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Abstract

Given the pivotal role of the railroad industry in modern transportation and the

potential risks associated with track malfunctions, the inspection and maintenance

of railroad tracks emerges as a critical concern. While existing solutions excel in per-

forming accurate measurements and detection, they often rely on large, expensive,

and time-consuming platforms for inspections. This project, however, seeks to solve

the same problem with the use of an unmanned aerial vehicle (UAV), significantly

reducing time and cost while maintaining detection capabilities. In particular, this

solution is ideal for large-scale, high-level inspections following major events such as

floods [6], hurricanes [7] or earthquakes [29]. In such cases, UAVs offer a more efficient

solution. Moreover, UAVs can still fulfill many additional inspection needs achieved

by current platforms. Hence, this project focuses on developing, implementing, and

testing a fully functional, vision-based, autonomous track-following system for UAVs.

The creation of a cutting-edge track detection algorithm, TrackNet, is used to iden-

tify and interpret railroad tracks from the video stream of an onboard camera. This

system is then seamlessly integrated with a customized DJI Matrice 100 UAV to de-

tect and follow railroads in real-time. Notably, this system operates independently

of external sensors such as GPS, thanks to its utilization of advanced computer vi-

sion techniques. Two distinct approaches utilizing differing camera configurations

were developed, tested, and compared. Both systems were found to successfully de-

tect and follow railroad tracks 300 meters in length containing curved and straight

sections. The first approach required a forward-facing camera and detected the van-

ishing point of the track as a control reference. The second approach required a
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downward-facing camera and detected the center line of the track to be used as a

control reference. These two systems were developed and improved to achieve a av-

erage track position errors of 1.9766 meters and 2.0342 meters for the forward-facing

approach and the downward-facing approach respectively. Utilizing this system, a

UAV can autonomously detect and follow railroad tracks, establishing the fundamen-

tal framework upon which various inspection algorithms can be developed to suit

their specific applications.

iv



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Chapter 2 Review of Literature . . . . . . . . . . . . . . . . . . . 5

2.1 Track Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Track Following . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Chapter 3 Manuscript 1, "UAV-Based Railroad Line Detection" 24

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Chapter 4 Track Following and UAV Implementation . . . . . . 49

v



4.1 Track Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Track Following: Forward-Facing Approach . . . . . . . . . . . . . . . 53

4.3 Track Following: Downward-Facing Approach . . . . . . . . . . . . . 56

4.4 Drone Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Chapter 5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1 Forward-Facing Experimentation . . . . . . . . . . . . . . . . . . . . 64

5.2 Downward-Facing Experimentation . . . . . . . . . . . . . . . . . . . 73

Chapter 6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

vi



List of Tables

Table 5.1 Forward-Facing Experiment 1: TrackNet Errors . . . . . . . . . . . 66

Table 5.2 Forward-Facing Experiment 2: TrackNet Errors . . . . . . . . . . . 68

Table 5.3 Forward-Facing Experiment 3: Track Distance and TrackNet Errors 70

Table 5.4 Downward-Facing Experiment 1: TrackNet Errors . . . . . . . . . 74

Table 5.5 Downward-Facing Experiment 2: Track Distance and TrackNet
Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Table 5.6 Downward-Facing Experiment 3: Track Distance and TrackNet
Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Table 6.1 Forward-Facing Approach and Downward-Facing Approach Com-
parison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

vii



List of Figures

Figure 2.1 Example of preprocessing method for region detection. The
researchers in [24] divide the image into ’superpixels’. . . . . . . . 7

Figure 2.2 Region detection through HSV value isolation [22] . . . . . . . . . 8

Figure 2.3 Sever examples of RailNet system from [26] conducting region
detection through track segmentation. . . . . . . . . . . . . . . . 9

Figure 2.4 Example comparison of differing edge detection techniques from [4]. 12

Figure 2.5 Example of unique rail detection method from [18] that utilizes
a histogram of oriented gradients followed by a region growing
algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Figure 2.6 Outline of TrackNet process. Original image on left, detected
track region in center, and rail detection on right. [13] . . . . . . 16

Figure 2.7 Diagram describing vanishing point technique from [17]. Shows
the method of moving the center of the image (CI) to the van-
ishing point (VP) and how this will allow the UAV to follow
the rail. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 2.8 Example of detected vanishing point (red dot) in line with the
midpoint of the screen (yellow line). . . . . . . . . . . . . . . . . . 18

Figure 2.9 Example of vanishing point approach being implemented in a
simulated environment in [17]. . . . . . . . . . . . . . . . . . . . . 19

Figure 2.10 Example of trajectory detection based on region detection from
[23]. Here the region of a road is masked, skeletonized and
approximated as a trajectory line. . . . . . . . . . . . . . . . . . . 21

Figure 3.1 Region detection through HSV value isolation [22] . . . . . . . . . 28

Figure 3.2 Comparison of edge detection algorithms [4] . . . . . . . . . . . . 29

Figure 3.3 Rail detection using HOG and region-growing algorithm [18] . . . 31

viii



Figure 3.4 Compound region-line detection [23] . . . . . . . . . . . . . . . . 32

Figure 3.5 Step 1 of TrackNet: track region detection using trained Unet
network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 3.6 Outline of Line Selection Process . . . . . . . . . . . . . . . . . . 39

Figure 3.7 Step 2 of TrackNet: rail detection results using edge and line
detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 3.8 Example of trajectory calculation (top) and vanishing point cal-
culation (bottom) . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 3.9 Graph of Unet training accuracy (top) and loss (bottom) . . . . . 44

Figure 3.10 Examples of track region detection using Unet . . . . . . . . . . . 45

Figure 3.11 Edge and line detection comparison graphs . . . . . . . . . . . . . 47

Figure 4.1 Example of vanishing point detection. The white line is the
center column of the frame. The red and green lines are the
rail lines. The green dot is the vanishing point. . . . . . . . . . . 51

Figure 4.2 Example of trajectory detection for downward-facing camera
approach. The green and red lines are the detected rail lines.
The vertical white line is the center column of the frame. The
angled white line is the calculated trajectory. The black points
are the end points of the trajectory. The green point is the
closest point of the trajectory. . . . . . . . . . . . . . . . . . . . . 52

Figure 4.3 DJI Matrice 100 equipped with Intel NUC 11, Intel RealSense
D435 camera, and DJI Guidance system. . . . . . . . . . . . . . . 60

Figure 5.1 This is an image of the railroad section used for experiments
near the University of South Carolina’s Athetic Village. . . . . . . 62

Figure 5.2 This is is an image of the railroad section used for experiments
at the South Carolina Railroad Museum in Winnsboro, South
Carolina. Two sections of this track were used and are labeled
in the figure as ’short section’ and ’long section’. . . . . . . . . . . 63

ix



Figure 5.3 Example of track following test from the first experiment with
forward-facing camera configuration. Graph shows normalized
vanishing point error (solid red line) and related yaw command
effort (dotted blue line) across time. . . . . . . . . . . . . . . . . . 65

Figure 5.4 Example of track following test from the second experiment
with forward-facing camera configuration. Graph shows nor-
malized vanishing point error (solid red line) and related yaw
command effort (dotted blue line) across time. . . . . . . . . . . . 67

Figure 5.5 Visual explanation of the issue in vanishing point control using
only the yaw channel. Comparison of vanishing point error
across time (bottom) and track position error along length of
track (Top). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 5.6 Improved forward-facing approach utilizing roll controls in ad-
dition to yaw controls. Flight path seen in dotted blue line and
GPS ground truth seen in solid red line. . . . . . . . . . . . . . . 71

Figure 5.7 Whisker plot of the track distance values of all nine trials in the
third forward-facing experiment. Each whisker plot represents
the median value as the red line as the center of the box, the
75th percentile as the top of the box, the 25th percentile as
the bottom of the box, the maximum and minimum non-outlier
values as the end points of the lines, and red dots as the outliers.
The horizontal line spanning the whole chart marks the overall
average distance value. . . . . . . . . . . . . . . . . . . . . . . . . 72

Figure 5.8 Positions of all trials (dotted blue lines) in second downward-
facing approach experiment are plotted alongside GPS ground
truth track reference (solid red line). . . . . . . . . . . . . . . . . 75

Figure 5.9 Positions of all trials (dotted blue lines) in third downward-
facing approach experiment are plotted alongside GPS ground
truth track reference (solid red line). . . . . . . . . . . . . . . . . 77

Figure 5.10 Whisker plot of the track distance values of all eight trials in
the third downward-facing experiment. Each whisker plot rep-
resents the median value as the red line as the center of the box,
the 75th percentile as the top of the box, the 25th percentile as
the bottom of the box, the maximum and minimum non-outlier
values as the end points of the lines, and red dots as the out-
liers. The horizontal line spanning the whole chart marks the
overall average distance value. . . . . . . . . . . . . . . . . . . . . 78

x



Chapter 1

Introduction

The railroad industry plays a pivotal role in the global transportation network, fa-

cilitating the movement of cargo, passengers, and supporting local economies [5] [1].

Despite their significance, railroads can pose substantial risks if not adequately main-

tained [14]. This maintenance must address two types of track deterioration: the

gradual wear from continuous usage and major obstructions resulting from specific

incidents [6] [7] [29]. Current methods of track maintenance primarily rely on man-

ual methods or automated track geometry vehicles. Both of these methods have

advantages, but are also lacking in several ways. Traditionally, railroad tracks have

been inspected manually, by inspectors walking along the tracks or riding some type

of high-rail vehicle ([19]). Although these methods are very common, they are not

completely reliable, are labor-intensive, are time-consuming, and subject inspectors

to hazardous environments. Additionally, even when utilizing high-rail vehicles, the

maximum inspection speed is around 5 km/h ([19]). For this reason, it is widely

accepted that a superior method of track inspection is the utilization of automated

track inspection vehicles to measure track and rail geometry. These platforms utilize

a host of non-destructive evaluation (NDE) technologies to identify rail surface and

track geometry defects ([19]). The primary limitations of such techniques, however,

are their speed and their cost. The current systems are capable of performing inspec-

tion at around 15 km/h, but also require significant time for deployment and cause

track shutdowns for inspection ([19]). Additionally, the average cost of a single track

inspection vehicle is around $8.1 million to purchase or $2.2 million annually for a
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service contract ([19]). Additionally, these platforms are effective in detecting small

defects caused by long-term wear, but they are less efficient at addressing the second

type of deterioration induced by major destructive events. The existing technology,

due to its time requirements, unnecessary precision, and reliance on the track’s vi-

ability, is ill-suited to meet the demands of such scenarios. An innovative solution

proposed to address this challenge involves the utilization of Unmanned Aerial Ve-

hicles (UAVs) for track inspection [15]. Although current systems are capable of

much higher detail of inspection when compared to UAVs, any reduction in their

need would allow for significant savings. UAVs are capable of performing many of the

same types of inspection as these inspection vehicles at a fraction of the cost (around

$5,000) and at least the same speed (at least 14.4 km/h) without the need for track

shutdown or lengthy deployment time. UAVs offer the capability to traverse large

sections of track, identifying major obstructions at a reduced cost. Moreover, their

airborne nature allows them to conduct inspections without being hindered by the

obstacles themselves.

The approach to UAV-based track inspection outlined in this paper consists of

track detection and track following. In Chapter 2 each of these processes are described

and the current literature is evaluated. The system developed, utilizes only an on-

board camera as the primary sensing apparatus for high-level flight controls enabling

its operation in GPS denied environments such as tunnels or remote tracks. Because

of this, the track detection system needed to rely solely on computer vision and asso-

ciated techniques. Such approaches found in the literature were split into track region

detection, track rail detection, and compound region-rail detection. Depending on

the type of track detection used determines the type of track following approaches

required. These methods are explored and evaluated, informing the proceeding de-

velopment. Chapter 3 consists of the manuscript of a publication produced outlining

the track detection system, TrackNet, utilized onboard the final UAV [13]. TrackNet
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was informed by the literature and developed a compound region-rail approach to

track detection where first the track region is located, then the rails are identified

within this region. The last stage of TrackNet then is to interpret the detected rails.

The form of such interpretation is dependant upon the physical position of the cam-

era onboard the UAV and therefore a division in approach is taken. This division

is further explored in the first sections of Chapter 4, namely outlining an approach

based on a forward-facing camera and one based on a downward-facing camera. Ad-

ditionally, this chapter continues by explaining the usage of this interpreted data in

high-level flight controls and how these interact with the DJI Matrice 100’s built in

controls. Finally, these two approaches underwent a series of tests and revisions that

are explored in Chapter 5. The results of these tests revealed the differences in each

of the two approaches and these are discussed in Chapter 6 along with the general

findings of these experiments.

1.1 Contributions

This thesis proposes and demonstrates a novel method for railroad track inspection

utilizing a UAV system. The goal of this system is to provide the foundational track

detection and following techniques that can be utilized for any number of specific

inspection applications. Specifically, the contributions of this work are:

• The development of a track detection system (TrackNet) that is a compound

region-rail approach utilizing state-of-the-art techniques for both region detec-

tion and rail detection in a way not yet seen in the literature.

• The invention of a novel line chaining method for rail identification as the final

step in the TrackNet system.

• The implementation of a trajectory approach to track interpretation for a

downward-facing camera angle, a method sparsely present in the literature.
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• The first implementation of a track following system based on the downward-

facing camera angle.

• The first series of thorough experiments validating the implementations of two

track following systems, one based on a forward-facing camera orientation and

the other a downward-facing orientation.

• A comparison of the two track following systems (forward-facing and downward-

facing) and an outline of the strengths and weaknesses of each.

The track detection portion of this work has been published and presented at the

2024 Joint Rail Conference and the remainder is currently being submitted to be

published in a journal.
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Chapter 2

Review of Literature

This section will outline the techniques and approaches explored previously in liter-

ature related to autonomous track following. The review will follow a similar struc-

ture to that of the developed system, namely track detection then track following.

