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ABSTRACT 

Railway transportation is essential to national economies globally, and disruptions 

from geohazards can result in significant operational delays and considerable economic 

consequences. Satellite radar technologies, including Interferometric Synthetic Aperture 

Radar (InSAR), offer an effective means to monitor geohazard risks across extensive 

railway networks. This thesis employs Multi-Temporal InSAR (MTInSAR) techniques, 

including Persistent Scatterer InSAR (PSInSAR) and Small Baseline Subset (SBAS), to 

identify high-risk areas along railway rights of way (ROW) prior to geohazard 

occurrences. However, the efficiency of these MT-InSAR and, consequently, the caliber 

of the data generated may be restricted by elements like topographical profile, vegetation, 

and surface soil properties. This thesis presents first a detailed site categorization 

approach to define areas according to site-specific characteristics, improving radar 

processing precision. 

Next, this thesis adapted two Multi-Temporal InSAR techniques, i.e., PSInSAR 

and SBAS, to improve the detection of scatterers in the broader region of interest by 

introducing the new concept of a “Rolling SAR Image Stack.”  Furthermore, three post-

processing techniques were developed, i.e., “Thresholding,” “Accumulation,” and 

“Clustering Timeline,” that successfully detected the critical locations where geohazard 

failures may initiate. The thesis also demonstrates that these techniques, when used with 

Coherence Change Detection (CCD), a SAR method that is demonstrated to identify 

regions with high soil saturation can improve hazard detection. The proposed approach 



vii 

demonstrates that modern SAR-based analysis provides useful tools for railway operators 

to detect critical locations prone to geohazards, which enhances safety and reduces 

interruptions by prompting immediate actions. This research underlines the relevance of 

combining data from soil and environmental sources with satellite observations to 

conduct complete hazard monitoring. Additionally, it underscores the necessity of future 

satellite technology developments to improve coverage and dependability.
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CHAPTER 1: INTRODUCTION 

 Geohazards are critical geologic conditions with a high potential to cause 

significant damage to infrastructure, property, and even loss of life. Shallow geohazards 

occur in the upper layer of the earth's crust and directly affect infrastructure [2]. These 

geohazards progress slowly over long periods of time, and they are relatively stable until 

triggered by external events such as rainfall, mining, and construction [3]. Railway right 

of way often traverses natural or constructed slopes susceptible to shallow geohazards 

such as landslides and subsidence [4]. Failures associated with these hazards cause 

derailments, significant damage to railway infrastructure, and transportation service 

disruption, resulting in economic losses and potential safety risks. The early detection of 

shallow geohazards relies on identifying and monitoring their underlying causes. Using 

satellite radar data to detect precursors of shallow geohazards in railway right of way is 

an innovative approach that can significantly improve early warning and mitigation 

strategies [5]. Interferometric Synthetic Aperture Radar (InSAR) techniques have been 

widely used in displacement monitoring [6] of areas that have already been identified as 

critical. InSAR provides a unique combination of high-resolution, wide-area coverage, 

and non-invasive monitoring, making it an ideal tool for this work's objectives.  

1.1 Background 

 Railway transportation is an essential element in modern economies [7], as it is a 

sustainable [8], reliable [9], and efficient mode of transportation for passengers and 
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freight across extensive networks. Rail networks play an important role in economic 

growth [8] because they facilitate trade, connect industries, and ensure the movement of 

goods over vast distances, often at less expensive costs and with less environmental 

impact than other modes of transportation [9]. 

 Furthermore, railway infrastructure is becoming an increasingly critical asset as it 

expands to accommodate the demand for freight and passenger services [8]. This 

expansion demonstrates the railway industry's responsiveness to contemporary 

commercial demands and the growing focus on sustainable transportation solutions [10]. 

Rail travel utilizes considerably less fuel per ton-mile than road transport and has a 

reduced carbon footprint, rendering it a favored option for sustainable infrastructure [9]. 

Moreover, the dependability of rail systems, less influenced by meteorological and traffic 

variables than road or air transport, highlights their significance in preserving supply 

chain stability and service continuity [11]. 

 The extensive breadth of railway networks from the expanding use of railways 

sometimes leads them to navigate difficult terrains, making them susceptible to 

environmental hazards such as landslides, subsidence, and erosion. These geohazards 

threaten infrastructure integrity and safety, as they may result in interruptions, delays, 

and, in extreme instances, derailments. The economic ramifications of these hazards 

surpass infrastructure maintenance expenses, encompassing wider effects such as delays 

in commodities transportation, diminished productivity, and possible human fatalities 

[12]. Thus, the efficient oversight and upkeep of railway infrastructure are essential to 

mitigate these risks and preserve rail transit's economic and social advantages [13].  
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 One of the most common of these geohazards is landslides, caused by multiple 

natural and man-made factors or a combination [14]. They occur when rocks, loose soil, 

and debris move downhill due to excessive moisture or site mobilization [15]. Landslides 

present a significant hazard as they potentially obscure pathways hindering train 

operations. A landslide affecting a railway line suspends operations and necessitates 

extensive clearance activities, potentially resulting in service disruptions lasting days or 

weeks. This research began with identifying mudslide-inducing factors using a radar 

satellite in the  TGV derailment near Ingenheim, France, on March 5, 2020 [2](Figure 

1.1a) and the CSX derailment near Draffin, Kentucky, on February 13, 2020 [3](Figure 

1.1b). These landslides blocked the railway track, leading to service disruption and loss 

of lives. The slow sinking or settling of the ground is called subsidence. It can make the 

foundation of a railroad unstable, leading to uneven tracks that need to be fixed and 

maintained all the time [16]. Subsidence can result in uneven settling of railway tracks, 

causing track deformation and misalignment. Over time, these deformations undermine 

track stability, necessitating frequent repairs and increasing the risk of derailment [17]. 

Subsidence along the railway Right of Way (ROW) typically progresses gradually but 

intensifies after precipitation and compromises soil stability. The economic impact of 

subsidence includes not only the costs of repairs but also the long-term effects on track 

upkeep, which raises costs and shortens the life of the infrastructure. Erosion, frequently 

induced by water runoff, undermines embankments and track foundations, heightening 

the risk of slope failures that impede railway lines or result in track washouts [15]. 

Erosion of embankments comprises, endangering the track base and necessitating 

immediate action to prevent breakdowns [18]. These hazards are generally slow-moving 
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Figure 1.1 Recent derailment events due to landslides: (a) TGV derailment Ingenheim, 

France, 3/5/2020; (b) CSX derailment Draffin, Kentucky, 2/13/2020[3][4]. 
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but can accelerate swiftly under specific circumstances, such as after intense rainfall, soil 

saturation, or seismic activity.  

passengers and goods, railway operators can take preventive actions when they  

can detect early conditions of probable ground movement or soil instability. This is made 

possible by effective monitoring. By implementing sophisticated geohazard monitoring 

systems, railway operators can diminish the frequency and severity of service disruptions, 

minimize maintenance expenses, and prolong the lifespan of essential infrastructure. 

Geohazard monitoring is essential for risk management in railway infrastructure, 

protecting the network from the unpredictable and often catastrophic effects of natural 

and human-induced ground hazards. By implementing thorough monitoring, rail 

operators can improve operational resilience, maintain safety standards, and reduce the 

economic impact of geohazard-related disruptions. Monitoring systems based on satellite 

radar imaging, such as Interferometric Synthetic Aperture Radar (InSAR), offer 

continuous data across broad and remote areas for early detection and analysis of ground 

deformation and soil moisture changes. 

1.2 Research Problem 

 Geological hazards are complicated processes caused by man-made (such as 

urbanization and deforestation) and natural (such as earthquakes and tsunamis) elements. 

Thus, geohazard susceptibility maps that consider multiple factors are crucial to detect 

and mitigate their effects on railway infrastructure effectively [19]. The risk prediction 

models for monitoring geohazards use data categorized as static and time-varying, 

respectively. Static data encompasses a wide range of information, including topography, 
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soil profiles, historical activity, and land use. On the other hand, time-varying data is 

collected at regular intervals through specialized sensors tailored to specific objectives 

such as weather and rainfall patterns, soil moisture levels, seismic activity, and site 

movements. Models like the rainfall threshold models predict landslides by utilizing 

rainfall intensity data with historical landslide occurrences [20]. These models use static 

data like terrain characteristics, historical occurrences, and soil types with time-varying 

data from weather and soil moisture sensors near the regions most likely to experience 

geohazards [21]. When high-risk regions experience intense rainfall exceeding the 

threshold, landslide warnings are triggered [22]. Hydrological models stimulate water 

flow through topography to assess the potential for slope failure. These models utilize 

real-time soil moisture, groundwater levels, and streamflow measurements and are 

integrated to assess the potential for slope instability [23] [24]. On the other hand, 

geotechnical models concentrate on the soil and rock properties to detect slope stability 

and utilize active sensors to monitor slope deformation [25]. Existing models have two 

important needs to be addressed in order to increase the precision and predictive power of 

geohazard models. Initially, it is essential to identify specific locations—rather than 

merely general areas—that are at heightened danger. This localized identification offers a 

targeted strategy for monitoring and mitigation initiatives. Secondly, installing sensors 

that can gather time-varying information, including ground movement, soil moisture, or 

seismic activity, is important. These sensors deliver real-time data that can monitor the 

fluctuating conditions leading to geohazards, facilitating more precise and prompt 

predictions. Although planning and risk mitigation benefits greatly from these broad 

evaluations, the inability to identify precise monitoring locations and the resource-
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demanding characteristics of instrumentation highlights the necessity for progress in 

geohazard prediction tools [21]. Integrating InSAR-based remote sensing data and 

developing cost-effective, scalable sensor technology will be essential. By resolving the 

deficiencies of existing geohazard models, they can evolve from general regional 

evaluations to specific, actionable insights, increasing their effectiveness in safeguarding 

lives and infrastructure. 

1.3 Research Objectives 

 The dissertation focuses on establishing an innovative framework that utilizes 

satellite radar imagery and other data sources to monitor and identify high-risk zones for 

geohazards. The proposed technique is developed based on the InSAR family of satellite 

radar signal processing techniques and monitors for earth surface mobilization and soil 

moisture changes. This methodology fills a major gap in current geohazard monitoring 

methods, which lack the scalability required for continuous, non-invasive observation of 

broad areas like railway corridors.  To bridge this gap, this research addresses key 

questions related to geohazard monitoring and InSAR analysis. 

First, the region being monitored is classified. The classification system has been 

developed and implemented to determine the effective InSAR technique.  Based on the 

site class, the dissertation also investigates the adaptation and optimization of Multi-

Temporal InSAR techniques, including Persistent Scatterer InSAR (PSInSAR), Small 

Baseline Subset (SBAS), and Coherence Change Detection (CCD), for regional-scale 

geohazard monitoring. 

Second, this research examines the detection and quantification of surface  
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mobilization preceding collapse using InSAR techniques. The hypothesis underpinning 

this inquiry is that areas near geohazard-prone zones exhibit measurable subsidence, 

frequently occurring weeks or months before failure. The study then looks into the 

relationship between changes in soil moisture content and changes in radar signal 

coherence. The hypothesis is that considerable variations in soil water content increase 

failure risk, and this phenomenon is assessed by studying coherence changes in radar 

imaging. 

 Finally, this research introduces three new postprocessing techniques to enhance 

risk potential identification over large regions. When used in tandem, these techniques 

display regions experiencing significant activity and locations most susceptible to failure. 

 The proposed system's efficacy is confirmed by real-world studies of recognized 

geohazard events, demonstrating the framework's robustness, reliability, and applicability 

to various scenarios. This dissertation addresses research topics to develop a scalable, 

non-invasive monitoring system for the early detection and risk assessment of geohazard-

prone areas, offering actionable insights for railway safety and maintenance. 

1.4 Organization of the Thesis 

This thesis is structured comprehensively to guide the reader through the study of 

geohazards and the use of satellite radar imagery as a monitoring tool. It covers 

foundational concepts and introduces new monitoring methods, ensuring a thorough 

understanding of the topic. 

In Chapter 2 we review the types of geohazards affecting railway infrastructure 

and evaluate traditional monitoring approaches such as geotechnical sensors and LiDAR. 
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We then introduce the principles of Interferometric SAR (InSAR), highlighting how radar 

phase differences can be used to detect ground movement. The chapter explores advanced 

multi-temporal InSAR techniques—PSInSAR, SBAS, and Coherence Change Detection 

(CCD)—and discusses their advantages and limitations in monitoring deformation and 

soil moisture changes in vulnerable areas. 

Chapter 3 presents the framework for geohazard monitoring using MTInSAR 

techniques. It begins by introducing a site classification based on terrain, vegetation, and 

data availability. The chapter details key geometric and surface parameters affecting SAR 

data quality. The chapter outlines a multi-stage analysis workflow, including SAR data 

acquisition, preprocessing, and processing using PSInSAR, SBAS, and CCD. It 

concludes by describing limitations of these methods and the need for overcoming them. 

Chapter 4 discusses the three post-processing techniques introduced to enhance 

geohazard detection: Thresholding, Accumulation, and Clustering Timeline. The 

Accumulation method is used to identify progressive deformation patterns, while the 

Clustering Timeline highlights consistent spatial anomalies indicative of potential hazard 

zones. These methods are applied are shown to improve early warning capabilities and 

geospatial data interpretation. 

In Chapter 5 a comprehensive analysis of Wayanad landslide is conducted, the 

results of multi-site analyses using MTInSAR techniques are presented, demonstrating 

the capability of satellite radar imagery to detect early-stage ground movement and 

geohazard activity confirmed the framework’s ability to detect subtle pre-failure activity, 

providing critical insights into deformation dynamics and improving early hazard 

identification across diverse terrains. 
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In Chapter 6 presents the results of the InSAR analysis. It is divided into two key 

sections: the first deals with site mobilization, and the second focuses on the development  

of soil moisture models based on the satellite data collected in known sensor locations.  

Finally, Chapter 7 concludes the thesis, summarizing the findings and offering 

recommendations for future research. Potential avenues for further exploration in 

automation are discussed, aiming to refine and expand the use of SAR technology for 

geohazard monitoring.
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CHAPTER 2: LITERATURE REVIEW 

 Geohazards, which include natural events like landslides, earthquakes, and 

volcanic outbursts, are very dangerous to people, buildings, and the environment. 

Advanced monitoring and analytical techniques are necessary to mitigate these threats. 

This chapter gives an overview of the geohazards that have been monitored in this work, 

focusing on their effects and existing monitoring strategies. Furthermore, this chapter 

introduces the fundamentals of Synthetic Aperture Radar (SAR) remote sensing, which is 

an effective method for monitoring and assessing geohazards. 

2.1 Overview of Geohazards in Railway Infrastructure 

 Geohazards consist of diverse natural disasters, frequently originating from 

complex interactions between geological formations, hydrological systems, and other 

natural phenomena. Some of the common examples of geohazards are landslides, 

rockfalls, earthquakes, volcanic eruptions, and tsunamis. Earthquakes and tsunamis are 

geohazards that cannot be monitored as they are caused due to tectonic activity. These 

geohazards trigger other geohazards due to their location, creating a cascading effect.  

 Landslides, being an increasingly frequent geohazard, possess the potential to 

inflict severe repercussions upon both populations and infrastructure. Various sources can 

initiate landslides; however, water is predominantly a triggering agent and, in some cases, 

the cause for the landslide, like in the case of mudslides, which trigger due to a sudden 
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increase in soil moisture. Intense precipitation has the potential to saturate the soil [26], 

leading to the occurrence of debris flow and mudslides that descend slopes, causing great 

harm [27]. The process of deforestation worsens the porous nature of the soil, rendering it 

increasingly vulnerable to the occurrence of landslides [28]. Moreover, the presence of 

water has the potential to elevate pore pressure in the subsurface, substantially 

compromising the cohesive properties of soil. Comprehending these causal elements is 

crucial in formulating efficient monitoring and mitigation approaches [29] [30].  

