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 ABSTRACT 

 

 A model is developed herein for predicting the onset of environmentally induced buckling 

in rail structures.  As described below, the model may be considered to be an extension of previous 

efforts spanning much of the twentieth century, and particularly should be considered as an 

extension of the three degree of freedom model presented in the CRR Report No. 2017-01 (Allen 

and Fry, 2017) as well as the efforts presented in the derivative M. S. Thesis (Musu 2021). Building 

on both previous analytic and computational solutions, a finite element model is developed for the 

purpose of predicting buckling as a function of the track and support structure material properties, 

the track and support system geometries, the applied track loading, and the initial lateral 

displacement within the track. Particular emphasis is placed on nonlinearity and history 

dependence of the track environment. The model is capable of handling multiple distinct modes 

of nonlinearity: geometric nonlinearity due to large deformations and track misalignment, 

constitutive nonlinearity due to nonlinear friction at the ballast-tie interface and due to track uplift. 

The resulting algorithm is deployed herein to solve problems demonstrating usefulness of the 

model.  
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DEDICATION 

[…]  

“[V]incer potero dentro a me l’ardore 

ch’i’ ebbi a divenir del mondo esperto 

e de li vizi umani e del valore; 

ma misi me per l’alto mare aperto 

sol con un legno e con quella compagna 

picciola da la qual non fui diserto. 

L’un lito e l’altro vidi infin la Spagna, 

fin nel Morrocco, e l’isola d’i Sardi, 

e l’altre che quel mare intorno bagna.  

[…]  

"O frati," dissi, "che per cento milia 

perigli siete giunti a l’occidente, 

a questa tanto picciola vigilia 

d’i nostri sensi ch’è del rimanente 

non vogliate negar l’esperïenza, 

di retro al sol, del mondo sanza gente. 

Considerate la vostra semenza: 

fatti non foste a viver come bruti, 

ma per seguir virtute e canoscenza".” 

Dante Alighieri, La Divina Comedia, L’Inferno, XXVI, 97-120 
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NOMENCLATURE 

 

A  Twice the cross-sectional area of the rail 

AAR The Association of American Railroads 

DOF Degree of Freedom 

E  Young’s modulus of the rail 

𝑒𝑒 Generic finite element  

FEM Finite Element Method 

FRA The Federal Railroad Administration 

𝐼𝐼𝑦𝑦𝑦𝑦  Twice the moment of inertia of the rail about the y axis 

𝐼𝐼𝑧𝑧𝑧𝑧  Twice the moment of inertia of the rail about the z axis 

𝑘𝑘𝑥𝑥  The x-component of the coefficient of friction of the rail-ballast system 

𝑘𝑘𝑦𝑦  The y-component of the coefficient of friction of the rail-ballast system 

𝑘𝑘𝑦𝑦0 The initial y-component of the nonlinear coefficient of friction  

𝑘𝑘𝑦𝑦1 The final y-component of the nonlinear coefficient of friction 

𝑘𝑘𝑧𝑧   The track modulus of the rail ballast system  

𝐿𝐿 The length of the buckled region of the rail 

𝐿𝐿𝑒𝑒 The length of a generic element of the discretized domain 

𝑀𝑀𝑦𝑦  The resultant moment about the y coordinate axis 

𝑀𝑀𝑧𝑧  The resultant moment about the z coordinate axis 

𝑛𝑛 The exponent for the nonlinear friction power law fitting parameter  

𝑃𝑃𝑇𝑇 = 𝐸𝐸𝐸𝐸𝐸𝐸∆𝑇𝑇  The thermally induced axial force resultant in the x coordinate direction 
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𝑝𝑝𝑥𝑥 The externally applied force per unit length in the x coordinate direction 

𝑝𝑝𝑦𝑦  The externally applied force per unit length in the y coordinate direction 

𝑝𝑝𝑧𝑧  The externally applied force per unit length in the z coordinate direction 

RNT The Rail Neutral Temperature 

𝑢𝑢(𝑥𝑥)  The displacement of the centroid of the rail in the x coordinate direction 

𝑢𝑢𝑖𝑖 The displacement vector in tensorial notation 

𝑢𝑢𝑖𝑖𝑒𝑒 The axial displacement component at the ith end of element 𝑒𝑒 

𝑣𝑣0 The denominator for the nonlinear friction power law fitting parameter 

𝑣𝑣(𝑥𝑥)  The displacement of the centroid of the rail in the y coordinate direction 

𝑣𝑣𝑖𝑖𝑒𝑒 The lateral displacement component at the ith end of element 𝑒𝑒 

𝑉𝑉𝑦𝑦  The lateral force resultant in the y coordinate direction 

𝑉𝑉𝑧𝑧  The vertical force resultant in the z coordinate direction 

𝑤𝑤(𝑥𝑥)   The displacement of the centroid of the rail in the z coordinate direction 

𝑤𝑤𝑖𝑖𝑒𝑒 The vertical displacement component at the ith end of element 𝑒𝑒 

x  The coordinate axis in the longitudinal direction of the rail structure 

𝑥𝑥𝑖𝑖 The spatial coordinate reference vector in tensorial notation 

𝑋𝑋𝑖𝑖 The material coordinate reference vector in tensorial notation 

y  The coordinate axis in the horizontal direction of the rail structure 

𝑦𝑦�  The horizontal distance from the centroid  

z The coordinate axis in the vertical direction of the rail structure 

𝑧𝑧̅  The vertical distance from the centroid 

𝐸𝐸  The coefficient of thermal expansion of the rail 
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𝛥𝛥𝑇𝑇  The temperature change of the rail from the rail neutral temperature 

𝜀𝜀𝑥𝑥𝑥𝑥  The axial strain within the rail 

𝜃𝜃𝑦𝑦  The rotation of the rail neutral surface about the y coordinate axis 

𝜃𝜃𝑦𝑦𝑖𝑖𝑒𝑒  The rotation component about the y axis at the ith end of element 𝑒𝑒 

𝜃𝜃𝑧𝑧  The rotation of the rail neutral surface about the z coordinate axis 

𝜃𝜃𝑧𝑧𝑖𝑖𝑒𝑒  The rotation component about the z axis at the ith end of element 𝑒𝑒 

𝜎𝜎𝑥𝑥𝑥𝑥  The normal component of stress in the x direction 
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*Partially reproduced with permission from the author, “Computational Model for Predicting Buckling in 
Rail Structures” by Valentina Musu [2021], An unpublished Master’s Thesis, Texas A&M University 

CHAPTER I  

INTRODUCTION*  

 

Rails are known to undergo a variety of failure mechanisms that can cause 

significant property damage and loss of life (FRA 2020). It is therefore propitious to 

develop advanced models for the purpose of mitigating such mishaps. Toward this end, 

one such model is presented herein. 

A common cause of rail misalignment is so-called thermal buckling, as shown in 

Fig. 1. The Federal Railroad Administration (FRA 2020) reports that there have been 

6,862 rail accidents within the United States in the last four years. Of these, approximately 

0.7% are listed as being caused by rail buckling. However, an additional 10% of reported 

accidents may be related to thermal buckling such as broken rail bases (1.0%), buff/slack 

action excess (1.9%), kicking or dropping cars (2.2%), head shelling (2.3%), harmonic 

rock off (1.6%), and transverse/compound fissure (1.0%). These reported figures suggest 

that thermal buckling may be a causal factor in significant loss of life and damage costing 

perhaps as much as billions of dollars.  

Unfortunately, guidelines for mitigating the effects of buckling in rails have not to 

date been developed, and this is due at least in part to the fact that buckling is a rather 

complicated phenomenon caused by the following factors: temperature distribution within 

the rail, rail pinning, crosstie balance, lateral track-walk, friction acting between the ties 

and the ballast, vertical lift-off and the structural configuration of the underlying railway 

base. Thus, there is a need to develop a technique for avoiding buckling in rails.  
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 The literature on this subject is long and deep. Historically, Galileo introduced the 

problem of a beam in bending in 1637 (Galileo 1637).  More than a century later, the first 

cogent model for beam bending was reported by Euler and Bernoulli (Euler 1744).  In the 

early twentieth century this approach was used to model the structural response of rails 

(Timoshenko 1915, 1927).  Over the most recent half century a rigorous beam formulation 

of the rail thermal buckling problem has emerged (Kerr 1974, 1978). This model has been 

previously deployed within the finite element method to predict lateral thermal buckling 

as a function of temperature, track residual deformation, nonlinear ballast interface 

resistance (Tvergaard and Needleman 1981). Nonlinear effects such as loss of contact 

between the rail and the wheel, rail lift-off from the tie and tie lift-off from the ballast have 

also been modelled (Dong, Sankar and Dukkipati 1994). Additionally, a significant effort 

has been made to investigate the stability of continuously welded rail (CWR) (Kish, 

Figure 1. Photograph Showing Thermally Induced Buckling of a Railway 
(Reprinted with Permission from Lankyrider, CC BY-SA 4.0, via Wikimedia 

Commons) 
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Samavedam and Jeong 1985, Kish, Kalay, Hazell, Schoengart and Samavedam 1993, 

Kish, Clark and Thompson 1995, Kish and Samavedam 1997 and 2005, Kish, Samavedam 

and Wormley 2001, and Klaren and Loach  1965) and the effects of thermal buckling in 

rails (Kish and Samavedam 1982, 1990, 1991, 1999 and 2013, Kish, Sussman and Trosino 

2003 and Kristoff 2001).  

 Furthermore, models excluding the effects of vehicle loads, also called static 

models, were developed for tangent and curved track with misalignments (Samavedam 

1979, Kish and Samavedam 1991). Finally, further research was conducted to develop a 

dynamic model of track thermal buckling and stability (Samavedam, Kish and Jeong 1986 

and 1987, Samavedam, Purple, Kish and Schoengart 1993, Samavedam 1995 and 1997, 

Samavedam, Kanaan, Pietrak, Kish and Sluz 1995, Samavedam et al. 1997 and 

Samavedam and Kish 2002). 

 More recently, a more detailed finite element formulation has been employed to 

include the effects of both fastener stiffness and vertical deformations on the prediction of 

lateral thermal buckling (Lim et al 2003). Furthermore, an analytical model has been 

developed for predicting the effects of tie and fastener resistance on lateral thermal 

buckling (Grissom and Kerr 2006). In order to obtain an analytical solution, however, 

Grissom and Kerr found it necessary to make simplifying assumptions that significantly 

impacted the accuracy of the predicted buckling load.  

 Although not focused on rail applications, geometrically nonlinear models have 

been developed for buckling and nonlinear post-buckling of Euler-Bernoulli beams 

supported on elastic foundations (Li and Batra 2007, Yang and Bradford 2016). 
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Furthermore, complex three-dimensional models of continuously welded rail (CWR) have 

been developed using commercially available FE codes for buckling analysis of tracks 

subjected to thermal loading under the following conditions: linear friction (Pucillo 2016), 

interspersed railway tracks (Kaewunruen et al. 2018) multi-body dynamic interaction in 

consideration of nonlinear friction and uplift of the track (Miri et al. 2021). Finally, in the 

oil and gas industry, offshore pipelines are known to experience somewhat similar 

buckling due to the transport of high-temperature or high-pressure hydrocarbons (Hobbs 

1984, Taylor and Aik 1989, Miles and Calladine 1999 and Zhang and Kyriakides 2021). 

 Based on the above findings, it is evident that there exists a need to develop a 

model that is capable of simulating the buckling response of rails due to simultaneous 

geometric nonlinearity, elastic foundation, track lift-off, and nonlinear friction occurring 

at the ballast-rail interface. Such a model would need to be able to accurately represent the 

real-world physics of the rail structure while maintaining computational efficiency. Thus, 

the current research is focused on making use of the significant findings reported above to 

develop a computational open-source model that is both convenient to deploy and capable 

of accurately predicting lateral buckling in rails. 



5 

*Partially reproduced with permission from the author, “Computational Model for Predicting Buckling in 
Rail Structures” by Valentina Musu [2021], An unpublished Master’s Thesis, Texas A&M University 

CHAPTER II  

MODEL DEVELOPMENT* 

  

 Consider a generic rail mounted on a railway, as shown in Fig. 2.  Note that the x 

coordinate axis is aligned in the direction of travel, and the y and z coordinate axes are 

aligned with the horizontal and vertical directions, respectively, thereby resulting in a 

right-handed coordinate system. Note that as a result of the right-handed coordinate 

system employed herein, a right-handed sign convention has also been adopted throughout 

the development of the model, such that a counterclockwise rotation in the x-y plane is 

considered positive, while a positive rotation in the x-z plane is by convention clockwise. 

 

 

Furthermore, as shown in Fig. 2, the track structure is composed of two rails, connected 

to the crossties by pins, which are in turn staked into the ballast and rest on an elastic 

Figure 2 .Generic Rail with Right-Handed Coordinate System 
as Shown (Reprinted with Permission from Musu 2021) 
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foundation. Each component of the structure interacts with each other: the crossties 

provide the structure with additional resistance to bending, while the ballast provides 

stability, drainage and resistance to motion due to the ballast-tie interface friction and 

finally, the elastic foundation provides resistance to out-of-plane motion.  

 In order to construct a model for buckling of the track structure, it is assumed that 

the structure may be adequately modeled as a Euler-Bernoulli beam-column, implying 

that it is long and slender (Euler 1744, Allen and Haisler1985, Grissom and Kerr 2006). 