Although this general approach is somewhat present in the literature, a fully au-

tonomous track following UAV system has yet to be realized. The current state of

the literature mostly falls into one of two cases. On the one hand, many researchers

have begun development on effective and sophisticated track detection techniques uti-

lizing the state-of-the-art computer vision algorithms, but these techniques are only

tested in theory or on image datasets, not implemented into any real UAV systems

[18] [24] [3] [23] [16] [22] [4] [12] [2] [26] [8] [27]. This is the state of the majority

of the literature, however some attempts have been made at UAV implementations

of such techniques. Here though there is a clear reduction in sophistication of the

computer vision techniques used and often also a simplified testing situation such as

simulation or mock-up sections of track [17] [11]. The state of this literature shows a

clear gap between the superior techniques developed for track following and an actual

implementation of these techniques onboard a UAV. The goal of the final system is

to fill this gap by identifying robust track detection algorithms, implementing them

within a UAV control system, and testing their efficacy live in the field.
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2.1 Track Detection

The system presented in this paper faces a significant constraint: it relies solely on

an onboard camera system as the sensor for calculating high-level controls. Conse-

quently, the system must process video input and generate commands to guide the

UAV along the track. To achieve this, determining the UAV’s position relative to the

track is imperative, necessitating the identification of the track within each frame of

the video, this process is called track detection. In the literature, this task is tackled

through various approaches, broadly categorized into three groups: region detection,

rail detection, and compound region-rail detection. Each approach offers distinct

advantages and drawbacks.

2.1.1 Region Detection

The first approach, region detection, operates on the assumption that the area sur-

rounding the tracks exhibits consistent visual features, including common elements

such as rails, rail ties, gravel, concrete, etc. Although the methods for region detec-

tion vary significantly in complexity, there tends to be some level of processing before

and after the primary method of detection.

The processing performed before detection, preprocessings, typically consists of

simple alteration of the image properties such as a conversion to HSV (hue, satura-

tion, and value) space ([22]), altering the brightness, thresholding, or blurring. The

actual techniques performed in this stage vary from case to case as they are highly

dependent on the processes that follow. For instance, [24] utilizes a simple linear

iterative clustering algorithm to segment the image into "superpixels". This is ben-

eficial in increasing the speed and accuracy of the proposed classification algorithm

that follows and an example of this can be seen in Fig. 2.1.

After this initial preparation has been done the main detection algorithm begins.

A simple and explanatory example of a region detection process is in [22]. Here, the
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Figure 2.1 Example of preprocessing method for region detection. The re-
searchers in [24] divide the image into ’superpixels’.

researchers identify a particular HSV value as being common to railroad regions in

the dataset they were using. This can be seen in Fig. 2.2 as the region of consistent

color around the tracks. The researchers then simply isolate the region of the image

that contains values within this range and assume that is the track region. Simple

methods such as this are highly efficient, but sacrifice robustness as they often rely on

features that are not guaranteed to be consistent for all tracks. In the example of [22],

it is possible that the specific HSV value identified is particular to the environment

and type of track in their dataset. If applied to a broader case, accuracy in detection

would be likely to decrease. Other approaches attempt to increase robustness utilizing

machine learning algorithms to find and extract deep features in images of railroad

tracks. In [24] a support vector machine (SVM) is developed to classify each super-

pixel in the image as either being part of the railroad or not. This method utilized

a TF-IDF like transform to improve the discriminative power of feature recognition.

The final classified superpixels are highlighted and seen in Fig. 2.1.

Another approach to identifying the railroad region is through segmentation algo-

rithms. Similar methods are often used in the field of object identification ([2], [27]),
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Figure 2.2 Region detection through HSV value isolation [22]

but here they typically utilize some type of machine learning to produce a silhouette-

like outline (mask) of the track region. In [26] a semantic segmentation network is

developed and called RailNet. An example of the masks produced using this method

can be seen in Fig. 2.3. This algorithm uses ResNet50 as the backbone for feature

extraction and a fully convolutional network for segmentation. The network is trained

on 2500 images and shown to demonstrate superior accuracy for this application than
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other, common segmentation networks such as Mask-RCNN, SegNet, DeconvNet, and

FCN. These types of systems have a significantly higher accuracy and robustness due

to the utilization of machine learning, but also require more computational power

that may be difficult to implement onboard a UAV.

Figure 2.3 Sever examples of RailNet system from [26] con-
ducting region detection through track segmentation.

The framework of region detection has advantages because it isolates the entire
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region of the track as opposed to simply a feature of the track. This inclusion of

the full track area preserves extra, useful information that could be utilized in later

processes. For instance, it designates a defined portion of the image where the search

for obstacles can take place. This method for detecting tracks is therefore more

relevant as any number of inspection algorithms can be performed once the full area

of track has been identified.

2.1.2 Rail Detection

The second computer vision method of detecting rails is similar to the first in that it

searches the image for a specific feature common to railways. Instead of searching for

the entire region of the track, however, this method chooses to isolate one feature of

the track region, namely the rails. Rails are often chosen as the feature to identify due

to the long, harsh lines they create visually. These lines can easily be distinguished

from the area surrounding them, allowing the position of the rails to be determined.

Also, the location of the rails provides the most useful information of any feature in

the track region. They are an obvious identifier of the direction the track is traveling.

There are a variety of approaches that have been explored in attempt of detecting

these lines, however, one methodology surpasses the other in terms of efficacy and

simplicity. This method can be seen in [16], [2], [11], [4] and has two basic steps: edge

detection and line detection.

Edge detection is the process by which sharp changes in intensity or color (edges)

are isolated within an image. Edge detection can be achieved through a variety of

methods, but most include applying a convolutional kernel to the image. This field

has been well studied and the most common edge detection algorithms that have been

applied are the Laplacian method, the Canny method, and the Sobel method [16],

[2], [17][11], [4]. Different researchers have determined that some of these methods

are better than others for the railroad application, however, their conclusions tend to
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differ. In [4] a comparison of each of these methods was performed and the researchers

concluded, "after analysis of the different filters, it can be concluded that the most

suitable edge detection algorithm for railway detection is the Sobel filter". Each of

the methods in this comparison can be seen in Fig. 2.4 and it seems clear why they

may have come to such a conclusion. On the other hand, [16] claims that "Canny

method is less susceptible to noise and for this reason it is preferred" when comparing

the three methods. Finally, the same comparison determined Laplace to be the better

method in [17] stating, "the results show that the Laplacian filter performs the best

noise filtering and edge detection compared to the Sobel and the Canny methods".

These vastly varying conclusions in the literature seem to suggest that each method

is capable of supplying effective edge detection and the nuances of the solution’s ap-

proach are important to consider when deciding which method to utilize. No matter

the method that is used, it is almost never utilized in a vacuum. Image preparation is

often conducted to improve the output of the edge detection algorithm enhancing the

results of the edges detected. Some such preparation procedures include blurring ([2],

[17], [4]), thinning ([17], [4]), closing ([11]), opening, erosion, dilation, and threshold-

ing ([17], [4]). These techniques are adjusted to best suit each specific approach and

are performed before or after the edge detection algorithm.

After the edges have been detected, the algorithm must determine which edges

are part of the rails and which are not. Because the rails are distinguished by being

long, uninterrupted lines, line detection is a natural candidate for this step. There

are a variety of methods utilized to achieve line detection, but the algorithm used

most in the literature is some variety of the Hough Transform, most typically the

Probabilistic Hough Transform.

Similarly to the edge detection algorithms, there are many different means of

processing the edge-identified image, prior to the line detection algorithm, improv-

ing results. These techniques are often the same as in edge detection section, i.e.,
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Figure 2.4 Example comparison of differing edge detection techniques from [4].

blurring, thinning, thresholding etc. For instance, in [17] after edge detection is per-

formed, a thresholding process is used to "sharpen" and "enhance the intensity of the

strong edges" before implementing a Probabilistic Hough Transform. Another typi-

cal processing technique occurs after lines have been identified and seeks to filter the

lines to find those which are most likely to be rails. After receiving the lines identified

by the transform, the researchers in [17] filter out any lines that are approximately

horizontal or vertical. In [16] a line processing system is developed that is comprised

of two clustering blocks and one scoring block. This system categorizes the identified

lines based on their ρ and θ values into clusters and then calculates a score of how

likely that cluster is to be a rail. Several other slight variations on this process are

seen throughout the literature. Although this methodology of edge detection and

line detection is most prevalent, there are outlier examples that locate the rails in

the image via other techniques. One such method is also seen in [4], where detected

lines are found using a Gabor filter. Another unique rail detection method can be

seen in [18], where a Histogram of Oriented Gradients (HOG) was used to analyze

the image and a region growing algorithm is developed to detect the rails based on
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this information. The outcome of this process can be seen in Fig. 2.5. Finally, there

are a few instances of neural networks being utilized to detect or segment the rail

regions themselves. This process is similar to some utilized in region detection as

mentioned above, but instead of training a system to identify the entire track region,

it is trained to identify only the rails themselves [27] and [8].

Figure 2.5 Example of unique rail detection method from [18] that utilizes a
histogram of oriented gradients followed by a region growing algorithm.

The process of detecting a railroad by detecting the rails is possibly the most

prevalent in the literature and this is for good reason. It isolates the most consis-

tent and identifiable visual feature of a railroad which allows for a highly robust

system. Also, the rails provide the most useful information for the next step in the

process, namely guiding the UAV to follow the rails. Finally, most of the proposed

line detection methods are only utilizing basic computer vision techniques allowing
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the computations to be relatively lightweight. This is quite important if processing is

to be done onboard the UAV. There are, however, some drawbacks to this technique.

Firstly, a problem arises due to the fact that this method primarily relies on the rails

being the only long, straight lines in the image. This is true for most cases when the

railroad is in the wilderness, but if the railroad passes into an urban environment with

many more straight lines the system can begin to make false identifications. Also,

the simplicity of these techniques can be their downfall. Assuming a line detection

algorithm accurately identifies rail lines in an image, its output will be a series of

endpoints correlating to the identified lines. This output is the most useful infor-

mation for following a railroad, but it is not the only useful information that can

be attained. In contrast, a region detection approach retains all of the pixels in the

full track region. This provides information on the railroad ties, the track area, and

often the space immediately surrounding the track. This information is less useful

for the purpose of navigation, but it can be used for other steps in the process such

as obstacle detection, rail condition analysis, defect detection, etc.

2.1.3 Compound Region-Rail Detection

Recognizing the strengths of both region detection and rail detection, there are a

couple examples of researchers advocating for a combined method that first applies

region detection to locate the general track region accurately and subsequently em-

ploys rail detection within this region for finer localization. For instance, in [22] a

simple HSV (Hue, Saturation, and Value) color extraction is performed, as explained

above, to isolate the track region. After this is identified, line detection can be per-

formed only in the track region to identify the rails themselves, isolating the most

useful information for navigation. To achieve this the researchers use canny edge

detection followed by a nearest neighbor algorithm for line detection. The greatest

benefit of this compound method is in mitigating the major issue with the line de-
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tection method. By first isolating the region of the track, one drastically increases

the likelihood of the rails being the only long, connected lines. This decreases the

possibility of falsely identifying lines from buildings or power lines because only the

region in which the track is located is searched. This compound method also allows

the excess information obtained by region detection to be retained in the system.

The system can then utilize this information later to perform various means of track

inspection.

The researchers in [23] have also developed a system that utilizes a compound

method of region detection and line detection. To detect the track region the re-

searchers develop a rail tie color matching algorithm. For this, a sample rail tie

image is used as the ground truth. The image is then scanned to identify regions

with similar pixel values to the ground truth, identifying all of the rail ties. This

entire detected region is labeled as the track. The second stage of the system is to

detect the rail lines within the track region. To accomplish this, the researches uti-

lize the Hough transform line detection method. As is suggested above, this method

provides the information required to develop a control system for following the track

and retains the region information for further use.

This compound approach seems the most promising in a robust track detection

algorithm, particularly when considering the broader goal of autonomous track in-

spection. Unfortunately, however, this approach is scarcely present in the literature,

being utilized in only the two examples above [22] [23]. Even in these implemen-

tations, the processes utilized for region detection do not represent the most robust

options as outlined above. This could be due to the increased computational load for

techniques such as segmentation networks, but recent developments in such networks

allow for this possibility [20]. For this reason the system outlined in Chapter 3 uti-

lizes a compound region-rail detection approach which can produce sucessful track

detection such as in Fig. 2.6.

15



Figure 2.6 Outline of TrackNet process. Original image on left,
detected track region in center, and rail detection on right. [13]

2.2 Track Following

Once the track has been identified, this information must be translated into a form

useful for UAV controls. Fundamentally, four quantities are required for this: the

current state of the UAV, the desired state of the UAV, the difference (or error)

between these two states, and the change required to decrease this error. In the

literature, there have been essentially two methods of quantifying this information,

here called vanishing point detection and trajectory detection.

2.2.1 Vanishing Point Detection

Vanishing point detection assumes the input camera is facing forward, along the

direction of the track. From this perspective, the rail lines will visually converge as

two lines approaching each other. If these lines are extended to intersect, the point

of intersection is called the vanishing point, which is assumed to approximate the

direction that the UAV should be heading, thus representing the desired state of the

UAV. It is then assumed that the center column of the camera’s frame indicates the

current heading of the UAV, providing the current state. The horizontal distance
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between this and the vanishing point represents the state error. A helpful figure for

visualizing this technique is in [17] and can be seen in Fig. 2.7. Finally, by determining

which side of the frame’s center column the vanishing point is located, the change in

yaw that the UAV must undergo to decrease this error is easily identified. A system

that controls this error to zero while the UAV is maintaining a constant forward

velocity should guide the UAV to follow the track.

Figure 2.7 Diagram describing vanishing point technique from
[17]. Shows the method of moving the center of the image (CI)
to the vanishing point (VP) and how this will allow the UAV to
follow the rail.

For example, in [9], the rail lines are detected using first canny edge detection and

then the Hough transform. The researchers then argue that "the lines obtained as

a result of the Hough transformation applied on the rails image will intersect at the

vanishing point" [9]. A representation of this result from the UAV’s perspective can

be seen in Fig. 2.8. These researchers however encounter a common problem with
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this approach, namely that if several predictions of the rail lines are made, a decision

arises in determining which intersection of which lines is the true vanishing point.

These researchers choose to solve this problem by collecting all of the intersection

points and utilize the least squares solution to determine choose a vanishing point.

This method proves successful in their testing on straight sections of track. The

outcome is however less certain of accuracy when encountering curved sections of

track as the lines will point in different direction depending on how far along the

curve they are located. This issue is faced in Chapter 4 and another solution is

justified and implemented.

Figure 2.8 Example of detected vanishing point (red dot) in
line with the midpoint of the screen (yellow line).