 Rockfalls fall under the landslide category. They occur when rocks detach from a 

steep slope with minimal or nonexistent lateral movement before the event. This 

phenomenon occurs swiftly, with the detached particles subsequently rolling down the 

slope [31]. The main forces that induce the fall of unstable rocks include triggering 

mechanisms such as water, ice, earthquakes, and vegetation development. Water 

infiltration into fissures within the underlying rock strata can lead to the accumulation of 

pressure exerted on hazardous rock formations. Water may penetrate fissures in the rock 

and undergo freezing, leading to the expansion of these fissures. The process, known as 

"frost wedging" or "freeze-thaw," gradually dislodges loose boulders from cliff slopes. 

Recent studies indicate that fluctuations in daily temperatures and the occurrence of 

intense heat can also lead to the destabilization of rock slabs [15]. 

 Debris flows are landslides that are rapid, gravity-driven movements of water-

saturated debris, such as rocks, dirt, and organic material, that occur mostly in 

mountainous environments. These flows are extremely destructive because of their high 

velocities, huge impact forces, and ability to transport massive amounts of debris across 

great distances. Heavy rainfall is a common cause of debris flows because it quickly 
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saturates loose sediments, reducing stability [32]. Rainfall-induced landslides can 

transform into debris flows as the landslide material gets fluidized, a phenomenon that is 

heavily impacted by early soil moisture levels, which govern the initiation mechanisms. 

Furthermore, channel degradation and sediment mobilization play an important role in 

debris flow development. Surface runoff in mountainous places concentrates in channels, 

eroding and mobilizing silt, especially in areas with plentiful loose material at the base of 

high cliffs. As a result, silt is constantly added to the flow, increasing its size and capacity 

for destruction. This is known as the progressive bulking effect [33]. 

 Sinkholes are depressions or holes in the ground formed by the collapse of a 

surface layer. They can occur naturally, owing to the dissolution of soluble rocks such as 

limestone, gypsum, and salt, or they can be caused by human activity [34]. These 

geological characteristics represent substantial infrastructure and human safety dangers, 

needing further investigation and management. Sinkholes are classified into three types: 

collapse sinkholes, which are large, sudden depressions caused by the collapse of ground 

into voids created by dissolving rocks; subsidence sinkholes, which are shallow, 

expansive depressions caused by gradual ground settling over dissolving beds of halite, 

gypsum, or glauberite; and cover-collapse sinkholes, which are smaller features often 

induced by human activity and formed by sediment migration into dissolution voids [35].  

 The geohazards described above commonly exhibit subtle indications of an 

approaching failure, gradually manifesting before a catastrophic disaster. Identifying 

these initial indicators is important in mitigating the risk of casualties and asset damage 

[36]. Small-scale landslides or minor ground movements can be precursors to larger, 

more devastating landslides. Identifying these indicators and promptly implementing  
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appropriate actions are integral to efficient landslide mitigation strategies [37]. 

2.2 Methods of Geohazard Detection and Monitoring 

 Effective geohazard detection and monitoring requires various sensors for early 

warning purposes, and are critical for reducing the threats these disasters cause. These 

sensors are used to identify initiation mechanisms and failure dynamics. Each sensor has 

unique constraints that must be understood to optimize its application. Conventional 

geotechnical assessments involve intrusive drilling and excavation to discover and map 

soil and rock structures, features, and engineering properties. These methodologies are 

essential for comprehending local subsurface geological and geotechnical conditions and 

critical for evaluating geohazards such as slope failures and earthquake damage 

[38](Figure 2.1). Even though they are crucial, conventional geotechnical sensors 

frequently have high precision, but poor durability, and high sensitivity to external 

interferences, which might restrict their usefulness in early warning systems and real-time 

monitoring [39]. Recent advances in fiber optics have shown that specific sensors like 

Fiber Bracket Grating (FBG) sensors transmit all light wavelengths and reflect specific 

Bragg wavelengths. The shift in response of this wavelength is attributed to changes in 

temperature strain or pressure, allowing for precise measurements of these parameters 

[39]. Despite being widely used for real-time monitoring, FBG sensors have drawbacks 

when used in the field, including sensitivity to environmental changes and the 

requirement for reliable installation methods [39]. Lidar technology has significantly 

transformed landslide monitoring by utilizing laser pulses to generate topographical maps 

of exceptional detail [40]. The capacity to infiltrate vegetation cover offers vital insights 

into the topographical conditions and stability of slopes [41] [42]. Studies have shown   
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Figure 2.1 This image shows multiple monitoring instruments used to monitor a 

geohazard 
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LIDAR is efficient in the seasonal mapping of landslide activities and measuring their 

mobilization [43]. Nevertheless, LIDAR has limitations, such as reduced operational 

effectiveness during adverse weather conditions, infrequent data collection intervals, and 

reliance on aerial platforms, primarily airplanes, as opposed to satellites, albeit with 

limited exceptions. The utilization of LIDAR is accompanied by significant financial 

implications due to its inherent disadvantages [44].  

 Some common sensor types, like rain gauges, soil moisture sensors, and pore-

water pressure sensors, monitor the influence of water and how it may induce 

geohazards. Meanwhile, flow stage sensors, ground vibration sensors, and video cameras 

monitor the surface change itself. Data from these sensors is varied, and data 

interpretation is crucial to analyzing information derived from these monitoring systems. 

This process allows specialists to evaluate the stability of slopes and detect any potential 

anomalies or risk factors that may be present [45] [16]. Every sensor category employed 

for geohazard monitoring possesses distinct limitations, including environmental 

sensitivity, data integration difficulties, and operational constraints. Different sensor 

technologies are commonly combined to overcome these constraints to improve 

geohazard detection and management capabilities. Integrating data from diverse sources 

and enhancing sensor technology can result in more efficient geohazard monitoring and 

risk reduction measures [46].  

2.3 Geohazard Risk Prediction 

 Geohazard risk prediction or susceptibility mapping is a crucial area of study 

focused on comprehending and mitigating the effects of geohazards. The field uses many 



17 

 

approaches and technologies to evaluate, forecast, and mitigate risks. Geohazard risk 

prediction is done by mapping or modeling the hazards. The maps show geohazard 

zonation and the probability of geohazard occurrence given a set of environmental 

conditions. This statistical assessment of geohazard susceptibility assumes that future 

geohazards would occur under conditions similar to previous ones [47]. 

 Parameters that make the region vulnerable to movement and triggering processes 

that initiate the movement are considered to model geohazard susceptibility and hazard 

[48]. These parameters are monitored based on existing static data, and discreet sensors 

are used to monitor real-time data. Geological and geotechnical factors significantly 

influence risk prediction, including fault lines, granite formations, soil mineralogy, and 

slope stability. This information is frequently obtained from digital elevation models, 

surveys, and historical maps, which fall into the static data categories as they stay 

relatively constant throughout the year [49]. Geohazards are triggered greatly by 

environmental and climatic factors, such as precipitation and temperature, such as 

permafrost thawing. These factors are monitored using discreet time-varying sensors that 

provide reliable data for specific regions. Although time-varying sensors are accurate in 

most cases, they have limitations related to accessibility and disruptions due to 

environmental factors like flooding. Some remote sensing technologies like LIDAR and 

GIS have been shown to mitigate these limitations and are being integrated into current 

risk prediction approaches [47]. 

 In the literature, risk prediction models are based on various data sources and 

parameter combinations [50] [51]. This is because each geohazard has unique 

characteristics, and factors influencing it differ based on site characteristics [52]. When 
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all available parameters are utilized, correlated and redundant information is probably 

considered, which may result in a map with a lower degree of accuracy [53]. An 

explanation for this phenomenon is the Hughes effect or the curse of dimensionality. 

However, some common parameters in most models are the site mobilization and soil 

moisture content [50] [54]. In this work, satellite radar techniques are shown to be 

effective alternatives to monitor these parameters compared to discreet time-varying 

sensors. This work also shows a new way of identifying geohazard susceptible regions 

based on radar signal processing techniques. 

2.4 Satellite Fundamentals 

2.4.1 Satellite Radars 

 Radar satellite sensors have been valuable sources for monitoring change 

detection. These sensors capture target parameters different from optical sensors by 

providing unique information. A radar sensor operates within the microwave range of the 

electromagnetic (EM) spectrum (Figure 2.2). The band has a wavelength in the 

centimeter range. This results in radio waves penetrating substances such as heavy cloud 

cover, fog, and rain. Most radar sensors are active sensors, meaning they do not rely on 

the sun to illuminate their targets and are not influenced by the day-night cycle [6]. 

Finally, the most important property of radar sensors is that they are coherent sensors. A 

coherent sensor can generate an electromagnetic field that maintains a consistent phase 

relationship between the electric field value, location, and time. This enables the radar 

sensor to precisely capture every ground target's amplitude and phase information. 

Amplitude values correspond to the radar backscatter, where a brighter pixel on the radar  
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Figure 2.2 The electromagnetic spectrum is shown here. 
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image of the target indicates a higher backscatter signal intensity at the corresponding 

point of the target. The phase value is determined by the distance between the sensor and 

the target and the interaction between the electromagnetic signal and the ground surface. 

Radar signals exhibit different interactions with the surface compared to other sensing 

systems, providing interesting new information about the observed environment [55]. 

 SAR interferometry, commonly known as Interferometric SAR or InSAR, relies 

on the coherent fusion of complex SAR images. The phase of a single Synthetic Aperture 

Radar (SAR) image is predominantly random, lacking any discernible pattern, and hence 

does not provide valuable insights into the target. Nevertheless, the cohesive combination 

of the phase of two or more SAR images does contain valuable target data, and the 

utilization of these phase serves as the foundation of SAR interferometry. 

 Multiple methods exist for constructing an interferogram. For the interferogram to 

be beneficial, the SAR images must be distinguished from one another, typically in terms 

of their imaging geometry, imaging time, or both. 

 This research works with satellite images captured at separate points in time and 

from the same or slightly varied spatial positions. The two cross-correlated images are 

called an interferometric pair, and their cross-correlation produces a SAR interferogram. 

The term used to refer to the phase of a SAR interferogram is the interferometric phase. 

InSAR also measures the interferometric coherence, quantifying the similarity in SAR 

images. 

 To describe the phase components of an interferogram, it is assumed that the 

scattering mechanism is identical in both images, i.e., the only difference between the two 
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SAR acquisitions is the time delay. Then, the interferometric phase between two 

acquisitions can be estimated as 

 𝜑 = 𝜑𝑡𝑜𝑝𝑜 + ∆𝜑𝑝𝑟𝑜𝑝 + ∆𝜑𝑠𝑐𝑎𝑡 + ∆𝜑𝛿𝑅  (1) 

Where “𝜑” is the interferometric phase between two acquisitions; “𝜑topo” is the 

topographic phase component; “Δ𝜑prop” is the delay difference in phase activity due to 

atmospheric conditions like the presence of water vapor; “Δ𝜑scat” is the change in 

scattering behavior. This component can be due to surface characteristics like changes in 

dielectric constant or other phase contributions like temporal decorrelation; and “Δ𝜑δR” is 

the displacement of the reflected scatterers between the two acquisitions in the satellite 

line of sight direction. 

 Each component of the interferometric phase has a different application. For 

Digital Elevation Model (DEM) generation 𝜑topo is isolated. For coherence estimation, 

Δ𝜑scat is measured. Finally, for DInSAR application, Δ𝜑δR is obtained by removing the 

topographic phase obtained from external DEM.  The atmospheric phase component is 

always present when trying to compute any of the interferometric components. It is only 

mitigated when large stacks of data are used [55]. 

2.4.2 Limitations of InSAR 

 InSAR analysis is widely utilized in ground deformation monitoring; however, it 

assumes that both SAR images share the same scattering mechanism, which is often not 

true in real-world scenarios due to factors such as satellite positioning and time delays 

that introduce errors in the interferometric phase. Common limitations in InSAR 

displacement measurement include temporal decorrelation, spatial decorrelation, and 
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noise during phase processing [56]. Temporal decorrelation arises from long intervals 

between radar image acquisitions, leading to changes in vegetation and topography, as 

well as phase delays caused by atmospheric effects in the ionosphere and troposphere. 

Spatial decorrelation occurs when the distance between radar acquisitions is large, 

resulting in significant variations in radar look angles and coherence loss due to differing 

pulse phases [57]. This is influenced by the satellite’s baseline, defined by its position 

during acquisition, and is expressed through parallel and perpendicular baselines 

[56](Figure 2.3). Noise during phase processing stems from factors like the flat-earth 

effect, topographic variations, orbital errors, and atmospheric delays, all of which 

compromise the accuracy of ground deformation results. Advanced multi-temporal SAR 

techniques address these limitations by utilizing extensive SAR data stacks specifically 

designed to mitigate phase decorrelation and atmospheric effects [57]. Research in the 

late 1990s led to two primary approaches: one focusing on coherent, point-wise radar 

targets known as permanent or persistent scatterers (PS) and the other exploring 

distributed scatterers (DS) through techniques like Small Baseline Subset (SBAS). 

2.5 Multi-Temporal SAR Techniques 

 The image pairs referred to as interferograms were used in early studies to 

identify changes between the acquisitions and obtain displacement in satellite lines of 

sight (LOS). Subsequently, the method was modified to incorporate a multi-temporal 

approach (MTInSAR) to reduce displacement measurement errors and enable tracking of 

surface changes over time.  In contrast to the early InSAR analysis process that considers 

a single pair of SAR images, MTInSAR techniques combine interferograms derived from 

an extensive series of Synthetic Aperture Radar (SAR) images (stack of images) acquired 
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Figure 2.3 The effect of orbit baselines on the phase change is illustrated. 
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 within the observation period. One of MTInSAR's key features is its ability to identify 

small surface changes over time. But during the analysis period, if there is a sudden large 

change (>30mm deformation, etc.) between any two acquisitions in the interferogram or 

the scatterer loses coherence due to other factors, MTInSAR analysis fails to monitor the 

change even if the surface is experiencing the deformation. The main difference among 

the multi-temporal methods lies in how SAR image pairs are created. The criteria for an 

image pair to be able to generate an interferogram depends on the baseline between them. 

The baseline is the distance or time between two acquisitions. If it is distance, it's called 

the spatial baseline, and the temporal baseline is time. For an interferogram to be viable, 

we need to first obtain a critical baseline in a perpendicular direction. In interferometry, 

there exists a critical baseline over which the generated interferogram will be pure noise. 

Interferometry becomes impossible as the difference in viewing angle becomes too great 

to prevent the overlapping of the imaged ground spectra. This critical baseline is based on 

the ground resolution cell, the radar frequency, and the sensor-to-target distance. The 

critical baseline for Sentinel-1 interferometry is approximately 5 Km, as determined by 

equation Eq. (6). In practice, anything more than 3/4 of the critical baseline produces 

significant noise. Interferometry can only be used for point-like targets when the baseline 

is more significant than this [1].  

 
𝐵𝑝𝑒𝑟𝑝

𝑐𝑟𝑖𝑡 =
𝐻. 𝐵𝑊𝑟

𝑓

sin 𝜃

𝑐𝑜𝑠2𝜃
 

(2) 

Where, 𝐵𝑝𝑒𝑟𝑝
𝑐𝑟𝑖𝑡  is the critical baseline in the perpendicular direction; H is the satellite 

altitude; 𝐵𝑊𝑟 is the range bandwidth or inverse of the duration of the pulse; 𝑓 is the 

frequency of the radar.  
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 Once the baseline between two images is within the limit, we can use the image 

pair in MTInSAR. The Persistent Scatterer (PSInSAR) and Small Baseline Subset 

(SBAS) approaches are two MTInSAR techniques used for displacement measurements. 

The coherence change detection timeline (CCD) method is an alternate multi-temporal 

technique that observes changes to surface properties. The PSInSAR, SBAS, and CCD 

techniques are discussed below. 