Furthermore, as Lim and coworkers (Lim et al 2003) have shown that the out-of-plane 

deformation component might be significant, it will be assumed herein that this 

component of deformation must be included in the model to accurately predict lateral 

buckling. Using these two assumptions and considering how the structural components of 

the track structure interact with each other, the track structure shown in Fig. 2 may be 

idealized as a single slender beam. The centroidal axis of the rail may deform in all three 

coordinate directions, and the components of this displacement are denoted by 𝑢𝑢(𝑥𝑥, 𝑡𝑡), 

𝑣𝑣(𝑥𝑥, 𝑡𝑡) and 𝑤𝑤(𝑥𝑥, 𝑡𝑡), respectively.  Similarly, the components of stress 𝜎𝜎𝑥𝑥𝑥𝑥(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡), 

𝜎𝜎𝑥𝑥𝑦𝑦(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) and 𝜎𝜎𝑥𝑥𝑧𝑧(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡)  are shown on an arbitrary cross-section of the rail in Fig. 

3. 
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 A top view of a free body diagram of a section of the rail is constructed in Fig. 4, 

wherein the load per unit length applied to the centroidal axis of the rail is composed of 

components 𝑝𝑝𝑥𝑥(𝑥𝑥, 𝑡𝑡) and 𝑝𝑝𝑦𝑦(𝑥𝑥, 𝑡𝑡) in the x and y coordinate directions, respectively.  In 

addition, the normal component of force per unit length applied to the bottom of the rail 

due to the normal displacement component 𝑣𝑣(𝑥𝑥, 𝑡𝑡) is denoted as −𝑘𝑘𝑦𝑦𝑣𝑣(𝑥𝑥, 𝑡𝑡), where 

𝑘𝑘𝑦𝑦(𝑥𝑥, 𝑡𝑡) is the lateral coefficient of friction and the negative sign is employed so that the 

base stiffness is non-negative when the resultant is positive due to lateral displacement of 

the rail. Similarly, the axial component of force per unit length applied to the bottom of 

the rail due to the axial component of displacement 𝑢𝑢(𝑥𝑥, 𝑡𝑡) is denoted as −𝑘𝑘𝑥𝑥𝑢𝑢(𝑥𝑥, 𝑡𝑡), 

where 𝑘𝑘𝑥𝑥(𝑥𝑥, 𝑡𝑡) is the axial coefficient of friction. 

 

Figure 3. Components of Stress on an Arbitrary Cross-Section of the 
Rail (Reprinted with Permission from Musu 2021) 
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 Note also that the stress components on the two vertical cuts within the rail are 

denoted generically by the two infinitesimal stress boxes on these faces.  Finally, note that 

the differential element is depicted in the deformed configuration, so that the axial force 

affects the transverse displacement of the rail.  This necessarily causes the response of the 

rail to be geometrically nonlinear. 

 A side view of a free body diagram of a section of the rail is constructed in Fig. 5, 

wherein the load per unit length applied to the centroidal axis of the rail is composed of 

components 𝑝𝑝𝑥𝑥(𝑥𝑥, 𝑡𝑡) and 𝑝𝑝𝑧𝑧(𝑥𝑥, 𝑡𝑡) in the x and z coordinate directions, respectively.  In 

addition, the out-of-plane component of force per unit length applied to the bottom of the 

Figure 4. Top View of Free Body Diagram of Cut Rail 
(Reprinted with Permission from Musu 2021) 
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rail due to the out-of-plane displacement component w(𝑥𝑥, 𝑡𝑡) is denoted as −𝑘𝑘𝑧𝑧𝑤𝑤(𝑥𝑥, 𝑡𝑡), 

where 𝑘𝑘𝑧𝑧(𝑥𝑥, 𝑡𝑡) is the track modulus and the negative sign is employed so that the base 

stiffness is non-negative when the resultant is positive due to downward displacement of 

the rail.  Note that the side view is depicted in the undeformed configuration, therefore 

obviating the possibility of predicting out-of-plane (vertical) buckling of the rail.  This 

simplification of the model results from the fact that the substantial difference in the 

second area moment of the rail about the x-y plane is sufficiently large to obviate out-of-

plane buckling of the rail. 

 Consistent with Euler-Bernoulli beam theory the force and moment resultants in 

the x-y and x-z planes are now defined as follows (Allen and Haisler 1985): 

Figure 5. Side View of Free Body Diagram of Cut Rail 
(Reprinted with Permission from Musu 2021) 
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 𝑃𝑃 = 𝑃𝑃(𝑥𝑥, 𝑡𝑡) ≡ ∫ 𝜎𝜎𝑥𝑥𝑥𝑥𝑑𝑑𝐸𝐸𝐴𝐴         (1) 

 𝑉𝑉𝑦𝑦 = 𝑉𝑉𝑦𝑦(𝑥𝑥, 𝑡𝑡) ≡ ∫ 𝜎𝜎𝑥𝑥𝑦𝑦𝑑𝑑𝐸𝐸𝐴𝐴         (2) 

 𝑉𝑉𝑧𝑧 = 𝑉𝑉𝑧𝑧(𝑥𝑥, 𝑡𝑡) ≡ ∫ 𝜎𝜎𝑥𝑥𝑧𝑧𝑑𝑑𝐸𝐸𝐴𝐴         (3) 

 𝑀𝑀𝑦𝑦 = 𝑀𝑀𝑦𝑦(𝑥𝑥, 𝑡𝑡) ≡ ∫ 𝜎𝜎𝑥𝑥𝑥𝑥𝑧𝑧̅𝑑𝑑𝐸𝐸𝐴𝐴         (4) 

 𝑀𝑀𝑧𝑧 = 𝑀𝑀𝑧𝑧(𝑥𝑥, 𝑡𝑡) ≡ −∫ 𝜎𝜎𝑥𝑥𝑥𝑥𝑦𝑦�𝑑𝑑𝐸𝐸𝐴𝐴        (5) 

where A is the cross-sectional area of the rail, 𝑦𝑦� is the horizontal distance from the centroid, 

and 𝑧𝑧̅ is the vertical distance from the centroid. The resultants defined in equations (1)-(5) 

can be utilized to replace the stress components, so that the free body diagrams shown in 

Fig. 6 and Fig. 7 can be constructed. 

Figure 6. Resultant Forces and Moments Applied to a 
Differential Element of the Rail in the Horizontal Plane 

(Reprinted with Permission from Musu 2021) 
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 Note that the rotational resistance per unit length, 𝑟𝑟𝑧𝑧(𝑥𝑥, 𝑡𝑡), has been included in the 

free body diagram shown in Fig. 6. This resistance, due to the crosstie and fastener 

resistance to the rotation of the track, was previously introduced by Grissom and Kerr 

(Grissom and Kerr 2006). The inclusion of this term is explained by the fact that since the 

ballast and the fasteners impede rigid-body rotation of the crossties with the track, the 

crossties apply a moment in the opposite direction from the rotation of the track about the 

z-axis, and this moment is applied to the rail by the fastener connections. These moments 

are therefore pointwise in nature, but are depicted as distributed moments per unit length, 

𝑟𝑟𝑧𝑧(𝑥𝑥, 𝑡𝑡), as a simplification to the model. This aspect of the model has the advantage that 

Figure 7. Resultant Forces and Moments Applied to a 
Differential Element of the Rail in the Vertical Plane 

(Reprinted with Permission from Musu 2021) 
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it captures the physical effects of the crossties on the rail response without actually 

requiring the crossties to be included as structural members, a complicating factor that has 

been reported elsewhere (Lim et al. 2003). 

 Assuming linear thermoelastic behavior, the axial stress within the rail is given by 

the following constitutive equation: 

 𝜎𝜎𝑥𝑥𝑥𝑥 = 𝐸𝐸(𝜀𝜀𝑥𝑥𝑥𝑥 − 𝐸𝐸𝛥𝛥𝑇𝑇)         (6) 

where 𝐸𝐸 is the modulus of elasticity of the rail, 𝜀𝜀𝑥𝑥𝑥𝑥 is the axial strain within the rail, 𝐸𝐸 is 

the coefficient of thermal expansion within the rail, and 𝛥𝛥𝑇𝑇 is the temperature change from 

the rail neutral temperature, which is assumed to be temporally variable, but spatially 

constant in the current dissertation. In addition, as shown in Figs. 8 and 9, the Euler-

Bernoulli assumption that plane sections remain plane during the deformations results in 

the following kinematic relationship (Allen and Haisler 1985): 

 𝑢𝑢(𝑥𝑥, 𝑦𝑦) = 𝑢𝑢(𝑥𝑥, 0) − 𝜃𝜃𝑧𝑧(𝑥𝑥)𝑦𝑦� + 𝜃𝜃𝑦𝑦(𝑥𝑥)𝑧𝑧̅      (7) 

where 𝑢𝑢(𝑥𝑥, 0) is the axial displacement of the real neutral surface, which will be denoted 

throughout the remainder of this paper simply as 𝑢𝑢(𝑥𝑥), 𝜃𝜃𝑦𝑦 = −𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥

 is the rotation of the 

rail neutral surface about the y coordinate axis and 𝜃𝜃𝑧𝑧 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥

 is the rotation of the rail neutral 

surface about the z coordinate axis. 
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Figure 8. Depiction of the Kinematics of Displacement in a Euler-Bernoulli 
Beam in the Horizontal Plane (Reprinted with Permission from Musu 2021) 
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Furthermore, the axial strain is approximated by (Tvergaard and Needleman 1981, 

Grissom and Kerr 2006):  

 𝜀𝜀𝑥𝑥𝑥𝑥 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥

+ 1
2
�𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥
�
2
        (8) 

Note that it was assumed that the out-of-plane component of the displacement might be 

significant, however, it was assumed that 1
2
�𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥
�
2
≅ 0. While the out-of-plane component 

is significant, it is still appropriate to assume small displacements in the vertical plane. 

Figure 9. Depiction of the Kinematics of Displacement in a Euler-
Bernoulli Beam in the Vertical Plane (Reprinted with Permission 

from Musu 2021) 



 

15 

 

This is due to the geometry of the typical rail cross-section, whereas 𝐼𝐼𝑦𝑦𝑦𝑦 tends to be quite 

large, which is also a sufficient condition to obviate out-of-plane buckling in rails.  

 Substituting equation (7) into equation (8), and equation (6) into this result gives 

the following: 

 𝜎𝜎𝑥𝑥𝑥𝑥 = 𝐸𝐸 �𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥
− 𝑦𝑦� 𝑑𝑑𝜃𝜃𝑧𝑧

𝑑𝑑𝑥𝑥
+ 𝑧𝑧̅ 𝑑𝑑𝜃𝜃𝑦𝑦

𝑑𝑑𝑥𝑥
+ 1

2
�𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥
�
2
− 𝐸𝐸𝛥𝛥𝑇𝑇�      (9)  

 In addition, it is assumed that the relation between the rotational stiffness and the 

track rotation is given by the following constitutive relation:  

 𝑟𝑟𝑧𝑧 = −𝑆𝑆𝜃𝜃𝑧𝑧          (10)  

 Note that in the above equation it is assumed that the relation between the rotation 

of the track structure about the z coordinate axis and the angle of rotation is linear 

(Grissom and Kerr 2006). Whereas limited experimental data support this assumption 

(Grissom and Kerr 2006), it is to be noted that the rotational stiffness, S, depends strongly 

on the type of fastener used (Grissom and Kerr 2006). Furthermore, in the current research 

it will be assumed that S depends not only on the type of fasteners connecting the track to 

the crossties, but it is also a weak function of the number of cycles of loading, 𝑛𝑛𝑐𝑐, 

previously applied to the truck structure. Thus, at any point in time the relationship 

described by equation (10) is assumed to apply, but the value of S is at that point in time 

a constant depending on both the type of fasteners deployed and 𝑛𝑛𝑐𝑐, thereby quasi-

linearizing this effect on the rail response. This assumption is based on anecdotal 

observation suggesting that the ballast settlement, grinding, spallation and rearrangement 
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over time can affect the rotational resistance of the crosstie-fastener system to track 

rotation, and such an assumption will be validated experimentally in future research. 