The researchers in [17] also implement a similar vanishing point detection sys-

tem. Again, a line detection system is presented utilizing Laplace edge detection and

Hough line detection. From these lines the researches suppose "the most dense area

of crossing points of these lines will be the vanishing point of the tracks" [17]. To

track the vanishing point, a Kalman estimator is developed using a simplified con-

stant velocity, random walk model to describe the behavior of the vanishing point.

This allows the system to maintain the best estimate of the vanishing point as well
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as predict past, present, and future states.

Now that the vanishing point has been detected, all required quantities are avail-

able and a control system must be developed to "maintain at zero the horizontal

distance between the vanishing point and the center of the image" [17]. This hori-

zontal distance is therefore considered to be the state error and the control system

seeks to keep this at zero by changing the direction of the UAV. In the literature

the associated controls tend to assume a constant forward velocity and gives control

effort in the yaw or roll channels. Both [17] and [9] utilize a PID controller to control

the yaw channel. An example of this implementation is in [17] where the system is

tested in a simulated environment as seen in Fig. 2.9.

Figure 2.9 Example of vanishing point approach being imple-
mented in a simulated environment in [17].

The vanishing point approach is a straightforward and effective method. It uti-

lizes the nature of railroad lines and perspective to quickly and easily estimate the

direction that the track is headed. It does not require any complex calculation or

external information besides the rail lines calculated previously. Also, this approach

is directly linked to line estimation, so if further development is done to account for
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track intersections, for instance, the entirety of the adjustment can be performed in

rail detection and will not cause any issues in the controls themselves. Due to per-

spective this approach does, however, require the usage of a forward facing camera

for a vanishing point to visually exist. Altogether, the vanishing point approach to

track following is a highly efficient and simple method, but it lacks in precision and

robustness.

2.2.2 Trajectory Detection

The other interpretation technique seen in the literature is trajectory detection. In

contrast to the vanishing point approach, this technique assumes a downward-facing

camera and aims to keep the UAV directly above the tracks, while maintaining a

constant forward velocity. To achieve this, the center line of the track, referred to

here as the trajectory, is identified and considered the desired state of the UAV. An

assumption is then made that the center point of the video frame can be estimated

as the UAV’s position projected onto the plane of the track. That point can then be

designated as the UAV’s current state, with its distance from the trajectory repre-

senting the state error. A control system can then be developed to turn the UAV in

a way that decreases this error.

The calculation of railroad trajectory from camera input is essentially the process

of identifying a curve that follows the center of the railroad track. This can be done

based on a track region detection or a rail line detection. The researchers in [23]

provide an example of both of these options. First, they seek to identify and follow

roads by detecting the road region and calculating a trajectory from that. Once the

region has been identified, they arrive at the same state that a track region detection

system would find itself. The researchers then skeletonize the region’s segmentation

mask and apply a polynomial fitting algorithm to identify the remaining center line

of the region. This process is shown to be effective for road following and an example
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of this process is seen in Fig. 2.10. Additionally in [23], the researchers calculates

trajectory based on rail line detection. This approach is much simpler as the mid-

line between the two rail lines is assumed to be the center line of the track, or the

trajectory. The data utilized in this method, however, seems to only contain straight

sections of track where both rails are clearly visible. The simplicity of this trajectory

calculation may encounter issues if any of these conditions were not met. Such issues

are addressed in the system developed in Chapter 4.

Figure 2.10 Example of trajectory detection based on region detection from [23].
Here the region of a road is masked, skeletonized and approximated as a trajectory
line.

Once the desired trajectory has been identified, the relative location of the drone

must be estimated. In [23] the same assumption is made as above, so the current

state of the UAV is estimated as the center point of the frame. The distance between

the center of the image and the desired trajectory is then considered to be the state

error and can be controlled to be zero.

Another method that utilizes line detection to calculate drone trajectory is in [3].

Although this system is seeking to follow water channels instead of railroads the same

basic principle is present. Once lines are detected, the problem becomes the same as

with railroad following. The process outlined in [3] is simple and effective: detect the

desired lines, determine the average direction of the lines, then use the difference be-

tween this direction and the vertical axis of the image as the error in trajectory. This
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approach assumes the center column of the video frame is a projected velocity vector

on the ground plane, therefore the current heading of the UAV (current state) can be

approximated by this line. The desired state can then be estimated as the average

orientation of all detected lines. The primary benefit of this process is due to the fact

that the system averages together a larger pool of lines in trajectory calculation, help-

ing to decrease the influence of false positives in trajectory calculation. On the other

hand, this simple orientation control may not be sufficient on a live implementation.

The main difficulty is caused by the trajectory calculation having no reference to the

location of the track within the frame. An example of this error could be seen if the

detected lines are in frame, but not centered. The algorithm would determine the

orientation, but have no way of correcting this positional error and it may continue

to increase in the noise of live situations. For this, some estimation of the detected

line’s position within the frame as in [23] would produce great improvement. For this

reason, the system we developed performs control of two degrees of freedom, namely

the yaw and roll. This essentially performs the orientation control as in [3] as well as

horizontal position control as in [23]. This is further detailed in Chapter 4.

As a whole, the trajectory approach has many unique features and with the as-

sumptions made it is highly robust and capable. It provides not only an estimate of

the drone’s location relative to the rail, but also the desired path for whatever length

of rail can fit within the image. This allows for more comprehensive control and path

planning techniques. However, in contrast to the vanishing point approach, this tech-

nique requires a downward facing camera. This, by nature, creates some limitations

and also causes problems in calculations. A downward facing camera has a limited

area of view when compared to a forward facing camera. This means that features on

the track must be closer to the UAV before they enter the camera’s frame. Therefore,

the amount of time that the system will have to process any given section of track will

be shorter potentially limiting the possible speed of the system. This also be coun-
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teracted by flying the UAV higher, but his would require a higher definition camera

thereby increasing processing time and cost. On the other hand, the downward-facing

perspective makes it much easier to identify the location of obstructions relative to

the track during inspection. It is much clearer what is actually obstructing the track

and what is outside of its boundaries.

Altogether both approaches for rail following, the vanishing point approach and

the trajectory approach, have advantages and disadvantages. The vanishing point

approach is simpler and more computationally efficient while the trajectory approach

is more accurate and robust. In the following chapters (Chapter 4, 5, and 6) these

differences are tested and compared with implementations of both approaches.

Before such an implementation is created, however, track detection must be per-

formed. In the next chapter (Chapter 3) a novel track detection approach named

TrackNet is outlined. This approach begins with the methods seen in the literature,

but integrates them in a novel way requiring additional developments. This system

is an example of the scarcely represented compound method for track detection, be-

ginning with region detection followed by rail detection. In contrast to the above

compound methods, TrackNet utilizes a convolutional neural network for region de-

tection that will prove to be much more robust than what is currently seen in the

literature. Additionally, the rail detection includes a more sophisticated line selection

algorithm that is not present in the literature. This extra step allows for significantly

increased performance in identifying the rails when observing curved sections of track.

With this improved track detection system, track following can commence and will

be outlined in Chapter 4.
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Chapter 3

Manuscript 1, "UAV-Based Railroad Line

Detection"1

3.1 Abstract

The railroad industry is crucial for modern transportation, therefore the need for

maintaining the integrity and safety of rail infrastructure is immense. Traditional

rail inspection methods, involving manual teams or specialized vehicles, are labor

intensive and costly, causing logistical inconveniences, especially for rapid, large-scale

inspection. This paper explores and expands the adaptation of Unmanned Aerial

Vehicles (UAVs) and advanced computer vision for rail inspection. While existing

literature highlights the benefits and capabilities of UAVs, challenges persist, and

a fully integrated, online system has yet to be thoroughly implemented and tested.

We seek to create a system that performs the task of track following strictly by

visual sensor perception, eliminating any reliance on GPS and ensuring autonomy

in environments with limited or degraded GPS availability, such as dense settings,

tunnels, etc. The system will perform all processing onboard, providing immediate

results without the need for external processing or infrastructure. Our proposed

approach divides the problem into track detection, track interpretation, and track

following. This work focuses on the first of these steps, track detection. We survey

existing approaches, assess their strengths and limitations, and introduce a novel

1Keith Lewandowski and Nikolaos Vitzilaios. “UAV-Based Railroad Line Detection”. In: Joint
Rail Conference (JRC). 2024.
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method addressing prior challenges, keeping in mind the goal of a fully integrated,

autonomous system for rapid track assessment.

3.2 Introduction

In order to ensure sufficient safety, efficiency, and reliability in railroad networks, ef-

fective inspection is essential. Traditional methods of inspection accomplish this goal,

but often have several drawbacks such as being time-consuming, costly, and prone

to human error. A modern solution to this problem is the use of Unmanned Aerial

Vehicles (UAVs), widely known as aerial drones; these drones can rapidly inspect

large stretches of railway and require little to no preparation or infrastructure. In

the aftermath of destructive events like hurricanes or landslides, drones can conduct

fast and thorough inspections of large track sections at a moment’s notice. If such

an event is thought to have caused an obstruction, a locomotive can simply deploy

a drone to search the track ahead and report if there are any major issues. Alterna-

tively, if a large section of the track is thought to be potentially problematic, one or

several drones could be deployed to locate the problematic areas and report back. In

any such case, no preparation or pre-existing infrastructure is needed. Also, there is

no need to alter the normal functions of the tracks or bring in additional workers to

enable inspection. A major component in enabling the development of such a system

is the use of computer vision and machine learning techniques to enhance the UAV’s

capabilities for automated track inspection. Drones capture high-resolution images

and videos in which computer vision algorithms automatically identify track features.

Additionally, the use of computer vision techniques for navigation, creates increased

robustness and independence when compared to other path planning approaches. The

drone’s camera and processing are controlled onboard, eliminating any dependance on

external signals such as GPS as well as the need for manual input. The only require-

ment for a vision-based system to function is the presence of adequate light, which
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can also be provided by additional onboard equipment. This allows for operation in

GPS degraded/denied environments such as dense urban areas, remote rural areas,

or inside structures such as tunnels. This approach also automates path planning,

removing the need for manually created flight paths. Overall, the use of drones in

railroad inspection is not only an effective and efficient solution, but also fills gaps

in current, traditional methods of inspection. For these types of systems, computer

vision techniques are robust in achieving autonomy and require little dependance on

external and less-reliable infrastructure. This paper will explore specific applications

of computer vision techniques for railroad inspection, present a fully developed track

detection system for this purpose, deemed TrackNet, and lay the foundations for a

fully integrated drone system for online track inspection.

3.3 Background

This section outlines diverse methods for identifying railroad tracks in images or

videos as found in the literature. Approaches vary based on the railroad features

that are detected and used for identification. Some methods focus on recognizing

the entire track region by identifying common visual features. Others prioritize the

most consistent visual feature of railroads, the rails themselves. Additionally, certain

approaches utilize both methods together, first identifying the track region and then

detecting the rails within it. The subsequent sections will delve into these categories,

exploring common techniques in each for effective railroad track identification.

3.3.1 Region Detection

The first method of railway detection involves identifying a full region within an

image containing the railroad tracks. This approach typically begins with image

preprocessing methods which can enhance track features and reduce noise. These

techniques include alterations like converting the image from RGB (red, green, blue)
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space to HSV (hue, saturation, value) space, adjusting brightness, thresholding, or

blurring. Some studies, such as [22], pinpoint specific HSV values common to railroad

regions to enable the identification of such regions. Converting an image into HSV

space, simply describes the same image in a different way, namely by determining each

pixel’s hue, saturation, and value. These researchers recognize that when observing a

rail image in this way, the pixels that constitute the track region typically fall within a

certain range of hue values. Fig. 3.1 (bottom image) displays the hue representation of

one such image where the track shares a common value. When this value is isolated, it

results in the top image in Fig. 3.1, a near perfect detection of the track region. While

efficient, these methods may lack robustness as they rely on features not universally

consistent for all tracks in all environments. To address this issue, other approaches

employ machine learning algorithms for rail segmentation [24]. These systems are

typically trained on a large set of annotated data to become capable of detecting

track regions in new images. The annotated data would be an image with a track

and a ground truth mask (silhouette-like outline) of the correct track region. With

enough data like this, the system can determine the deep features in an image that are

most likely to constitute a track. Then, if properly trained on a suitable dataset, the

system can use the same features to predict the region most likely to be a track in a

new image. In [26], we see another example, where a semantic segmentation algorithm

is applied to identify track regions. Region detection proves advantageous in railroad

inspection, isolating the entire track area for comprehensive analysis. This enables

inspection techniques such as obstacle detection by also providing the important

regions to be searched. This method provides a useful measure by which the drone

can navigate as well as a necessary component for the inspection stage.
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Figure 3.1 Region detection through HSV value isolation [22]

3.3.2 Rail Detection

The second computer vision method for rail detection focuses on identifying a specific

feature of the rail image: the track rails. Instead of detecting the entire track region,

this method isolates the visually distinct rails. Recognizing the long, distinct lines of

the rails allows for determining their position and, consequently, the track’s direction.

Of the various approaches that have been explored for this purpose the most common
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Figure 3.2 Comparison of edge detection algorithms [4]

is the combination of edge detection and line detection, as seen in [16], [2], [17], [11],

[4]. Edge detection, a foundational technique in computer vision, identifies abrupt

changes in image intensity or color using methods like Laplacian, Canny, and Sobel

algorithms. One comparison of these three methods can be seen in Fig. 3.2, where the

three methods are applied to the same image with mixed results. Based on this ex-

ample, it is clear that Sobel performs the best, however, in the literature, preferences

between these three techniques vary; [4] favors Sobel, [16] opts for Canny, and [17]

recommends Laplacian. Usually, these algorithms are complemented by image pre-

processing techniques such as blurring, thinning, and thresholding to optimize edge

detection, tailored to specific approaches for enhanced results. This also explains the

different technique preferences because results can greatly depend on the processing

steps prior to edge detection as well as the needs of the following steps in the system.

After detecting edges in an image, the algorithm faces the task of discerning which

edges represent rails. Given that rails typically manifest visually as long, continuous

lines, line detection becomes a natural choice for this step. The widely employed line
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detection method in the literature is some form of the Hough Transform, typically

the Probabilistic Hough Transform. In depth explanation and the history of these

algorithms is thoroughly explained in [10]. Various preprocessing techniques, such as

blurring, thinning, and thresholding, enhance the image before line detection, simi-

lar to the edge detection process. After identifying lines, a common post-processing

step involves filtering the detected lines to pinpoint the lines most likely to be rails.