2.5.1 PSInSAR 

 The Persistent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR) 

technique is one of the first developed MTInSAR [58] that employs fundamental InSAR 

principles over an extensive sequence of images to achieve highly accurate displacement 

measurements. The initial stage of the PSINSAR stacking technique involves 

constructing a connection graph. This step establishes a network connecting the master 

and slave pairs based on their baseline values, ultimately generating differential 

interferograms. The images in the network have a common master image based on a 

minimum temporal baseline for the most extreme pair. The maximum number of possible 

connections is equal to N-1, where N is the number of acquisitions. The image pairs are 

depicted graphically through connection graphs, which use the satellite acquisition date 

on the x-axis and the relative satellite position on the y-axis [59].  The displacement 

estimation begins with identifying “Persistent Scatterers” (PS) in the observation area, 

and they can encompass a range of objects, including urban infrastructure like buildings, 

windows, roofs, and railway lines, as well as natural features like rocks and roads. The 

PS are identified as individual pixels, or group of pixels, exhibiting consistent high 

coherence in all the image pairs throughout the analysis period [58]. 
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 To reduce processing time, the PS are first identified using amplitude dispersion 

𝑀𝑢𝑆𝑖𝑔𝑚𝑎. In the time frame under consideration, the amplitude dispersion index is 

calculated as the ratio of the mean intensity value to the standard deviation σA of the 

image intensity. 

 
𝑀𝑢𝑆𝑖𝑔𝑚𝑎 =

𝑚𝐴

σA
 

(3) 

 

 A PS is present when backscattering intensity shows little temporal variability. 

The amplitude dispersion index calculation enables the selection of candidates for PSC 

(Permanent Scatterers Candidates) points at the outset without the need for phase 

coherence analysis. High dispersion index pixels (MuSigma=0.60%), which have 

comparable values throughout time and relatively high amplitude values in most 

conditions, make them suitable candidates for persistent scatterers. After identifying these 

targets, a phase history analysis is conducted to identify potential PS candidates based on 

their coherence. MuSigma should always be less than the threshold for coherence, as a 

larger MuSigma will reduce the number of PS in the identification stage. A threshold of 

0.7 coherence is chosen to identify PS targets.  A higher threshold for coherence would 

reduce the number of PS but increase the accuracy of the measured displacement. 

However, due to a large temporal baseline for a 25-image SAR stack, a 0.7 coherence 

threshold is preferable; a higher threshold reduces the presence of PS in the active 

monitoring region.  

 To obtain the deformation over time, the PS technique employs a linear model to 

obtain residual height and displacement velocity. Residual height is the phase error 
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present in the interferometric phase after the topographic component is removed. The 

linear model can be described by the Equation 4 

 
𝜙(𝑀) = (𝐻 × 𝐾) + (𝑉 × 𝑇 ×

4π

𝜆
) 

(4) 

Where,“𝜙(𝑀)” is the displacement phase for the Mth interferogram pair; “V” is the mean 

displacement velocity of the observation time period; “T” is the temporal baseline 

between the two acquisitions in the interferogram; “𝜆” is the wavelength of the radar 

signal used; “H” is the residual height error due to the reference DEM used; “K” is the 

geometric parameter which depends on the baseline and incidence angle 

 Equation 4 is solved using a brute force approach to obtain the displacement 

velocity and residual height [59]. The displacement velocity from Equation 4 is used to 

calculate deformation over time. An implementation example of the PSInSAR is shown 

in Figure 2.4 The connection graph is shown in Figure 2.4 (a), and the computed 

deformation map is shown in Figure 2.4 (b). Blue deformation points indicate subsidence, 

and red deformation points indicate the raising of the surface in the direction of the 

satellite's line of sight (LOS). Figure 2.4 (c) shows the connection graph for SBAS 

analysis with a large number of master files. The deformation analysis from the SBAS 

connection graph is shown in Figure 2.4 (d). The SBAS analysis is further explored in the 

following section 

2.5.2 SBAS 

 The Small Baseline Subset (SBAS) technique is a variant of MTInSAR analysis, 

which shares some similarities with PSInSAR. In contrast to PSInSAR, which primarily 

concentrates on observing deformation in coherent targets, SBAS analysis is primarily  
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Figure 2.4 PSInSAR and SBAS analysis of the same representative site: (a) PSInSAR 

image connection graph; (b) PSInSAR computed deformation map; (c) SBAS image 

connection graph; (d) SBAS computed deformation map. 
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concerned with monitoring the progression of deformation in diffused radar targets 

known as Distributed, or Dispersed, Scatterers, (DS) [58]. The processing methodology 

of the SBAS technique exhibits numerous notable distinctions compared to PSInSAR. 

One prominent distinction is the use of multiple master images in the connection graph 

stage of the SBAS approach and is employed to mitigate the deterioration of coherence in 

InSAR pairs of PSInSAR as the temporal baseline expands in extreme pairs. The 

maximum number of connections in the connection graph can be described by Equation 5 

where given N acquisitions, and the most significant number of viable connections M 

between all of the acquisitions is given by 

 𝑁 + 1

2
≤ 𝑀 ≤ 𝑁(

𝑁 + 1

2
) 

(5) 

 The criteria for interferogram pairs are generated based on the spatial baseline 

being shorter than 2% of the critical baseline and a temporal baseline in the 90 to 180-day 

range. An additional criterion based on the maximum connections for each master file is 

set at 10. Increasing the maximum connections increases the processing time as the 

number of interferograms increases, but the improvement in accuracy falls significantly 

after 10. Reducing the number of connections to less than 5 increases the atmospheric 

errors as the number of redundant interferograms decreases substantially [60].  

 The interferogram pairs from the connection graph are arranged in a matrix form 

due to the number of interferograms being larger than the number of acquisitions. The 

matrix is formed based on the steps described below.  The interferometric phase for each 

pair can be described by the equation 
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 𝛿𝜙𝑖𝑛𝑡(𝑟, 𝑎) = 𝜙(𝑡𝐵, 𝑟, 𝑎) − 𝜙(𝑡𝐴, 𝑟, 𝑎)

≈ ∆𝜙𝑑𝑖𝑠𝑝 + ∆𝜙𝑡𝑜𝑝𝑜 + ∆𝜙𝑎𝑡𝑚 + ∆𝜙𝑜𝑟𝑏 + ∆𝜙𝑛𝑜𝑖𝑠𝑒 

(6) 

Equation 6 represents the DInSAR interferogram where “𝜙𝑖𝑛𝑡(𝑟, 𝑎)” is the 

interferometric phase for range (r) and azimuth(a) coordinates, with 𝛿 denoting the 

differential interferogram i.e, interferometric phase without the topographic phase 

component; “𝑡𝐴&𝑡𝐵“ represent the time of acquisition of the SAR images with 𝑡𝐴 < 𝑡𝐵; 

“∆𝜙𝑑𝑖𝑠𝑝”is the deformation phase along the line of sight direction between 𝑡𝐴&𝑡𝐵; 

“∆𝜙𝑡𝑜𝑝𝑜”is the residual topographic phase caused by DEM inaccuracy; “∆𝜙𝑎𝑡𝑚” is the 

atmospheric phase error; “∆𝜙𝑜𝑟𝑏"is the phase error caused by the orbit; “∆𝜙𝑛𝑜𝑖𝑠𝑒”is the 

random phase noise error;  

 The set of M interferograms from the connection graph can be represented by a 

system of M equations with N unknowns, which can be defined as 

 𝐴𝜙 = 𝛿𝜙 (7) 

Where, A is the M X N matrix; 𝜙 = (𝜙(𝑡1), 𝜙(𝑡1), 𝜙(𝑡2), 𝜙(𝑡3), … . . , 𝜙(𝑡𝑁))𝑇 is the 

deformation phase N X 1 vector; The vector for the differential interferogram phase 𝛿𝜙 

can be expressed as  

 𝛿𝜙 = ( 𝛿𝜙(𝑡1), 𝛿𝜙(𝑡1), 𝛿𝜙(𝑡2), 𝛿𝜙(𝑡3), … . . , 𝛿𝜙(𝑡𝑁))𝑇 (8) 

Based on the Equation 7 the deformation velocity can be described by  

 𝐵𝑣 =  𝛿𝜙 (9) 

Where B is M X N matrix and 𝑣 is the mean phase velocity and is described as  



31 

 

 𝑣 = [𝑣1, 𝑣2, 𝑣3, … … … , 𝑣𝑁]𝑇

= [
𝜙1

𝑡1 − 𝑡0
,
𝜙2−𝜙1

𝑡2 − 𝑡1
,
𝜙3−𝜙2

𝑡3 − 𝑡2
… … . . ,

𝜙𝑁−𝜙𝑁−1

𝑡𝑁 − 𝑡𝑁−1
]𝑇 

(10) 

 The matrix Equation 9 is processed using Single Value Decomposition (SVD) and 

is further explored in [60]. The SBAS method utilizes a linear model similar to PSInSAR 

to generate deformation over time from the SVD results. An implementation example of 

the SBAS is also shown in Figure 2.4 The connection graph is shown in Figure 2.4 (c) 

and the computed deformation map is shown in Figure 2.4 (d). 

 This difference in processing makes SBAS analysis particularly effective in areas 

with low concentrations of coherent targets due to temporal factors like seasonal 

vegetation growth, etc. [58]. The ability of SBAS to measure deformations even when PS 

points are scarce, or completely absent, makes it suitable for measuring deformations in 

rural regions. Unlike PSInSAR, where the deformation measurements approach the actual 

deformations, SBAS readings have a lower level of precision due to the low coherence 

threshold used in the development of deformation maps [61]. In view of the deformation 

maps shown in Figure 2.4 (b) and (d) it is noted that PSInSAR produces a lower density 

of deformation points than the SBAS at the same site using the same dataset.  

Furthermore, the SBAS deformation map shows a larger activity region, while the 

PSInSAR analysis shows the exact region where the event occurred. 

2.5.3 Coherence Change Detection Timeline 

 The Coherence Change Detection (CCD) approach utilizes radar waves obtained 

from SAR imagery to identify changes that have taken place between two consecutive 

images. The sensitivity of the SAR sensor to changes allows the technique to detect 
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subtle changes not visible in other methods. The coherence between the two images is 

evaluated by the sum of the spatial and temporal decorrelation of the signals, ranging 

from 0 to 1 [62]. The total coherence, γtotal, can then be expressed as the product of the 

independent terms representing different effects as. 

 𝛾𝑡𝑜𝑡𝑎𝑙 = 𝛾𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 × 𝛾𝐷𝐶 × 𝛾𝑉𝑜𝑙 × 𝛾𝑇ℎ𝑒𝑟𝑚𝑎𝑙 × 𝛾𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 × 𝛾𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 (11) 

Where, γGeometric represents the effects of the difference in the incidence angles between 

the two acquisitions; γDC is due to the differences in the Doppler centroids between the 

two acquisitions; γVol represents the effects of penetration of the radar wave in the 

scattering medium; γThermal captures the characteristics of the system, including gain 

factors and antenna characteristics; γTemporal captures the effects of the physical changes 

in the terrain on the scattering characteristics of the surface; and γProcessing depends on the 

choice of the signal processing algorithm. 

 When coherence is obtained for two SAR images, which use similar geometry, the 

coherence contribution from  𝛾𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 × 𝛾𝐷𝐶 × 𝛾𝑇ℎ𝑒𝑟𝑚𝑎𝑙 ≅ 1. Then, the computed 

coherence primarily arises due to the disturbances detected on the surface of the target 

area [63]. The γVol component of coherence is directly influenced by the extent of the 

radar wave. This penetration of the radar wave is dependent on the dielectric constant of 

the soil [64], which is directly related to the soil moisture content [65]. An area with 0 

coherence has changed drastically between the image acquisitions, attributed mainly to 

moisture change, surface roughness, or a long time elapsed between acquisitions. While a 

single CCD analysis can identify critical surface and subsurface features, processing 

individual pairs of images is inadequate for monitoring a region over an extended period. 

Using a large stack of SAR images, the timeline method creates image pairs for CCD 
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analysis based on the chronological order of the SAR images. [65].  An example of a 

CCD analysis is shown in Figure 2.5. Figure 2.5 (a) shows the visual image of a site with 

a railroad track segment between points A and B clearly visible.  Figure 2.5(b) shows a 

typical coherence image of the site showing high coherence along the track that is 

attributed to low moisture content in the track. Figure 2.5(c) shows decreasing coherence 

due to increasing soil moisture associated with a rainfall event. Figure 2.5(d) shows the 

coherence along the track being completely lost due to very high soil moisture content 

resulting from prolonged intensive rainfall. 
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Figure 2.5 Example of CCD image analysis and correlation with water content: (a) Visual 

image of site with a railroad track between point A and B; (b) A typical coherence image 

of the site showing high coherence along the track; (c) Coherence along the track is 

changing due to increasing soil moisture; (d) Coherence along the track is lost due to high 

soil moisture content. 
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CHAPTER 3: METHODOLOGY 

 Developing the technique that monitors the railway ROW for identifying critical 

locations exhibiting high risk for geohazard initiation is based on the study of nineteen 

sites with a history of geohazard events and/or availability of soil moisture 

measurements. The sites were studied for at least twelve months before an event date 

using archived and current satellite SAR data. The MTInSAR processing techniques 

reported by the authors [66] are implemented on these sites, and the findings are assessed 

based on the data quality, availability, and site characteristics. The following sections 

discuss the parameters affecting the quality of the results. 

3.1 Research Approach 

 A systematic approach consists of two major stages to demonstrate the validity of 

the two research hypotheses and develop a process for geohazard monitoring along the 

railway ROW.  The first stage conducts extensive studies on many sites where known 

events have taken place to develop a methodology. These studies provided key 

observations related to radar interaction and site conditions used in the development of 

the proposed technique. The technique was then used to validate and qualify the proposed 

procedures on a second set of geohazards.  The second stage focuses on developing a 

workflow that integrates the procedures formulated in the first stage. The following 

sections discuss the research approach in detail.



36 

 

3.1.1 Site Selection 

 First, several sites are identified in coordination with Class I railroads.  The 

preliminary selection of sites is conducted based on the event type and the need for site 

data collection for model development and validation.  The events considered in this 

study are: 

• Landslides 

• Rockfalls 

• Track Settlement 

• Embankment Failure 

• Slope Failure 

• Derailment 

• Slope Stability Risk 

• No event (for site data collection and/or routine satellite monitoring) 

 Once the sites are identified, the availability of satellite data is investigated in 

regard to: 

• Number of satellites monitoring the site 

• Number of orbits of each satellite 

• Availability and length of historic data for at least 12 months before the event 

 Subsequently, the diverse site conditions that may affect the quality of the 

acquired satellite data are considered when evaluating the site.  Such conditions include: 

• Vegetation including seasonal variation and vegetation coverage level classified  
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as (i) no vegetation, (ii) Low/sparse growth, (e.g. grass typically < 5 inch), (iii)  

Medium growth, and (iv) Tall/dense growth (e.g. tree canopy) 

• Soil condition (per OSHA classification [67]) 

• Main soil type (Silt/Clay/Sand) 

• Topography and terrain 

• Climate (e.g., rainfall, snow fall and snow cover, extreme weather conditions 

within a year) 

• Seismicity 

• Human-induced vibrations (e.g. blasts) 

 Subsequently, the selected sites are classified based on the quality of the gathered 

satellite data. This classification incorporates various factors, including vegetation 

coverage, soil composition, topographical attributes, proximity to significant water 

bodies, prevalent weather patterns, data accessibility, and data reliability.  

 Site classification serves as a practical guide to determine effective monitoring 

techniques based on site conditions. The precision and quality of ground monitoring 

techniques change based on these site conditions. Some monitoring techniques, like 

SBAS analysis, are computationally expensive. However, the precision of these 

techniques is lower than that of PSInSAR, and they can be applied to a broader range of 

site characteristics. The classification facilitates the selection of suitable InSAR 

methodologies. Urban locations and regions with low vegetation are optimal for 

Persistent Scatterer Interferometry (PSI), whereas vegetated regions with low coherence 

are suited for SBAS.  
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 Site classification enhances long-term monitoring tactics, as diverse monitoring 

techniques are required for rapidly changing site conditions. For example, rapidly 

deforming areas require changing data stack size, while stable zones can be monitored 

with large stack sizes. This guarantees that monitoring corresponds with the specific 

dynamics of each location. In conclusion, site classification is an efficient guide for 

InSAR monitoring, as it aligns methodology, analyses, and computational resources with 

the changing conditions of each region, leading to more precise and actionable results. 