 Applying Newton’s first law to the forces in the x coordinate direction and 

moments about the y and z axis in Fig. (6) and (7) together with equations (1)-(10) will 

result in the general three-dimensional formulation shown in Table 1 for a generic rail 

subjected to mechanical and spatially constant thermal loading (Kerr 1974, 1978, Allen 

and Haisler 1985).   
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Independent Variables: 𝑥𝑥, 𝑡𝑡 
Known Inputs: 
 Loads:  𝑝𝑝𝑥𝑥 = 𝑝𝑝𝑥𝑥(𝑥𝑥, 𝑡𝑡),  𝑝𝑝𝑦𝑦 = 𝑝𝑝𝑦𝑦(𝑥𝑥, 𝑡𝑡), 𝑝𝑝𝑧𝑧 = 𝑝𝑝𝑧𝑧(𝑥𝑥, 𝑡𝑡)   0 < 𝑥𝑥 < 𝐿𝐿 
 Temperature change: 𝛥𝛥𝑇𝑇 = 𝛥𝛥𝑇𝑇(𝑡𝑡) = 𝑘𝑘𝑛𝑛𝑘𝑘𝑤𝑤𝑛𝑛 
 Geometry:  𝐸𝐸, 𝐼𝐼𝑦𝑦𝑦𝑦, 𝐼𝐼𝑧𝑧𝑧𝑧, 𝐿𝐿,𝑦𝑦�, 𝑧𝑧̅   
 Material Properties: 𝐸𝐸,𝐸𝐸,𝑘𝑘𝑥𝑥 ,𝑘𝑘𝑦𝑦,𝑘𝑘𝑧𝑧, 𝑆𝑆 
Unknowns: 𝑢𝑢, 𝑣𝑣,𝑤𝑤,𝜎𝜎𝑥𝑥𝑥𝑥,𝑃𝑃,𝑉𝑉𝑦𝑦,𝑉𝑉𝑧𝑧,𝑀𝑀𝑦𝑦,𝑀𝑀𝑧𝑧 = 9 unknowns 
Field Equations: 
        No. of Equations 
(11) 𝑑𝑑𝑑𝑑

𝑑𝑑𝑥𝑥
= −𝑝𝑝𝑥𝑥 + 𝑘𝑘𝑥𝑥𝑢𝑢      1 

(12) 𝑑𝑑𝑉𝑉𝑦𝑦
𝑑𝑑𝑥𝑥

= −𝑝𝑝𝑦𝑦 + 𝑘𝑘𝑦𝑦𝑣𝑣      1 

(13) 𝑑𝑑𝑉𝑉𝑧𝑧
𝑑𝑑𝑥𝑥

= −𝑝𝑝𝑧𝑧 + 𝑘𝑘𝑧𝑧𝑤𝑤      1 

(14) 𝑑𝑑𝑀𝑀𝑦𝑦

𝑑𝑑𝑥𝑥
= 𝑉𝑉𝑧𝑧        1 

(15)     𝑑𝑑𝑀𝑀𝑧𝑧
𝑑𝑑𝑥𝑥

= −𝑉𝑉𝑦𝑦 − (𝑆𝑆 − 𝑃𝑃) 𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥

     1 

(16) 𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥

= (𝑑𝑑+𝑑𝑑𝑇𝑇)
𝐸𝐸𝐴𝐴

− 1
2
�𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥
�
2
      1 

(17) 𝑑𝑑2𝑑𝑑
𝑑𝑑𝑥𝑥2

= − 𝑀𝑀𝑦𝑦

𝐸𝐸𝐼𝐼𝑦𝑦𝑦𝑦
       1 

(18) 𝑑𝑑2𝑑𝑑
𝑑𝑑𝑥𝑥2

= 𝑀𝑀𝑧𝑧
𝐸𝐸𝐼𝐼𝑧𝑧𝑧𝑧

       1 

(19) 𝜎𝜎𝑥𝑥𝑥𝑥 = (𝑑𝑑+𝑑𝑑𝑇𝑇)
𝐴𝐴

− 𝑀𝑀𝑧𝑧𝑦𝑦�
𝐼𝐼𝑧𝑧𝑧𝑧

+ 𝑀𝑀𝑦𝑦�̅�𝑧
𝐼𝐼𝑦𝑦𝑦𝑦

− 𝐸𝐸𝐸𝐸𝛥𝛥𝑇𝑇    1 

        ________ 
       Total  9 

 

where it should be noted that all variables are defined in the Nomenclature Section of this 

manuscript.  

 It should be apparent that the problem formulated in Table 1 represents a well-

posed boundary value problem when appropriate boundary conditions are imposed. 

However, as there are 9 coupled equations in 9 unknowns, it might be exceedingly difficult 

to solve, depending on the loading conditions and the material properties involved. In 

Table 1. Model for Predicting the Rail Response 
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particular, the friction coefficients 𝑘𝑘𝑥𝑥 and 𝑘𝑘𝑦𝑦 are observed to be nonlinear, whereas 𝑘𝑘𝑧𝑧 

was assumed to behave linearly. Accordingly, although at least one solution has in fact 

been obtained for specialized, simplified conditions (Grissom and Kerr 2006), closed-form 

solutions are difficult to obtain for this problem. Note that while Grissom and Kerr 

proposed an analytical solution, a great number of simplifying assumptions had to be 

imposed in order to obtain it, thus significantly compromising the accuracy of the 

predicted results. Alternatively, computational solutions are possible using the finite 

element method, and this approach will be the subject of the next chapter.
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*Partially reproduced with permission from the author, “Computational Model for Predicting Buckling in 
Rail Structures” by Valentina Musu [2021], An unpublished Master’s Thesis, Texas A&M University 

CHAPTER III  

VARIATIONAL FORMULATION* 

 

 In the present research the displacement components 𝑢𝑢(𝑥𝑥), v(𝑥𝑥) and 𝑤𝑤(𝑥𝑥) are 

treated as primary unknowns. From equation (9) it can be seen that once these are 

determined the actual stress components follow quite simply, and the remaining unknowns 

can be calculated using equation (1)-(5). In order to construct a finite element algorithm 

for predicting the primary unknowns it is first necessary to construct a variational principle 

in terms of these unknowns.  Briefly, this is accomplished by reducing out all the 

secondary unknowns according to equations (11), (12), (14)-(16) and (18) and integrating 

by parts all the higher order terms. This standard procedure allows the user to construct 

the so-called “weak form” of the original differential equations. The weak formulation has 

the advantages of weakening the continuity of the dependent variables, thus producing 

symmetric coefficient matrices, as well as including in the weak form the natural boundary 

conditions of the problem, which is performed to include physically meaningful boundary 

conditions for the problem. Both of these features help in the development of the finite 

element formulation of a problem (Reddy 1984, Oden 1972).  

 The weak formulation was derived in detail by Musu (Musu 2021) and the final 

form of the variational principle to be implemented within the finite element method 

(FEM) is reported in Equation (20).  
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� 𝐸𝐸𝐸𝐸
𝑑𝑑𝑢𝑢
𝑑𝑑𝑥𝑥

𝐿𝐿

0
𝛿𝛿 �
𝑑𝑑𝑢𝑢
𝑑𝑑𝑥𝑥
� 𝑑𝑑𝑥𝑥 + � �𝐸𝐸𝐼𝐼𝑧𝑧𝑧𝑧

𝑑𝑑2𝑣𝑣
𝑑𝑑𝑥𝑥2

� 𝛿𝛿 �
𝑑𝑑2𝑣𝑣
𝑑𝑑𝑥𝑥2

� 𝑑𝑑𝑥𝑥
𝐿𝐿

0
+ � �𝐸𝐸𝐼𝐼𝑦𝑦𝑦𝑦

𝑑𝑑2𝑤𝑤
𝑑𝑑𝑥𝑥2

�
𝐿𝐿

0
𝛿𝛿 �

𝑑𝑑2𝑤𝑤
𝑑𝑑𝑥𝑥2

� 𝑑𝑑𝑥𝑥 + 

−∫ (−𝑆𝑆 + 𝑃𝑃𝑇𝑇) 𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥
𝛿𝛿 �𝑑𝑑𝑑𝑑

𝑑𝑑𝑥𝑥
� 𝑑𝑑𝑥𝑥𝐿𝐿

0 + ∫ 𝐸𝐸𝐸𝐸 𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥

𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥
𝛿𝛿 �𝑑𝑑𝑑𝑑

𝑑𝑑𝑥𝑥
� 𝑑𝑑𝑥𝑥𝐿𝐿

0 + ∫ 𝐸𝐸𝐴𝐴
2
�𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥
�
2
𝛿𝛿 �𝑑𝑑𝑑𝑑

𝑑𝑑𝑥𝑥
� 𝑑𝑑𝑥𝑥 +𝐿𝐿

0

       +∫ 𝐸𝐸𝐴𝐴
2
�𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥
�
3
𝛿𝛿 �𝑑𝑑𝑑𝑑

𝑑𝑑𝑥𝑥
� 𝑑𝑑𝑥𝑥 +𝐿𝐿

0 ∫ 𝑘𝑘𝑥𝑥𝑢𝑢𝛿𝛿𝑢𝑢
𝐿𝐿
0 𝑑𝑑𝑥𝑥 + ∫ 𝑘𝑘𝑦𝑦𝑣𝑣𝛿𝛿𝑣𝑣

𝐿𝐿
0 𝑑𝑑𝑥𝑥 + ∫ 𝑘𝑘𝑧𝑧𝑤𝑤𝛿𝛿𝑤𝑤

𝐿𝐿
0 𝑑𝑑𝑥𝑥 =

∫ 𝑝𝑝𝑥𝑥𝛿𝛿𝑢𝑢
𝐿𝐿
0 𝑑𝑑𝑥𝑥 + ∫ 𝑃𝑃𝑇𝑇𝐿𝐿

0 𝛿𝛿 �𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥
� 𝑑𝑑𝑥𝑥 + ∫ 𝑝𝑝𝑦𝑦𝛿𝛿𝑣𝑣

𝐿𝐿
0 𝑑𝑑𝑥𝑥 + ∫ 𝑝𝑝𝑧𝑧𝛿𝛿𝑤𝑤

𝐿𝐿
0 𝑑𝑑𝑥𝑥 + [(𝑃𝑃𝛿𝛿𝑢𝑢)]0𝐿𝐿 + �𝑉𝑉𝑦𝑦𝛿𝛿𝑣𝑣�0

𝐿𝐿 +

 [𝑉𝑉𝑧𝑧𝛿𝛿𝑤𝑤]0𝐿𝐿+�𝑀𝑀𝑦𝑦𝛿𝛿𝜃𝜃𝑦𝑦�0
𝐿𝐿+[𝑀𝑀𝑧𝑧𝛿𝛿𝜃𝜃𝑧𝑧]0𝐿𝐿        (20) 

 The above is utilized in the following chapter for the development of the finite 

element formulation. 
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CHAPTER IV  

THE FINITE ELEMENT FORMULATION* 

 

 Equation (20) may now be discretized for a generic beam element in five degrees 

of freedom (DOF).  To do this, it is assumed that, within a generic element of length, 𝐿𝐿𝑒𝑒, 

the displacement field may be approximated by complete algebraic polynomials that fulfill 

the following conditions (Reddy 1984, Allen and Haisler 1985): 

1. The polynomials should be continuous and differentiable over the element in 

order to ensure nonzero coefficient matrices 

2. The polynomials should be complete so that all possible states of the solution 

might be captured (i.e. constant, linear etc.) 

3. The polynomial should be an interpolant of the primary variables at the nodes 

of the element in order to enforce continuity of the solution across common 

nodes 

 The assumed displacement field and shape functions were reported in detail by 

Musu (Musu 2021) and may be substituted into the variational principle (20), thereby 

resulting in algebraic equations of the following form for a generic frame element (Reddy 

1984, Allen and Haisler 1985): 

�𝐾𝐾𝑖𝑖𝑖𝑖𝑒𝑒
10

𝑖𝑖=1

𝑞𝑞𝑖𝑖𝑒𝑒 + �𝐵𝐵𝑖𝑖𝑖𝑖𝑒𝑒
10

𝑖𝑖=1

𝑞𝑞𝑖𝑖𝑒𝑒 + �𝐺𝐺𝑖𝑖𝑖𝑖𝑒𝑒
10

𝑖𝑖=1

𝑞𝑞𝑖𝑖𝑒𝑒 + �𝐻𝐻𝑖𝑖𝑖𝑖𝑒𝑒
10

𝑖𝑖=1

𝑞𝑞𝑖𝑖𝑒𝑒 + �𝑀𝑀𝑖𝑖𝑖𝑖
𝑒𝑒

10

𝑖𝑖=1

𝑞𝑞𝑖𝑖𝑒𝑒 + �𝑁𝑁𝑖𝑖𝑖𝑖𝑒𝑒
10

𝑖𝑖=1

𝑞𝑞𝑖𝑖𝑒𝑒 = 𝐹𝐹𝑖𝑖𝑒𝑒                

𝑋𝑋 = 1, … 10             (21) 
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where each term above accounts for one or more terms in equation (20) as reported by 

Musu (Musu 2021). Furthermore, note that nonlinear matrices 𝐻𝐻𝑖𝑖𝑖𝑖𝑒𝑒  and 𝑀𝑀𝑖𝑖𝑖𝑖
𝑒𝑒  presented in 

equation (21) will be neglected in the implementation of this model under the assumption 

that linear small strain theory is sufficient to accurately predict lateral buckling in rails. In 

addition, 

 �𝑞𝑞𝑖𝑖𝑒𝑒� ≡  

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧
𝑢𝑢1𝑒𝑒
𝑣𝑣1𝑒𝑒
𝑤𝑤1𝑒𝑒
𝜃𝜃𝑦𝑦1𝑒𝑒

𝜃𝜃𝑧𝑧1𝑒𝑒
𝑢𝑢2𝑒𝑒
𝑣𝑣2𝑒𝑒
𝑤𝑤2𝑒𝑒
𝜃𝜃𝑦𝑦2𝑒𝑒

𝜃𝜃𝑧𝑧2𝑒𝑒 ⎭
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫

         (22) 

where 𝑢𝑢1𝑒𝑒 and 𝑢𝑢2𝑒𝑒 are the axial displacement components at the left and right ends of 

element e, 𝑣𝑣1𝑒𝑒, 𝑣𝑣2𝑒𝑒, 𝑤𝑤1𝑒𝑒and  𝑤𝑤2𝑒𝑒 are respectively the lateral and vertical displacement 

components at the left and right ends of element e, and 𝜃𝜃𝑦𝑦1𝑒𝑒 , 𝜃𝜃𝑦𝑦2𝑒𝑒 , 𝜃𝜃𝑧𝑧1𝑒𝑒  and 𝜃𝜃𝑧𝑧2𝑒𝑒  are 

respectively, the rotation components about the y and z axes at the left and right ends of 

element e. Moreover,  
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[𝐾𝐾𝑒𝑒] =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝐸𝐸𝑒𝑒𝐴𝐴𝑒𝑒