For instance, some researchers eliminate nearly horizontal or vertical lines, reasoning

they are unlikely to be rails in certain cases. While edge and line detection dominate,

outliers explore alternative techniques. Some use a Gabor filter which attempts to

isolate lines at particular angles in the image ([4], [9]). If the orientation of the track

within the image is known, there is a likely range of angles that the rails lines will

fall into. These researchers utilize this to estimate where the rail lines are located

and, more importantly, where they are heading. Another approach in [18] utilizes a

Histogram of Oriented Gradients (HOG) to attempt to map gradients of pixel values

within the image as well as the orientations of these gradients. A representation of

this process can be seen in the left two columns of Fig. 3.3. Due to their continuous

color, it is assumed that the rail lines will have a nearly non-existent gradient along

their length. Because of this, the researchers use a region-growing algorithm to begin

from the bottom of the image and follow these rail gradients up the image. The result

is an identification of the rail lines as can be seen in the right two columns of Fig. 3.3.

Finally, neural networks are another method employed for rail identification. Here, a

network is trained to recognize and often mask the region of the rails themselves as

in [8] and [27]. This rail-centric approach is favored for its ability to isolate the most

distinctive visual feature, the rails, guiding UAVs effectively with lightweight compu-

tations. However, challenges arise in urban environments where assumptions about

rails being the only long, straight lines break down. Additionally, the simplicity of

this approach aids computational load but sacrifices useful information. To strike a
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balance, some researchers opt for a hybrid of region and rail detection, combining the

strengths of both methodologies.

Figure 3.3 Rail detection using HOG and region-growing algorithm [18]

3.3.3 Compound Methods

A compound method combines track region detection with subsequent rail detection

within the identified track region. In [22], HSV color extraction isolates the track

region, and rail detection, using Canny edge detection and a nearest neighbor algo-

rithm, identifies the rails for navigation. This type of approach mitigates issues with

rail detection by narrowing the search to the track region, reducing the likelihood

of false identifications from other structures. Additionally, it retains excess infor-

mation obtained during region detection for potential track inspection later in the

process. In [23], researchers introduced a compound method involving region and rail

detection. They employed a rail tie color matching algorithm to identify the track

region, using a sample rail tie image as the ground truth. The Hough transform

line detection method was then applied to detect rail lines within the track region.

This approach not only provides the necessary information for a control system to

follow the track but also retains the region details for future use. The result of this

method can be seen in Fig. 3.4. The boxed in rail tie was used as a sample to scan
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the image for matching color signatures. From this the track region was identified

as shown in the larger box around the track. This region was then searched for lines

which were identified and drawn over the rails in the image. It’s clear that various

methodologies for identifying railroad tracks have been explored in the literature;

preliminary research has been done in all areas, region detection, rail detection and

compound methods. Region detection, focusing on the entire track area, proves ad-

vantageous for preserving valuable information and facilitating subsequent processes.

Rail detection, targeting the distinct visual feature of rails, is widely favored for its

simplicity and effectiveness, though it may encounter challenges due to changing and

difficult environments. Compound methods, combining region and rail detection, of-

fer a balanced approach, mitigating issues and retaining helpful information. These

diverse techniques contribute to the development of robust systems for railway track

identification in images or videos.

Figure 3.4 Compound region-line detection [23]
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3.4 Methodology

As mentioned above, the system proposed in this paper focuses on the first step of

drone-based track inspection, track detection. This system seeks to have minimal

sensor reliance, employing only an onboard camera. This approach, in spite of its

many benefits, requires powerful computing for complex algorithms. The system

must quickly and effectively interpret visual information from the onboard camera

to determine the drone’s current position and make navigational decisions. As de-

tailed in the literature review, two primary approaches for track identification, region

detection and rail detection, were considered. Region detection involves a more com-

prehensive identification of the entire track area, including the rails, the ties, the

surrounding land, etc. On the other hand, rail detection targets a specific feature

within this region, namely the rail lines. The literature underscores that region de-

tection is a powerful, yet costly method. Often utilizing machine learning techniques,

it can be quite computationally heavy when properly implemented. Conversely, rail

detection is often distilled to a few simple and efficient processes, greatly decreas-

ing its required computational load. Despite its computational efficiency, however,

rail detection faces challenges in accurately selecting rail lines, particularly in com-

plex scenarios and environments. This paper introduces a compound method, deemed

TrackNet, integrating both track region detection and rail line detection. This strate-

gic amalgamation capitalizes on the reliability of region detection and its utility in

track inspection, while leveraging the efficiency of rail line detection. The compound

approach aims to mitigate the drawbacks of individual methods and achieve a more

balanced and effective solution, addressing the complexities of track detection and

following. While certain compound methods resembling this approach have been

explored in the literature ([23], [22]), some techniques in these implementations are

rudimentary and depend on assumptions that are not universally applicable and/or

involve some form of manual input, as outlined in the background section above. The
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primary contribution of this paper is a fully autonomous system that will receive any

image or video input and provide rail detection and associated flight commands. This

is achieved by utilizing the state-of-the-art techniques for each stage of detection. The

subsequent sections delve into TrackNet’s comprehensive details, providing a robust

foundation for efficient and reliable online track detection and following procedures.

3.4.1 Region Detection

The initial step in the TrackNet system employs a segmentation network, referred

to as Unet in the referenced work [21]. Unet is a convolutional neural network de-

signed for semantic segmentation, providing masks of identified regions instead of

just class labels or bounding boxes. It assigns a class label and a confidence score

to each pixel in the image based on how likely it is determined to be one of a set

of classes. The accumulation of these classified pixels creates regions of undefined

shape for the identified classes—in this case, ’track’ or ’not track’. This approach is

particularly advantageous for railroad tracks, given their diverse orientations and cur-

vatures that don’t conform to defined shapes suitable for bounding boxes. During the

training phase of the Unet system, input is provided as a set of annotated data. This

dataset consists of images containing railroads and the corresponding annotations of

track regions. These annotations label each pixel as 1 or 0, indicating ’track’ or ’no

track.’ Like other machine learning techniques, the system undergoes training on this

dataset. The Unet network learns from this annotated data, generating weights for

the detection phase. With appropriately tuned weights, the system can then process

new images, producing a labeled mask akin to the training annotations. In this mask

each pixel has a grayscale value indicating the system’s confidence of the pixel being

part of a track. Overlaying this mask on the original image completes the track region

detection. An example of this can be seen in Fig. 3.5. In this system, grayscale con-

version of images is performed to better suit Unet and mitigate the impact of lighting
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and environmental variations on detection outcomes. The left image in Fig. 3.5 is

an example of this. After generating the mask, a threshold is applied to isolate only

the ’track’-labeled pixels with the highest confidences. All other pixels are discarded,

and the remaining track region is all that is left as is clear in the left image in Fig.

3.5.

Figure 3.5 Step 1 of TrackNet: track region detection using
trained Unet network

3.4.2 Rail Detection

Once the track region has been detected, the system will move to the rail detection

stage. This stage utilizes similar techniques to those outlined in the related works

above. The main goal of this step is to search within the track region, as detected

in the previous step, for the rails. For this process it is assumed that the longest

connected lines within the track region are the rail lines. The identification of these

lines is done in three steps: edge detection, line detection, and line selection. When
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searching for rail lines, performing line detection on the track region can yield numer-

ous lines, some of which are unhelpful. As seen in the related works, edge detection

can be applied to help solve this problem. This approach improves the efficacy of

line detection by emphasizing areas with meaningful lines, namely edges. Common

algorithms for edge detection include Canny, Laplace, and Sobel. As demonstrated

later in this paper, a comparative analysis revealed that Canny edge detection per-

formed best for the presented system. In this system, Canny edge detection is applied

to a grayscale version of the original image, followed by overlaying the region mask.

This can be seen as a translucent red overlay in Fig. 3.7. This sequence prevents

the identification of edges along the mask’s edge, avoiding potential inaccuracies in

this stage. Once the edges within the track region have been identified, a line de-

tection algorithm is performed to identify lines based on these edges. As a part of

the edge detection comparison in the results section, three-line detection functions

were also compared, namely, the Line Segment Detector (LSD), the Fast Line Detec-

tor (FLD), and the classic Probabilistic Hough Transform. The comparison showed

that FLD following Canny edge detection was determined to perform best in the

presented system. This function outputs a list of lines (characterized by two end-

points) within the image. Some of these lines will be the rail lines that are being

searched for, but there will also be many additional lines that need to be eliminated.

All such lines can be seen in Fig. 3.7 as white lines. Here it is clear that the lines

in the track region include the rail lines, but also the railroad ties and other mis-

cellaneous lines. The next task is to intelligently decide which of these lines are the

rails. Once potential rail lines are identified, determining the actual rails involves

more than just selecting the two longest lines. While sorting lines by length may

work in some cases, it breaks down when rails are perceived as rectangles, potentially

resulting in separate lines for each side of a rail. Issues also arise if the rail lines are

not detected as continuous due to obstacles, curves, or algorithm errors. Therefore,
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a more robust selection method is needed. In the literature, solutions such as fil-

tering by angles or line length has been proposed. Considering these, a new robust

solution is developed which includes eliminating duplicate lines, forming chains of

lines, and then selecting the two longest elements. Each step of this process is done

by a sequential comparison of every possible pair of lines detected previously. This

comparison is done using the calculation of three parameters, namely endpoint dis-

tance, angle difference, and perpendicular distance. In these calculations, each line

is defined by two endpoints, so each pair of lines, i, j, will include four endpoints,

pi,1 = (xi,1, yi,1), pi,2 = (xi,2, yi,2), pj,1 = (xj,1, yj,1), pj,2 = (xj,2, yj,2)). It then follows

that the simplest parameter is the distance between each endpoint calculated using

the distance formula:

dij,1,1 =
√

(xi,1 − xj,1)2 + (yi,1 − yj,1)2 (3.1)

dij,2,2 =
√

(xi,2 − xj,2)2 + (yi,2 − yj,2)2 (3.2)

dij,1,2 =
√

(xi,1 − xj,2)2 + (yi,1 − yj,2)2 (3.3)

dij,2,1 =
√

(xi,2 − xj,1)2 + (yi,2 − yj,1)2 (3.4)

Where dij,1,1 is the endpoint distance between pi,1 and pj,1 and so on. The second

parameter is the angle difference between the two lines, which is calculated using the

atan2 function as:

aij = atan2(mi − mj, 1 + mi ∗ mj) (3.5)

Where mi and mj are the slope of line i and j respectively. The third parameter is

the distance of each line’s endpoint perpendicular to the other line and it is calculated

as:
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Pij,1 = (p⃗i,2 − p⃗i,1) × (p⃗j,1 − p⃗i,1)
||p⃗i,2 − p⃗i,1||

(3.6)

Pij,2 = (p⃗i,2 − p⃗i,1) × (p⃗j,2 − p⃗i,1)
||p⃗i,2 − p⃗i,1||

(3.7)

Pji,1 = (p⃗j,2 − p⃗j,1) × (p⃗i,1 − p⃗j,1)
||p⃗j,2 − p⃗j,1||

(3.8)

Pji,2 = (p⃗j,2 − p⃗j,1) × (p⃗i,2 − p⃗j,1)
||p⃗j,2 − p⃗j,1||

(3.9)

Where the notation p⃗ represents the vector of point p, ||p⃗|| represents the vector

norm of a vector p⃗, and Pij,1 is the perpendicular distance of endpoint pj,1 to line i.

With these parameters defined the steps of duplicate line elimination and line

chaining are possible. Both of these processes are based on three conditions. The

first two are simply that the angle difference and the perpendicular distances are

small. If two lines are duplicates, they will have similar angles and their endpoints

will have small perpendicular distances from each other. This, however, will also

be true of two lines that are part of the same line chain, namely ones that may be

along the same rail. If these two conditions are true, one final condition is needed to

decide if the lines are duplicates or part of the same chain. This final condition is the

number of endpoint distances that are small. This condition is used to determine the

two line’s proximities to one another. If none of the endpoint distances are small, the

lines are not near each other at all and therefore are not duplicates nor are they part

of the same chain. If one of the endpoint distances is small, the lines are likely end

to end and should be chained together. If two of the endpoint distances are small,

the lines are likely duplicates and the shorter one is removed. Lastly, if three or all of

the endpoint distances are small, the lines must both be short and likely both need

to be removed. This decision scheme is outlined in Fig. 3.6.

Once duplicates are eliminated and line chains are formed, the lengths of all

elements (chains and individual lines) are compared, and the two longest exclusive

elements are selected as the rails, completing the line selection process. In the example
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Figure 3.6 Outline of Line Selection Process

in Figure 6, the two elements identified as rails are highlighted in green and blue. Here

the necessity of line chaining can be seen as the rail is turning and cannot be estimated

as one straight line, but as chains of lines.

3.4.3 Track Interpretation

At this point in the process, track detection has been completed, having identified

both the track region and rail lines in the image. While this information is valu-

able, it alone cannot provide input to a drone’s control system. To enable this, a

metric representing the relative position between the drone and the track needs to

be calculated, estimating a type of error than can be controlled to zero. Two meth-

ods are proposed for this purpose: the vanishing point approach and the trajectory

approach. Future testing is needed to determine their comparative effectiveness, so

both are detailed here. Note that some information from the track detection stages

may be unnecessary for one approach and redundant at times, these calculations
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Figure 3.7 Step 2 of TrackNet: rail detection results using edge
and line detection

would be omitted in a more specialized implementation. The vanishing point method

leverages a characteristic of track images when the camera faces forward along the

track. Due to perspective, the two rail lines appear to converge at a vanishing point.

This point serves as an indicator of the track’s direction. The drone’s current state

is considered to be the center column of the image, and the goal is to minimize the

distance between the vanishing point and this column for effective track following. If

the vanishing point shifts right, the drone turns right, and vice versa. The magnitude

of the turn is proportional to the distance. The challenge lies in calculating the van-

ishing point, particularly when dealing with track curves. Tested methods include the

intersection of the last lines in the chain, the average intersection of all lines, and the

intersection of the longest lines. Comparative analysis favors the intersection of the

longest lines for a useful vanishing point. In the lower image in Fig. 3.8, an example

of vanishing point detection can be seen. The vanishing point is calculated using

40



the longest line in each element and is pictured as a green dot just left of the center

line at the top of the image. Because this point is to the left of the center line the

control indication written in the top left of the image is seen as “turn left” with an

associated magnitude. In the case of a drone system with a downward-facing camera

view, the desired drone position aligns with the center of the two rail lines. The

drone’s desired trajectory can therefore be estimated as the midpoint between these

lines. This trajectory is the basis of the second track interpretation approach and is

pictured in the top image in Fig. 3.8 as a white line. The drone’s position relative

to this trajectory is determined by assuming the center point of the image represents

the drone’s location when projected into the track plane, seen as a white dot in Fig.