3.2 Factors Influencing Data Quality 

 Within this thesis’s scope, several site parameters that influence the effectiveness 

of the MTInSAR methodology are identified, and their effect on SAR data is discussed. 

The parameters are classified into two categories: geometric parameters and surface 

parameters. The following sections provide further discussion on the topic.  

3.2.1 Geometric Parameters 

 Geometric parameters are influenced by topographic features like slope grade and 

the alignment of the said slope. SAR sensors are side-looking sensors that monitor a 

region with an angle of incidence. The side-looking influences the quality of data as some 

regions will not be illuminated by the sensor, and others will be partially illuminated. The 

illumination of these regions is dependent on the topographic features, which are 

geological parameters, and they affect the SAR sensor measurements through geometric 

interactions [68]. These parameters are: 

Slope Grade: The region under monitoring can be flat or have slope terrain. Regions that 

are flat reflect backscatter based on surface properties like roughness, dielectric constant, 
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and vegetation. However, regions with slopes are influenced by additional topographic 

characteristics like the steepness of the slope and its alignment. Monitoring steep slopes 

using SAR can be challenging due to the geometric alignment of the topographic 

features. In cases of steep slopes, a phenomenon called layover occurs where the imaging 

shows the top part of the slope being laid over the lower section of the slope. The other 

effect of a steep slope is shadowing, where the SAR signal does not illuminate part of the 

region due to the intervening slope [62]. Furthermore, these complex topographic 

conditions make it challenging to eliminate errors in deformation measurements. By 

taking into account the "local incidence angle," or the angle between the SAR look 

direction and the slope, a more sensible monitoring limit can be established. This range 

can be used as a rough guideline for the local incidence angle. As most SAR satellites 

have incidence angles between 20° and 50° this establishes the slope limit at 

approximately 50° [69]. 

Slope Alignment: Slope alignment is a topographic feature that affects the backscatter of 

SAR satellites. Current SAR satellites are polar orbiting, i.e., they orbit around the poles 

for each revolution and monitor Earth's surface [70]. Since the direction of the satellite is 

constant, when the SAR line of sight (LOS) direction is in the same direction as the slope, 

the SAR's sensitivity to movement along the slope is maximum. In conditions where the 

slopes will be directly facing the satellite, the sensitivity to slope movement is reduced 

since the displacement should cross a threshold in the satellite line of sight before it can 

be detected [57]. This phenomenon can be seen in the case of a rockfall event in Maupin, 

OR, where SBAS analysis was used to perform deformation analysis. The alignment of 

the slope in this case limited the visibility of pre-failure motion in the satellite LOS. As a 
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result, the event was only partially captured, highlighting the importance of considering 

slope geometry in InSAR-based hazard assessments as seen in Figure 3.1. 

Due to the regional properties like rocky terrain, this region has high backscatter. 

Although the surface properties of the region were supposed to generate large backscatter 

the look angle contributed the most in monitoring the region. The region was monitored 

using Sentinel-1B, with the LOS in the same direction as the slope movement. The region 

showed high sensitivity to displacement measurement, and the displacement progression 

was noticed eight months before the rockfall event, as seen in Figure 3.1 (a). However, 

when the same region was observed using Sentinel-1A, where the slope is facing the 

satellite, the sensitivity to deformations was low, and the deformations were not observed 

until one month before the event took place, as seen in Figure 3.1 (b). The region where 

the rockfall event took place is highlighted in red. The high deformation in the 

surrounding region was caused by a different event. The direction of the deformation is 

opposite in the two images due to the one-dimensional monitoring, and the actual 

deformation is in the perpendicular direction of both readings. This implementation 

example is further explored in [71]. 

3.2.2 Surface Parameters 

 Surface characteristics like surface roughness, soil moisture, vegetation, and soil 

type influence surface scattering. These parameters influence the amount of radar signal 

reflected back to the sensor and thereby affect the quality of the monitoring process [72]. 

This study uses a C-band radar wave, and its interactions with surface parameters are 

discussed below. 
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Figure 3.1 Effects of Slope Alignment on Deformation Measurements - Maupin OR Site: 

(a) Sentinel-1B LOS is in the direction of the slope and causes maximum sensitivity to 

SAR measurement of ground movement; (b) Sentinel-1B LOS is perpendicular to slope 

causes low SAR sensitivity to SAR measurement of ground movement. 
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Surface Roughness: The main factor controlling how radar signals bounce back from a 

surface is its roughness and the target's dielectric constant. A smooth and flat surface will 

reflect the incident radar wave away from the radar and is known as specular scattering. 

In these conditions there will be no scattering of energy back toward the radar unless the 

surface is facing the radar. Because the majority of natural surfaces are not perfectly 

smooth, the scattering of the incident radar wave is diffused in a variety of directions, 

including back again toward the radar [73]. Surfaces with a higher degree of roughness 

disperse more energy in all directions, including the direction towards the radar. For the 

purpose of better illumination, a surface should be “rougher,” which means the height 

variations of the surface should be large [74]. Surface roughness can be quantified based 

on the root mean square height, ℎ𝑟𝑚𝑠, of the mean height of the surface into three 

categories, i.e., smooth, intermediate and rough as:  

𝑆𝑚𝑜𝑜𝑡ℎ:                                    ℎ𝑟𝑚𝑠  <
𝜆

25 cos 𝜃
  

𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒:    
𝜆

25 cos 𝜃
<  ℎ𝑟𝑚𝑠 <

𝜆

4 cos 𝜃
 (12) 

𝑅𝑜𝑢𝑔ℎ:                                      ℎ𝑟𝑚𝑠 >
𝜆

4 cos 𝜃
  

The surface roughness is directly related to satellite wavelength λ and inversely related to 

the cosine of the incident angle 𝜃 [75].  The area for surface roughness measurement is 

the resolution cell, which is the smallest distinguishable area that a radar system can 

differentiate [76].  This study does not directly measure surface roughness for the purpose 

of site classification. Instead, it uses an existing database that categorizes surface 

roughness according to the soil type [77] [78] [79]. 
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Dielectric Constant: A material's dielectric constant indicates how it affects the 

transmission of electromagnetic waves. The dielectric constant of the majority of natural 

materials falls somewhere in the range of 3 to 8 when the material is dry. However, the 

dielectric constant of liquid water is approximately 80. Hence, the quantity of water 

present in the target, regardless of its form (such as soil moisture or vegetation water 

content), significantly affects the radar backscattering [80]. A higher percentage of liquid 

water raises the dielectric constant and decreases the radar wave's ability to penetrate the 

target. The amount of liquid water in the target can change as a result of environmental 

conditions, and this change can be easily observed in SAR images and their 

multitemporal interferometric combinations [70]. It should also be important to consider 

that the presence of soil moisture has minimal effect on the quantitative error in 

deformation studies; it mainly affects the signal strength [81]. Although the dielectric 

constant greatly influences the backscatter of a region, it is not considered a factor for site 

classification for deformation measurements since it changes rapidly and requires 

accurate site readings that are difficult to track. However, it's utilized as a factor in CCD, 

which depends on the change in backscatter as an indicator of soil moisture change [82]. 

Vegetation: There are intricate and varied relationships between the various types of 

vegetation and the scattering processes that result due to big differences in their 

geometric shape and density of plants. Leaves, tree trunks, grass blades, and shrubs in a 

variety of forms can all be considered scattering elements. The dielectric changes that are 

brought about by variations in the amount of water present in the soil and canopy have a 

significant impact on the backscattered intensity that is measured in agricultural areas. 

Similarly, the forests also exhibit significant variations in forest backscatter due to 



44 

 

fluctuations in soil and canopy water content. The scattering coefficient of such radar 

targets is defined by the scattering characteristics of the individual items, their spatial 

distribution within the layer, and the medium's dielectric constant [70]. As a general rule, 

a C-band radar sensor cannot penetrate deep and is more sensitive to the structure of the 

canopy. The backscattering signal, in most cases, gets trapped within the canopy, and low 

backscattering occurs. The backscattering increases in dry and fall conditions when there 

is low leaf cover [83]. C-band SAR sensors can be used for short (less than 12cm in 

height) and, in some cases, medium vegetation (12-45cm). Areas with large vegetation 

are difficult to monitor for deformations due to complex factors involved in the 

backscattering mechanism [84].  

Surface wetness: Flooded regions alter significantly the backscattered signal signature. 

The backscatter in regions with low-forest canopy will increase suddenly because the 

radar signal will bounce with the forest and reflect back to the sensor (“double bounce”). 

In contrast, if the region has no forest and the plain surface is flooded, the region will lose 

its backscatter as the radar signal bounces away from the sensor (“specular reflection”) 

[70]. The sudden change in the scattering principle is due to water covering the surface 

roughness and making the surface completely smooth. 

3.3 Data Quality Based Classification 

SAR Data Availability: Sites should have access to extensive stacks of satellite data (over 

12 months) to effectively monitor the region. Regions with less than 7 months of data are 

automatically classified as “C” class. The low classification is given due to the inability 

to perform multi-temporal SAR analysis. If the region has access to multiple satellites, 
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the classification system is applied for each satellite, and the highest classification is 

chosen as the site classification. In many cases, if an area is inaccessible or classified as a 

lower tier by one satellite, its classification improves when viewed from an alternate 

angle or through an additional satellite. 

 The site parameters directly influencing the proposed site classification in order of 

priority are: (i) slope grade, (ii) slope alignment, (iii) vegetation, (iv) surface roughness, 

and (v) surface wetness. The classification process is captured in a decision tree shown in 

Figure 3.2. The decision tree begins the classification process by identifying the slope 

grade and potential slope alignment. These are prioritized because the sensor covers a 

large area (250 km x 250 km), and topographic features are the most significant 

influences on the classification. Next, the workflow considers surface parameters that can 

affect classification on a more regional level. 

Slope grade: The slope grade is classified into three categories based on the incidence 

angle of the observing satellite. Regions with slope values more than 50 have a higher 

chance of geometric distortions like layover, shadowing, and overlaying effects. Flat 

terrain has additional influences like surface wetness, which do not influence regions 

with slopes [69]. 

Slope alignment: The slope alignment is classified into two categories: (i) slope aligned 

with the line of sight, and (ii) slope directly faces the satellite, i.e. perpendicular to LOS. 

Large-scale deformations are still detected in case (ii), and conventional InSAR can still 

be used for monitoring and early warning systems. Finally, regions with large slopes not 

facing the satellite cannot be monitored due to the shadowing effect.
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Figure 3.2 Site Classification Decision Tree 
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Vegetation: - After slope alignment, the radar signal first interacts with vegetation before 

it interacts with the surface. Two cases are considered: (i) Low vegetation (<12 cm) and 

(ii) medium vegetation (12-45 cm). The proposed system does not consider data from 

sites with large vegetation(>45cm) as no backscatter is available from these conditions 

and the site should be classified as D. 

Surface roughness: Since this study does not measure the exact surface roughness of the 

region, the monitoring is divided into only two categories: smooth and rough. Regions 

with slope in the look direction of the SAR sensor require surface roughness for 

backscattering. When the region is smooth, the signal gets reflected away; this signal loss 

leads to a classification of D. The presence of vegetation helps in some smooth terrains 

where the radar signal gets reflected due to the vegetation acting like a rough surface. In 

conditions where the surface is facing toward the sensor, the surface roughness does not 

influence to the degree as it would other terrain conditions. 

Surface wetness: - Surface wetness causes the surface roughness of the region to be 

converted to a smooth surface, causing the specular reflection to the radar signal, i.e., the 

signal gets reflected away. The only conditions where the surface wetness can improve 

the results would be when additional elements like vegetation or man-made structures 

cause the reflected radar signal to go back to the sensor [84]. 

A descriptive characterization of each site class is presented next: 

Class A – Ideal:  Examples include flat terrain and hilly/mountainous terrain (when 

slopes follow the satellite line of sight), minimal vegetation coverage 

without significant seasonal variation, multiple satellites and/or orbits, 
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and at least 24-month satellite historical data are available with multiple 

orbit directions. 

Class B – Normal: Examples include open terrain, rolling hills, short escarpments, 

minimal vegetation coverage without significant seasonal variation, and 

at least 12-month satellite historical data available. 

Class C – Noisy: Examples include hilly/mountainous terrain (when slopes face away 

from satellite line of sight) with medium to dense and tall vegetation 

with significant seasonal variation, escarpments, less than 12-month 

satellite historical data available, or intermittent data availability. 

Class D – Dark: These are sites that are not visible to the satellite, and there is no line of 

sight. Examples include mountainous terrains, gorges with dense and 

tall vegetation, tall escarpments, and dense vegetation coverage without 

significant seasonal variation. In some conditions, these sites may be 

ideal in terrain profile but be located in satellite blind spots. 

Examples of the four categories are shown in Figure 3.3 

3.4 Selected Sites 

 Two groups of sites are identified. The first group comprises sites where a known 

event has occurred and is associated with monitoring sites for mobilization prior to an 

event, and the second group consists of instrumented sites where soil moisture records are 

available and is associated with monitoring sites for changes in the soil moisture content 

through the satellite coherence of the signal.
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Class A Class B 

Class C Class D 

Class B 

Figure 3.3 Examples of the four site categories 
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3.4.1 Sites for Mobilization Monitoring 

 An initial set of thirteen sites have been selected for data collection and 

processing. These sites are identified and recommended by our industry partners due to 

reported recent events. The sites were used to develop the methodology for geo-hazard 

monitoring and to identify the limitations of existing methods. Based on the deformation 

analysis using PSInSAR and SBAS methods, threshold values for filtering noise were 

developed. In sites with vegetation elements, two post-processing methods were 

developed to overcome its influence. The post-processing methods were developed with 

Site ID #9 and tested in other rockfall events to validate the method. The selected sites 

satisfy the selection criteria consistent with classes A, B, or C with one exception being 

classified as D.  The site classified as D is done due to lack of data available to monitor 

the region before the derailment event took place. The coordinates in the table cover 

roughly 1km2
 of area; even though the event’s exact location is known in several sites, the 

surrounding areas are also included to show relative activity. In some cases, like Site ID 

#7 and #8, the monitoring region covers large areas, with the center located in the 

coordinates provided. Table 3.1 shows the events monitored for site mobilization.  These 

events are further discussed in Appendix A 

3.4.2 Sites for Monitoring Soil Moisture Content Change 

 The relationship between soil saturation and signal coherence has been 

investigated to develop models that link changes in soil saturation to coherence. These 

models aim to define threshold values for triggering events and quantify associated risks, 

providing a foundation for future studies. Instrumented sites, such as those monitored by 

NOAA's U.S. Climate Reference Network (USCRN)  [85], offer valuable data for this 
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Table 3.1 Sites where InSAR techniques are applied for mobilization monitoring. 