𝐿𝐿𝑒𝑒
0 0 0 0 −𝐸𝐸𝑒𝑒𝐴𝐴𝑒𝑒

𝐿𝐿𝑒𝑒
0 0 0 0

0 12𝐸𝐸𝑒𝑒𝐼𝐼𝑧𝑧𝑧𝑧𝑒𝑒

(𝐿𝐿𝑒𝑒)3
0 0 6𝐸𝐸𝑒𝑒𝐼𝐼𝑧𝑧𝑧𝑧𝑒𝑒

(𝐿𝐿𝑒𝑒)2
0 −12𝐸𝐸𝑒𝑒𝐼𝐼𝑧𝑧𝑧𝑧𝑒𝑒

(𝐿𝐿𝑒𝑒)3
0 0 6𝐸𝐸𝑒𝑒𝐼𝐼𝑧𝑧𝑧𝑧𝑒𝑒

(𝐿𝐿𝑒𝑒)2

0 0 12𝐸𝐸𝑒𝑒𝐼𝐼𝑦𝑦𝑦𝑦𝑒𝑒

(𝐿𝐿𝑒𝑒)3
− 6𝐸𝐸𝑒𝑒𝐼𝐼𝑦𝑦𝑦𝑦𝑒𝑒

(𝐿𝐿𝑒𝑒)2
0 0 0 −12𝐸𝐸𝑒𝑒𝐼𝐼𝑦𝑦𝑦𝑦𝑒𝑒

(𝐿𝐿𝑒𝑒)3
− 6𝐸𝐸𝑒𝑒𝐼𝐼𝑦𝑦𝑦𝑦𝑒𝑒

(𝐿𝐿𝑒𝑒)2
0

0 0 −6𝐸𝐸𝑒𝑒𝐼𝐼𝑦𝑦𝑦𝑦𝑒𝑒

(𝐿𝐿𝑒𝑒)2
4𝐸𝐸𝑒𝑒𝐼𝐼𝑦𝑦𝑦𝑦𝑒𝑒

𝐿𝐿𝑒𝑒
0 0 0 6𝐸𝐸𝑒𝑒𝐼𝐼𝑦𝑦𝑦𝑦𝑒𝑒

(𝐿𝐿𝑒𝑒)2
2𝐸𝐸𝑒𝑒𝐼𝐼𝑦𝑦𝑦𝑦𝑒𝑒

𝐿𝐿𝑒𝑒
0

0 6𝐸𝐸𝑒𝑒𝐼𝐼𝑧𝑧𝑧𝑧𝑒𝑒

(𝐿𝐿𝑒𝑒)2
0 0 4𝐸𝐸𝑒𝑒𝐼𝐼𝑦𝑦𝑦𝑦𝑒𝑒

𝐿𝐿𝑒𝑒
0 −6𝐸𝐸𝑒𝑒𝐼𝐼𝑧𝑧𝑧𝑧𝑒𝑒

(𝐿𝐿𝑒𝑒)2
0 0 2𝐸𝐸𝑒𝑒𝐼𝐼𝑧𝑧𝑧𝑧𝑒𝑒

𝐿𝐿𝑒𝑒

− 𝐸𝐸𝑒𝑒𝐴𝐴𝑒𝑒

𝐿𝐿𝑒𝑒
0 0 0 0 𝐸𝐸𝑒𝑒𝐴𝐴𝑒𝑒

𝐿𝐿𝑒𝑒
0 0 0 0

0 −12𝐸𝐸𝑒𝑒𝐼𝐼𝑧𝑧𝑧𝑧𝑒𝑒

(𝐿𝐿𝑒𝑒)3
0 0 −6𝐸𝐸𝑒𝑒𝐼𝐼𝑧𝑧𝑧𝑧𝑒𝑒

(𝐿𝐿𝑒𝑒)2
0 12𝐸𝐸𝑒𝑒𝐼𝐼𝑧𝑧𝑧𝑧𝑒𝑒

(𝐿𝐿𝑒𝑒)3
0 0 −6𝐸𝐸𝑒𝑒𝐼𝐼𝑧𝑧𝑧𝑧𝑒𝑒

(𝐿𝐿𝑒𝑒)2

0 0 −12𝐸𝐸𝑒𝑒𝐼𝐼𝑦𝑦𝑦𝑦𝑒𝑒

(𝐿𝐿𝑒𝑒)3
6𝐸𝐸𝑒𝑒𝐼𝐼𝑦𝑦𝑦𝑦𝑒𝑒

(𝐿𝐿𝑒𝑒)2
0 0 0 12𝐸𝐸𝑒𝑒𝐼𝐼𝑦𝑦𝑦𝑦𝑒𝑒

(𝐿𝐿𝑒𝑒)3
6𝐸𝐸𝑒𝑒𝐼𝐼𝑦𝑦𝑦𝑦𝑒𝑒

(𝐿𝐿𝑒𝑒)2
0

0 0 −6𝐸𝐸𝑒𝑒𝐼𝐼𝑦𝑦𝑦𝑦𝑒𝑒

(𝐿𝐿𝑒𝑒)2
2𝐸𝐸𝑒𝑒𝐼𝐼𝑦𝑦𝑦𝑦𝑒𝑒

𝐿𝐿𝑒𝑒
0 0 0 6𝐸𝐸𝑒𝑒𝐼𝐼𝑦𝑦𝑦𝑦𝑒𝑒

(𝐿𝐿𝑒𝑒)2
4𝐸𝐸𝑒𝑒𝐼𝐼𝑦𝑦𝑦𝑦𝑒𝑒

𝐿𝐿𝑒𝑒
0

0 6𝐸𝐸𝑒𝑒𝐼𝐼𝑧𝑧𝑧𝑧𝑒𝑒

(𝐿𝐿𝑒𝑒)2
0 0 2𝐸𝐸𝑒𝑒𝐼𝐼𝑧𝑧𝑧𝑧𝑒𝑒

𝐿𝐿𝑒𝑒
0 −6𝐸𝐸𝑒𝑒𝐼𝐼𝑧𝑧𝑧𝑧𝑒𝑒

(𝐿𝐿𝑒𝑒)2
0 0 4𝐸𝐸𝑒𝑒𝐼𝐼𝑧𝑧𝑧𝑧𝑒𝑒

𝐿𝐿𝑒𝑒 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤
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Furthermore, for linearly varying distributed lateral and vertical loads given by: 

𝑝𝑝𝑦𝑦(�̄�𝑥) = 𝑝𝑝𝑦𝑦0 + (𝑝𝑝𝑦𝑦𝐿𝐿
𝑒𝑒 − 𝑝𝑝𝑦𝑦0)

�̄�𝑥
𝐿𝐿𝑒𝑒

 

 𝑝𝑝𝑧𝑧(�̄�𝑥) = 𝑝𝑝𝑧𝑧0 + (𝑝𝑝𝑧𝑧𝐿𝐿
𝑒𝑒 − 𝑝𝑝𝑧𝑧0) �̄�𝑥

𝐿𝐿𝑒𝑒
        (24) 

 {𝐹𝐹𝑒𝑒} =

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

𝑝𝑝𝑥𝑥𝐿𝐿𝑒𝑒

2
− 𝐸𝐸𝑒𝑒𝐸𝐸𝑒𝑒𝐸𝐸𝑒𝑒𝛥𝛥𝑇𝑇𝑒𝑒

𝑝𝑝𝑦𝑦0𝐿𝐿𝑒𝑒

2
+ 3𝐿𝐿𝑒𝑒

20
�𝑝𝑝𝑦𝑦𝐿𝐿

𝑒𝑒 − 𝑝𝑝𝑦𝑦0�
𝑝𝑝𝑧𝑧0𝐿𝐿𝑒𝑒

2
+ 3𝐿𝐿𝑒𝑒

20
�𝑝𝑝𝑧𝑧𝐿𝐿

𝑒𝑒 − 𝑝𝑝𝑧𝑧0�

− 𝑝𝑝𝑧𝑧0(𝐿𝐿𝑒𝑒)2

12
− (𝐿𝐿𝑒𝑒)2

30
�𝑝𝑝𝑧𝑧𝐿𝐿

𝑒𝑒 − 𝑝𝑝𝑧𝑧0�
𝑝𝑝𝑦𝑦0(𝐿𝐿𝑒𝑒)2

12
+ (𝐿𝐿𝑒𝑒)2

30
�𝑝𝑝𝑦𝑦𝐿𝐿

𝑒𝑒 − 𝑝𝑝𝑦𝑦0�
𝑝𝑝𝑥𝑥𝐿𝐿𝑒𝑒

2
+ 𝐸𝐸𝑒𝑒𝐸𝐸𝑒𝑒𝐸𝐸𝑒𝑒𝛥𝛥𝑇𝑇𝑒𝑒

𝑝𝑝𝑦𝑦0𝐿𝐿𝑒𝑒

2
+ 7𝐿𝐿𝑒𝑒

20
�𝑝𝑝𝑦𝑦𝐿𝐿

𝑒𝑒 − 𝑝𝑝𝑦𝑦0�
𝑝𝑝𝑧𝑧0𝐿𝐿𝑒𝑒

2
+ 7𝐿𝐿𝑒𝑒

20
�𝑝𝑝𝑧𝑧𝐿𝐿

𝑒𝑒 − 𝑝𝑝𝑧𝑧0�
𝑝𝑝𝑧𝑧0(𝐿𝐿𝑒𝑒)2

12
+ (𝐿𝐿𝑒𝑒)2

20
�𝑝𝑝𝑧𝑧𝐿𝐿

𝑒𝑒 − 𝑝𝑝𝑧𝑧0�

− 𝑝𝑝𝑦𝑦0(𝐿𝐿𝑒𝑒)2

12
− (𝐿𝐿𝑒𝑒)2

20
�𝑝𝑝𝑦𝑦𝐿𝐿

𝑒𝑒 − 𝑝𝑝𝑦𝑦0�⎭
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎫

       (25) 
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 Note that the interelement boundary terms are not included because they will 

cancel one another when the global equations are assembled. Additionally, when the 

second through sixth terms in equation (21) may be neglected, the standard finite element 

formulation for a linear thermoelastic beam undergoing small displacements is recovered.  

However, in the current case it remains to account for all of the remaining terms presented 

in equation (20) or (21).   

 Consider first the fourth term in equation (20) This term is given by: 

{𝐵𝐵𝑒𝑒} = −(−𝑆𝑆 + 𝑃𝑃𝑇𝑇)

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0 0 0 0 0 0 0 0 0
0 6

5𝐿𝐿𝑒𝑒
0 0 0.10 0 − 6

5𝐿𝐿𝑒𝑒
0 0 0.10

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0.10 0 0 2𝐿𝐿𝑒𝑒

15
0 −0.10 0 0 − 𝐿𝐿𝑒𝑒

30
0 0 0 0 0 0 0 0 0 0
0 − 6

5𝐿𝐿𝑒𝑒
0 0 −0.10 0 6

5𝐿𝐿𝑒𝑒
0 0 −0.10

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0.10 0 0 − 𝐿𝐿𝑒𝑒

30
0 −0.10 0 0 2𝐿𝐿𝑒𝑒

15 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  (26) 

Now consider the fifth term in equation (20). This term is nonlinear, being first 

order in both 𝑢𝑢(𝑥𝑥) and 𝑣𝑣(𝑥𝑥) at any point in time. In the case wherein it is sufficiently 

accurate to assume that 𝑢𝑢(𝑥𝑥, 𝑡𝑡 + Δ𝑡𝑡) may be approximated by the values of the previous 

step, 𝑢𝑢(𝑥𝑥, 𝑡𝑡), the result is as follows: 
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{𝐺𝐺𝑒𝑒(𝑡𝑡 + Δ𝑡𝑡)} = 𝐸𝐸𝐸𝐸 �𝑑𝑑2
𝑒𝑒(𝑡𝑡)−𝑑𝑑1𝑒𝑒(𝑡𝑡)

𝐿𝐿𝑒𝑒
�

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0 0 0 0 0 0 0 0 0
0 6

5𝐿𝐿𝑒𝑒
0 0 0.10 0 − 6

5𝐿𝐿𝑒𝑒
0 0 0.10

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0.10 0 0 2𝐿𝐿𝑒𝑒

15
0 −0.10 0 0 − 𝐿𝐿𝑒𝑒

30
0 0 0 0 0 0 0 0 0 0
0 − 6

5𝐿𝐿𝑒𝑒
0 0 −0.10 0 6

5𝐿𝐿𝑒𝑒
0 0 −0.10

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0.10 0 0 − 𝐿𝐿𝑒𝑒

30
0 −0.10 0 0 2𝐿𝐿𝑒𝑒

15 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  (27) 

 Now consider the eighth, ninth and tenth terms in equation (20). In the case 

wherein it is sufficiently accurate to assume that the coefficients of friction, 𝑘𝑘𝑥𝑥 and 𝑘𝑘𝑦𝑦 

vary linearly in x in each element, the result is as follows: 