3.8. If it can be assumed the camera angle is perpendicular to the track’s plane, con-

trolling the distance between the center point and the closest point on the trajectory

(the black dot in Fig. 3.8) to zero ensures the drone follows the track. Considerations

for comparing these approaches include camera orientation advantages and disadvan-

tages. The forward-facing camera allows for a longer observed track length, aiding

route prediction and faster drone speeds. In contrast, the downward-facing camera

provides clearer scene depiction, facilitating improved obstacle and track identifica-

tion. Assumptions for both approaches require validation through experimentation,

emphasizing the need for testing and comparison in live implementations.

3.5 Results and Discussion

The primary contribution of this paper is not only a compilation and distillation

of the state-of-the-art track detection and following techniques, but also a working

implementation of the system. The showcased system, named TrackNet, represents

a holistic development capable of processing input from images or video and gener-

ating drone control commands that can be adapted to any specific onboard drone

implementation. The fundamental phases of this system encompass region detection,

41



Figure 3.8 Example of trajectory calculation (top) and vanishing point cal-
culation (bottom)

rail detection, and rail interpretation. The methodologies explained earlier were sub-

jected to testing and comparison, paving the path toward a complete implementation

for on-board deployment on a drone.
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3.5.1 Region Detection

The Unet network incorporated in TrackNet underwent training using 7,293 images

sourced from various freely available online platforms, including RailSem19 [28] and

Google Earth. This dataset was comprised and annotated for training using the

labelme free application [25]. During this training the accuracy and loss plots were

constructed and can be seen in Fig. 3.9. In these plots one can see the network’s

accuracy and loss as it updates the weights after each epoch. In the accuracy plot

(top) it is clear that the network improves quickly in the beginning and then has

a slight incline to the end. Most of the major problems are sorted out quickly and

only minor adjustments are made in the later epochs. The loss plot is similar, but

opposite. Loss is a measure of the error of the system and is applied to its detection

on the training dataset as well as the testing dataset. The more important metric

here is the test line as the system is optimizing mostly to decrease this loss, so that

it will be most capable of functioning on new data, not that which it was trained

on. Upon scrutinizing the outcomes, it is evident that the system excels in discerning

track regions, both in downward and forward-facing perspectives. Challenges are

noted in close-up images where the track region dominates the majority of the frame.

Additionally, the system demonstrates room for improvement when confronted with

structures sharing similar features with tracks, such as power lines and bridges. Many

of these challenges can be addressed by refining the training dataset to encompass

more diverse scenarios and incorporating additional post-processing steps. Despite

these minor shortcomings, the region detection component of the system is deemed

more than satisfactory for the envisioned drone system, with potential enhancements

achievable through subsequent post-processing. Some example results can be seen in

Fig. 3.10. Here, the left column is the grayscale image input into Unet and the right

column is the detection result. The system is seen to be successful on simple, straight

lines (top row), more complex, small, curved lines (bottom row) as well as situations
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Figure 3.9 Graph of Unet training accuracy (top) and
loss (bottom)

with many lines (middle row).

3.5.2 Rail Detection

As mentioned earlier, rail detection was accomplished through the combination of

edge detection and line detection. A comprehensive comparison was conducted,
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Figure 3.10 Examples of track region detection using Unet

exploring all possible combinations of three widely used edge detection algorithms

(Canny, Sobel, and Laplace) and three popular line detection algorithms (FLD, LSD,

and Probabilistic Hough Transform). The evaluation criteria comprised two key met-

rics: false positives and detection percentage. False positives quantified the frequency
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with which the system identified lines as rails that did not belong to the actual rail;

this metric was computed by determining how many detected lines fell outside the

ground truth rail area, with lower values considered more favorable. Detection per-

centage provided an estimate of the system’s accuracy in detecting the ground truth

rail area, calculated by determining the adjusted percentage of detected lines within

this area. The results reveal that certain combinations of edge detection and line

detection methods excelled in detection percentage but performed poorly in false

positives and vice versa. The full result charts can be seen in Fig. 3.11. Remember

that the goal is for a combination to have a high detect percent and a low false posi-

tive. Based on this, the Canny - FLD combination ranked among the top two in both

metrics. For this reason, it was chosen to be used in the final system. The results

were relatively close, however, and a clear decision on the best combination was not

present. This supports the mixed evaluations seen in the literature as explored in the

background section above.

3.5.3 Rail Interpretation

As elaborated in the previous section, some aspects of the interpretation phase can

only be thoroughly assessed during the practical implementation of the system on a

drone. With this in mind, both the vanishing point approach and the trajectory ap-

proach were employed in this early, offline stage of implementation, serving primarily

as a proof of concept and setting the groundwork for potential improvements. While

the recommended command proved accurate for most frames in both approaches, a

few issues surfaced. Specifically, challenges were encountered in the trajectory calcu-

lation method, where obstructed or misidentified sections of the rails led to skewed

trajectories. A similar issue occasionally arose in the vanishing point approach, where

one of the rail lines was incorrectly identified, significantly distorting the vanishing

point. However, these issues occurred sporadically and could be mitigated by filtering
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Figure 3.11 Edge and line detection comparison graphs

outliers when comparing adjacent frames. In terms of future work, practical imple-

mentation of the TrackNet system on a drone platform is crucial for evaluating its

real-world performance. A thorough comparison of track interpretation implemen-

tations, development of an adaptive system, and integration with control systems
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are identified as areas for further exploration. The developed TrackNet system was

designed with this in mind, and it is ready to be implemented onboard a drone system.

3.6 Conclusion

This paper introduces TrackNet, a novel system for railroad track detection and track-

ing. It systematically reviews existing methodologies, categorizing them into Region

Detection, Rail Detection, and Compound Methods. Region Detection methods, in-

cluding HSV color extraction and SVM classification, prioritize preserving the entire

track area. Rail Detection explores edge and line detection methods, informing the

proposed TrackNet system. TrackNet integrates both region and rail detection, uti-

lizing Unet for region detection and edge/line detection for rail detection. The paper

then extends the TrackNet system, detailing interpretation methods including van-

ishing point and trajectory detection to prepare for a fully integrated, track-following

drone. Future work involves implementing TrackNet on a drone, interpretation ap-

proach comparisons, adaptive system development, and integration with onboard

flight control systems.
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Chapter 4

Track Following and UAV Implementation

Although TrackNet, as outlined in Chapter 3, is a novel approach to track detection

compiling the best methodologies seen in the literature (Chapter 2), the primary

contribution of this work is an online implementation of this system for experimental

testing and comparison of these methods in live track following. The following sections

will explore the process of employing the TrackNet system onboard a customized DJI

Matrice 100 UAV and utilizing it for high level flight controls.

4.1 Track Interpretation

Between the completion of track detection and the initiation of track following, a few

tasks must be completed. The system needs to interpret the rail lines and determine

the flight maneuvers required for the UAV to follow the track. As described earlier,

these interpretation methods are contingent upon the configuration of the camera

onboard the UAV system. This divergence prompted the development of two distinct

approaches for the sake of comparison, namely a forward-facing camera approach

and a downward-facing camera approach. As explored in Chapter 2 and 3, these are

the two approaches seen in the literature and utilize vanishing point detection and

trajectory detection, respectively.

In the case of a forward-facing camera, the vanishing point is assumed to be

a reasonable approximation of the track’s direction. As explained previously, this

point is determined by identifying the intersection point of the rail lines. However,

implementing this in TrackNet presents a challenge due to how rails lines are detected.
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There are several methods for this process in the literature and based on these the

decision was made to base vanishing point calculations on the longest straight line

segments in each rail element. This was because of an assumption that the lines

closest to the UAV will provide a better indication of the current direction of the

track. Perspective causes further objects to be viewed as smaller, therefore the most

pertinent lines of the rail should be those that are perceived as longest. To achieve

this both rail elements (either single lines or chains of lines) are sorted by length. The

longest lines within each element are characterized by two points, pi1 = (xi1, yi1), pi2 =

(xi2, yi2), with a slope, m = yi2−yi1
xi2−xi1

for any line i. Using the point-slope form of a

line, two equations can be created for the longest lines and the vanishing point can

be determined by finding the solution of a system of the following two equations (4.1,

4.2):

y − yi1 = mi(x − xi1) (4.1)

y − yj1 = mj(x − xj1) (4.2)

Where (x, y) is the vanishing point. This method has the potential to be suscep-

tible to false positives if the longest line in either element is itself a false positive. A

more complex version of this selection process could be developed, however, in testing

the TrackNet system has proven to be sufficient at filtering these false positives out

before vanishing point calculation. In following tests, this filtering is shown to be

adequately effective for the designed control system. An example of vanishing point

detection can be seen in Fig. 4.1 where the vanishing point is visualized as a green dot

at the center of the top of the image. Once the vanishing point has been calculated,

the forward-facing system is prepared to initiate the track following process.

On the other hand, utilizing a downward-facing camera necessitates a different

approach. Here, the objective is to determine the centerline of the track based on

the rail lines. For this, each rail element was divided into a series of points, including
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Figure 4.1 Example of vanishing point detection. The white line is the center column
of the frame. The red and green lines are the rail lines. The green dot is the vanishing
point.

the endpoints and equally spaced points along each line, as depicted by white dots in

Fig. 4.2. Subsequently, for each rail, a new curve was generated through quadratic

interpolation of these points. This process decreases the influence of false positives

as it equally weights all rail lines according to their length. This means that if a false

positive line is a part of the rail, it’s influence will be overshadowed by the other,

correct lines. This solution also allows midline calculation in gaps between lines along

the same rail. Once these new rail line approximations are calculated, the midline

between them is determined creating a trajectory line at the center of the two rails.

For this, a midpoint is calculated for every row of pixels, yi, using:
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Figure 4.2 Example of trajectory detection for downward-facing camera approach.
The green and red lines are the detected rail lines. The vertical white line is the
center column of the frame. The angled white line is the calculated trajectory. The
black points are the end points of the trajectory. The green point is the closest point
of the trajectory.

yi = f1(xi) + (f2(xi) − f1(xi))
2 , f1(xi) < f2(xi) (4.3)

Where f1(xi) and f2(xi) are the functions of the quadratic interpolations of each

rail line. These points are then plotted creating a trajectory curve. This curve is

represented as a white line in Fig. 4.2. In practice, the current implementation of

this method occasionally produces skewed trajectories when fewer lines are identified

for either rail. In spite of this, as long as at least one rail is identified, the midline

will always be somewhere on the track if not in the perfect center. This means that
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in the worst case, when only one rail is identified, the midline will simply be that rail

and the UAV will still be capable of flying along the track. This process successfully

bridges the gap between track detection and track following.

4.2 Track Following: Forward-Facing Approach

Once the detected tracks have been successfully interpreted using either the forward-

facing or downward-facing approach, the final step is to translate this data into com-

mands to be sent to the UAV. Again, this process will be similar but will diverge

depending on the camera orientation. In either case, however, the elements discussed

in Chapter 2 will need to be determined: the current state of the UAV (or process

variable PV (t)), the desired state of the UAV (or setpoint SP ), the difference (or

error) between these two states, and the change required to decrease this error. The

difference in approach will lie in what these elements are and how they are calculated.

For the forward-facing camera approach, these elements will revolve around the

vanishing point. The process variable is determined to be the the center column, xc,

of the camera’s frame, as it is assumed to indicate the direction of the UAV’s heading

(visualized in Fig. 4.1 as a white line). For the camera in this implementation the

frame size is 640 px by 480 pixels, therefore xc = 320. The set point of the UAV will

be the horizontal column of the vanishing point, xvp(t), as it provides an estimation

of the track’s direction. It is presumed that if these two values, xc and xvp(t), are

equal, the direction of the UAV’s travel will be the same as the direction of the track.

The direction error, ed(t), between the desired and current states is thus calculated

as the horizontal distance between the center of the camera’s frame and the vanishing

point:

ed(t) = xc − xvp(t) (4.4)
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If this error is zero, the UAV should be traversing in the same direction as the

track’s path, when given a constant forward velocity. Consequently, the change re-

quired to decrease this error involves adjusting the UAV’s yaw, by generating angular

acceleration about the vertical axis of the UAV. If the vanishing point is on the right

half of the camera frame, the UAV needs to yaw to the right, and vice versa. The

magnitude of this yaw is determined by the magnitude of the error between the van-

ishing point and the center of the frame. In the developed system, this error, ed(t),

is normalized and input into a PD controller as follows:

ed,norm(t) = ed(t)
xf

∗ cmax,yaw, (4.5)

Where ed,norm(t) is the normalized error value, xf is the pixel width of the frame,

and cmax,yaw is the maximum feasible value of yaw control effort. This normalized

error is then used in the PID control formula, equation 4.6. This formula is used for

all of the controllers that are to follow with differing values for the gains (Kp, Kd, Ki).

In the cases where a PD controller is used, the integral gain (Ki) is simply set to zero

and similarly PI controllers set the derivative gain (Kd) to zero. This fundamental

formula is as follows:

u(t) = Kpe(t) + Kd
de(t)

dt
+ Ki

∫ t

0
ep,norm(t), dt. (4.6)

Where u(t) is the command effort output, e(t) is the error, and Kp, Kd and

Ki are the proportional, derivative and integral gains, respectively. In this case,

e(t) = ed,norm and u(t) is the yaw control effort. The gains of this controller were

then determined experimentally resulting in a Kp = 0.75, Kd = 0.458 and Ki = 0,

producing a PD controller. The tuning process began by utilizing the zeigler-nicholes

method for tuning PID controllers, then was adjusted after additional testing, this

process is further detailed in Chapter 5. These preliminary tests determined that
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the integral portion of a PID controller was unnecessary for this application, but the

derivative gain was significantly more important to resolve a large oscillation in the

early implementation. The output of the controller is then directly sent to the UAV’s

yaw velocity through the DJI software development kit (SDK) robot operating system

(ROS) package as explained in Chapter 5.