ID Site location 
Coordinates 

(Lat/Long) 
Event Event Date Analysis period 

Site 

Class 

1 Lincoln, NE  40.70, -96.53 Derailment 6/25/2021 10/31/20 – 9/20/20 B 

2 Birmingham, AL 33.47, -86.95 Stability Continuous 10/22/20 – 10/12/22 B 

3 Maupin, OR 45.17, -121.10 Rockfall 5/7/2020 5/21/19 - 12/05/21 A 

4 Atlanta, GA 33.83, -84.30 Sinkhole 12/2021 6/26/21- 5/04/22 B-C 

5 Burlington, ND 48.25, -101.46 Derailment 5/1/2022 5/11/21 – 10/14/22 A 

6 Shiner, Texas 29.43, -97.18 Derailment 6/3/2022 7/10/21 - 6/10/22 A 

7 Yellowstone, MT 43.64, -111.36 Landslide 6/16/2022 1/10/21 - 9/1/22 A 

8 Santa Clemente, CA 33.25, -117.37 Soil Erosion 10/1/2022 1/10/21 - 10/01/22 A 

9 Sandstone, WV 37.76, -80.89 Rockfall 3/9/2023 7/3/22 - 3/2/23 B-C 

10 Raymond, MN 45.01, -95.23 Derailment 3/30/2023 2/18/22-3/9/23 B 

11 Quinn's MT 47.33, -114.78 Derailment 4/2/2023 04/14/22-03/28/23 D 

12 Pueblo, CO 38.38, -104.61 Derailment 10/15/2023 12/16/22-10/12/23 A 

13 Wayanad, India 11.46, 76.13 Debris flow 07/30/2024 08/05/22-07/24/24 B-C 
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research. USCRN sensors across the country measure soil moisture, relative humidity, 

precipitation, and soil temperature, contributing to comprehensive environmental 

monitoring. For this study, eight sites (listed in Table 3.2) were selected to perform 

Coherence Change Detection (CCD) analysis. Since the soil moisture change is 

correlated to signal coherence as computed from satellite SAR images, the sites are also 

selected based on site classes A and B defined in the previous section, with the exception 

of two sites that experienced large season vegetation and are classified as C. NOAA 

sensor coordinates encompass an area of approximately 1 km2, indicating a significant 

level of uncertainty compared to the SAR sensor’s resolution(15m2). The mean and 

standard deviation of coherence readings over the 1 km2 were calculated based on the 

sensor coordinates to obtain a reliable interpretation of coherence over the sensor’s 

coverage area. Since the C-band sensor has low penetration power, only the top 5cm of 

soil layer data was used for the soil moisture analysis. These sites are further discussed in 

Appendix B 

3.5 Data Acquisition and Tools Used 

 To efficiently monitor ground hazards and estimate risk, this thesis uses a 

combination of MTInSAR within the framework of existing data sources. Prominent 

satellite systems are Sentinel-1 constellation for SAR data and Sentinel-2 and Landsat for 

satellite optical imagery. Sentinel-1, operated by the European Space Agency (ESA), is a 

radar imaging satellite that delivers high-resolution C-band Synthetic Aperture Radar 

(SAR) data. It is suitable for tracking ground deformation and surface properties over 

time, even when clouds are present or at night. The optical sensors are used to identify 

the locations of radar data. Landsat has high resolution, but high revisit time as compared 
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Table 3.2 Shows the Acquisition periods for the CCD timeline analysis used for developing the coherence and soil moisture model 

 

ID Site location 
Coordinates 

(Lat/Long) 
Analysis period 

Site 

Class 

1 Blackville, SC 33.36, -81.33 01/03/2019- 06/18/2022 B 

2 Yosemite, CA 37.76, -119.82 01/10/2019-07/29/2022 A 

3 Bodega, CA 38.32,-123.07 01/03/2019-05/03/2022 A 

4 Santa Barbara, CA 34.41,-119.88 01/10/2019-09/15/2022 A 

5 Cortez, Co 37.26, -108.50 01/10/2019-12/31/2022 A 

6 Chatham, MI 46.33, -86.92 - C 

7 Sandstone, MN 46.11, -92.99 - C 

8 Columbia, SC 33.93, -81.02 03/26/2023-03/12/2024 B 
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to Sentinel-2 with low revisit time but low resolution. Sentinel-2, a series of Earth 

observation satellites operated by ESA, provides optical, which is especially beneficial 

for assessing land cover and vegetation. The supplementary datasets thoroughly 

comprehend ground conditions, with radar data from Sentinel-1 offering deformation 

insights and optical data from Sentinel-2 augmenting environmental context. 

Supplementary data sources are essential for enhancing analysis. Meteorological 

databases yield data on precipitation patterns and temperature fluctuations, which affect 

soil moisture and deformation processes. Soil profiles, encompassing information on soil 

type, permeability, and compaction, provide insights into subsurface characteristics that 

may influence ground stability. Satellite data is investigated within the framework of the 

other data sources. 

 Various software tools and platforms are utilized to process radar data and 

perform the studies. The SARSCAPE is used as a toolbox within L3Harris software and 

is extensively utilized for processing Sentinel-1 data, encompassing activities like 

interferometric processing and coherence analysis. Google Earth Engine (GEE) is a 

robust cloud-based platform for analyzing extensive geospatial datasets, facilitating the 

swift integration of radar and optical imagery. The Copernicus Open Access Hub of ESA 

facilitates access to Sentinel data, whilst the USGS Earth Explorer portal is utilized to 

obtain Landsat imagery and additional geographic data. 

 Some Python codes were developed to integrate and process the vast satellite 

data. Integrating these tools facilitates a comprehensive method for monitoring ground 

hazards and evaluating risks in railway corridors and other essential infrastructure zones. 
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3.6 Employed Methods 

 The MTInSAR methodology workflow used for geohazard analysis is described 

below. The workflow is divided into three stages: pre-processing, which deals with data 

acquisition and data sorting; processing, which deals with InSAR technique application; 

and finally, post-processing, which involves the data filtration steps to identify regions 

most likely to experience geohazards. The CCD analysis from the methodology is used to 

develop coherence and soil saturation models and is currently used for qualitative 

geohazard monitoring. The mathematical background of the individual steps and the 

available options for each step are explored in detail in Appendix B. The guidelines to 

automate this workflow are currently under development and beyond the scope of this 

thesis. 

3.6.1 Pre-Processing 

 This stage involves identifying the site for monitoring and preparing the data for 

multi-temporal analysis. This stage follows the steps in Figure 3.4: 

Input: This step obtains the coordinates of the monitoring region or area of interest in 

latitude and longitude. To prevent map projection errors, the coordinates must be in a 

constant datum throughout the analysis period.  

Shapefile creation: This step creates a shapefile polygon using Google Earth with a 

minimum dimension of 7.5km x 7.5km. To reduce approximation errors in the processing 

stage, the area of interest must be placed in the center of the polygon. 

Data download: Single Look Complex (SLC) SAR images are acquired using the shape 

file from the previous step. Alaskan Space Facility (ASF) and European Space Agency 
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(ESA) datahubs are used to download the data. SLC images are minimally processed by 

satellite and have full complex radar signals. This data type has both phase and 

amplitude, and the pixels are spaced equally in azimuth and range direction. The data is 

restricted to the observation period and covers the complete polygon. If no data is 

available, the shapefile polygon is recreated with the area of interest away from the center 

of the polygon to incorporate the data acquisition.  

Data sorting: Some areas of interest have access to data from several orbits (ascending 

and descending) and satellites (Sentinel-1A and Sentinel-1B). The data from multiple 

orbits cannot be used in the same analysis stack, as that would increase the spatial 

decorrelation in the processing stage. To prevent errors in the analysis, the data from 

these orbits and satellites are sorted so that all the SAR images are grouped according to 

their respective look angle. The sorting is done based on two factors: the first is that each 

satellite passes over the same region every 12 days, and the second is the path and frame 

metadata remain constant for data with the same look angles.  

Output: Output from the pre-processing step are Single Look Complex (SLC) images 

sorted according to their respective satellite direction and look angle. Single Look 

Complex (SLC)images have focused SAR data, and the pixels are spaced equally in 

azimuth direction and slant range. The data is represented as complex numbers containing 

both phase and amplitude.  

3.6.2 Processing 

Figure 3.5 illustrates the initial workflow for preprocessing analysis stage. In this 

phase, the pre-processed data is used to derive coherence using the CCD algorithm, as 
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Figure 3.4 Shows the pre-processing workflow. 
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well as displacement from the PSInSAR analysis and displacement trend information 

from SBAS techniques.  

 Input: Input for the processing stage is the SLC data grouped according to their 

respective look angle. 

Data preparation: The 250km x 250km input SLC file is reduced to contain only the 

Area of Interest, and the image's polarization is chosen in this step. All SAR analyses in 

this study use VV polarization as this type of polarization has maximum penetration 

ability. VH polarization is used for polarimetry analysis, which is not part of this study. 

This step is performed to reduce the computational time of the investigation. 

Connection graph: A connection graph refers to the visual representation of InSAR 

image pairs. Each SAR image in a data stack is systematically paired for InSAR analysis. 

Two types of connection graphs exist: Time-Position plot and Time-Baseline plot. The x-

axis in the Time-Position plots represents the date the image was acquired, while the y-

axis represents the baseline in meters relative to the master image. The x-axis in the 

Time-Baseline represents the date when the image was acquired, while the y-axis 

represents the normal baseline between the two images, measured in meters. The Time-

Position plot is commonly employed to illustrate the correlation between pairs of images, 

as demonstrated in Figure 3.5 and Figure 2.4 for PSInSAR and SBAS connection graphs. 

The processing stage deviates in this step. The data from the previous step is 

paired based on the processing requirement for each analysis. For CCD, the SAR data is 

paired based on a timeline approach, i.e., for the first CCD analysis, image one is paired 

with image two; for the second analysis, image two is paired with image three, and so on.
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Figure 3.5 Shows the workflow chart for first stage of processing stage. 



60 

 

PSInSAR utilizes a collection of 25 or more images that possess similar polarity 

and geometry. A singular master image serves as a point of reference, and all other 

images in the stack are paired with it. The master image is based on the temporal baseline 

being equidistant for the first and last images from it.  i.e. it’s the middle image of the 

data stack. 

SBAS utilizes a collection of 25 or more images that possess similar polarity and 

geometry. SAR pairs are created based on low temporal and spatial baselines to ensure 

low coherence loss in the generated interferograms. SBAS analysis uses multiple master 

images, with each image having multiple pairs. The number of SAR pairs for each master 

file is based on the temporal baseline, which is set between 90 and 180 days, and the 

spatial baseline is set as 2% of the critical baseline. A critical baseline is the maximum 

viable baseline for the satellite platform. For SBAS connection graph a super master file 

exists which is the middle image of the data stack and is used to obtain the relative spatial 

baseline for the complete stack. 

Figure 3.5 shows the connection graph for all three types of analysis. 

3.6.2.1 Coherence Change Detection 

The steps for obtaining coherence between each connection pair from the 

connection graph are shown in Figure 3.6. The process of obtaining coherence is called 

coherence change detection.  

Interferometric processing and coherence generation: Coherence is generated as a by-

product of InSAR processing. In InSAR processing, the image pairs obtained from the 

connection graph are co-registered, meaning that the resolution cells of two SAR images 
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Figure 3.6: Shows the workflow chart for coherence generation. 
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are aligned. An interferogram is developed by removing the phase components of the 

slave image from the master image. Additional phase components due to satellite tilt and 

irregular ellipsoidal shape of earth called flat earth phase are removed. Coherence 

between the image is calculated following the removal of flat earth phase, the math for 

the process is described in [31]. 

Geocoding: The coherence data from the analysis is in satellite coordinate system i.e. 

each resolution cell is arranged at slant geometry along the satellite flight direction. 

Geocoding step is conducted to convert the data from satellite geometry to cartographic 

reference system of choice by aligning the satellite path with a reference DEM. 

3.6.2.2 PSInSAR 

To obtain the displacement component from PS in satellite line of sight, the 

analysis follows the steps in Figure 3.7 

Interferometric Process: This step performs DInSAR analysis on all the pairs generated 

in the connection graph stage. It follows InSAR processing steps seen in coherence 

generation with additional topographic phase filtering carried out on the image pair [31] . 

This analysis produces an unwrapped phase depicting the displacement between the two 

acquisitions. 

Coherence-based PS selection: During the computation of an interferogram, the 

coherence between the two image pairs is obtained. A coherence threshold of 0.7 is used 

to identify PS. A 0.7 coherence threshold indicated the loss of coherence in most cases is 

due to either displacement or minor atmospheric effects. The stable PS or high-coherence 

pixels in the time series are selected based on amplitude dispersion value, which is the 
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Figure 3.7 Shows PS processing chain workflow chart. 



64 

 

amplitude standard deviation divided by the mean amplitude. Using PS for displacement 

estimation generates displacement data that is effective qualitatively. The influence of 

amplitude dispersion field is further explored in [59].  

PS 1st Inversion: The amplitude dispersion value is utilized to quantify the extent of 

displacement velocity, specifically the displacement over time data of each PS. This is 

done by tracking the displacement of each PS through all image pairs, by progressively 

subtracting the displacement of consecutive image pairs. The displacement over time data 

obtained still has the presence of atmospheric components in this step.  

PS 2nd inversion: In this step, the atmospheric component is filtered from the 

displacement rate obtained in the first inversion. This step uses a Low-Pass spatial filter 

and a High-Pass temporal filter to get a displacement rate without atmospheric 

contributions. The parameters for the atmospheric filtering in the second inversion step 

are described further in [86] [87] [88] 

Geocoding: The displacement data obtained from the above steps are geocoded to the 

preferred coordinate system for more straightforward extrapolation of results in post-

processing steps. The process is similar to geocoding done for CCD analysis. 

3.6.2.3 SBAS 

To obtain the displacement trend in satellite line of sight the analysis follows the 

steps in Figure 3.8 

Interferometric Process: This step performs DInSAR analysis on all the pairs generated 

in the connection graph stage. It follows a traditional DInSAR analysis described in [1] 

and produces an unwrapped phase from which displacement can be obtained.
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Figure 3.8 Shows the processing chain for SBAS analysis. 
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Coherence based DS selection: During the computation of an interferogram the 

coherence between the two image pairs is obtained. A coherence threshold of 0.3 is used 

to identify distributed scatters. Using DS for displacement estimation generates 

displacement trend data that is effective quantitatively instead of qualitatively.  

First Inversion: The unwrapped interferograms are refined and re-flattened (terrain-

induced variations are removed) to be used as an input for the Single Value 

Decomposition (SVD) matrix inversion technique. The SVD inversion is employed to 

solve equations that characterize the stack of unwrapped interferograms, yielding the 

displacement solution for each acquisition date.   The displacement time series values are 

referenced to the oldest date as zero, and the displacement over time from this point is 

considered.  

Ground Control Points: Ground Control Points (GCP) are stable reference points used to 

improve the displacement rate output [89]. The phase change occurring over these points 

are considered accurate and assumed to describe the displacement of actual ground 

region. The GCP points are selected away from region to be monitored as placing them 

on the region experiencing displacement would affect the results. 

Second Inversion: In this step, the atmospheric component is filtered from the 

displacement rate obtained in the first inversion. This step uses a Low-Pass spatial filter 

and a High-Pass temporal filter to get a displacement rate without atmospheric 

contributions. The parameters for the atmospheric filtering in the second inversion step 

are described further in [86] [87] [88] 

Geocode: The displacement trend data obtained from the above steps are geocoded to the  
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preferred coordinate system for more straightforward extrapolation of results in post-

processing steps. The process is similar to geocoding done for CCD analysis. 

3.6.3 Post-Processing 

The post processing is performed on the individual output of InSAR analysis and 

follow the workflow from Figure 3.9 

Coherence data: Coherence data are processed in two ways based on their application. 

First, when the data is used for monitoring geohazards, rainfall data is correlated with 

coherence to observe locations with consistently low coherence after the rainfall event. 

This is done to identify regions with high soil saturation. The second is to use the 

coherence data obtained near the USCRN NOAA locations to understand the relationship 

between coherence and soil saturation. The coherence data over the sensor location is 

converted from a monochromatic photo to excel data. The sensor’s coordinates are over 

an area of approximately 1 km2, which is larger than each resolution cell of coherence (15 

m2). To get a reliable interpretation, the mean and standard deviation of coherence 

reading covering the approximate sensor area used for correlation. This data is used for 

model development.  

MTInSAR Displacement data: The displacement from MTInSAR analysis is filtered 

based on the magnitude of the displacement, and displacement in the range of -10 mm to 

10 mm is removed from observation data. The resultant image shows the site 

mobilization map of the region. The filtering is done for two reasons. The first is based 

on the assumption that phase components due to atmosphere and topography are only 
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Figure 3.9 Shows the post processing workflow for InSAR processing chain. 
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partially eliminated. The second is the displacement data crossing the threshold, 

representing the actual movement of the surface, whether the magnitude is accurate or 

not. 