 [𝑁𝑁𝑒𝑒] =  �𝐸𝐸 𝐵𝐵
𝐶𝐶 𝐷𝐷�         (28) 

where, 

[𝐸𝐸] =

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑘𝑘𝑥𝑥𝐿𝐿𝐿𝐿𝑒𝑒
3

+ (𝑘𝑘𝑥𝑥𝑅𝑅−𝑘𝑘𝑥𝑥𝐿𝐿)𝐿𝐿𝑒𝑒
12

0 0 0 0

0 13𝑘𝑘𝑦𝑦𝐿𝐿𝐿𝐿𝑒𝑒
35

+ 3(𝑘𝑘𝑦𝑦𝑅𝑅−𝑘𝑘𝑦𝑦𝐿𝐿)𝐿𝐿𝑒𝑒
35

0 0 11𝑘𝑘𝑦𝑦𝐿𝐿(𝐿𝐿𝑒𝑒)2

210
+ (𝑘𝑘𝑦𝑦𝑅𝑅−𝑘𝑘𝑦𝑦𝐿𝐿)(𝐿𝐿𝑒𝑒)2

60

0 0 13𝑘𝑘𝑧𝑧𝐿𝐿𝑒𝑒
35

− 11𝑘𝑘𝑧𝑧(𝐿𝐿𝑒𝑒)2

210
0

0 0 −11𝑘𝑘𝑧𝑧(𝐿𝐿𝑒𝑒)2

210
𝑘𝑘𝑧𝑧(𝐿𝐿𝑒𝑒)3

105
0

0 11𝑘𝑘𝑦𝑦𝐿𝐿(𝐿𝐿𝑒𝑒)2

210
+ (𝑘𝑘𝑦𝑦𝑅𝑅−𝑘𝑘𝑦𝑦𝐿𝐿)(𝐿𝐿𝑒𝑒)2

60
0 0 𝑘𝑘𝑦𝑦𝐿𝐿(𝐿𝐿𝑒𝑒)3

105
+ (𝑘𝑘𝑦𝑦𝑅𝑅−𝑘𝑘𝑦𝑦𝐿𝐿)(𝐿𝐿𝑒𝑒)3

280 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤
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[𝐵𝐵] =

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑘𝑘𝑥𝑥
𝐿𝐿𝐿𝐿𝑒𝑒
6

+ (𝑘𝑘𝑥𝑥
𝑅𝑅−𝑘𝑘𝑥𝑥

𝐿𝐿)𝐿𝐿𝑒𝑒
12

0 0 0 0

0
9𝑘𝑘𝑦𝑦

𝐿𝐿𝐿𝐿𝑒𝑒
70

+
9(𝑘𝑘𝑦𝑦

𝑅𝑅−𝑘𝑘𝑦𝑦
𝐿𝐿)𝐿𝐿𝑒𝑒

140
0 0 −

13𝑘𝑘𝑦𝑦
𝐿𝐿(𝐿𝐿𝑒𝑒)2

420
−

(𝑘𝑘𝑦𝑦
𝑅𝑅−𝑘𝑘𝑦𝑦

𝐿𝐿)(𝐿𝐿𝑒𝑒)2

70

0 0 9𝑘𝑘𝑧𝑧𝐿𝐿𝑒𝑒
70

13𝑘𝑘𝑧𝑧(𝐿𝐿𝑒𝑒)2

420
0

0 0 13𝑘𝑘𝑧𝑧(𝐿𝐿𝑒𝑒)2

420
− 𝑘𝑘𝑧𝑧(𝐿𝐿𝑒𝑒)3

140
0

0
13𝑘𝑘𝑦𝑦

𝐿𝐿(𝐿𝐿𝑒𝑒)2

420
+

(𝑘𝑘𝑦𝑦
𝑅𝑅−𝑘𝑘𝑦𝑦

𝐿𝐿)(𝐿𝐿𝑒𝑒)2

60
0 0 −

𝑘𝑘𝑦𝑦
𝐿𝐿(𝐿𝐿𝑒𝑒)3

140
−

(𝑘𝑘𝑦𝑦
𝑅𝑅−𝑘𝑘𝑦𝑦

𝐿𝐿)(𝐿𝐿𝑒𝑒)3

280 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  

[𝐶𝐶] =

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑘𝑘𝑥𝑥
𝐿𝐿𝐿𝐿𝑒𝑒
6

+ (𝑘𝑘𝑥𝑥
𝑅𝑅−𝑘𝑘𝑥𝑥

𝐿𝐿)𝐿𝐿𝑒𝑒
12

0 0 0 0

0
9𝑘𝑘𝑦𝑦

𝐿𝐿𝐿𝐿𝑒𝑒
70

+
9(𝑘𝑘𝑦𝑦

𝑅𝑅−𝑘𝑘𝑦𝑦
𝐿𝐿)𝐿𝐿𝑒𝑒

140
0 0

13𝑘𝑘𝑦𝑦
𝐿𝐿(𝐿𝐿𝑒𝑒)2

420
+

(𝑘𝑘𝑦𝑦
𝑅𝑅−𝑘𝑘𝑦𝑦

𝐿𝐿)(𝐿𝐿𝑒𝑒)2

60

0 0 9𝑘𝑘𝑧𝑧𝐿𝐿𝑒𝑒
70

− 13𝑘𝑘𝑧𝑧(𝐿𝐿𝑒𝑒)2

420
0

0 0 − 13𝑘𝑘𝑧𝑧(𝐿𝐿𝑒𝑒)2

420
𝑘𝑘𝑧𝑧(𝐿𝐿𝑒𝑒)3

140
0

0 −
13𝑘𝑘𝑦𝑦

𝐿𝐿(𝐿𝐿𝑒𝑒)2

420
−

(𝑘𝑘𝑦𝑦
𝑅𝑅−𝑘𝑘𝑦𝑦

𝐿𝐿)(𝐿𝐿𝑒𝑒)2

70
0 0 −

𝑘𝑘𝑦𝑦
𝐿𝐿(𝐿𝐿𝑒𝑒)3

140
−

(𝑘𝑘𝑦𝑦
𝑅𝑅−𝑘𝑘𝑦𝑦

𝐿𝐿)(𝐿𝐿𝑒𝑒)3

280 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  

[𝐷𝐷] =

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑘𝑘𝑥𝑥
𝐿𝐿𝐿𝐿𝑒𝑒
3

+ (𝑘𝑘𝑥𝑥
𝑅𝑅−𝑘𝑘𝑥𝑥

𝐿𝐿)𝐿𝐿𝑒𝑒
4

0 0 0 0

0
13𝑘𝑘𝑦𝑦

𝐿𝐿𝐿𝐿𝑒𝑒
35

+
2(𝑘𝑘𝑦𝑦

𝑅𝑅−𝑘𝑘𝑦𝑦
𝐿𝐿)𝐿𝐿𝑒𝑒

7
0 0 −

11𝑘𝑘𝑦𝑦
𝐿𝐿(𝐿𝐿𝑒𝑒)2

210
−

(𝑘𝑘𝑦𝑦
𝑅𝑅−𝑘𝑘𝑦𝑦

𝐿𝐿)(𝐿𝐿𝑒𝑒)2

28

0 0 13𝑘𝑘𝑧𝑧𝐿𝐿𝑒𝑒
35

11𝑘𝑘𝑧𝑧(𝐿𝐿𝑒𝑒)2

210
0

0 0 11𝑘𝑘𝑧𝑧(𝐿𝐿𝑒𝑒)2

210
𝑘𝑘𝑧𝑧(𝐿𝐿𝑒𝑒)3

105
0

0 −
11𝑘𝑘𝑦𝑦

𝐿𝐿(𝐿𝐿𝑒𝑒)2

210
−

(𝑘𝑘𝑦𝑦
𝑅𝑅−𝑘𝑘𝑦𝑦

𝐿𝐿)(𝐿𝐿𝑒𝑒)2

28
0 0

𝑘𝑘𝑦𝑦
𝐿𝐿(𝐿𝐿𝑒𝑒)3

105
+

(𝑘𝑘𝑦𝑦
𝑅𝑅−𝑘𝑘𝑦𝑦

𝐿𝐿)(𝐿𝐿𝑒𝑒)3

168 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  

And, 
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 𝑘𝑘𝑥𝑥(𝑥𝑥) = 𝑘𝑘𝑥𝑥𝐿𝐿 + (𝑘𝑘𝑥𝑥𝑅𝑅 − 𝑘𝑘𝑥𝑥𝐿𝐿) 𝑥𝑥
𝐿𝐿𝑒𝑒

 

 𝑘𝑘𝑦𝑦(𝑥𝑥) = 𝑘𝑘𝑦𝑦𝐿𝐿 + (𝑘𝑘𝑦𝑦𝑅𝑅 − 𝑘𝑘𝑦𝑦𝐿𝐿) 𝑥𝑥
𝐿𝐿𝑒𝑒

  

 𝑘𝑘𝑧𝑧(𝑥𝑥) = 𝑘𝑘𝑧𝑧 = 𝑐𝑐𝑘𝑘𝑛𝑛𝑐𝑐𝑡𝑡.         (29) 

where in addition 𝑘𝑘𝑥𝑥,𝑦𝑦
𝐿𝐿  and 𝑘𝑘𝑥𝑥,𝑦𝑦

𝑅𝑅  are the values of the axial and lateral coefficients of friction 

at 𝑥𝑥 = [0, 𝐿𝐿𝑒𝑒] within the element 𝑒𝑒 and 𝑘𝑘𝑧𝑧 is the elastic modulus of the foundation (or 

track modulus) within the element 𝑒𝑒. Note that in assuming that the axial and lateral 

coefficients of friction, 𝑘𝑘𝑥𝑥 and 𝑘𝑘𝑦𝑦, vary linearly within the element, necessarily results in 

a nonlinear coefficient matrix. The nonlinearity enters via the dependence of the friction 

coefficients on the displacement components, 𝑢𝑢(𝑥𝑥) and 𝑣𝑣(𝑥𝑥), respectively, as shown in 

detail in Chapter V. Finally, in the case where it is sufficiently accurate to assume that the 

friction, 𝑘𝑘𝑥𝑥 and 𝑘𝑘𝑦𝑦 are constant in x in each element, the linear form of equation (28) can 

be recovered by satisfying the following conditions: 

 𝑘𝑘𝑥𝑥(𝑥𝑥) =  𝑘𝑘𝑥𝑥𝑅𝑅 = 𝑘𝑘𝑥𝑥𝐿𝐿 = 𝑘𝑘𝑥𝑥 = 𝑐𝑐𝑘𝑘𝑛𝑛𝑐𝑐𝑡𝑡. 

 𝑘𝑘𝑦𝑦(𝑥𝑥) = 𝑘𝑘𝑦𝑦𝑅𝑅 = 𝑘𝑘𝑦𝑦𝐿𝐿 = 𝑘𝑘𝑦𝑦 = 𝑐𝑐𝑘𝑘𝑛𝑛𝑐𝑐𝑡𝑡.      (30) 

 The above element equations may be assembled into a global finite element 

formulation using the standard assembly technique (Reddy 1984 and 2005), and this has 

been accomplished by the authors.  This then completes the finite element formulation.  
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MODELING THE RAIL RESPONSE FOR THE NONLINEAR CASE 

Now consider the fifth term in equation (20) once again. The fifth term is nonzero 

and therefore nonlinear whenever there is axial displacement. Finally, consider the eighth 

and ninth terms in equation (20). These terms will necessarily be nonlinear whenever the 

coefficients of friction, 𝑘𝑘𝑥𝑥 and 𝑘𝑘𝑦𝑦, are not constant, and this circumstance is the main 

purpose of the current study. Accordingly, failing to account for the nonlinearity in the 

model can lead to significant predictive error.  Therefore, it is essential to include the 

ability to predict this nonlinearity in the model (Tvergaard and Needleman 1981, Lim et 

al. 2003, Grissom and Kerr 2006, Allen et al 2006).  Toward this end, a standard time 

marching scheme is adopted herein, in which the externally applied mechanical load is 

gradually increased in a series of time steps, with Newton iteration deployed to capture 

the nonlinearity on each time step (Little et al. 2016).   

 Briefly, this is accomplished by first obtaining an approximate solution in which 

it is assumed that in the nonlinear terms the displacement from the previous time step is 

used, thereby resulting in the following initial approximation for the global form of 

equation (21).   

 ∑ 𝐾𝐾𝑖𝑖𝑖𝑖10
𝑖𝑖=1 𝛥𝛥𝑞𝑞𝑖𝑖0 + ∑ 𝐵𝐵𝑖𝑖𝑖𝑖10

𝑖𝑖=1 𝛥𝛥𝑞𝑞𝑖𝑖0 + ∑ 𝐺𝐺𝑖𝑖𝑖𝑖10
𝑖𝑖=1 𝛥𝛥𝑞𝑞𝑖𝑖0 + ∑ 𝑁𝑁𝑖𝑖𝑖𝑖10

𝑖𝑖=1 𝛥𝛥𝑞𝑞𝑖𝑖0 = 𝛥𝛥𝐹𝐹𝑖𝑖 (31) 

This erroneous value of 𝛥𝛥𝑢𝑢𝑚𝑚(𝑥𝑥) and 𝛥𝛥𝑣𝑣𝑚𝑚(𝑥𝑥) can be utilized to reduce the error by 

employing the following simple iteration method: 

 �𝐺𝐺𝑖𝑖𝑖𝑖�
𝜂𝜂 = �𝐺𝐺𝑖𝑖𝑖𝑖(𝑞𝑞𝑖𝑖

𝜂𝜂−1)� 
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 �𝑁𝑁𝑖𝑖𝑖𝑖�
𝜂𝜂 = �𝑁𝑁𝑖𝑖𝑖𝑖(𝑞𝑞𝑖𝑖

𝜂𝜂−1)�        (32) 

where η is the iteration number (Ketter and Prawel 1969, Little et al. 2016).  Equation (31) 

is then reevaluated using the updated estimate of the matrices 𝐺𝐺𝑖𝑖𝑖𝑖 and 𝑁𝑁𝑖𝑖𝑖𝑖 obtained from 

equation (32). The iterative process is terminated when the following condition is 

satisfied: 

 
�𝛥𝛥𝑞𝑞𝑖𝑖

𝜂𝜂−𝛥𝛥𝑞𝑞𝑖𝑖
𝜂𝜂−1�

�𝛥𝛥𝑞𝑞𝑖𝑖
𝜂𝜂�

≤ 𝑒𝑒𝐴𝐴𝐿𝐿         (33) 

where the double vertical lines signify the Euclidean norm, and 𝑒𝑒𝐴𝐴𝐿𝐿 is a preset value of 

allowable error.  The total displacement field is subsequently evaluated as follows: 

 𝑞𝑞𝑖𝑖(𝑥𝑥(𝑡𝑡 + 𝛥𝛥𝑡𝑡)) = 𝑞𝑞𝑖𝑖(𝑥𝑥(𝑡𝑡)) + 𝛥𝛥𝑞𝑞𝑖𝑖
𝜂𝜂(𝑥𝑥(𝑡𝑡 + 𝛥𝛥𝑡𝑡))     (34) 

This then concludes the implementation of the model into a nonlinear finite element 

formulation.  
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VERIFICATION OF THE MODEL 

  

 The finite element algorithm presented herein was verified extensively through a 

series of example problems for cases where either exact or variational analytical solutions 

exist. The full verification of the code can be found in (Musu 2021), but two such cases 

are reported below. 