This simple yaw control system proved effective originally, but a flaw was exposed

in further testing, particularly when the UAV encountered long and curving tracks.

This issues is similar to that mentioned in the evaluation of [3] in Chapter 2, namely

that direction control is not always sufficient. This first type of control ensures that

the UAV is traveling in the same direction as the track is from a visual perspective,

however, it does not directly control the horizontal position tangent to the track’s

direction. In the experimentation in Chapter 5 it was seen that as the UAV traverses

along the track it could accumulate a positional error and no longer be directly above

the track region. Although the camera would percieve this because the rail lines

would drift to one side of the frame, the vanishing point would not change position

accordingly. For this reason and additional layer of control was developed to solve

this problem. The objective of this system is to perceive this drift of the rails and to

correct it utilizing the roll channel of the UAV. For this the endpoints of all detected

lines included in the rail elements (single lines or line chains) were sorted by pixel

row, y, and the point with the largest value (with origin located at the top left corner

of the frame) for each rail was selected, ai = (xi, yi), aj = (xj, yj). The midpoint,

pm = (xm, ym), between these two points was then calculated:

xm = xi + xj − xi

2 , xi < xj (4.7)

ym = yi + yj − yi

2 , yi < yj (4.8)

This point is then assumed to be the center of the track because it is the midpoint
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between the two rail lines. Additionally, the lowest point of the rails is used as it

is assumed to represent the section of track closest to the UAV. Now, if this point

drifts away from the center of the frame, it represents the horizontal position error

explained above. Here the process variable is again the center column of the image,

xc, the set point is the horizontal value of this midpoint, xm, and the error can be

modeled and normalized similarly as follows:

ep(t) = xc − xm(t) (4.9)

ep,norm(t) = ep(t)
xf

∗ cmax,roll, (4.10)

Where ep(t) is the position error, ep,norm is the normalized position error, and

cmax,roll is the maximum control effort feasible for the roll channel. This output is then

channeled through a PI controller modeled using equation 4.6 where e(t) = ep,norm

and u(t) is the roll control effort.

This controller was tuned in the same way as the yaw controller, but during this

testing the derivative gain proved unnecessary and a persistent steady state error

indicated importance of the integral gain. The gains, Kp and Ki were therefore

tuned to 0.25 and 0.1, respectively. With this, a completed track following system

with a forward-facing camera was developed and ready for implementation and testing

onboard a UAV.

4.3 Track Following: Downward-Facing Approach

In many ways the controls system of the downward-facing approach is similar to that

of its forward-facing counterpart with differing inputs. In this scenario, the current

state of the UAV is still approximated as the horizontal center of the camera’s frame

because it remains the direction in which the UAV is traversing and the desired state

is the trajectory line. As is explained in Chapter 2, two dimesions of control can be
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applied to these states: the direction of travel and the horizontal position over the

track. For the direction control, the vertical line along the center of the frame is

the process variable correlating to the direction the UAV is traveling projected onto

the track’s plane. The trajectory line is then utilized as the directional set point,

however, this causes an issue due to the fact that the trajectory is not necessarily a

straight line. To adjust for this, the trajectory direction is calculated based on the

slope between the top point of the trajectory and the bottom point. Namely, every

point in the trajectory is sorted by its y value and the maximum and minimum values

are selected. The line between these two points is then utilized as the set point. With

this, the direction error, ed(t), can be calculated as the angle difference between this

trajectory line and the center line of the frame as follows:

ed(t) = arctan( [(xt,1 − xt,2) ∗ (yc,1 − yc,2)] − [(yt,1 − yt,2) ∗ (xc,1 − xc,2)]
[(xt,1 − xt,2) ∗ (xc,1 − xc,2)] + [(yt,1 − yt,2) ∗ (yc,1 − yc,2)]

), (4.11)

Where the two endpoints of the trajectory line are t1 = (xt,1, yt,1), t2 = (xt,2, yt,2)

and the top and bottom point of the frame’s center column are c1 = (xc,1, yc,1), c2 =

(xc,2, yc,2). This direction error serves as one degree of freedom and controlling it to

zero theoretically ensures that the UAV is traveling in the same direction as the track.

This error is then normalized as in equation 4.10. This normalized error is input into

a PD controller modeled according to equation 4.6 that was experimentally tuned as

above with final gains of Kp = 1.05 and Kd = 0.2. This controlled output is utilized

in the flight controller’s yaw channel.

Even with this yaw controller, the UAV’s horizontal position may still accumulate

error. This error can be approximated as the horizontal distance between the center

point of the camera frame (the process variable) and the closest point on the trajectory

line (the set point). If this distance is controlled to zero, the UAV will be successfully

positioned above the track. To calculate this error, the distance between the center
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point of the camera and every point of the trajectory is calculated using the distance

formula and the point with the minimum of these distances is taken as the error:

ep(t) = argmin(
√

(xc − xt,i(t))2 + (yc − yt,i(t))2), (4.12)

Where ep(t) is the positional error at any time, the center point of the frame is

pc = (xc, yc) and any point, i, along the trajectory is pt = (xt,i(t), yt,i(t)). Again, this

error is utilized in the PID controller equation 4.6, experimentally tuned and input

into the roll channel of the flight controller. The final gains for this controller are

Kp = 0.75 and Ki = 0.2.

With both dimensions of error being controlled to zero it is assumed the UAV will

successfully follow the track if given a constant forward velocity. This successfully

outlines a fully formed system that receives a video input, detects the track, and

determines controls to follow the track. At this point the final step is to implement

this system onboard a UAV.

4.4 Drone Implementation

The above system functions in theory, but must be implemented onboard a UAV to

perform proper testing and to evaluate its effectiveness. The UAV chosen for such

implementation was a DJI Matrice 100, a quadrotor equipped with an integrated

flight controller, DJI N1. This flight controller comes with a software development

kit (SDK) for developmental purposes. Additionally, the Matrice 100 comes equipped

with the DJI guidance system, which enhances stabilization, especially in GPS-denied

environments. In our implementation, the guidance system was utilized with only one,

downward-facing camera unit. The N1 flight controller utilizes the sensors from this

camera for low-level flight controls, however, this data is not able to be utilized for our

high-level controls. For this reason, the guidance system has no effect on the track
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detection and following process, but only in the UAV’s internal flight controls. The

system does provide another sensing system to support steady flight regardless of GPS

availability. Mounted on the UAV’s frame is an Intel NUC 11 Performance Mini PC

Kit, providing onboard processing power, along with an Intel RealSense D435 Camera.

These components are affixed to the UAV’s frame using custom 3D-printed parts. The

widely used Robot Operating System (ROS) framework facilitates communication

among these three primary devices, specifically utilizing the RealSense2camera ROS

package and the djisdk ROS package, along with a custom TrackNet ROS package

developed for this application. This package performs the function of processing

the RealSense camera’s video and sending control outputs to the Matrice’s flight

controller. The process utilizes two ROS nodes, one for TrackNet processing and

one for sending the control signals. The TrackNet processing node subscribes to

the RealSense2camera’s /camera/image_raw topic, acquiring the video feed. These

images are then processed by the TrackNet system, and control outputs are calculated.

This process is completed at around 3.5 frames per second and the control effort is

published to a ROS topic. The control node monitors this topic and sends the control

effort to the Matrice’s flight controller. The method of control that is used is based

on velocity control provided by the djisdk package in the form of ROS services.

The control node sends a continous stream of forward (x) velocity commands to the

associated ROS service to maintain a constant forward velocity. When the TrackNet

node publishes yaw or roll control effort, this is added to the ROS service call. With

these two nodes, the Matrice is given a constant forward velocity and its direction

and position are adjusted as TrackNet is able to process the RealSense’s video stream.

An image of the complete Matrice 100 setup is provided in Fig. 4.3.
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Figure 4.3 DJI Matrice 100 equipped with Intel NUC 11, Intel RealSense D435
camera, and DJI Guidance system.

60



Chapter 5

Results

With the complete TrackNet system developed and tested offline on prerecorded

videos, as explained in Chapter 3, testing of the implementation onboard the UAV

system was the next stage of experimentation. This includes both the forward-facing

camera and the downward-facing camera approaches. For each approach, several

stages of testing were conducted, starting with stationary indoor tests to establish

proof of concept and to provide initial gains for each controller. This series of tests was

conducted inside the Unmanned System and Robotics laboratory at the University of

South Carolina. Simple images of tracks, from both a forward-facing perspective and

a downward-facing perspective were utilized as a simulated track environment. Sub-

sequently, these systems were tested outdoors on a real track to validate their efficacy

as well as in effort to determine issues in the first versions of the systems. These ex-

periments took place along a 45 meter section of railroad situated in Columbia, South

Carolina, next to the University of South Carolina’s athletic center. An image of this

section of track, taken from Google Maps can be seen in Fig. 5.1. The track was

simple and consisted of mostly straight track, located in an urban environment with

nearby buildings and power lines. After learning from these initial tests, more exten-

sive outdoor experiments were carried out at the South Carolina Railroad Museum

in Winnsboro, South Carolina. This track contained varying track configurations,

including a sharp curve in both directions as well as a longer straight section and was

situated in a more rural, forest environment and a image of this location can be seen

in Fig. 5.2. In over several experiments two sections of this track were utilized at dif-
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ferent times and these sections are shown in Fig. 5.2. The shorter section began with

a straight track followed by a left curve and was a total of 165 meters. The longer

section began with a right curve then a straight section followed by a left curve and

was a total of 300 meters.

Figure 5.1 This is an image of the railroad section used for experi-
ments near the University of South Carolina’s Athetic Village.

The following sections of this chapter will delineate the results obtained from this

series of testing and will outline the findings related to both approaches explained in

Chapter 4. In all such tests, two types of error were determined and will be seen.

Firstly, there are the several instances of direction error and position error. These

values are calculated purely based on track detection and will differ depending on the

type of track interpretation. These errors are defined in Chapter 4, namely ed,norm(t)

and ep,norm(t), and are utilized as the input to their corresponding controllers. In
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Figure 5.2 This is is an image of the railroad section used for exper-
iments at the South Carolina Railroad Museum in Winnsboro, South
Carolina. Two sections of this track were used and are labeled in the
figure as ’short section’ and ’long section’.

attempt to make the scale of these values more easily comparable, they have been

converted to a percentage of the max feasible control effort. These values were exper-

imentally determined to be cmax,yaw = 50deg/s and cmax,roll = 1m/s. This measure

of error is helpful to show the efficacy of the control system itself, but is not valid in

providing a meaningful quantification of the system’s success in following the track.

For this purpose, a separate track distance error was calculated in reference to the

track’s location itself, et(t). This value was calculated as the distance between the

UAV’s horizontal position and a ground truth position of the center of the track:

et(t) = argmin(
√

(xUAV (t) − x2
t,i + (yUAV (t) − y2

t,i), (5.1)

Where (xUAV (t), yUAV (t)) is the position of the UAV at any given time as deter-

mined by the odometry of the UAV and (xt,i, yt,i) is every position, i, along the track

as determined by GPS coordinates found on Google Maps. This provides a measure

of the accuracy of the UAV’s flight when compared to the track and therefore a way
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to determine the system’s effectiveness. This position is measured in meters and as a

reference, the distance between track rails (track gauge) is approximately 1.5 meters.

5.1 Forward-Facing Experimentation

In employing the forward-facing camera approach, the initial system utilized only a

PD controller on the yaw velocity channel, as outlined in Chapter 4. The roll con-

troller was not initially implemented because there is no example of such a system in

the literature. Later the need for this system became prevalent and it was integrated

as will be explained. Because of this, the initial implementation was an adaptation of

the most common method found in the literature as can be seen in Chapter 2, seeking

to detect the track, calculate the vanishing point, and control the yaw velocity.

5.1.1 Experiment 1

Initially, nine trials were conducted using this system at the University of South

Carolina location. For these trials, the PD controller was tuned to the following

gains: Kp = 0.9 and Kd = 0.25. Of the nine trials, the UAV successfully followed the

track and it never lost sight of the track. The system demonstrated its capability to

effectively track a straight railroad using only camera input and onboard processing.

It illustrated that the TrackNet system functions in real-time, even on tracks it was

not trained on. Furthermore, it showcased that the processing requirements could be

met entirely online and onboard the UAV, achieving an average rate of 3.5 frames

per second, sufficient for maintaining the UAV’s position above the track at an initial

forward velocity of one meter per second. Across these nine intial trials, the average

directional error was 15.409%. The results for each trial are laid out in Table 5.1

where the average directional error for each trial is shown. Scrutiny of these results

revealed a significant, continuous oscillation in the yaw control system. This can be

seen in Fig. 5.3, where the vanishing point error is plotted alongside the command

64



Figure 5.3 Example of track following test from the first experiment with forward-
facing camera configuration. Graph shows normalized vanishing point error (solid red
line) and related yaw command effort (dotted blue line) across time.

effort. The problematic oscillations in the system are clear, with peak amplitudes

around 36%.

As no systematic cause was able to be detected, it seemed that the PD gains

simply needed to be retuned to be effective over an actual track. Because the issue

was an oscillation, the primary solution was a redution in the proportional gain.

Additionally, the derivative gain was increased to compensate resulting in final values

being Kp = 0.75 and Kd = 0.458.

5.1.2 Experiment 2

With these adjustments made, a second round of tests was conducted at the same

location. This time, a series of eleven trials were executed to evaluate the improve-

ments made in the controls system as well as to test the systems ability at differing
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Table 5.1 Forward-Facing Experiment 1: TrackNet Errors

Trials: Direction Error (Vanishing Point):
Trial 1 8.1587%
Trial 2 26.2635%
Trial 3 7.4105%
Trial 4 10.0892%
Trial 5 18.7034%
Trial 6 11.1638%
Trial 7 20.9608%
Trial 8 26.1773%
Trial 9 9.7574%
Average: 15.409%

altitudes. The results of each trial are outlined in Table 5.2 and it can be seen that

the average vanishing point error overall improved to be 7.8054%. It can also be

noted, that the values of error for each trial seem to vary widely. This is however

explained by the fact that these trials were conducted in alternating directions along

the track. This explains why the values seem to alternate in magnitude. It seems

that the system performed worse when it was traveling in towards a curve that was

beyond the flight path, but within the camera’s view. What is more interesting is the

lack of change in detection accuracy with altitude. Across the three tested altitudes

(two meters, four meters, and five meters) there is not a significant difference in error

values except in the five meter case. This variance, however, is not hugely significant

and is only across two trials. Because of this, it seems that the forward facing ap-

proach’s detection ability is not significantly affected by the current altitude. This

is to be expected because the system should work in the same way as long as the

track is visible. The only major difference that altitude creates is the minimum track

distance that is visible within the frame. In spite of this, it is clear from these trials

that issue of oscillations in the yaw controls was greatly improved even in varying

situations.