3.7 Limitation of Conventional MTInSAR 

One of MTInSAR's key features is its ability to accurately identify small surface 

changes over time. To do this, the analysis uses large stacks of data, and an increase in 

stack size increases the accuracy by reducing the contributions of residual height and 

atmospheric influence. However, using large data stacks negatively influences the region 

being monitored. If significant changes occur during the analysis period in an 

interferometric pair, such as movement exceeding 30mm, or if the region loses coherence 

due to external factors, the region stops being a scatter, and monitoring it becomes 

unfeasible even if the area continues to experience deformation. This condition is 

prevalent in PSInSAR but is also experienced in SBAS analysis. To mitigate this 

condition, two post processing methods were developed and are discussed in chapter 4
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CHAPTER 4: PROPOSED METHOD FOR IDENTIFYING REGIONS 

WITH GEOHAZARD POTENTIAL 

 As discussed in Section 3.8, one of MTInSAR's key features is its ability to 

accurately identify small surface changes over long periods. However, during the analysis 

period, if there is a significant change (e.g., movement > 30mm) between two 

acquisitions or if the scatterer loses coherence for other reasons, the change cannot be 

monitored even if the surface is undergoing deformation. In geohazard monitoring, areas 

classified as A or B have been identified as suitable candidates for monitoring. These 

regions are characterized by low vegetation and high radar backscatter coverage, 

allowing conventional MTInSAR to be applied for monitoring deformations over the 

time span covered by the SAR image stack. However, as the analysis time frame 

increases, seasonal vegetation coverage and errors resulting from a larger satellite spatial 

baseline make the detection of both PS and DS scatterers infrequent, due to the loss of 

continuity in the observable scatterers. Therefore, detecting critical areas through 

deformation monitoring using conventional MTInSAR is not feasible. The proposed 

approach implements MTInSAR techniques using a “Rolling Stack” (RS) concept to 

detect scatterers over extended time periods, in conjunction with three post-processing 

operations, namely, “Thresholding,” “Scatterer Accumulation,” and “Clustering 

Timeline.” These methods were initially presented as Threshold stacking and Timeline in 

[66] [71], these methods have been refined in this thesis and are called rolling stack 
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scatter accumulation and clustering timeline. 

4.1 Rolling Stack MTInSAR (RS-MTInSAR) 

The proposed RS-MTInSAR limits the size of the stack of SAR images in its 

conventional implementation to a number of images necessary for maintaining accuracy 

and controlling noise, typically between 20 and 25, depending on site class and the 

specific MTInSAR method. Subsequently, site monitoring for a duration exceeding the 

time spanned by the stack is achieved through a series of MTInSAR analyses. Each 

analysis employs an updated SAR image stack, where the first SAR image is removed 

from the front of the stack, and a new SAR image is added to the end, creating a “rolling 

stack” effect.  

Figure 4.1 demonstrates the concept, assuming a monitoring period of one year, 

and a temporal image acquisition baseline of 12 days, yielding a total number of 30 SAR 

images. For demonstration purposes only, assuming a stack size of 20 SAR images, 12 

MTInSAR analyses need to be performed. Each analysis provides the geolocation of the 

PS or DS scatterers within the analysis stack, as well as the time history of movement at 

each point. This information is considered in the post-processing steps of the proposed 

method method. 

4.2 Thresholding 

MTInSAR methods implement filters to treat temporal and spatial decorrelation 

of the signals in order to improve the quality of the deformation results, but only to a 

certain extent. Loss of coherence due to atmospheric contributions results to higher noise 

in the deformation measurements derived from the MTInSAR and hinders the detection 
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Figure 4.1 Rolling Stack MTInSAR (RS-MTInSAR) analysis concept 
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of critical areas.  The proposed Thresholding is a post-processing filtering method 

implemented to all deformation analyses from the proposed RS-MTInSAR. The objective 

of the proposed filtering is to identify and remove the scatterers from the solutions that 

are formed by residual coherence losses from decorrelations, or represent points that, 

although they are properly identified, the exhibit small movement and are of no interest 

in the identification of the critical areas.   

The criterion for the threshold is based on the coherence threshold used in the PS 

and DS identification process. In the case of PSInSAR, a coherence threshold of 0.7 is 

used as an indicator of PS, while in the case of SBAS, a coherence threshold of 0.3 is 

used as an indicator for DS points. The magnitude of the filter is determined by the 

theoretical precision of SAR deformation data as reported in [90] [91].  The precision 

depends on the wavelength of the SAR sensor and the measured coherence. For example, 

for a C-band sensor and a scatterer with 0.7 coherence, the theoretical precision is 20 mm 

and any deformation above the theoretical is considered the true deformation. However, 

any deformation below the theoretical value may be masked by noise. In the proposed 

RS-MTInSAR, the theoretical precision should not be used as the threshold criterion 

because the coherence fluctuates in each SAR image pair in the stack. Thus, to prevent 

active deformation points from being filtered, conservative threshold values are 

recommended as shown in 4.1. These conservative thresholds serve to balance false 

positives and false negatives in geohazard detection. This approach ensures that the 

methodology remains adaptable across varied terrain and environmental conditions. 
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Table 4.1 Shows the theoretical precision and suggested threshold values for coherence 

 

  

Coherence 

Theoretical Precision 

(mm) 

Threshold Value 

+/-  (mm) 

0.9 8 6 

0.8 14 8 

0.7 20 10 

0.65 23 11 

0.6 26 12 

0.55 30 14 

0.5 35 16 

0.45 41 18 

< 0.4 > 50 20 
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4.3 Scatter Accumulation 

The identification of the critical areas in the region of interest starts with 

establishing the Landsat optical image of the region to geolocate the scatterers. Landsat is 

publicly available through Google Earth. At the end of each RS-MTInSAR analysis the 

identified set of scatterers are filtered as discussed in the “Thresholding” section and 

superimposed on the optical image of the region.  For both event investigation and active 

monitoring, it is recommended that the monitoring period starts at least one year before 

the date of the event, or before the active monitoring commences.  The scatterer 

accumulation will result in a continuously updated deformation map with the location of 

all scatterers appearing on the optical image. At this step, the critical locations can be 

identified by visual inspection, as areas where the density of accumulated scatterers 

increases over time.  The detection of the critical locations, however, is implemented in a 

structured manner in the last post-processing tool, i.e. Clustering Timeline, discussed 

next. 

4.4 Clustering Timeline 

The last step in the proposed process for identifying the critical location within a 

larger monitoring region pertains to identifying the formation and progression of cluster 

of scatterers every time a new set of RS-MTInSAR analysis data becomes available.  To 

this end, a grid is overlayed on the optical image with a subset size dependent on a 

combination of the desired resolution of the critical areas and the average number of the 

detected scatterers in the region.  Higher risk areas are identified as those subsets, or 

group of subsets, that exhibit higher density of the clustered scatterers compared to their 
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surrounding subsets. At this stage, although regions with a high potential for geohazard 

failure are identified, the imminency of the failure is not evident. A timeline analysis 

showing the rate at which the clusters are formed between any two successive data sets is 

used as an indication that a geohazard event failure is imminent. The timeline method is 

based on the geohazard observation that before the triggering event there is a rapid 

increase in the density of the cluster in the geohazard vicinity.  
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CHAPTER 5: IMPLEMENTATION STUDY 

 The RS-MTInSAR with Thresholding, Scatterer Accumulation and Clustering 

Timeline analysis were first validated through implementation to Site ID 3 using both 

SBAS and PSInSAR analyses and have been reported in [92].  This section presents a 

case study that considers Site ID 13 for the validation of the method that is based on the 

RS-SBAS analysis.  

5.1 Event 

On July 30, 2024, the Wayanad district in Kerala, India, was hit by a massive 

landslide due to heavy rainfall affecting the region. This was a debris flow with the origin 

of the landslide shown in Figure 5.1(a) [93]. The mud from this region followed the path 

through the village of Mundakkai and Chooralmala. The landslides caused over 100 

confirmed dead and many more missing. The rescue efforts were challenged by heavy 

rain and difficult terrain Figure 5.1(b) [93].  

5.2 Data Availability 

The region under investigation is in southern India, where Sentinel-1A provided 

coverage. This region is covered by Sentinel-1A satellite once every 12 days, the satellite 

path is shown in Figure 1(c). The region is located in rural areas with access to radar 

signals from the satellite in orbit; the region has vegetation in it, and based on these site 

conditions, the region is classified as “B”.  
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Figure 5.1 Shows the origin point of the landslide with the regions affected highlighted. 

(b)Shows the rescue efforts underway for the landslide event. (c) Shows the satellite coverage 

of the region and its path. 
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The dataset for this study is obtained from the Sentinel constellation, and the satellite 

images are downloaded from the Sentinel-1 EU datahub and Alaska Satellite Facility (ASF). The 

analysis employs SBAS techniques with post-processing methods, scattering accumulation, and 

timeline methods using archived satellite radar images spanning 36 months; the final data 

acquisition is taken five days before the disaster. The acquisition periods are detailed in Table 1. 

The region also has a cloud presence, reducing the number of optical images available from 

Sentinel-2. Since this is a recent event, post-event analysis is not available at this time. 

The region under investigation is in southern India, where Sentinel-1A provided 

coverage. This region is covered by Sentinel-1A satellite once every 12 days. The region is 

located in rural areas with access to radar signals from the satellite in orbit; the region has 

vegetation in it, and based on these site conditions, the region is classified as “B”. The dataset for 

this study is obtained from the Sentinel constellation, and the satellite images are downloaded 

from the Sentinel-1 EU datahub and Alaska Satellite Facility (ASF). Fig 1(c) shows the path 

taken by the Sentinel1-A satellite. The analysis employs SBAS techniques with post-processing 

methods, scatter accumulation, and timeline methods using archived satellite radar images 

spanning 36 months; the final data acquisition is taken five days before the disaster. The 

acquisition periods are detailed in Table 1. The region also has a cloud presence, reducing the 

number of optical images available from Sentinel-2. Since this is a recent event, post-event 

analysis is not available at this time. 

5.3 Site Description 

The region under investigation is located in Kerala, India, at latitude/longitude (11.54/ 

76.14). The analysis covers roughly 140 mi2 and analyzes the multiple landslide events occurring 

around the same time due to the same rainfall events. This region experienced frequent rainfall  
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Table 5.1 Data used for Wayanad analysis 

 

  

Data Set Sentinel 1-A (Ascending) 

Pre-event 08/17/2022 to 25/07/2024 
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events with annual rainfall of 157 inch [94]. The day before the landslide the region experienced 

a rainfall of 22.519 inches. This region is classified as a mountain slope with 35 to 70 percent 

slopes [93]. The soil profile for the site is unavailable due to the size of the analysis area and the 

lack of access to soil records in India. 

5.4  MTInSAR Analysis 

5.4.1 SBAS 

The SBAS analysis was conducted using a 25-image stack. The deformation map is 

superimposed on an optical image taken on April 10, 2024. The optical image close to the event 

date showed high cloud cover. The displacement observed is in mm and plotted on the color-

coded SBAS images that show the total displacement over the entire analysis region. The 

deformation map in Figure 5.2(a) is highlighted in three regions with the red box being the point 

of origin of the landslide, the white box showing the largest cluster of deformation and the 

yellow box showing the village on path of the landslide. Large deformations taking place on the 

region on the path of landslide flow. Figure 5.2(c) image shows the concentration of high 

displacement points in the path of landslide event near the point of origin. 

The deformation over time seen in Figure 5.2(b) shows the region having low 

displacement until February 20, 2024 followed by sudden increase in deformations. The region 

had minimal precipitation during this period [95] 

5.4.2 Scatter Accumulation 

The SBAS analysis was able to identify displacement taking place in the path of the 

landslide, but it fails to show any deformations in the region where the landslide originated. 

Scatter accumulation method is used in this region to identify large activity areas. The   



82 

 

 

  

Figure 5.2 (a) Shows the different areas of interest. (b) Shows the deformation overtime 

of the scatterer highlighted in (c). (c) Shows the large deformation scatterers before the 

landslide took place highlighted by white box in (a) 
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analysis used 25 images with new images being cycled as per [96]. A total of 24 analysis are 

conducted out of which 3 analysis produced invalid results due to no connection graph being 

formed from the available data due to large spatial baseline. These are covered by analysis 

periods April 26, 2023, to May 14, 2024; 01/08/2023 to March 27, 2024; September 22, 2022, to 

September 17, 2023. The results from scatter accumulation show the activity in the region began 

in the analysis period covering December 15, 2022, to February 20, 2024, Figure 5.3(b) 

highlighted by red square, before which the region was relatively calm Figure 5.3(a). The region 

showed progressively increasing activity until the landslide event when the region has 

significantly high activity compared to surrounding regions Figure 5.3(c)(d). 

5.4.3 Clustering Timeline 

The timeline analysis of the region reveals a general increase in activity leading up to the 

landslide, with a notable drop in the final observation before the event. Figure 5.4(a) highlights 

the initiation zone of the landslide, covering a two-month period prior to its occurrence. Figure 

5.4(b) shows consistent activity in the region 17 days before the event, while Figure 5.4(c) 

illustrates a sharp decline in displacement five days prior. Figure 5.4(d) summarizes the number 

of displacement points detected throughout the analysis period, revealing heightened activity 3–4 

months before the event, followed by a significant reduction shortly before it occurred. This 

trend suggests that the landslide-triggering mechanism was likely activated after the final data 

acquisition. 

5.5  Discussion 

 The region exhibits moderate vegetation cover, allowing radar signals to penetrate 

but limiting the presence of strong Persistent Scatterers (PS). Prior to the event, a cluster of 
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Figure 5.3 (a) Shows low activity in the region using the data till February 08, 2024. (b) Shows 

the region experiencing some deformations. (c) Shows the increasing deformations in the region 

(d) Shows the activity in the region before the landslide took place. 
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Figure 5.4 (a) Show the start of activity in the region where the landslide initiated. (b) Shows the 

constant activity in the region where the landslide initiated. (c) Shows low presence of activity in 

the region where the landslide was initiated. (d) Graph shows the number of displacement points 

over each analysis. 

(a) 

(b) (c) 

(d) 
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deformation-related scatterers was detected along the eventual landslide path; however, this cluster 

did not coincide with the actual initiation point of the slide. The origin point showed significant 

pre-event activity, evident through the accumulation of scatterers. When this scatter accumulation 

data is compared with post-event imagery obtained from the NRSC(National Remote Sensing 

Center) [93] [97], it aligns with the location of the landslide crown, as shown in Figure 5.5. 

Notably, signs of activity were present before the onset of rainfall in the region. Although the 

initial activity may not have been directly caused by rainfall, the severe precipitation event that 

followed the final analysis period is likely to have served as the primary trigger. The scatter 

accumulation method demonstrated strong potential for identifying regions highly susceptible to 

landslide activity. In contrast, certain limitations were observed in other methods: the timeline 

analysis was constrained by adverse weather conditions taking place after the final acquisition, 

while the conventional SBAS approach failed to detect the landslide origin due to coherence loss 

in one of the radar images. 
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Figure 5.5 Shows the crown of the landslide in the same region as the activity map shown by 

Scatter accumulation [97] 
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CHAPTER 6: RESULTS AND DISCUSSION 

The study's results indicated the efficacy of satellite radar methods such as 

MTInSAR in detecting geohazard risks along railway systems. PSInSAR effectively 

identified ground subsidence and surface displacement in derailment incidents, notably in 

Burlington, North Dakota, and Cody, Wyoming, where considerable subsidence occurred 

near railway lines. These deformation monitoring systems highlight the possibility of 

anticipating and reducing future dangers. In contrast, CCD analysis was helpful for 

spotting moisture-related instability because it could detect shifts in soil moisture, which 

frequently occurred before geohazard. In Lincoln, Nebraska, and Maupin, Oregon, 

coherence loss from rainfall was associated with heightened soil moisture, potentially 

inducing soil instability and resulting derailments. The research indicated that geological 

and environmental elements, including soil composition, topography, and vegetation, 

substantially affected the accuracy of radar data. The classification system incorporating 

these factors has facilitated the selection of specialized monitoring strategies across 

diverse terrains.  

6.1 Detection of Geohazard Prone Area Using InSAR 

The findings provide evidence in support of the hypothesis that subtle ground 

movements frequently preceded failure events. Subsidence trends were consistently 

detected months prior to derailments and rockfalls in the pre-event MTInSAR analysis 

conducted at several locations (e.g., Lincoln, NE; Maupin, OR). These trends highlight
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how well InSAR can provide early warning indicators for possible hazards. For instance, 

the Maupin site analysis underscored the value of MTInSAR in predictive geohazard 

assessment by demonstrating incremental mobilization over eight months before a 

rockfall event. 