 

Example Problem #1: Doubly Cantilevered Beam Subjected to Nonlinear Friction 

 

Given: A double-cantilevered beam is subjected to a distributed loading, where 

E=2.06x1011 N/m2, Iyy=Izz=8.99x10-6 m4, A=0.0145 m2, l=12.0 m,𝐸𝐸 = 1.05𝑥𝑥10−5 /°𝐶𝐶, 

𝑝𝑝𝑥𝑥 = 𝑝𝑝𝑧𝑧 = 𝑘𝑘𝑥𝑥 = 𝑘𝑘𝑧𝑧 = 𝑆𝑆 = 0 and 𝛥𝛥𝑇𝑇 = 50 °𝐶𝐶.  In addition, the lateral coefficient of 

friction parameters used to fit the data in Fig. 22 are 𝑘𝑘𝑦𝑦0 = 1.16𝑥𝑥106𝑁𝑁/𝑚𝑚2, 𝑘𝑘𝑦𝑦1 =

6.5𝑥𝑥105𝑁𝑁/𝑚𝑚2, 𝑣𝑣0 = 0.005 𝑚𝑚 and n=0.05.  

Required:  

a) Obtain an analytic solution for 𝑣𝑣 = 𝑣𝑣(𝑥𝑥, 𝑝𝑝𝑦𝑦0,𝐸𝐸, 𝐼𝐼𝑧𝑧𝑧𝑧) 

b) Obtain a solution using finite elements and compare the two 

Solution:  

a) The solution solves the following differential equation: 

𝐸𝐸𝐼𝐼𝑧𝑧𝑧𝑧
𝑑𝑑4𝑑𝑑
𝑑𝑑𝑥𝑥4

+ 𝑃𝑃𝑇𝑇 𝑑𝑑2𝑑𝑑
𝑑𝑑𝑥𝑥2

+ 𝑘𝑘𝑦𝑦𝑣𝑣 = 𝑝𝑝𝑦𝑦      (E1.1) 
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Suppose that we choose the following: 

𝑣𝑣(𝑥𝑥) = 𝐶𝐶1�𝑥𝑥2 −
2𝑥𝑥3

𝑙𝑙
+ 𝑥𝑥4

𝑙𝑙2
� 0 ≤ 𝑥𝑥 ≤ 𝑙𝑙      (E1.2) 

where l is the length of the beam and 𝐶𝐶1 is a loading constant.  It can be seen that the above 

assumed solution satisfies the following boundary conditions: 

𝑣𝑣(𝑥𝑥 = 0, 𝑙𝑙) = 0 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥

(𝑥𝑥 = 0, 𝑙𝑙) = 0        (E1.3) 

In order to obtain the forcing function, 𝑝𝑝𝑦𝑦, equation (E1.2) is now substituted into 

equation (E1.1) and it is solved, thereby resulting in the following: 

𝑝𝑝𝑦𝑦(𝑥𝑥) = 𝐶𝐶1𝐸𝐸𝐼𝐼𝑧𝑧𝑧𝑧
𝑑𝑑4

𝑑𝑑𝑥𝑥4
�𝑥𝑥2 − 2𝑥𝑥3

𝑙𝑙
+ 𝑥𝑥4

𝑙𝑙2
� + 𝐶𝐶1𝑃𝑃𝑇𝑇

𝑑𝑑2

𝑑𝑑𝑥𝑥2
�𝑥𝑥2 − 2𝑥𝑥3

𝑙𝑙
+ 𝑥𝑥4

𝑙𝑙2
�+ 

+𝐶𝐶1

⎣
⎢
⎢
⎡
𝑘𝑘𝑦𝑦0 − 𝑘𝑘𝑦𝑦1 �

𝐶𝐶1  �𝑥𝑥2 − 2𝑥𝑥3
𝑙𝑙 + 𝑥𝑥4

𝑙𝑙2 �

𝑣𝑣0
�

𝑛𝑛

⎦
⎥
⎥
⎤
�𝑥𝑥2 −

2𝑥𝑥3

𝑙𝑙
+
𝑥𝑥4

𝑙𝑙2 �
=

24𝐶𝐶1𝐸𝐸𝐼𝐼𝑧𝑧𝑧𝑧
𝑙𝑙2

+ 

+𝐶𝐶1𝑃𝑃𝑇𝑇 �2 − 12𝑥𝑥
𝑙𝑙

+ 12𝑥𝑥2

𝑙𝑙2
� + 𝐶𝐶1 �𝑘𝑘𝑦𝑦0 − 𝑘𝑘𝑦𝑦1 �

𝐶𝐶1 �𝑥𝑥2−2𝑥𝑥
3

𝑙𝑙 +𝑥𝑥
4

𝑙𝑙2
�

𝑑𝑑0
�
𝑛𝑛

� �𝑥𝑥2 − 2𝑥𝑥3

𝑙𝑙
+ 𝑥𝑥4

𝑙𝑙2
� (E1.4) 

The above forcing function will produce the displacement field given in equation 

(E1.2).   

b) The next step is to compare the computational results obtained with the finite element  

algorithm to the exact solution represented by equations (E1.2) and (E1.4).  Toward 

this end, an allowable error of 𝑒𝑒𝐴𝐴𝐿𝐿 = 5.0𝑋𝑋10−6 has been utilized.  Fig. 10 shows the 



 

32 

 

predicted vs. exact results for three different element meshes.  On the basis of these 

results it is concluded that a 20-element mesh is sufficiently accurate for the purpose 

of approximating the displacement field within a rail structure modeled by equations 

(11)-(19). Furthermore, Fig. 11 shows the finite element predictions using the 20-

element mesh and iterating through convergence at the last time step.  On the basis of 

this, it is concluded that only a few iterations are necessary to accurately predict the 

effects of nonlinearity in the friction between the ballast-crosstie interface.    
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Figure 10. Comparison of Finite Element Approximations for Three Different 
Meshes to Theoretical Solution for Example Problem #1 
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Example Problem #2: Buckling of a Simply Supported Beam 

 

Given: A beam that is simply supported at both ends is subjected to an incremental lateral 

distributed loading 𝑝𝑝𝑦𝑦 = 𝑐𝑐𝑘𝑘𝑛𝑛𝑐𝑐𝑡𝑡 = 10 𝑁𝑁/𝑚𝑚, where E=2.06x1011 N/m2, Iyy=Izz=8.99x10-6 

m4, A=0.0145 m2, l=12.0 m, and 𝑝𝑝𝑥𝑥 = 𝑝𝑝𝑧𝑧 = 𝑘𝑘𝑥𝑥 = 𝑘𝑘𝑦𝑦 = 𝑘𝑘𝑧𝑧 = 𝑆𝑆 = 𝛥𝛥𝑇𝑇 = 0.  The beam is 

subjected to an axial load, P, at the end x=0. 

Required: 

a) Obtain an approximate analytic solution for 𝑣𝑣 = 𝑣𝑣(𝑥𝑥) and determine the axial 

load, 𝑃𝑃𝑐𝑐𝑐𝑐, that will cause the column to buckle 

b) Determine the location of the maximum lateral displacement and evaluate it 
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c) Obtain a solution using the finite element method and compare the two 

Solution:  

a) The analytic solution solves the following variational equation: 

∫ 𝐸𝐸𝐼𝐼𝑧𝑧𝑧𝑧
𝑙𝑙
0

𝑑𝑑2𝑑𝑑
𝑑𝑑𝑥𝑥2

𝛿𝛿 �𝑑𝑑
2𝑑𝑑

𝑑𝑑𝑥𝑥2
� 𝑑𝑑𝑥𝑥 + ∫ 𝑃𝑃 𝑑𝑑𝑑𝑑

𝑑𝑑𝑥𝑥
𝑙𝑙
0 𝛿𝛿 �𝑑𝑑𝑑𝑑

𝑑𝑑𝑥𝑥
� 𝑑𝑑𝑥𝑥 − ∫ 𝑝𝑝𝑦𝑦𝛿𝛿𝑣𝑣𝑑𝑑𝑥𝑥 = 0𝑙𝑙

0   (E2.1) 

The analytic solution is assumed to be of the following form: 

𝑣𝑣(𝑥𝑥) = 𝑎𝑎1 + 𝑎𝑎2𝑥𝑥 + 𝑎𝑎3𝑥𝑥2       (E2.2) 

It follows that 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥

(𝑥𝑥) = 𝑎𝑎2 + 2𝑎𝑎3𝑥𝑥        (E2.3) 

where the coefficients are to be determined. The displacement boundary condition on the 

left end implies that: 

𝑣𝑣(𝑥𝑥 = 0) = 0 ⇒ 𝑎𝑎1 = 0       (E2.4) 

Thus, equation (E2.2) simplifies to the following: 

𝑣𝑣(𝑥𝑥) = 𝑎𝑎2𝑥𝑥 + 𝑎𝑎3𝑥𝑥2        (E2.5) 

The displacement boundary condition on the right end implies that 

𝑣𝑣(𝑥𝑥 = 𝑙𝑙) = 0 = 𝑎𝑎2𝑙𝑙 + 𝑎𝑎3𝑙𝑙2 ⇒ 𝑎𝑎2 = −𝑎𝑎3𝑙𝑙     (E2.6) 

Substituting (E2.6) into (E2.5) therefore results in: 
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𝑣𝑣(𝑥𝑥) = 𝐶𝐶(𝑥𝑥2 − 𝑥𝑥𝑙𝑙)        (E2.7) 

where the coefficient C is to be determined by satisfying (E2.1).  Substituting (E2.7) into 

(E2.1) thus results in the following: 

�4𝐸𝐸𝐼𝐼𝑧𝑧𝑧𝑧𝑙𝑙𝐶𝐶 + 1
3
𝑃𝑃𝑙𝑙3𝐶𝐶 + 1

6
𝑙𝑙3𝑝𝑝𝑦𝑦� 𝛿𝛿𝐶𝐶 = 0      (E2.8) 

Since 𝛿𝛿𝐶𝐶 is arbitrary, it follows that  

𝐶𝐶 = −𝑝𝑝𝑦𝑦𝑙𝑙2

6
� 1

�13𝑑𝑑𝑙𝑙
2+4𝐸𝐸𝐼𝐼𝑧𝑧𝑧𝑧�

�       (E2.9) 

Substituting (E2.9) into (E2.7) gives the displacement field: 

𝑣𝑣(𝑥𝑥) = −𝑝𝑝𝑦𝑦𝑙𝑙2

6
� 1

�13𝑑𝑑𝑙𝑙
2+4𝐸𝐸𝐼𝐼𝑧𝑧𝑧𝑧�

� (𝑥𝑥2 − 𝑥𝑥𝑙𝑙)                         (E2.10) 

 To obtain the buckling load, the second variation of equation (E2.8) is taken, 

thereby resulting in the following: 

�4𝐸𝐸𝐼𝐼𝑧𝑧𝑧𝑧𝑙𝑙 + 1
3
𝑃𝑃𝑐𝑐𝑐𝑐𝑙𝑙3� 𝛿𝛿𝐶𝐶 = 0                (E2.11) 

Since 𝛿𝛿𝐶𝐶 is arbitrary, it follows that 

𝑃𝑃𝑐𝑐𝑐𝑐 = −12 𝐸𝐸𝐼𝐼𝑧𝑧𝑧𝑧
𝑙𝑙2

                  (E2.12) 

b) The maximum lateral displacement can be seen to occur at the midpoint of the beam, 
so that: 
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               (E2.13) 

Note also that the end rotation can also be evaluated by differentiating equations 

(E2.13) as follows: 

𝜃𝜃(𝑥𝑥) ≡ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥

(𝑥𝑥) = −𝑝𝑝𝑦𝑦𝑙𝑙2

6
� 1

�13𝑑𝑑𝑙𝑙
2+4𝐸𝐸𝐼𝐼𝑧𝑧𝑧𝑧�

� (2𝑥𝑥 − 𝑙𝑙)            (E2.14) 

The predicted value of θ(x=0) = θ0 can now be substituted into the above to obtain 

the following: 

𝜃𝜃0 = 𝑝𝑝𝑦𝑦𝑙𝑙3

6
� 1

�4𝐸𝐸𝐼𝐼𝑧𝑧𝑧𝑧+
1
3𝑑𝑑𝑙𝑙

2�
�             (E2.15) 

Substituting the above result back into equation (E2.13) thus gives the following: 

              (E2.16) 

c) In order to account for the coupling between the axial and lateral displacement  

components it is necessary to solve the problem with multiple elements using the finite 

element method.  Fig. 12 shows the results of the finite element prediction using six 

elements of equal length, wherein it can be seen that the predicted maximum displacement 

buckling load match the results obtained above. 
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MODELING CONSIDERATIONS FOR BUCKLING PROBLEMS 

  

 The algorithm presented herein was developed with the goal of aiding the track 

engineer in the prediction of the onset of environmentally induced buckling in rail 

structures. For this purpose, it is therefore necessary to define the buckling load and in 

general, how to model buckling problems numerically.  

