area was applied to each one of the 46 

rollers in the bearing assembly [2]. It is important to note that, since this is a static model, the 

actual rotation of the cone assemblies inside the bearing was not directly simulated, but was 

taken into account by applying an average heat flux through all 46 rollers in the bearing [4].  

Material properties for the bearing components, axle, I-beam, spacer ring, adapter, and 

spacer plate were all directly selected from ALGOR 20.3™. For the bearing components, AISI 

8620 steel with a thermal conductivity of 49.3 W·m-1·K-1 was used; for the axle, I-beam, spacer 

ring, and spacer plate, AISI 1050 steel with a thermal conductivity of 51.9 W·m-1·K-1 was used, 

further detailed descriptions are provided in reference [4]. For the adapter pad, material 

properties were sourced from BASF literature on thermoplastic polyurethane (TPU) using data 

from material grades with the same shore durometer value. A thermal conductivity of  

0.25 W·m-1·K-1 along with a mass density of 1160 kg·m-3 and a specific heat of 2.3 J·g-1·K-1 

were selected as the specific properties. Ductile (nodular) iron with a thermal conductivity of 
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34.4 W·m-1·K-1 was used for the bearing adapter material. Table 4.3 obtained from reference [4] 

lists the convection coefficient values for all the FE model components. 

Table 4.3. Convection coefficient values for each FE model component. 

 

The convection boundary condition for the bearing cup was obtained from previous 

theoretical and experimental work presented in references [2] and [3]. An overall heat transfer 

coefficient Ho = 8.32 W·K-1 is provided for the bearing cup, taking into account the forced 

convection that is generated by the average air flow of 5 m/s and radiation to the ambient air at a 

temperature of 25ºC. However, the software appropriate units require the aforementioned 

convection value to be divided by the bearing cup outside surface area (Acup = 0.1262 m2), 

leading to a cup convection coefficient ho = 65.9 W·m-2·K-1. 

For the axle, the convection coefficient was obtained by using the Nusselt number 

correlation for a cylinder in cross-flow. A resulting value of haxle = 25 W·m-2·K-1 is obtained 

from reference [4]. For the adapter, adapter pad, I-beam, and spacer plate, the convection 

coefficient values were obtained by using the Nusselt number correlation for a flat plate in 

parallel flow. 

The work reported in reference [2] indicates that the total heat input from all 46 rollers 

within the railroad bearing assembly is about 529 W per bearing for normal operation conditions, 

and 980 W for abnormal operation conditions. For simplicity, the heat flux was only applied to 

the surface of the rollers; i.e. 11.5 W per roller for normal operation, and 21.3 W per roller for 

Part havg [W·m-2·K-1] 

I-beam 19.0 

Spacer Plate 18.3 

AdapterPlus™ 17.9 

Adapter Pad 17.9 

Overall Average 18.1 
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abnormal operation. Here, it is assumed that the rollers are the source of heat within the bearing, 

which is justified considering the mass of the roller (0.145 kg) relative to the mass of the bearing 

cup (11.53 kg) and cone (3.9 kg). Since the mass of the roller is very small compared to the mass 

of the cup and cone, it is safe to assume that it will heat at a much faster rate than the other two 

components, thus, becoming the heat source [2].  

Another heat source or thermal mechanism boundary condition is the hysteresis heat 

generation that is produced by the thermoplastic elastomer suspension element. It was shown 

earlier in this chapter that an applied constant heat generation at high loading frequencies such as 

50 Hz in combination with high ambient temperatures and no thermal runway can propel 

elastomer suspension pad temperatures significantly above the softening temperature of the pad 

material (i.e. 120ºC or 248ºF) [10]. The heat generation applied to the adapter pad is a constant 

heat generation for frequency loadings of 10 and 50 Hz, which simulate a defect-free (healthy) 

and defective bearing assembly in the laboratory, respectively. The heat generation is applied to 

both normal and abnormal condition models. 

Thermal contact resistance between the adapter and bearing cup may significantly affect 

the amount of heat transferred to the bearing adapter. Values for the contact resistance were 

obtained as a result of a pressure film study explained in reference [4]. A thermal contact 

resistance of 0.0055 m2·K·W-1 was applied in between the bearing cup and adapter. 