The research also highlights the limitations of MTInSAR in lower-class sites (e.g., 

Sandstone, WV, classified below Class B), where sudden loss of coherence often results 

in the exclusion of active deformation points. To address these challenges, a remote 

monitoring framework was developed and implemented, effectively overcoming the 

constraints of conventional MTInSAR. This framework successfully identified subtle 

ground movements preceding geohazard events, which were not identified by 

conventional methods. 

The Wayanad, India case demonstrated how conventional MTInSAR failed to 

detect the early signs of deformation leading to a debris flow event. Applying the newly 

developed framework captured these subtle pre-event movements, demonstrating its 

capability to enhance hazard detection in challenging environments. 

6.1.1 Role of Soil Moisture in Hazard Initiation: 

CCD analysis revealed a significant relationship between lower radar coherence 

and higher soil moisture, especially following rainfall events. This relationship was 

readily apparent at locations such as Burlington, ND, Lincoln, NE, and Maupin, OR, 

where a substantial loss of coherence was caused by excessive rainfall or snowfall. The 

results highlight the importance of soil moisture in the onset of hazards. These findings 

suggest a direct relationship between soil saturation and coherence. 
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The relationship between soil moisture and other environmental conditions on 

coherence was explored by correlating coherence from CCD with data from USCRN 

sensors. Results from several sensors around the country suggest that in conditions of no 

vegetation to low vegetation, there is a direct relationship between coherence, soil 

moisture and precipitation. This was seen in Bodega, CA, and Santa Barbara, CA. In the 

presence of low vegetation to medium vegetation, like in Blackville, SC and Cortez, CO, 

the correlation was present during the summer months, which can be attributed to low 

vegetation during this season. Regions with high vegetation, like Chatham, MI, and 

Sandstone, MN, showed consistently low coherence irrespective of moisture content, 

which led to the suspension of research efforts in these sites. Finally, a floodplain site in 

Columbia, SC was set up with extensive environmental parameter monitoring systems. 

This site was chosen because it didn’t have ambiguity related to the sensor's location as in 

other USCRN sensors. The results from this site showed a direct relationship between 

soil moisture and coherence during the no vegetation period and also when the vegetation 

was in medium height, suggesting coherence can be used in such conditions. However, 

the correlation falls sharply as the vegetation increases. 

This study suggests that regions immediately surrounding railway tracks have low 

vegetation, and the coherence change detection can be used to identify sudden soil 

saturation. 

6.2 Performance of Proposed Framework 

6.2.1 Comparison with The Current State of Practice 

The proposed framework outperformed conventional MTInSAR in regions  
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Classified lower than B, where environmental conditions prevent the detection of 

scatterers or the deformations scatterers are lost due to sudden large deformation. 

Sandstone, West Virginia, is an example of a tough environment in which the Rolling 

Stack MTInSAR approach shows its capacity to outperform conventional MTInSAR. 

With a rolling stack of 25 photos, the RS-SBAS analysis, in this instance, found two key 

clusters of displacement that were compatible with the slope failures that ultimately 

caused the accident. The sensitivity and accuracy of the suggested framework are 

demonstrated by its capacity to identify growing deformation activity in the failure site 

cluster several months before the rockfall event. Conventional MTInSAR approaches 

have missed subtle changes because of susceptibility to noise in vegetated or low-radar-

reflectivity zones. 

In Wayanad, India, the conventional MTInSAR could not identify deformations in 

the debris flow's origin point. At the same time, the proposed framework in the form of 

“scatterer accumulation” showed significant activity in the form of high-deformation 

scatterers in the origin point region. The framework also identified the crown of the 

landslide months before the disaster. Its capacity to identify early displacement in such 

conditions demonstrates the framework's superiority. 

The framework is validated by demonstrating its effectiveness in higher site 

classifications, like in Maupin, OR, where both MTInSAR and the proposed framework 

successfully identified the origin point of the rockfall. The start of the deformation 

activity in both methods coincided roughly with the same period (8 months before the 

event).  
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6.2.2 Advantages of Early Identification Using The Proposed Framework. 

 The suggested frameworks show early detection capabilities by highlighting 

regions with hazard potential. In Sandstone, WV, two clusters of activity were identified 

when “Scatterer Accumulation” was used along with RS-MTInSAR, out of which one of 

the clusters failed and resulted in derailment. At the same time, mitigation efforts were 

employed in the form of retaining walls to the second cluster. Although the mitigation 

efforts were done proactively with no input from this research, a similar strategy can be 

applied to stop additional events highlighted by this framework. The clustering timeline 

also identified the cluster would experience imminent failure four days before the event. 

 The framework identified high-risk areas in regions surrounding the town of 

Wayanad, India, which later experienced other landslide events. Due to low access to in-

situ data, the origin point of these landslides cannot be correlated with the high-risk areas 

identified using the “Scatterer Accumulation”.  

The combination of displacement trends and soil moisture data can provide 

comprehensive knowledge of the threat in future applications. The suggested framework's 

incorporation of multi-temporal satellite data provides spatial and temporal coverage in 

contrast to conventional monitoring techniques, which frequently rely solely on single-

stack MTInSAR.
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CHAPTER 7: CONCLUSION 

This dissertation presents a comprehensive framework for identifying and 

monitoring geohazard-prone areas along railway tracks and slopes using advanced 

satellite radar imagery techniques. The research successfully demonstrates the 

efficacy of the proposed methodology in addressing key challenges in geohazard 

monitoring and mitigation. 

7.1 Summary of Key Findings 

• MTInSAR can identify small deformations preceding a geohazard event. 

• The effectiveness of MTInSAR techniques depends on geometric properties and 

site conditions 

• A classification system is developed based on the factors influencing SAR data 

acquisitions. 

• The classification system divided into four levels (A to D) is used to guide the 

application of MTInSAR 

• Sites classified as A have the best radar reflections, and PSInSAR can be used to 

measure deformations accurately  

• Sites classified as B have relatively low radar reflections and require SBAS to 

measure deformation trends. 
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• Sites classified as C are challenging for conventional MTInSAR due to low radar 

returns due to season vegetation or other factors. 

• Sites classified as D are unsuitable for SAR monitoring due to lack of line of sight 

from SAR sensors. 

• Sites classified as C and some B are challenging to measure due to the loss of 

coherence of the scatterers midway through the analysis period, leading to the loss 

of observation scatterers. 

• Soil moisture change, a critical factor in geohazard, can influence SAR coherence 

measured using CCD. 

• Coherence data using C-band radar can effectively measure soil moisture change 

only in low to medium vegetation conditions. 

• Integration of coherence change detection (CCD) with radar imagery highlighted 

the role of soil moisture changes in triggering geohazards, providing a new 

dimension for early detection. 

7.2 Contribution to Research and Practice 

• Introduced a novel monitoring framework that enhances geohazard detection and 

risk assessment. 

• The framework consists of three post-processing methods developed to enhance 

the monitoring of sites classified as C. 

• The post-processing methods use MTInSAR analysis in the “Rolling Stack” 

approach 
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• The “Rolling Stack” avoids the loss of deformation scatterers by using multiple 

stacks of data covering a large time period.  

• The three post processing methods are 

o Thresholding: Filters data to retain high-quality scatterers. 

o Scatterer Accumulation: Aggregates scatterers over time for better 

continuity. 

o Clustering Timeline: Identifies critical areas prone to geohazard failures 

by analyzing temporal deformation patterns. 

• The post processing methods have demonstrated effectiveness in identifying 

increasing deformation activity and potential triggering events in challenging 

sites. 

• The proposed framework successfully identified geohazard in post event analysis 

of Sandstone, WV, and Wayanad, India, where deformation activity was detected 

before catastrophic events. 

• Advanced the field of railway geohazard monitoring by providing a scalable, non-

invasive solution applicable across extensive railway corridors. 

• Demonstrated the practical benefits of the framework for early hazard detection, 

enabling cost-effective and targeted mitigation strategies for railway operators. 

• Established methodologies for integrating multi-temporal radar techniques 

(PSInSAR, SBAS) with coherence analysis to monitor both mobilization and 

environmental triggers of hazards. 
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7.3 Limitation of Study 

• The framework is developed based on open-access SAR data. Currently, only 

Sentinel-1A is available in this category, limiting the coverage as it restricts the 

geographic properties to one option in site classification. 

• The framework depends on auxiliary data, such as weather data, to improve the 

accuracy of measurements. The absence of this data removes the context from the 

deformation patterns. 

• Sentinel-1A, a C-band radar used in this research, has low penetration power, 

restricting its application in soil moisture and deformation measurements. 

• Dependence on historical data availability, with some sites lacking sufficient 

temporal datasets to conduct robust multi-temporal analyses. 

• The multi-temporal analysis in “Rolling Stack” utilizes constant Ground Control 

Points location in all the stacks. A change might induce errors in the deformation 

measurements, as large deformations in the location of GCP points will generate 

bad deformation readings throughout the image. 

• Currently, the framework is performed manually, which is computationally 

expensive when large regions are to be monitored.  

7.4 Future Research Direction 

• Several parts of the framework are constant steps that do not change based on the 

site under investigation, making it ideal for automation. 
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• Develop and integrate machine learning models to enhance predictive capabilities 

by identifying patterns and triggers for geohazards. 

• Explore using higher wavelength radar sensors, such as L-band sensors, to 

overcome limitations in vegetation-covered areas. 

• Future SAR applications in moisture content should be explored using intensity 

data and coherence. Intensity data has fewer factors contributing to the signal loss, 

reducing the ambiguity in the estimation.
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APPENDIX A: SITE MOBILIZATION MONITORING 

 

A.1 Lincoln, NE 

A.1.1 Event 

On June 25, 2021, a BNSF train carrying coal derailed near Bennet, Nebraska, as 

depicted in Figure A.1(a). The incident occurred at Saltillo Road and 148th Street 

intersection, as shown in A.1(b), close to 2 miles from Bennet. This track remained 

inactive for two decades but was recently reactivated. While the exact cause of the 

derailment remains unknown, it should be noted that the region had recently encountered 

heavy rainfall, resulting in approximately 4 inches of precipitation and flash flooding. 

A.1.2 Site Description 

The region under investigation is located in the southeastern part of Nebraska at 

latitude and longitude (40.70, -96.53). This region is approximately 13 miles from the 

state capital of Bennet and has a mean annual precipitation of 28 to 40 inches with 158 to 

203 frost-free days. The region is classified as prime farmland. The InSAR analysis 

region can be divided into 2 regions. The first is the track region (7050 Figure A.2) and 

the area immediately surrounding it, and the second region (7684 Figure A.2) is the 

farmland beyond, indicated by Figure A.2. The track region has a silt loam soil profile of 

up to 41 inches of the topsoil layer, with the soil below it being silty clay loam from 41 to 
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Figure A.1 (a) Shows the derailment; (b)Shows the location where the derailment took 

place; (c) The coverage of Sentinel-1A covering the area of the accident. 
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Figure A.2 Shows the soil profile of the region. 
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79inches of the soil layer. It is moderately well-drained and has the capacity to transmit 

water in a moderately high range (0.20 to .60 in/hr). This region was occasionally flooded 

as the region is located in flood plains. The farmland does have a similar soil profile to 

the track region. Its only difference is that it’s not located in the flood plane and has not 

experienced flooding events. A detailed soil profile of the region can be found in [98].  

A.1.3 Data Availability 

The region under investigation is in Nebraska, where Sentinel-1A provided 

coverage. This region is covered by the satellite once every 12 days and is located in rural 

areas, suggesting lower coherence due to obstructions from vegetation. The dataset for 

this study is obtained from the Sentinel constellation, and the satellite images are 

downloaded from the Sentinel-1 EU data hub (ESA) [99] and Alaska Satellite Facility 

(ASF) [100]. Figure A.1 (c) shows the path taken by the Sentinel-1A satellite. The 

analysis employs PSInSAR and CCD techniques using archived satellite radar images 

spanning 24 months, covering the event's occurrence. To ensure accurate results, the 

study is divided into two periods, pre-event and post-event. Separation is essential since 

events such as rockfalls can cause sudden subsidence and significant changes in the 

DEM, leading to a loss of coherence and persistent scatterers, affecting data quality. The 

acquisition periods are detailed in Table A.1. 

A.1.4 PSINSAR Analysis 

 The PSInSAR analysis for site mobilization was conducted using a stack of 20 

images, at a minimum. The deformation maps from the Sentinel-1A orbit are   
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Data Set Sentinel 1-A  

Pre-event 10/19/2020 to 6/16/2021 

Post-event 6/28/2021 to 5/20/2022 

Table A.1 Data Availability of Sentinel-1A covering 

the city of Lincoln, Nebraska. 
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superimposed on an optical image taken on June 21, 2021. The displacement observed is 

in mm and plotted on the color-coded PS images that show the total displacement over 

the entire analysis. The negative displacement (blue) indicates subsidence, and the 

positive displacement (red) denotes height gain about the line of sight of each satellite 

and orbit. 

Pre-Event Analysis: The PSInSAR analysis using the one orbit produced the deformation 

map shown in Figure A.3(a), the PS over the region covers the time period from October 

10, 2020, to June 16, 2021. Figure A.3(a), the red highlighted region, shows where the 

derailment occurred. Figure A.3(b) shows the PS with the stable PS removed and only the 

high-displacement PS being shown. Figure A.3(c) shows the region where the derailment 

took place. The white highlighted region shows the largest subsidence in the observation 

period. Figure A.3(d) shows the progress of the displacement over the analysis time 

period. The displacement over time shows consistent subsidence activity with the 

exception of acquisition on Feb 16, which shows a sudden drop in subsidence. It is 

unknown if the subsidence in this location led to the derailment of the train. 

Post-event analysis: The PSInSAR analysis of the region analyzes the derailment from 

June 28, 2021, to May 20, 2022. Figure A.4(a) shows the PS analysis, with Figure A.4(b) 

showing the PS analysis with stable PS removed from the analysis. This analysis shows 

that the region in the white highlighted box in Figure A.4(b) has consistently high 

subsidence. This region needs further monitoring to understand the reason for this high 

subsidence and whether the subsidence is affecting the railway line. The region in the red 

highlighted box in Figure A.4(b) experienced derailment following the post-event 

analysis.  
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Figure A.3 (a) the displacement map superimposed on the optical image. (b) PS analysis 

results with high displacement (c) shows the derailment site with high subsidence in the 

region highlighted (d) Shows the progress of the displacement over time of one PS point. 

Figure A.4 (a) the post event displacement map superimposed on the optical image. (b) 

PS analysis results with high displacement with red-highlighted region showing 

consistently high subsidence and red-highlighted region showing a derailment event 

which took place 2 months after the analysis. 
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A.1.5 CCD Analysis 

Pre-event analysis: The CCD timeline analysis produces coherence analysis results over 

an optical image, and the CCD analysis uses data from the same orbit with 12 days 

between each acquisition. This particular analysis used data from May 11, 2021, and May 

23, 2021, to capture coherence 30 days before the accident. Figure A.5(a) shows 

moderately high coherence in the region, with some pockets of low coherence indicating 

low moisture content in the topsoil, with some parts of the track not receiving radar 

backscatter. The track is visible with high coherence due to its distinct shape.  

Figure A.5(b) displays the results of analyzing SAR images from May 23, 2021, 

and June 04, 2021, which were taken 20 days before the accident. The resulting image 

shows relatively low coherence throughout the region, with the track barely visible in 

some areas. This is attributed to rainfall on May 22, 2021.  

The coherence image in Figure A.5(c) utilizes SAR images from June 04, 2021, 

and June 16, 2021, which is the coherence 9 days before the accident. The resulting 

image shows similar coherence to the coherence image from Figure A.5(b). The region 

did not experience any rainfall during this period, and the lack of rainfall has not reduced 

the coherence in the region. Although the coherence is lower than in Figure A.5(a), the 

track is still visible in this case. 