 In the above example problem, the load-displacement curve was generated for a 

simply supported beam subjected to lateral and axial loading. Since for this particular 

problem an analytical solution can be obtained, it was possible to determine the critical 

axial load as shown in equation (E2.12). This analytical expression then represents the 
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buckling load for the specified set of loads, geometry and material properties, which is 

defined as the first local maximum of the load-displacement curve. Note however, that for 

most practical rail applications, analytical solutions to the governing equations cannot be 

obtained and therefore, it is still necessary to develop a protocol to model buckling 

problems and to appropriately define the buckling load that can be obtained numerically.  

 Noting once again that in order to capture the nonlinearity due to buckling for a 

given set of loads, geometry, material properties and boundary conditions, a standard time 

marching scheme was implemented by monotonically increasing the loading on the beam 

and obtaining a solution for the primary unknowns of the problem at each time step. This 

load-stepping, therefore, also allows for the load-displacement curve to be generated. 

Considering once again the load-displacement curve shown in Fig. 12, it can be seen that 

the finite element algorithm presented herein adequately and accurately predicts the lateral 

displacement at each load-step when compared to the obtained analytical solution. 

However, it is important to note that the numerical algorithm breaks down before reaching 

Figure 13. Depiction of the Deviation from the Equilibrium Path 
Under Load Control – Snapping (Crisfield 1981) 
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the critical point, thus slightly underpredicting the buckling load. This is a known 

shortcoming of the application of Newton’s Iteration in load control, whereas a solution 

to the nonlinear system of equations can only be obtained up to the critical point. Fig. 13, 

below, illustrates the theoretical equilibrium path for a structure subjected to 

monotonically increasing loading. Point B in Fig. 13 represents the first local maximum 

which is defined as the buckling load of the structure. Past this critical point then the 

structure is known to first undergo softening and then successively hardening, generally 

referred to as post-buckling behavior. However, in load control the numerical scheme fails 

to accurately follow the equilibrium path once the neighborhood of the instability is 

reached. At this point then, the numerical prediction deviates from the equilibrium path 

and either snaps to the next equilibrium point, as illustrated by point D in Fig. 13, or 

bifurcates, as shown below in Fig. 14.  

Figure 14. Depiction of the Deviation from the Equilibrium Path Under Load Control – 
Bifurcation Point (Riks1979) 
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 Thus, the buckling load obtained numerically will be defined as the axial loading, 

either thermally or mechanically induced, applied on the structure at the last load step 

before the instability occurs. Table 2, shown below, illustrates the general procedure 

utilized to obtain the buckling load for a generic rail structure.  

 
 

Initialization: 

1) Turn on nonlinear and buckling control flags 

2) Select time step size 

3) Input loads, geometry, material properties and boundary conditions 

4) Run the code and obtain output file  

Post Processing: 

1) Identify location of maximum lateral displacement 

2) Record the maximum lateral displacement at each time step 

3) Record the maximum axial load at each time step 

4) Use the previous steps 2 and 3 to plot the load displacement curve  

5) Identify the instability – either a snap through or a bifurcation point 

6) Identify the buckling load as the axial load at the time step before the instability 

Step Size Convergence: 

1) Refine the step size and repeat the previous steps until the buckling load 

converges to at least two significant figures 

 

Table 2. General Procedure for Simulating Buckling Problems for a Generic Rail 
Structure 
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CHAPTER V  

SOURCES OF NONLINEARITY  

 

 Track structures are complex multi-body, multi-interaction structures that undergo 

a variety of failure mechanisms. Referring to Fig. 2 in Chapter II once again, it might be 

useful to remind the reader that the track structure is composed of two rails, connected to 

the crossties by pins, which are in turn staked into the ballast and rest on an elastic 

foundation. Each component of the structure interacts with each other: the crossties 

provide the structure with additional resistance to bending, while the ballast provides 

stability, drainage and resistance to motion due to the ballast-tie interface friction and 

finally, the elastic foundation provides resistance to out of plane motion. These 

interactions necessarily make the problem quite complex to model, and furthermore, the 

degree of complexity increases significantly due to the nonlinear nature of the processes 

involved. Therefore, it is imperative to identify and understand how these nonlinearities 

affect rail buckling. Briefly, the present research focuses on the following distinct modes 

of nonlinearity, which will be discussed in detail below: 

    
1. Geometric nonlinearity due to large deformations (buckling) 

2. Nonlinearity in the friction field due to track lift-off 

3. Constitutive nonlinearity due to nonlinear friction at the ballast tie interface 

4. Geometric nonlinearity due to track misalignment 
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 First of all, rail buckling is the formation of a sudden large, lateral misalignment 

of the tie-rail system. Fig. 15, below, shows a depiction of asymmetric (S-shaped) 

buckling of the tie-rail system. Note that, rails can also buckle symmetrically (U-shaped), 

and one such example can be observed in Fig. 1, located in Chapter I of this dissertation.  

 Rail buckling is caused primarily by high compressive forces, usually a 

combination of mechanical and thermal compressive loading, vehicle loading and 

weakened track conditions. It is geometrically nonlinear due to large deformations, which 

Figure 15. Depiction of Asymmetric, S-shaped, Buckling of the Tie-Rail System  
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essentially means that the axial loading affects the transverse displacements due to the fact 

that the deformed configuration of a differential element of the rail cannot be accurately 

approximated by its undeformed configuration. This nonlinearity can be observed 

mathematically by the inclusion of higher order terms in Equation 8, which can be found 

in Chapter II, thus defining the strains through the use of the Green-Lagrange strain tensor. 

Furthermore, the equations of equilibrium are necessarily formulated in the deformed 

configuration, which implies that changes in the geometry under loading are significant 

and have to be considered. Mathematically speaking, this implies that there exists a 

distinction between the spatial and material coordinate frame of reference: equation (35), 

below, illustrates how the spatial coordinates of a material point, , differ from the 

material coordinates, , by the displacement vector  (Lai et al. 2010), illustrated in Fig. 

16. 

           (35) 

𝑋𝑋𝑋𝑋

𝑥𝑥𝑋𝑋(𝑋𝑋𝑘𝑘 , 𝑡𝑡)

𝑂

𝑢𝑢𝑋𝑋(𝑋𝑋𝑘𝑘 , 𝑡𝑡)
P t0)

𝑃𝑃(𝑡𝑡)

Figure 16. The displacement vector of a particle in a continuum (identified by its 
material coordinate 𝑋𝑋𝑖𝑖), from the reference position 𝑃𝑃(𝑡𝑡0) to the current position 𝑃𝑃(𝑡𝑡),is 

given by the displacement vector 𝑢𝑢𝑖𝑖 
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These conditions necessarily cause the response of the rail undergoing buckling to be 

geometrically nonlinear. 

 Next, let’s consider track uplift. Based on industry observations, lift-off of the rail-

tie system will necessarily cause the rail to buckle laterally: train engineers have reported 

that, when vertical vehicle loads are large enough, the rail-tie system lifts from the ballast 

ahead of the train and immediately buckles laterally; in such cases, it is typical for the 

engineer driving the train to witness the buckle happen in real time, which often causes 

the entire train to derail. In general, lift-off induced buckling occurs due to the geometry 

of the rail structure and the loss on friction the ballast typically would exert on the track 

during downward vertical motion. Figure 17, shown below, depicts this phenomenon. 

 Firstly, due to the geometric shape of the rail cross-section, buckling normally 

occurs in the horizontal x-y plane, meaning that the rail will fail about the weak z-z axis. 

This is due to the fact that, for rails of typical cross-section, Equation (36) controls failure 

Figure 17. Depiction of the Rail Lift-Off Problem (Reprinted with Permission from Musu 
2021) 
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due to bending such that buckling vertically, about the y-axis, rarely if ever happens in 

rails.  

 𝐼𝐼𝑦𝑦𝑦𝑦 ≫ 𝐼𝐼𝑧𝑧𝑧𝑧          (36) 

 Thus, even when the rail bends about the y axis, buckling will occur laterally, about 

the z axis. Additionally, lift-off of the track structure from the ballast removes the 

resistance to buckling caused by the ballast-crosstie interface friction, thereby inducing 

buckling. This loss of friction introduces a significant source of nonlinearity into the 

problem.  

 ∀ 𝑤𝑤(𝑥𝑥) > 0    ⇒    𝑘𝑘𝑥𝑥 = 𝑘𝑘𝑦𝑦 = 𝑘𝑘𝑧𝑧 = 0      (37) 

 Equation (37) represents a strong nonlinearity as it introduces a jump discontinuity 

in the friction field, which is a nonlinearity in the constitutive behavior of the friction field 

any time lift-off occurs. 
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  Now, let’s consider once again the friction the ballast exerts on the tie-rail system. 

A nonlinearity will necessarily be introduced whenever the coefficients of friction, 𝑘𝑘𝑥𝑥 and 

𝑘𝑘𝑦𝑦, are not constant, and this circumstance closely resembles the real-world physics of the 

rail structure. The nonlinearity enters via the dependence of the friction coefficients on the 

displacement components, u and v, respectively.  As shown in Fig. 18, single tie push tests 

(STPT) confirm the nonlinearity for the lateral coefficient 𝑘𝑘𝑦𝑦.    

 For a given rail structure configuration, the above response may be adequately 

modeled with a power law of the following form (Tvergaard and Needleman 1981, Allen 

et al. 2016): 

𝑘𝑘𝑦𝑦(𝑣𝑣) = 𝑘𝑘𝑦𝑦0 − 𝑘𝑘𝑦𝑦1 �
𝑑𝑑
𝑑𝑑0
�
𝑛𝑛

        (38) 

Figure 18. Typical Lateral Load vs. Displacement from STP Tests (Read et 
al. 2011) 
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It should be noted that piecewise linear (Lim et al 2003), hyperbolic tangent 

equations (Grissom and Kerr 2006) and even upper limiting values (Grissom and Kerr 

2006) have been used to curve fit the response illustrated in Fig. 18. However, the 

predicted buckling results do not appear to be very sensitive to the form of equations used. 

Thus, the power law form given by equation (38) is employed in this research. As shown 

in Fig. 19, this type of curve fit does an adequate job of predicting the observed 

nonlinearity in the coefficient of lateral friction. Accordingly, the same type of equation 

is employed for the longitudinal coefficient of friction. As can be seen from Fig. 18, the 

coefficient of lateral friction can be highly nonlinear.  Accordingly, failing to account for 

this nonlinearity in the model can lead to significant predictive error. 

Figure 19. Comparison of Predicted Coefficient of Lateral Friction to 
Experimental Data Using Equation 38 (Reprinted with Permission from Allen 

and Fry, 2017) 
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 Additionally, let’s consider so-called “track-walk”, which is the introduction of a 

lateral deviation in the layout of the rail usually caused by vehicle loads, base degradation 

or other weakened track conditions. This deviation is essentially an eccentricity that causes 

the rail to displace from its initially straight configuration thereby creating small lateral 

misalignment of the rail. This so-called track-walk is observed to reach magnitudes as 

large as five centimeters, and it is therefore an important source of nonlinearity in the 

problem. It is considered a geometric nonlinearity inasmuch as the eccentricity induces 

additional secondary moments, thereby significantly reducing the buckling load. Within 

this thesis it is assumed that the buckling load is reduced by the amount of loading 

necessary to produce a given amount of track-walk (Fig. 20), and this relationship is shown 

to be quasilinear.  
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 Rail structures are also known to experience a variety of other nonlinear processes. 

Among these, some of the most important are buckling due to the presence of moisture on 

the track and buckling on curves. While these two nonlinearities are not strictly the focus 

of this work, the author believes it is important to briefly explore their effects on the rail 

structure in order to paint the full picture of the complexity of the rail buckling problem 

and the mechanisms involved.  

 Ballast degradation is reported to be one of the most common causes of inadequate 

track performance. In general, it usually refers to the mechanisms that jeopardize the 

ability of the ballast to provide structural stability for the track, drainage and resistance to 

motion due to the friction exerted by the ballast on the rail-tie system. One such 

mechanism is fouling, which is essentially a contamination of the ballast that occurs when 

the voids in between the ballast grains are either entirely or partially filled by fine particles. 

This fouling can be caused by a variety of factors, including wind, cyclical vehicle loading 

and the migration of fines from either the subgrade or the surroundings. One of the major 

consequences of ballast fouling is the reduced ability or complete failure of the ballast to 

provide adequate drainage after a rainfall event. Furthermore, the presence of moisture on 

the track can cause a reduction in the friction force exerted by the ballast on the tie-rail 

system, which will also dramatically decrease the track buckling load. It is a strong 

nonlinearity due to the fact that it causes a jump discontinuity in the friction field, much 

like in the lift-off problem.  

 Based on industry observations, curved sections of the rail structure have also been 

reported to undergo buckling. It is understood that buckling on curves occurs due to the 
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influence of residual stresses and geometric imperfections on the failure mechanisms 

within the rail structure. Much like the misalignment problem, these geometric 

imperfections cause the induction of additional secondary moments that then reduce the 

buckling load, a phenomenon that is considered a geometric nonlinearity. Additionally, 

the problem of buckling on curves is made even more complex by the introduction of the 

residual stresses necessary to bend the track as required and that are largely unknown, as 

well as by additional complexity associated with the more complex numerical models that 

must be implemented to account for the track curvature.  