An example of this can be seen in Fig. 5.4 where the peaks of the minor oscil-

66



Figure 5.4 Example of track following test from the second experiment with forward-
facing camera configuration. Graph shows normalized vanishing point error (solid red
line) and related yaw command effort (dotted blue line) across time.

lations are now approximately 15%. This shows a great improvement in the control

system’s ability to track the vanishing point and maintain the correct direction of

flight, however, during these experiments a potential issue was subjectively recog-

nized. In spite of the improved controls, the UAV’s position above the track seemed

to be worse than the previous experiment. A horizontal drift in the UAV’s position

was noticed, but was not seen in the directional error statistics. The following exper-

iments further explore this potential issue and eventually determine that this was a

product of the flaw in simple yaw controls for the forward-forward facing approach

as explored in Chapter 4. This is further explained in the next experiment. After

this series of results, the roll control system outlined in Chapter 4 was developed

and implemented, seeking to solve this problem. The PI controller gains for the roll

controls were experimentally determined to be as follows: Kp = 0.25 and Ki = 0.1.
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Table 5.2 Forward-Facing Experiment 2: TrackNet Errors

Altitude: Trials: Direction Error:
2 m Trial 1 4.2962%
2 m Trial 2 12.1520%
2 m Trial 3 5.4814%
2 m Trial 4 11.0920%
2 m Trial 5 2.6484%
2 m Average: 7.1340%
4 m Trial 1 10.2919%
4 m Trial 2 4.4333%
4 m Trial 3 10.2798%
4 m Trial 4 3.5532%
4 m Average: 7.1395%
5 m Trial 1 11.0920%
5 m Trial 2 10.5397%
5 m Average: 10.8159%
Overall Average: 7.8054%

5.1.3 Experiment 3

The next phase of testing transferred to the second location at the South Carolina

Railroad Museum (Fig. 5.2). Here, the two implementations of the forward-facing

approach were tested and compared, one with only yaw controls and the other with

yaw and roll controls. The difference in these approaches is significant and obvious

as the yaw-only implementation failed to traverse the curve in the track. This system

was tested along a section of straight track followed by a sharp left turn (Box labeled

"short section" in Fig. 5.2). It is clear that as the UAV was traversing the straight

section, it begins to drift to the right side of the track. This could be due to a strong

wind from the left that was present during these tests or simply due to noise in the

system that is not corrected for. Either way, the thing to note is that the directional

error is not significantly effected by this horizontal drift and so the UAV does not

correct. This is clear in Fig. 5.5.

Here, the plot of the TrackNet error and command effort is set alongside the flight
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Figure 5.5 Visual explanation of the issue in vanishing point
control using only the yaw channel. Comparison of vanishing
point error across time (bottom) and track position error along
length of track (Top).

path plot. One can see that as the UAV traverses along the track (left to right in both

plots), the UAV drifts away from the track’s position, but the vanishing point error

does not significantly change. This proves the vanishing point’s inability to recognize
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and adjust for a positional drift as explained in Chapter 4. This drift becomes an

additional issue as the UAV reaches the curve and fails to recognize the need to turn

fast enough. To avoid crashing, the system had to be aborted in each trial. This error

is one that has not yet been identified in the literature as the majority of systems

outlined simply perform this directional control, but fail to consider this problematic

drift. This is the reason that the roll controller was developed as outlined in Chapter

4 and tested as a successful solution to this problem.

The forward-facing approach utilizing both yaw and roll controls (as outlined in

Chapter 4) was also tested to identify if this drifting issues was still present. This

system was tested on a larger section of track at the Railroad Museum location (box

labeled "long section" in Fig. 5.2), containing a curve to the right, a straight section,

and a curve to the left. This improved system successfully traversed this entire section

of track maintaining an average track position error of 1.9766 meters and TrackNet

errors of 3.7694% for directional error and 6.3267% for positional error. It can be

seen in the flight paths in Fig. 5.6 that although a slight positional drift occurs, it is

corrected by the roll control system.

Table 5.3 Forward-Facing Experiment 3: Track Distance and TrackNet Errors

Forward Vel.: Trials: Track Dist.: Dir. Error: Pos. Error:
1 m/s Trial 1 2.0288 m 4.2349% 11.0287%
1 m/s Trial 2 2.0843 m 3.5404% 6.7021%
1 m/s Trial 3 2.1226 m 4.8564% 6.2240%
1 m/s Average: 2.0786 m 4.2106% 7.9849%
2 m/s Trial 1 2.0171 m 3.5751% 6.3422%
2 m/s Trial 2 2.1210 m 3.4121% 5.6712%
2 m/s Trial 3 1.9459 m 3.3795% 6.0406%
2 m/s Average: 2.0280 m 3.4556% 6.0180%
4 m/s Trial 1 1.7772 m 3.4622% 5.9298%
4 m/s Trial 2 1.6113 m 4.0003% 4.5682%
4 m/s Trial 3 2.0813 m 3.4636% 4.4337%
4 m/s Average: 1.8233 m 3.6420% 4.9772%
Overall Average: 1.9766 m 3.7694% 6.3267%

70



Figure 5.6 Improved forward-facing approach utilizing roll controls in addition to
yaw controls. Flight path seen in dotted blue line and GPS ground truth seen in solid
red line.

This experiment also tested the system’s performance at varying forward veloci-

ties, namely one, two and four meters per second. The outline of all trial results can

be seen in Table 5.3. Also, whisker plots of each trial can be seen in Fig. 5.7, where

the center line of each box is the median, the top of the box is the 75th percentile,

the bottom of the box is the 25th percentile, the top and bottom lines reach to the

maximum and minimum values not considered outliers, any red dots are the outliers,

and the horizontal line is the total average over all trials. From this it is clear that the

system is not greatly affected by increasing forward velocity and performance actually

seems to increase with speed. This trend seems counter intuitive, however, there is a

potential explanation. To understand the situation it is important to recognize that

as forward velocity increases, the distance between control updates also increases.

This is because the processing power onboard the UAV is still at a constant rate

(approximately 3.5 frames per second), but a further distance has been traversed in
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Figure 5.7 Whisker plot of the track distance values of all nine trials in the third
forward-facing experiment. Each whisker plot represents the median value as the
red line as the center of the box, the 75th percentile as the top of the box, the 25th
percentile as the bottom of the box, the maximum and minimum non-outlier values as
the end points of the lines, and red dots as the outliers. The horizontal line spanning
the whole chart marks the overall average distance value.

between each processed frame. However, the total distance of track traversed does

not change in any of the trials, so the time of flight is decreased. Because of this

decrease in flight time, there is less time for oscillations in the control systems. A

lower number of oscillations in controls means a lower amount of time away from

the track, effectively smoothing out the TrackNet error across time. Additionally,

this effect may be exagerated by the complexity of the track configuration as these

oscillations are most prevalent when following a straight section. An increased speed

means that the straight section of this track is followed for a shorter amount of time,

decreasing the error from oscillations. This effect can also be seen in decrease in av-

erage TrackNet error as forward speed increases. Because the overall change in error
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is relatively small, it is more significant that the system remains successful at varying

forward velocities. This is clear when looking at Fig. 5.7 as there is no significant

variance in the trials as the speed increases.

This study both shows the major weakness of the most commonly utilized track

following method currently in the literature, namely vanishing point detection, and

also proves the success of a novel control solution to this problem. With this solution

implemented, a complete railroad tracking and following system is developed and

proven to be capable of autonomously following single railroad tracks of varying

configuration.

5.2 Downward-Facing Experimentation

The downward-facing approach went through a similar series of experiments, begin-

ning with initial testing at the shorter University of South Carolina track location,

Fig. 5.1. In contrast to the forward-facing approach, this system utilized two sepa-

rate controllers for yaw and roll from the beginning. After the preliminary controller

gain tuning in the lab, the gains were as follows: For the yaw controls, Kp = 1 and

Kd = 0.2; For the roll controls, Kp = 0.8 and Ki = 0.05.

5.2.1 Experiment 1

The first series of tests consisted of nine trials at the University of South Carolina

track location (Fig. 5.1) in which the system proved effective, remaining within

the track area at all times and never losing visual sight of the track. The TrackNet

system once again demonstrated its effectiveness on real tracks with a forward velocity

of one meter per second and the same 3.5 frame per second processing speed. The

average TrackNet error was 5.8314% in the directional dimension and 11.8800% in

the positional dimension.
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Table 5.4 Downward-Facing Experiment 1: TrackNet Errors

Trials: Direction Error: Position Error:
Trial 1 7.3842% 14.0008%
Trial 2 4.3367% 11.0607%
Trial 3 6.5860% 7.3427%
Trial 4 4.2365% 4.9092%
Trial 5 5.3814% 12.7409%
Trial 6 4.8199% 9.1573%
Trial 7 7.1175% 15.7292%
Trial 8 4.9724% 15.0872%
Trial 9 7.6483% 16.8958%
Average: 5.8314% 11.8800%

Although these values are less than those in the forward-facing results, it is im-

portant to recall that these are not necessarily comparable across approaches, as their

calculation is based on the track interpretation method utilized. However, these er-

rors are useful when testing if the changes made from this experiment to the next

were successful or not. In evaluation of the this data, a consistent steady-state error

was identified. To solve this problem, the integral gain was increased to 0.2 and the

proportional gain was reduced to 0.75.

5.2.2 Experiment 2

Following this proof of concept experiment, the system was brought to the South

Carolina Railroad Museum location (Fig. 5.2) for more thorough testing. At this

location, two series of tests were conducted. First, a shorter test beginning with a

straight section of track and ending with a sharp turn to the left was utilized to de-

termine if the system was capable of traversing long distances and curved tracks (box

labeled "short section" in Fig. 5.2). In this series of six trials the UAV successfully

handled the longer distance as well as the curve, performing with average TrackNet

errors of 2.6825% and 6.2963% for direction and position respectively as well as an

average track position error of 1.9751 meters.
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Figure 5.8 Positions of all trials (dotted blue lines) in second downward-facing ap-
proach experiment are plotted alongside GPS ground truth track reference (solid red
line).

The flight paths of these trials again can be seen in Fig. 5.8, showing the successful

following of the track and all of the error values can be seen in Table 5.8.

Table 5.5 Downward-Facing Experiment 2: Track Distance and TrackNet Errors

Trials: Track Distance: Direction Error: Position Error:
Trial 1 1.1112 m 1.2865% 3.9480%
Trial 2 1.7152 m 7.0262% 12.2712%
Trial 3 2.3985 m 1.6444% 4.9538%
Trial 4 2.6861 m 1.3396% 3.5708%
Trial 5 1.8625 m 2.1792% 6.0356%
Trial 6 2.0772 m 2.6195% 6.9981%
Average: 1.9751 m 2.6825% 6.2963%

5.2.3 Experiment 3

Following this success, the system was evaluated along an even longer stretch of track,

approximately 300 meters, consisting of two curves (one to the right and one to the
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left) and a straight section in between. This test was primarily to ensure the system’s

effectiveness along longer distances and with more track configurations. Also, this

experiment allowed the system to be tested with differing forward velocities, namely

one, two, and four meters per second. Overall, the system’s performance continued its

success, completing the full flight across eight trials, three at one meter per second,

three at two meters per second, and two at four meters per second. All of the

corresponding errors are detailed in Table 5.6 and the flight paths plotted in Fig. 5.9.

The average TrackNet errors were 2.4110% and 7.0089% for direction and position

respectively, and the average track position error was 2.0342 meters over all the trials.

This further demonstrated the systems ability to maintain a close distance from the

track across varying environments. Also, these trials prove the system’s effectiveness

at increasing forward velocities, but shows a limitation of this method as the error

increases with velocity. Specifically, the average track position error increased from

1.7384 meters to 2.2162 meters as from the slowest to the fastest forward velocity. The

change in forward velocity has a greater effect on the downward-facing approach due

to its limited view of the track. When compared to the forward-facing configuration,

the onboard camera can only see a small section of the track. This means that

when the forward velocity increases, the system has less time to respond to changing

states as it has less information. Here is the only case in these experiments that the

processing time becomes the primary limitation because if frames could be processed

more quickly this would counteract the decrease in control update speed. In spite

of this, the system was still capable of successfully completing this task up to the

maximum speed tested, namely four meters per second. It can be seen from Fig.

5.10 that even though there is a slight increase in error as the speed increases, it is

still not significant. This seems to imply that the system will remain successful at

increasingly high speeds, however this needs further testing to guarantee.

The success of this approach, demonstrates the effectiveness of the downward-
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facing approach which is a method scarcely represented and never implemented in the

literature. With this a second, fully functional track following system was developed

and showed to be successful at autonomously tracking and following railroad tracks.

Table 5.6 Downward-Facing Experiment 3: Track Distance and TrackNet Errors

Forward Vel.: Trials: Track Dist.: Dir. Error: Pos. Error:
1 m/s Trial 1 1.1105 m 3.9616% 3.1660%
1 m/s Trial 2 1.7062 m 2.1234% 4.0982%
1 m/s Trial 3 1.8625 m 1.9072% 6.7553%
1 m/s Average: 1.7384 m 2.6640% 4.6732%
2 m/s Trial 1 2.3985 m 2.2407% 4.2554%
2 m/s Trial 2 2.6861 m 1.4399% 3.2353%
2 m/s Trial 3 2.0772 m 1.7839% 5.1393%
2 m/s Average: 2.2086 m 1.8215% 4.2100%
4 m/s Trial 1 2.4964 m 1.4577% 4.9364%
4 m/s Trial 2 1.9359 m 4.3736% 24.4860%
4 m/s Average: 2.2162 m 2.9156% 14.711%
Overall Average: 2.0342 m 2.4110% 7.0089%

Figure 5.9 Positions of all trials (dotted blue lines) in third downward-facing
approach experiment are plotted alongside GPS ground truth track reference
(solid red line).
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Figure 5.10 Whisker plot of the track distance values of all eight trials in the third
downward-facing experiment. Each whisker plot represents the median value as the
red line as the center of the box, the 75th percentile as the top of the box, the 25th
percentile as the bottom of the box, the maximum and minimum non-outlier values as
the end points of the lines, and red dots as the outliers. The horizontal line spanning
the whole chart marks the overall average distance value.
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Chapter 6

Conclusion

The primary contribution of this work lies in presenting the first thoroughly tested

implementation of a UAV system designed for following railroad tracks, leverag-

ing cutting-edge computer vision-based track detection algorithms. The system

demonstrates the development of a highly effective track detection algorithm using

computer-vision technologies and its integration onboard a customized DJI Matrice

100 UAV. The track detection algorithm, TrackNet, utilizes a compound region-rail

detection approach. This process begins with a convolutional neural network, [20],

for track region segmentation followed by edge and line detection within this region.