Consequently, in order to model both heat sources simultaneously (i.e. the heat flux of the rollers 

and the heat generation within the suspension pad), a thermal contact resistance of 

 0.01 m2·K·W-1 was applied between the suspension pad and the metal adapter, and between the 

suspension pad and the I-beam spacer plate. The value for the thermal contact resistance applied 

between the suspension pad and the metal adapter, and between the suspension pad and the  
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I-beam spacer plate was obtained as the result of an optimization study conducted to match the 

experimentally acquired temperatures to the numerically obtained FEA results. Figure 4.8 

displays the complete FE model with the convection and heat flux boundary conditions applied 

to each individual component.  

 

Figure 4.8. Boundary conditions applied to each FE model component. 
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4.3.2 FEA Validation of Laboratory Results  

 The finite element (FE) model thermal maps presented in reference [4] were used as the 

basis for the thermal maps presented in this thesis. The initial step was to replicate the 

experimental results presented in reference [4]. Figure 4.9 displays the FE model with markers 

showing the location of the selected nodes. The same reference temperature locations on the 

adapter were used for comparison and model validation. Using the boundary conditions and 

modeling methods explained in the previous section and summarized in Figure 4.8, the 

preliminary results shown in Figure 4.10 were obtained. A temperature map of the complete 

bearing assembly for normal operation conditions, displayed in Figure 4.10, was obtained as a 

result of the thermal finite element analysis (FEA) conducted utilizing the newly developed FE 

model. Table 4.4 provides a comparison between the results of the simulation of Figure 4.10 and 

the experimental temperature data acquired through dynamic testing. The comparison indicates a 

maximum temperature difference of no more than 9.5% in the thermocouple location indicated 

on the adapter of Figure 4.9. In the bayonet locations, the average temperature difference was 

only about 2%. This small difference demonstrates the efficacy of the model, and validates all of 

the assumptions and boundary conditions that were used to devise this new FE model. Once it 

was determined that the results of the complete FE model developed for this study matched the 

experimental results acquired from reference [4], a second simulation scenario was modeled with 

the inclusion of the heat generation produced by the thermoplastic elastomer suspension pad. 
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Figure 4.9. AdapterPlus™ FE model with nodes of interest indicated. 
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Figure 4.10. Temperature distribution of AdapterPlus™ FE model with normal operation 

conditions and no heat generation (ambient temperature of 25°C or 77°F). 

Table 4.4. Comparison of experimental and FEA results. 

 

For the simulation presented in Figure 4.10, the suspension elastomer pad partially 

insulates the I-beam from the bearing assembly reducing its ability to act as a heat sink. Since 

Normal Operation Conditions 

Source of 

Results 

Thermocouple 

[°C / °F] 

Bayonet 

[°C / °F] 

Experimental  44.2 / 111 65.4 / 150 

FEA 48.4 / 119 64.1 / 147 

% Difference 9.5 2 
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heat tends to transfer through the path of least resistance, most of the heat will be conducted 

through the axle rather than the I-beam, which justifies the axle length chosen for this FE model. 

A temperature map of the AdapterPlus™ elastomer suspension pad was also obtained 

through FEA. Figure 4.11 and Figure 4.12 provide, respectively, the bottom and top surface 

temperature maps of the suspension pad during normal operation conditions. The figures 

demonstrate that most of the heat from the adapter is dissipated by convection along the sides of 

the adapter, while significantly less heat is dissipated by conduction through the central 

rectangular area on the bottom surface of the suspension pad. The latter becomes apparent when 

comparing the temperatures of the bottom and top surfaces of the elastomer suspension pad 

(refer to Figure 4.11 and Figure 4.12). It is evident that most of the heat is partially insulated 

from the I-beam and spacer plate. The temperature map of the thermoplastic elastomer 

suspension pad was obtained for normal operation conditions and was compared to that of 

previous studies [4]. The study concluded that the bottom surface of the suspension pad 

experiences the highest temperatures reaching about 51ºC (123.8ºF), which can be seen from 

Figure 4.11. 
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Figure 4.11. Bottom surface temperature distribution and maximum temperature of the 

suspension pad with normal operation conditions. 

 

Figure 4.12. Top surface temperature distribution of the suspension pad with normal operation 

conditions. 

 

4.3.3 FEA with Suspension Pad Heat Generation for Normal Operation Conditions 
 

Figure 4.13 presents the temperature map of the AdapterPlus™ FE model when a 

constant heat generation due to a loading frequency of 10 Hz is applied. When compared to the 

simulation results presented in Figure 4.10, the results in Figure 4.13 show almost no change in 

the temperature distribution of the bearing assembly, adapter, or suspension pad. Table 4.5 
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provides the temperature difference of the locations of interest (refer to Figure 4.9) between the 

two different model simulations. 