 Finally, it is important understand that while all these nonlinearities have so far 

been treated separately by the authors, the real-world physics of the rail shows that all of 

these mechanisms can and do occur simultaneously, and it is therefore necessary to 

develop a model that is capable of handling some or all of these distinct modes of 

nonlinearity concurrently. With the exception of curved track, this has been accomplished 

within this dissertation. 
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CHAPTER VI  

RESULTS 

 

 The following sections of this report illustrate the results of the research efforts to 

date. Briefly, these efforts are focused on mitigating rail buckling via sensitivity analysis. 

Most recently, the focus has been on modeling the effects of rail lift-off on lateral buckling. 

 

ANALYSIS OF SENSITIVITY OF BUCKLING DUE TO VARIATIONS IN RAIL 

PHYSICS 

 

 The rail buckling model developed herein is being deployed for the purpose of 

prioritizing rail buckling mitigation strategies. Toward this end, buckling sensitivity 

studies have been performed as functions of the following input variables: temperature 

change (𝛥𝛥𝑇𝑇), lateral friction coefficient (𝑘𝑘𝑦𝑦) and the track modulus (𝑘𝑘𝑧𝑧). 

 We define herein the sensitivity as the rate of change of the buckling load with 

respect to the input variable of interest. It can be seen that this is represented by the slope 

in the following diagrams, whereby the effects on the buckling load due to a change in the 

variable of interest can be assessed. Symmetric (u-shaped) buckles were modelled on 20-

meter-long sections of the rail, induced by monotonically increasing the loading until 

buckling occurs in the rail structure. Note that the AREMA 115L-10 rail head section was 

chosen to represent a generic rail of typical dimensions, in accordance with industry 
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specifications (Nippon Steel Corporation 2020) such that the response of a realistic rail section 

could be modeled. 

 

Temperature Sensitivity 

 

 First consider the sensitivity of the buckling load to temperature change.  As shown 

in Fig. 21, the predicted buckling load decreases with increasing temperature change. It 

can be observed that there is a noticeable decrease in sensitivity of the buckling load to 

temperature change with increasing temperature change.   
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Constant Lateral Coefficient of Friction Sensitivity 

 

 Consider now the sensitivity of the buckling load to changes in the constant lateral 

coefficient of friction, , which represents the transverse component of friction between 

the ballast and the crosstie. As shown in Fig. 22, the predicted buckling load increases 

with increasing coefficient of lateral friction. Furthermore, a slight increase in the 

sensitivity of the buckling load can be observed with increasing ballast-crosstie friction.   
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Track Modulus Sensitivity 

 

 Finally, consider the sensitivity of the buckling load to changes in track modulus, 

𝑘𝑘𝑧𝑧, which acts at the interface of the ballast with the rail structure. The track modulus is 

therefore defined as a measure of the vertical stiffness of the rail foundation (Selig and Li 

1994), which represents the elastic modulus of the foundation. In order to fully investigate 

the sensitivity of the buckling load to changes in track modulus, it was necessary to 

consider how a stiffer foundation affects the response of the rail structure: for foundations 

with increasing stiffness it is expected that the rail will lift-off from the foundation ahead 

of the train, thus removing the resistance to buckling caused by the ballast-crosstie 

interface friction. Thus, the sensitivity to changes in the magnitude of the track modulus 

is shown in Fig. 23. It can be clearly inferred that the buckling load is significantly affected 

by changes in track modulus when the track structure experiences lift-off for relatively 

low values of the track modulus. The sensitivity for this case is highly nonlinear, and it 

can be seen that the data agrees with the expected response of the rail structure such that 

lift-off resulting from a softer foundation removes resistance due to lateral friction, thereby 

dramatically reducing the buckling load. 



 

55 

 

  

8.20E+04

8.40E+04

8.60E+04

8.80E+04

9.00E+04

9.20E+04

9.40E+04

9.60E+04

9.80E+04

1.00E+05

0.00E+00 2.00E+06 4.00E+06 6.00E+06 8.00E+06 1.00E+07 1.20E+07 1.40E+07 1.60E+07 1.80E+07

Bu
ck

lin
g 

Lo
ad

 [N
]

Track Modulus  
kz [Pa]

Buckling Load vs kz

Figure 23. Predicted Effect of Track Modulus on Buckling Resistance of a Typical Rail 
Structure for the Case of Lift-Off of the Structure 



 

56 

 

SUMMARY OF LIFT-OFF INDUCED LATERAL BUCKLING 

 

 The model presented herein was deployed in an effort to demonstrate the effects 

of track lift-off on lateral buckling, with the objective of validating the following 

hypotheses: 

1. Lift-off is inversely proportional to the track modulus (𝑘𝑘𝑧𝑧)  

2. The buckling load is a strong function of the track modulus (𝑘𝑘𝑧𝑧) when lift-off 

occurs 

3. When lift-off does not occur the buckling load is a weaker function of the track 

modulus (𝑘𝑘𝑧𝑧) 

 Due to the geometric shape of the cross-section of the rail, buckling vertically 

(about the y axis) rarely if ever happens in rails. Based on industry observations, what 

typically happens is that the rail lifts vertically and buckles laterally.  

 In order to accurately predict the response of the rail structure to vertical 

displacement, the same assumption has been deployed in at least one more complex model 

(Dong, Sankar and Dukkipati 1994) as shown in equation (37) and reported in Chapter V. 

Equation (37) ensures that whenever the track system lifts-off from the ballast the 

coefficients of friction are taken as zero. This relationship is checked at every time step 

and iteration within the algorithm. It can be shown that the buckling load decreases 

significantly with lift-off of the track structure and is thus dependent on the track modulus. 

Furthermore, it can be shown that the track modulus significantly affects the length of the 
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section of the rail that experiences lift-off, in turn also affecting the buckling load. In Fig. 

24, the buckling load is shown as a function of the length of the lift-off for the same range 

of values of the track modulus studied in the previous sensitivity analysis. It can be seen 

that a stiffer foundation causes the rail to lift-off and the magnitude of the length of the 

lift-off increases with increasing track modulus, which in turn results in a dramatic 

decrease in the buckling load. Thus, it can be inferred that the buckling load is also a strong 

function of the lift-off length. 

 

 Note that the lift-off problem was modeled utilizing representative values of the 

coefficients of friction, as further research outside the scope of this dissertation is expected 

to properly establish realistic friction coefficients for the rail structure. However, the track 
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Figure 24. Buckling Load as a Function of the Length of the Lift-off for Varying Track 
Moduli 



 

58 

 

modulus was estimated to typically range between 4.14E6 – 1.65E7 Pa (Kerr 2000) for 

rail structures, and this range has been included in the analysis. 

 

 Finally, Fig. 25 shows the vertical rail displacement as a function of the track 

modulus taken at the location of maximum transverse displacement, and at a constant load. 

It can be seen that as the rail lifts-off, the vertical deformation is weakly dependent on the 

track modulus. However, it is significant to note that the buckling load is virtually 

insensitive to changes in the magnitude of the vertical displacement at lift-off. Thus, rail 

buckling is predicted to occur at lift-off independently of the magnitude of the vertical 

displacement of the rail.  

 

  

-1.20E-04

-1.00E-04

-8.00E-05

-6.00E-05

-4.00E-05

-2.00E-05

0.00E+00

2.00E-05

4.00E-05

0.00E+00 2.00E+06 4.00E+06 6.00E+06 8.00E+06 1.00E+07 1.20E+07 1.40E+07 1.60E+07 1.80E+07

Ve
rti

ca
l D

is
pl

ac
em

en
t [

m
]

Track Modulus, kz [Pa]

Vertical Displacement vs kz

Height of Lift-Off at x=10 [m] and Axial Load = 8.10E4 [N]

Figure 25. Vertical Displacement as a Function of the Track Modulus 



 

59 

 

SUMMARY OF THE TRACK MISALIGNMENT BUCKLING PROBLEM 

 

 The model presented herein has been deployed in an effort to demonstrate the 

effects of track misalignment on lateral buckling, with the objective of validating the 

hypothesis that track-walk, caused by cyclical vehicle loading, induces an eccentricity in 

the geometric configuration of the rail, which in turn induces additional secondary 

moments, thereby dramatically reducing the buckling load. Fig. 26 shows the predicted 

effects of increasing lateral track-walk on the buckling load for a typical rail-structure 

subjected to mechanical and thermal loading. In this case, the thermal loading is due to 

the temperature change experienced by the rail from the rail neutral temperature (RNT). 

Rail neutral temperature is defined as the stress-free state of the rail, it is essentially the 

temperature at which the rail experiences zero internal forces.  
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 Fig. 26 thus, shows that for varying deviations from the rail neutral temperature, 

track misalignment dramatically reduces the buckling load. Specifically, the buckling load 

is observed to decrease for increasing temperature change, with a noticeable decrease in 

sensitivity with increasing temperature change. Furthermore, it can be observed that 

increasing track misalignment further decreases the buckling load quasi-linearly. Changes 

in the magnitude of the misalignment of at least 2.5 centimeters are observed to affect the 

buckling load significantly, reducing it by about 15-40% for the range of RNT considered. 
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SUMMARY OF THE NONLINEAR FRICTION BUCKLING PROBLEM 

 

 Consider now the sensitivity of the buckling load to changes in the nonlinear lateral 

coefficient of friction, , which represents the transverse component of friction between 

the ballast and the crosstie. The nonlinearity is modelled as described in Chapter V, and it 

was included in order to better represents the real-world physics of the rail.  

 As shown in Fig. 27, the predicted buckling load increases with increasing 

coefficient of friction, in agreement with the constant friction case. However, this case is 

highly nonlinear, and an increase in the sensitivity of the buckling load can be observed 

with increasing lateral friction. Furthermore, Fig. 28 shows the coefficient of lateral 

friction varies as a function of the lateral displacement for the cases where 𝑘𝑘𝑦𝑦1 was reduced 
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Figure 27. Predicted Effects of Nonlinear Lateral Friction on Buckling Resistance of a 
Typical Rail Structure  
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between 10% and 70% of 𝑘𝑘𝑦𝑦0, and including the limiting cases where 𝑘𝑘𝑦𝑦1 = 0 and 𝑘𝑘𝑦𝑦1 = 𝑘𝑘𝑦𝑦0. 

Note that Fig. 28 shows how the coefficient of lateral friction varies with respect to the 

lateral displacement of the rail at the point of maximum displacement until buckling 

occurs. Note that the behavior agrees with the curve-fit obtained using equation (38) and 

shown in Fig. 19 in Chapter V. 
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CHAPTER VII  

CONCLUSIONS 

 

 A formulation has been presented herein for the purpose of modeling lateral 

buckling in rail structures resting on ballast with both longitudinal and lateral nonlinear 

friction coefficients, misalignment and possible lift-off, thereby producing multiple 

distinct modes of nonlinearity, and this formulation has been cast within a nonlinear finite 

element formulation. The formulation has been validated against both linear and nonlinear 

example problems where closed-form solutions exist, and it has been shown that the 

formulation presented herein is accurate and efficient when compared to existing 

analytical solutions.  

 Unfortunately, due to the multiplicity of nonlinearities present in track structures, 

analytical solutions do not exist for the vast majority of realistic circumstances, and this 

comprises the primary necessity for producing the computational model developed herein.  

 It is important to note that, while previous models with a similar theoretical 

background exist, analytical solutions were obtained by greatly simplifying the problem, 

therefore reducing the ability of the model to represent the real-world physics of the rail. 

Thus, because of the computational nature of the model presented herein, it quite possibly 

represents the single most general specialized, open source, computational algorithm ever 

written for rail buckling, as it is capable to handle simultaneously nonlinear buckling, rail 

lift-off, nonlinear friction at the ballast-tie interface, rail misalignment, the effects of 

rainfall on the track, lateral and vertical vehicle loads as well as additional rotational 
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stiffness due to the presence of the ties. Moreover, it is significant to note that, while it is 

possible to model rail structures utilizing commercially available finite elements codes, 

doing so greatly increases the degree of complexity associated with modeling the rail 

buckling problem, while also reducing efficiency, providing little to no additional 

accuracy, as well as being quite costly. Therefore, it is envisioned that the relatively simple 

but powerful nature of the model presented herein has the capability to greatly impact the 

rail industry by providing railway engineers the means to assess the necessity for 

intervention and/or replacement of sections of the track structure for the purpose of 

avoiding costly and sometimes life-threatening track buckles. Toward this end, the present 

model has been deployed in order to demonstrate its application to realistic rail structures. 

It is therefore envisioned that this algorithm can be a useful tool for developing rail 

buckling mitigation strategies. 

 Finally, while present research has focused on demonstrating the ability of the 

model to handle disparate but distinct modes of nonlinearity, further research will focus 

on modeling the effects of moisture on the track and buckling on curved track, as well as 

the interaction of all the distinct modes of nonlinearities presented herein that are observed 

to occur simultaneously in rail structures. It is also important to note that, while the author 

believes the code to be accurate in representing the physics of the problem at hand, other 

sources of uncertainties may exist and should be considered when attempting to predict 

buckling in rails. In general, the accuracy of the prediction is limited by the ability of 

current technology to accurately measure:  

1. The rail neutral temperature (RNT) 
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2. The ballast-crosstie friction 

3. The effects of moisture absorption, mud pumping and track tonnage on the 

ballast-crosstie friction 

4. The track modulus along the track 

5. The rotational stiffness due to the crossties 

6. The effects of broken spikes and pins and the rail’s resistance to bending 

 Therefore, further research should necessarily also focus on developing a 

methodology to approximate and reduce such uncertainties, in order to further improve 

the industry’s ability to predict and prevent costly and sometimes life threatening rail 

buckles.  
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