These lines are then chained together to estimate the most accurate prediction of the

rail lines. Although this system is based on similar approaches in the literature it is

novel in a few key ways. Firstly, the structure of TrackNet as a compound region-rail

detection algorithm is not necessarily unique as an idea, but is scarcely represented.

Additionally, the few examples of such a technique in the literature are rudimentary

in the methods used for either stage, particularly for region detection. In contrast,

TrackNet utilizes the best of both region and rail detection methods in a way that is

yet to be attempted. Secondly, the rail selection process of TrackNet is an original

solution to this stage of the process. The concept of creating line chains to account for

all possible track configurations provides an increase robustness to the system when

compared to other approaches. Finally, the development of trajectory detection as a

rail interpretation method alongside vanishing point detection provides the possibility

for differing view angles and the comparison of downward and forward approaches.
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Such a comparison has not yet been conducted, as the trajectory approach itself is

scarcely been attempted.

In addition to the development of TrackNet, two flight control systems were im-

plemented based around the track interpretation methods of TrackNet. These ap-

proaches differ in the configuration of the onboard camera: one employing a forward-

facing camera configuration and the other utilizing a downward-facing configuration.

This division was in effort to validate the efficacy of either approach, to compare their

capabilities, and to provide the groundwork required for a full inspection application

based on these methods. After initial experimental results, it was determined that

both systems would require control of two degrees of freedom, yaw and roll. The

yaw controls would ensure the UAV traversed along the correct direction and the roll

controls would prevent it from trailing away from the track’s position. With these

systems in place, both approaches were tested across three series of experiments each.

Although the most prevalent method for controls in the literature was the forward-

facing approach utilizing only yaw controls, our implementation of this did not hold

in extensive testing. The vanishing point detection that the control system was based

on was effective in estimating the direction of the track, but it failed to determine the

UAV’s proximity to the track. The issue was clear after examining the data, the van-

ishing point error remained steady even as the track position error increased as seen

in Fig. 5.5. Later, it was seen that over longer lengths of track, the UAV would drift

away from the track region, but the vanishing point’s location would fail to correct for

this drift. This issue became particularly problematic when the UAV attempted to

traverse a curve in the track. For this reason the aforementioned roll control system

was implemented and tested. The roll controller prevented the slow positional drift

and corrected whenever it became an issue allowing the successful following of the

300 meter track with an average track position error of 1.9766 meters. This process

identified a flaw in the theoretical approach most prevalent in the literature and pro-
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vided a solution. This flaw was discovered because the system implemented here is

the first of its kind tested live, onboard a UAV, over varying track conditions. Not

only did the system prove successful, but was also tested with three forward velocities

and proved effective at each.

On the other hand, the downward-facing approach (a minority method in the

literature) was developed with both yaw and roll controls from the start, eliminating

the potential for a similar issue that its forward-facing counterpart encountered. This

system is the first implementation of autonomous track following with a downward-

facing camera configuration and the results proved its effectiveness, maintaining an

average track distance error of 2.0342 meters across eight trials and three forward

velocities. Although this approach performed worse than the forward-facing approach

when considering all eight trials, it instead performed better when only considering

the one meter per second trials with 1.7384 meters on average. This shows how the

system’s efficacy decreases as the forward velocity increases. Due to the perspective

of the downward-facing camera, it cannot sense sections of track further away from

it. This both causes difficulties in controls as well as inspection when the forward

speed increases. Because the downward-facing camera cannot sense far ahead, it

is inherently limited in the time the controllers have to respond to changing track

states. Nevertheless, both approaches proved to maintain successful autonomous

track following across 300 meters of track.

With the bigger picture in mind, it is important to evaluate more aspects of

each approach than pure system efficacy. In particular, the view of the downward-

facing camera is much more predictable when compared to that of the forward-facing

camera. The downward-facing view observes the track as a plane parallel to that of

the image frame. This assumption makes several inspection parameters much easier

to determine. For instance, the area directly above the track is clear as it overlaps

with the visible track itself. With the forward-facing perspective, however, some
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reconstruction needs to be done to determine what areas in the image are located

above the track. Additionally, for the downward-facing perspective no adjustments

need to be made to determine the correct size or shape of track defects that are

detected. For the forward-facing camera, the angle of the camera as well as the

altitude of the UAV will affect how such things are perceived and will require further

calculations. Another aspect to be considered is the flight altitude. In order for

the downward-facing camera to keep the full track within frame, it had to fly at a

higher altitude. This creates a limitation in the system, preventing it from track rails

when below a certain altitude. Additionally, this required altitude was outside of

the common track kinematic envelope (area which must be kept clear of structures)

creating potential safety concerns.

With all of these factors considered, a comparison can be made between the two

approaches. There is not, however, a clean victor that is superior in all circumstances,

instead it depends on the needs of the application. A table comparing the situations

in which each approach is more appropriate can be seen in Table 6.1. In this table

there are several factors that may be important for any given application and which

approach is more suited to that case. From the testing outlined here the forward-

facing approach is likely to be the best option if travel speed, altitude variety, or

safety are the aspects of greatest concern. On the other hand, the downward-facing

approach is a better choice if following efficacy or ease of inspection are of most

importance.

Table 6.1 Forward-Facing Approach and Downward-Facing Ap-
proach Comparison

Critical Factor: Forward-Facing: Downward-Facing:
Following Efficacy X
Travel Speed X
Altitude Variety X
Safety X
Ease of Inspection X
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Moving forward, a more robust system would integrate both a forward-facing cam-

era as well as a downward-facing camera. The utilization of both cameras would allow

for the benefits of either option. Additionally, an integration of the control systems

would then be possible and would increase the robustness and improve the overall

following efficacy. This combination would also assist in inspections types allowing for

multiple perspectives to be compared and analyzed to increase accuracy. With both

systems online, a vast array of different methods for inspection would be possible.

The UAV could prioritize the forward-facing camera for high speed inspection and

then slow down when a potential area of interest was detected, increasing its reliance

on the downward-facing camera. Additionally, a system could be created where the

UAV flies at high altitudes (downward-facing camera) to create a large scale map of

the track, then scan this section at a lower height (forward-facing camera) and repeat.

In addition to this major change of approach, there are potential areas for im-

provement in the system as it currently exists. The most significant relate to further

development into more sophisticated control methods. Here, the system only controls

two degrees of freedom with independent PD and PI controllers. There are several

improvements that could be made to this including: the control of additional degrees

of freedom, coupling of the controllers, prediction of future states and consideration

of past states.

Overall, this project presents the first successfully tested implementation of au-

tonomous vision-based track detection and following live and onboard a UAV.

83



Bibliography

[1] Jeremy Atack and Robert A. Margo. “The impact of access to rail trans-
portation on agricultural improvement: The American Midwest as a test case,
1850â1860”. In: Journal of Transport and Land Use 4.2 (2011), pp. 5–18. issn:
19387849. (Visited on 03/06/2024).

[2] Milan Banić et al. “Intelligent machine vision based railway infrastructure in-
spection and monitoring using UAV”. In: Facta Universitatis, Series: Mechan-
ical Engineering 17.3 (2019), pp. 357–364.

[3] Alexandre S. Brandão, Felipe N. Martins, and Higor B. Soneguetti. “A vision-
based line following strategy for an autonomous UAV”. In: 2015 12th Interna-
tional Conference on Informatics in Control, Automation and Robotics. Vol. 02.
2015, pp. 314–319.

[4] Anthony Clerc. “Tracking of railroads for autonomous guidance of UAVs: using
Vanishing Point detection”. PhD thesis. KTH Royal Institute of Technology,
2018.

[5] Dave Donaldson. “Railroads of the Raj: Estimating the Impact of Transporta-
tion Infrastructure”. In: American Economic Review 108.4-5 (2018), pp. 899–
934. doi: 10.1257/aer.20101199.

[6] Vigile Marie Fabella and Sonja Szymczak. “Resilience of Railway Transport
to Four Types of Natural Hazards: An Analysis of Daily Train Volumes”. In:
Infrastructures 6.12 (2021). issn: 2412-3811.

[7] Lance R Grenzeback, Andrew T Lukman, and Cambridge Systematics. Case
study of the transportation sector’s response to and recovery from hurricane’s
Katrina and Rita. Transportation Research Board, 2008.

[8] Feng Guo, Yu Qian, and Yuefeng Shi. “Real-time railroad track components
inspection based on the improved YOLOv4 framework”. In: Automation in
Construction 125 (2021), p. 103596. issn: 0926-5805. doi: https://doi.org/
10.1016/j.autcon.2021.103596.

84



[9] Emre Güçlü, İlhan Aydın, and Erhan Akın. “Fuzzy PID Based Autonomous
UAV Design for Railway Tracking”. In: 2021 International Conference on In-
formation Technology (ICIT). 2021, pp. 456–461. doi: 10.1109/ICIT52682.
2021.9491687.

[10] Allam Shehata Hassanein et al. A Survey on Hough Transform, Theory, Tech-
niques and Applications. 2015. arXiv: 1502.02160 [cs.CV].

[11] Mehmet Karakose et al. “A new computer vision based method for rail track de-
tection and fault diagnosis in railways”. In: International Journal of Mechanical
Engineering and Robotics Research 6.1 (2017), pp. 22–17.

[12] B. Le Saux et al. “Railway Detection: From Filtering to Segmentation Net-
works”. In: IGARSS 2018 - 2018 IEEE International Geoscience and Remote
Sensing Symposium. 2018, pp. 4819–4822. doi: 10.1109/IGARSS.2018.8517865.

[13] Keith Lewandowski and Nikolaos Vitzilaios. “UAV-Based Railroad Line Detec-
tion”. In: Joint Rail Conference (JRC). 2024.

[14] Xiang Liu, M. Rapik Saat, and Christopher P. L. Barkan. “Analysis of Causes
of Major Train Derailment and Their Effect on Accident Rates”. In: Trans-
portation Research Record 2289.1 (2012), pp. 154–163. doi: 10.3141/2289-20.
eprint: https://doi.org/10.3141/2289-20.

[15] Koppány Máthé and Lucian Buşoniu. “Vision and Control for UAVs: A Survey
of General Methods and of Inexpensive Platforms for Infrastructure Inspection”.
In: Sensors 15.7 (2015), pp. 14887–14916. issn: 1424-8220.

[16] Andrei I. Purica, Béatrice Pesquet-Popescu, and Frédéric Dufaux. “A railroad
detection algorithm for infrastructure surveillance using enduring airborne sys-
tems”. In: 2017 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP) (2017), pp. 2187–2191.

[17] Előd Páli et al. “Railway track following with the AR.Drone using vanish-
ing point detection”. In: 2014 IEEE International Conference on Automation,
Quality and Testing, Robotics. 2014, pp. 1–6. doi: 10 . 1109 / AQTR . 2014 .
6857870.

[18] Zhiquan Qi, Yingjie Tian, and Yong Shi. “Efficient railway tracks detection and
turnouts recognition method using HOG features”. In: Neural Computing and
Applications 23.1 (July 2013). issn: 1433-3058. doi: 10.1007/s00521-012-
0846-0.

[19] Yihao Ren et al. “Review of Emerging Technologies and Issues in Rail and
Track Inspection for Local Lines in the United States”. In: Journal of Trans-

85



portation Engineering, Part A: Systems 147.10 (2021), p. 04021062. doi: 10.
1061/JTEPBS.0000567.

[20] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net: Convolutional
Networks for Biomedical Image Segmentation”. In: CoRR abs/1505.04597 (2015).
arXiv: 1505.04597.

[21] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net: Convolutional
Networks for Biomedical Image Segmentation”. In: CoRR abs/1505.04597 (2015).
arXiv: 1505.04597.

[22] Arun Kumar Singh et al. “Vision based rail track extraction and monitoring
through drone imagery”. In: ICT Express 5.4 (2019), pp. 250–255. issn: 2405-
9595. doi: https://doi.org/10.1016/j.icte.2017.11.010.

[23] Evan McLean Smith. “A collection of computer vision algorithms capable of
detecting linear infrastructure for the purpose of UAV control”. PhD thesis.
Virginia Tech, 2016.

[24] Zhu Teng, Feng Liu, and Baopeng Zhang. “Visual railway detection by super-
pixel based intracellular decisions”. In: Multimedia Tools and Applications 75
(2015), pp. 2473 –2486.

[25] Antonio Torralba, Bryan C. Russell, and Jenny Yuen. “LabelMe: Online Im-
age Annotation and Applications”. In: Proceedings of the IEEE 98.8 (2010),
pp. 1467–1484. doi: 10.1109/JPROC.2010.2050290.

[26] Yin Wang et al. “RailNet: A Segmentation Network for Railroad Detection”.
In: IEEE Access 7 (2019), pp. 143772–143779. doi: 10.1109/ACCESS.2019.
2945633.

[27] Yunpeng Wu et al. “Hybrid deep learning architecture for rail surface segmenta-
tion and surface defect detection”. In: Computer-Aided Civil and Infrastructure
Engineering 37 (June 2021). doi: 10.1111/mice.12710.

[28] Oliver Zendel et al. “RailSem19: A Dataset for Semantic Rail Scene Under-
standing”. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW) (2019), pp. 1221–1229. url: https://api.
semanticscholar.org/CorpusID:198166233.

[29] Weihua Zhu et al. “Seismic risk assessment of the railway network of China’s
Mainland”. In: International Journal of Disaster Risk Science 11 (2020), pp. 452–
465.

86


	UAV-Based Tracking and Following of Railroad Lines
	Recommended Citation

	tmp.1725027122.pdf.POjXU