 

Figure 4.13. Temperature distribution of AdapterPlus™ FE model with an applied heat 

generation due to a frequency loading of 10 Hz and normal operation conditions (ambient 

temperature of 25°C or 77°F). 

 

Table 4.5. AdapterPlus™ FE model temperature comparison (no pad heat generation versus 10 

Hz pad heat generation). 
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Figure 4.14 and Figure 4.15 provide, respectively, the bottom and top surface temperature 

maps of the suspension pad during normal operation conditions with an applied heat generation 

due to a loading frequency of 10 Hz. Although the maximum pad temperature is nearly the same 

for the two simulations (i.e. with and without pad heat generation), the temperature distribution 

within the pad differs markedly. Comparing the two simulations, it can be observed that the 

maximum temperature at the bottom surface shifts from the center of the pad (Figure 4.11) to the 

pad interlocks (Figure 4.14). Moreover, the temperature of the top surface of the pad is warmer 

for the simulation with pad heat generation (Figure 4.15) compared to the simulation with no pad 

heat generation (Figure 4.12).  

 

Figure 4.14. Bottom surface temperature distribution and maximum temperature of the 

suspension pad with normal operation conditions and an applied constant heat generation due to 

a frequency loading of 10 Hz.  
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Figure 4.15. Top surface temperature distribution of the suspension pad with normal operation 

conditions and an applied constant heat generation due to a frequency loading of 10 Hz. 

 

Figure 4.16 gives the temperature map of the AdapterPlus™ FE model when a constant 

heat generation due to a loading frequency of 50 Hz is applied. The results of this simulation 

compared to those in Figure 4.10 and Figure 4.13 show that the higher applied pad heat 

generation does not significantly affect the temperature distribution of the bearing assembly or 

the adapter. However, the temperature distribution of the suspension pad is affected. Figure 4.17 

shows that the maximum temperature of the pad increases by 4°C (7.2°F), and the region of 

maximum temperature at the bottom surface of the pad shifts to the pad legs. Table 4.6 displays 

the temperature difference between the model with no applied heat generation in the suspension 

pad and the model with an applied constant heat generation due to a frequency loading of 50 Hz. 
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Figure 4.16. Temperature distribution of AdapterPlus™ FE model with an applied heat 

generation due to a frequency loading of 50 Hz and normal operation conditions (ambient 

temperature of 25°C or 77°F). 
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Figure 4.17. Bottom surface temperature distribution and maximum temperature of the 

suspension pad with normal operation conditions and an applied constant heat generation due to 

a frequency loading of 50 Hz. 

 

Table 4.6. AdapterPlus™ FE model temperature comparison (no pad heat generation versus 50 

Hz pad heat generation). 

 

4.3.4 FEA Modeling with Suspension Pad Heat Generation for Abnormal Operation 

Conditions 
 

Figure 4.18 presents the temperature distribution map of the AdapterPlus™ FE model 

with abnormal operation conditions and no applied pad heat generation. The figure shows a 

significantly higher overall temperature distribution for the system, which is mainly due to the 

increased roller heat flux and ambient temperature. Figure 4.19 and Figure 4.20 provide the 

temperature distribution of the models with applied pad heat generation of 10 and 50 Hz, 

respectively. Interestingly, the temperature distribution results for the models with applied heat 

generation due to frequency loadings of 10 and 50 Hz do not exhibit a significant increase in 
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temperature at the locations of interest compared to the model with no applied heat generation 

presented in Figure 4.10, as summarized in Table 4.7. 

 

Figure 4.18. Temperature distribution of AdapterPlus™ FE model with abnormal operation 

conditions and no applied pad heat generation (ambient temperature of 45°C or 113°F). 
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Figure 4.19. Temperature distribution of AdapterPlus™ FE model with an applied heat 

generation due to a frequency loading of 10 Hz and abnormal operation conditions (ambient 

temperature of 45°C or 113°F). 
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Figure 4.20. Temperature distribution of AdapterPlus™ FE model with an applied heat 

generation due to a frequency loading of 50 Hz and abnormal operation conditions (ambient 

temperature of 45°C or 113°F). 

 

Table 4.7. AdapterPlus™ FE model temperature comparisons. 

 
 

Figure 4.21, Figure 4.22, and Figure 4.23 display the abnormal operation condition 

temperature distribution along with the maximum surface temperature of the suspension pad for 

the model with no heat generation applied to the pad, the model with an applied heat generation 
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due to a frequency loading of 10 Hz, and the model with an applied heat generation due to a 

frequency loading of 50 Hz, respectively. Again, the temperature maps clearly demonstrate the 

shift in the location of maximum temperature within the bottom surface of the suspension pad, 

described earlier. Table 4.8 provides a summary of the temperatures of the locations of interest 

for each of the models. 

 

Figure 4.21. Bottom surface and maximum temperature of the suspension pad with abnormal 

operation conditions and no applied pad heat generation. 
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Figure 4.22. Bottom surface and maximum temperature of the suspension pad for abnormal 

operation conditions with applied heat generation due to a frequency loading of 10 Hz. 

 

 

Figure 4.23. Bottom surface and maximum temperature of the suspension pad for abnormal 

operation conditions with applied heat generation due to a frequency loading of 50 Hz. 
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Table 4.8. AdapterPlus™ FE model temperature comparisons. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



59 

 

CHAPTER V 

 

 

CONCLUSIONS  

 

 

The commonly used AdapterPlus™ thermoplastic elastomer pad does generate heat 

under cyclic loading. The peak frequencies for heat generation are at the high end of those 

commonly seen in rail service and the dissipation efficiency is not particularly high. The 

commonly used thermoplastic elastomer pad presents an elastically dominant behavior (i.e. 

elastic modulus is greater than loss modulus). The loss modulus or energy dissipating behavior 

can be treated as independent of strain level and DMA measurement of effects of temperature 

and frequency are adequate for purposes of system modeling.  

An experimentally validated AdapterPlus™ FE model was devised to investigate the 

effect of elastomer pad hysteresis heating on the railroad bearing assembly operating 

temperature. Different internal heating scenarios were simulated with the purpose of obtaining 

the bearing suspension element and bearing assembly temperature distribution maps during 

normal and abnormal operation conditions along with no pad heat generation and applied heat 

generation in the thermoplastic elastomer suspension element. The combination of temperature 

and frequency dependent material properties with FEA modeling permits the transient modeling 

and determination of the equilibrium temperature of an elastomeric steering pad. Results indicate 

that the combination of ambient temperature, bearing temperature, and frequency of loading can 

produce pad temperature increases above ambient of up to 125ºC (225ºF) if no thermal runaway 

is available for the pad to release the heat. The results also show that in normal and abnormal 
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operation conditions, the internal heat generation in the thermoplastic elastomer suspension 

element has limited impact on the thermal behavior of the railroad bearing assembly as long as 

the pad is able to dissipate heat through the side frame of the railcar. The AdapterPlus™ FE 

model also shows that with normal operation conditions, the temperature distribution of the 

suspension pad remains relatively the same when heat generation is applied. However, the 

constant heat generation due to a frequency loading of 50 Hz does cause the maximum 

temperature of the pad to increase by about 4°C (7.2ºF). Although this minor increase in 

temperature is not significant to the temperature distribution of the suspension pad nor does it 

significantly impact the thermal management or temperature distribution of the bearing 

assembly, the results indicate that if a significant amount of energy is generated by the 

suspension pad with no thermal runway, it can highly impact the structural integrity of the 

suspension pad. 

Hysteresis heating is a phenomenon that occurs in service, and may have a significant 

impact on the structural integrity of the thermoplastic elastomer suspension pad, which can 

negatively affect the thermal management of the railroad bearing. With proper convection and 

normal bearing operation conditions, the heat generation will not have a significant effect. 

However, when a bearing becomes defective coupled with rail-track conditions that produce high 

frequency loading, and the ambient temperature is high, the thermoplastic elastomer suspension 

pad may reach temperatures higher than the softening temperature (i.e. 120ºC or 248ºF). The 

problem is further compounded by the reality that load and, thus, strain are not uniformly 

distributed on the pad. If softening occurs in the steering pad, areas under higher stress may 

deform significantly and shift the applied load to other areas of the steering pad, which may 

compromise the overall structural integrity. The latter may lead to undesired consequences and 
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catastrophic failure of the thermoplastic elastomer suspension element, which in turn, may hasten 

the catastrophic failure of the railroad bearing, leading to a costly train derailment.  

Finally, this work provides a deeper understanding about the limited impact of the 

hysteresis heating of the railroad bearing thermoplastic elastomer suspension element on the 

thermal behavior of the railroad bearing assembly (under assumed conditions). This is important 

for proper sensor selection and placement within the bearing adapter in order to assure the 

efficiency of the continuous health monitoring of the railroad bearing. 
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