 Post-event analysis: Upon conducting a post-event analysis, it has been observed that the 

railway track has consistently low coherence from June 16 to August 08. This is due to 

consistently high rainfall in the region during this period, greatly affecting the coherence 

measurements of the region. Figure A.6(a) shows the coherence from June 16, 2021, and  
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Figure A.5 (a) Coherence from 05/11 to 05/23/2021 (b) Coherence from 05/23 to 

06/04/2022 (c) Coherence from 06/04 to 06/16/2022 

  

Figure A.6 (a) Coherence from 06/16 to 06/28/2021 (b) Coherence from 06/28 to 

07/22/202 (c) Coherence from 07/22 to 08/03/2021 
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June 28, 2021, covering the derailment, and the effect of the derailment and the rainfall is 

visible in the coherence image with low coherence throughout the image. 

Figure A.6(b) of post-event CCD analysis displays low coherence, with only a 

few parts of the image having high coherence. This analysis utilizes SAR images 

captured after the accident on June 28, 2021, and July 22, 2021. The coherence in the 

region is low due to two reasons: the rainfall affecting the June 28th acquisition and the 

large time gap between the two acquisitions. 

The coherence Figure A.6(c) of post-event CCD analysis reveals low coherence 

across the area, with the track regaining some coherence compared to the surrounding 

region. This analysis also utilizes SAR images obtained after the accident on July 22, 

2021, and Aug 03, 2022. The weather report during image acquisition indicates high 

rainfall in the region, which greatly affected the coherence of these acquisitions. 

Figure A.7 shows the coherence of the region for images taken on Aug 03, 2021, 

and Aug 15,2021. This image shows the coherence of the track being visible while the 

region still shows consistently low coherence. This is due to the rainfall affecting the 

image on Aug 03, 2021. The high coherence on the track also suggests that it is not 

affected by the rainfall and is remaining in a stable condition.  

A.1.6 Discussion 

CCD analysis of the region shows the region was susceptible to loss of coherence 

due to rainfall in the region. The monitored region experienced significant rainfall 

between the derailment and the last data acquisition. This led to no significant changes to 

the coherence, as seen in Figure A.3(c). The post-event coherence analysis also had  
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Figure A.7 Coherence from 08/03 to 08/15/2021 
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significant rainfall activity, leading to the region’s consistently low coherence. Although 

the surrounding region experienced low coherence in the post-event analysis, the track 

showed relatively high coherence suggesting the track following the derailment was 

stable. PSInSAR analysis of the region showed a low density of PS near the derailment 

site, with the white-highlighted region (Figure A.3 (c)) having consistently high 

subsidence. It is unknown if this region’s subsidence led to the derailment. The post-

event region showed high subsidence in the same region as seen in the pre-event analysis. 

The red-highlighted region in Figure A.4(b) shows high displacement in the region, this 

region experienced a derailment 3 months after the monitoring period. It is unknown if 

the displacement observed contributed to the derailment. With the presence of single 

Sentinel data and low access to the line of sight of the radar sensor, this case study can be 

categorized in class B. This case suggests the limitations of CCD when the rainfall 

activity happens after the acquisition date and PSInSAR when the derailment zone is not 

accessible to radar backscatter. This case also shows that despite the existing limitations, 

the application of PSInSAR and CCD analysis can have great applications for railway 

ROW safety applications. 

A.2 Birmingham, AL 

A.2.1 Event 

This case didn’t experience any event destabilizing it. This region was monitored 

to observe for any possible case of instability. The railway track passes along the sharp 

cliff of the Village Creek mine in Birmingham, Alabama, making it susceptible to any 

unstable activity caused by the mine. Figure A.8(a) shows the cliff where the  
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Figure A.8 (a) Shows the location of concern for the instability analysis; (b) Shows the 

mine region and the area under observation; (c) The coverage of Sentinel-1A covering the 

city of Birmingham, Alabama. 
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destabilization concern prompted the monitoring effort. Figure A.8(b)(c) shows the area 

of analysis. 

A.2.2 Site Description 

The region under investigation is located in the city of Birmingham, Alabama, at 

latitude/longitude (33.52, -86.85). This region has a mean annual precipitation of 48-56 

inches, with 180 to 210 frost-free days. This region is 95 percent urban land with 

hillslopes landform setting. It has a constant soil classification around the city as can be 

seen in Figure A.9, and a much more in-depth soil profile can be found in [101] 

A.2.3 Data Availability 

The region under investigation is located in Alabama and is part of the city of 

Birmingham. The radar satellite Sentinel-1A covers this region once every 12 days. The 

region is located in urban areas and, due to proximity to the mine, has a large area 

exposed to radar backscatter. Since only one satellite covers this area, analysis of the 

region is restricted to the angle of incidence. The dataset for this study is obtained from 

the Sentinel constellation, and the satellite images are downloaded from the Sentinel-1 

EU datahub (ESA) [99] and Alaska Satellite Facility (ASF) [100] . Figure A.8(c) shows 

the path taken by the Sentinel1-A satellite. The analysis employs PSInSAR techniques 

using archived satellite radar images spanning 12 months. The acquisition periods are 

detailed in Table A.2. 

A.2.4 PSINSAR Analysis 

 The PSInSAR analysis for site mobilization monitoring was conducted using a 

stack of 20 images at a minimum. The deformation maps from the Sentinel-1A orbit are  
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Data Set Sentinel 1-A (Ascending) 

Stability monitoring 02/26/2022 to 10/24/2022 

  

Figure A.9 The soil profile map of the Village Creek mine in Birmingham, Alabama 

Table A.2 Satellite Data Acquisition Periods for Birmingham, Alabama  
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superimposed on an optical image taken on June 21, 2021. The displacement observed is 

in mm and plotted on the color-coded PS images that show the total displacement over 

the entire analysis. The negative displacement (blue) indicates subsidence, and the 

positive displacement (red) denotes height gain about the line of sight of each satellite 

and orbit. 

The PSInSAR analysis uses single orbit data to produce the deformation map in 

Figure A.10. Figure A.10(a) shows the region's high radar backscatter as seen by the 

density of PS. Figure A.10(b) shows the displacement in the range of -25 to -14 and 14 to 

25 to show the largest deformation in the region without the stationary point. The red 

dotted square in Figure A.10 (a) and A.10(b) shows the area under observation, with 

Figure A.10(c) and Figure A.10(d) showing the highlighted region in a zoomed-in 

manner. Figure A.11(a) shows the high subsidence measured on the tracks on the east 

side of the analysis area. Figure A.11(b) shows the progress of the displacement 

highlighted (green and blue highlights) in Figure A.11(a). The displacement is consistent 

in the region, and since this region is not near the cliff, additional monitoring is required 

before further action is taken about this subsidence. 

Figure A.12(a) shows the high subsidence measured on the tracks near the center 

of the analysis area. Figure A.12(b) shows the progress of the displacement highlighted 

(green and blue highlights) in Figure A.12(a). The displacement is consistent in the 

region. Since this region is near the cliff, these PS points need to be monitored further. 

A.2.5 Discussion 

 PSInSAR analysis over Birmingham, Alabama, has shown that the region has PS  



126 

 

 

 

  

Figure A.10 (a) Shows the total PS in the area under observation. (b) Stable PS has been 

removed, and high displacement PS are only shown. (c) Shows the total PS in the region 

of concern (d) Shows only the PS which have experienced high displacement in the 

region 

Figure A.11 (a) Shows the high displacement PS on the railway track east of the site. 2 PS 

are highlighted to observe the progress of displacement. (b) Shows the displacement over 

time for the highlighted displacement. 
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Figure A.12 (a) Shows the high displacement PS on the railway track close to the mine 

cliff. 2 PS are highlighted to observe the progress of displacement. (b) Shows the 

displacement over time for the highlighted displacement. 
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with high displacement surrounding the mine under observation. Most of the high 

concentrations of PS are not on the track and are believed to be due to the mining activity 

in the region. However, several PS show high subsidence near the railway track 

overlooking the cliff. This region can be classified as A due to high radar returns from the 

area, and further monitoring will provide a better understanding of the subsidence in the 

region. 

A.3 Maupin, OR 

A.3.1 Event  

In the early morning of May 07, 2020, a derailment occurred due to a rockfall 

near Maupin in Oregon, as shown in Figure A.13(a). The derailment took place 

approximately 0.71 miles from the city center. This region has a 40 to 70 percent slope 

and is well drained, as seen in the street view shown in Figure A.13(b). The area of 

interest encompasses 5.85 mi2 and is characterized by the top 4 inches of the soil being 

extremely stony loam, with the bedrock lying 12-20 inches deep [102]. 

A.3.2 Data Availability 

The study area is on the west coast and benefits from multiple satellite passes, 

providing access to SAR data from different angles. The site has high radar reflectivity 

with minimal signal losses. The dataset for this study is obtained from the Sentinel 

constellation, and the satellite images are downloaded from the Sentinel-1 EU datahub 

[99] and Alaska Satellite Facility (ASF) [100]. Figure A.13(c) shows the path taken by 

Sentinel1-B satellites, Figure A.13(d) shows the path of Sentinel1-A satellite. The 

analysis employs PSInSAR and CCD techniques using archived satellite radar images  
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Figure A.13 Oregon Maupin Site: (a) Location on the map; (b) Street view of rockfall 

site; (c) Sentinel 1-B coverage for primary and alternate orbits; (d) Sentinel 1-A 

coverage 
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spanning 24 months, covering the event's occurrence. To ensure accurate results, the 

study is divided into two periods, pre-event and post-event. Separation is essential since 

events such as rockfalls can cause sudden subsidence and significant changes in the 

DEM, leading to a loss of coherence and persistent scatterers, affecting data quality. The 

acquisition periods are detailed in Table A.3. 

A.3.4 PSInSAR Analysis 

The PSInSAR analysis for site mobilization monitoring was conducted using a stack of 

20 images, at a minimum. The deformation maps from the three orbits are superimposed 

on an optical image taken on April 10, 2020. The displacement observed is in mm and 

plotted on the color-coded PS images that show the total displacement over the entire 

analysis. The negative displacement (blue) indicates subsidence, and the positive 

displacement (red) denotes height gain about the line of sight of each satellite and orbit. 

Pre-Event Analysis: The PSInSAR analysis using the three orbits produced the 

deformation map shown in Figure A.14(a), which reveals that a group of points within the 

white highlighted area had changed position during the monitoring period due to the 

rockfall. Most of the identified Persistent Scatterer (PS) points were stationary. Figure 

A.14(b) shows only the displacement in the range of -25mm to -10mm and 10mm to 

25mm.  

This image clearly shows the concentration of high PS points in the area of the 

accident. Figure A.14(c) displays the change in the position of one PS point with the most 

substantial displacement over the analysis period. The highlighted area where the rockfall 

occurred was relatively quiet until the end of September 2019, period T1 in  
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Data Set Sentinel 1-B 

Ascending 

Sentinel 1-B 

Descending 

Sentinel 1-A 

Pre-event 6/1/2019 to 

5/2/2020 

6/21/2019 to 

4/28/2020 

6/16/2019 to 5/5/2020 

Post-event 5/14/2020 to 

1/9/2021 

5/10/2019 to 

4/6/2021 

5/17/2020 to 

12/31/2020 

Figure A.14 (a) the displacement map superimposed on the optical image. (b) PS 

analysis results with displacement (c) Shows the progress of the displacement over 

time of one PS point. 

Table A.3 Satellite Data Acquisition Periods for Maupin OR 
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Figure A.14(c). The region experienced high displacement in the period T2 until the start 

of December, followed by a brief stable period, T3, before it experienced high 

displacement leading to the rockfall, T4. This indicates that for at least eight months 

before the event, the region experienced a change in position, compared to the wider area, 

with some points subsiding and others moving in the opposite direction to the satellite's 

line of sight. At the start of the observation period, the deformation changes were due to 

noise. 

Post-Event Analysis: A post-event PSInSAR analysis has been conducted on all three 

orbits after the event, and the results have been combined to generate the deformation 

map in Figure A.15. The highlighted area shows no significant displacement, indicating 

that the region is not undergoing any surface movement and is now in a state of 

equilibrium. However, the surrounding hills exhibit areas with substantial displacement 

compared to the PS on the railway right-of-way.  

A.3.5 CCD Monitoring Analysis  

The coherence images generated by CCD analysis can provide further insights 

into the rockfall event. As evidenced in Figure A.16(a), mobilization of the site started 

after September 2019.  The coherence map for the period September 17 to September 29, 

shown in Figure A.16(b) reveals a low coherence in the region of the rockfall event 

marked by the red rectangle.  Since the site is still “quiet” and no geometry changes are 

detected, the low coherence over the broader region could be attributed to the other major 

factor that affects it, i.e., change in soil moisture in the surrounding area.  This 

observation is verified by the rainfall records for the site depicted in Figure A.16(c) for 

the entire month of September. It is noted that in the period between the two acquisitions,  
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Figure A.15 Post-Event Analysis Total deformation map of Persistent Scatterers. No 

significant position change noted. 

Figure A.16 (a) Coherence from 9/17 to 9/29/2019. (b) Rainfall during September 2019. 

(c) Displacement progress of a PS point near the rockfall event. 
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i.e. 9/17-9/29, a moderate and persistent rainfall is recorded, suggesting a correlation 

between soil moisture change and the signal coherence between the two successive 

acquisitions and that persistent rainfall has possibly triggered the local mobilization of the 

site. Further CCD analysis was performed using the pre- and post-event data sets to 

investigate any coherence loss before the rockfall. Figure A.17(a) exhibits the coherence 

image from the analysis between an image pair captured on 4/20 and 5/02, demonstrating 

high coherence in the broader area of the event but noticeable coherence loss in the 

immediate region of the event, while no rainfall was recorded in the same period, yet an 

abrupt change in the displacement is noted (Figure A.14(c)). Figure A.17(b) portrays the 

coherence analysis of the region studied using data from May 02 to May 14, that spans 

over the May 7th event date.   The noticeable coherence loss in the immediate area of the 

event is attributed to the surface changes caused by the rockfall. According to the soil 

information for the area  [102] and shown in Figure A.13(b), the immediate region of the 

rockfall is a steep, rocky slope where surface runoff is at fast rates, without any ponding 

or retained water; this is consistent with the high coherence for most of the analysis 

period in the immediate region. The broader area, however, is relatively flat, and 

precipitation seeps through the soil changing the soil moisture content; this is consistent 

with the coherence loss after rain periods. PSInSAR was able to detect the slow 

mobilization of the slope six to eight months before the rockfall took place. CCD 

analysis, in this case, shows that sustained rainfall in the area reduced the high coherence 

of the region one month before the accident. The event analysis of Maupin also suggests 

a direct relationship between soil moisture content and coherence. The analysis of the 

other sites considered in this work showed similar conclusions. 



135 

 

  

Figure A.17 Coherence maps: (a) 12-day period right before the event; (b) Coherence 

during the event 
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A.4 Atlanta, GA 

A.4.1 Event 

According to homeowners in DeKalb County, Georgia, a massive sinkhole has 

raised concerns regarding their residences' safety, property value, and stability, as 

reported by FOX 5 Atlanta. The resident discovered cracks in her driveway and around 

the back of her home approximately in February 2022. Upon investigation, she realized 

the presence of a sinkhole, steadily growing in size. The sinkhole was reported to DeKalb 

County in March, but initially, it received low priority. However, with the sinkhole 

deteriorating rapidly due to heavy rainfall and storms, county officials have taken notice. 

Investigation into it suggested that leaking drainage pipes could have led to the formation 

of sinkholes. Figure A.18(a) shows the location of the sinkhole, with Figure A.18(c) 

showing a closer view of the region, and finally, Figure A.18(d) shows the sinkhole 

damaging the resident’s driveway. 

A.4.2 Site Description 

The region under investigation is located in the suburban environment of Atlanta 

in northern Georgia at latitude/longitude (33.83, -84.30). This region has a mean annual 

precipitation of 44-60 inches, with 190 to 230 frost-free days. The typical soil profile of 

Dekalb County consists of the top 5 inches of soil being sandy loam, with soil from 5 to 

36 inches being sandy clay loam as seen from soil profile image Figure A.19. Additional 

properties and qualities of the site include a slope of 10 to 25 percent and a well-drained 

drainage class. The area does not experience flooding or ponding [103].  Figure A.18(b) 

shows the path taken by the Sentinel1-A satellite  
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Figure A.18 (a) Shows the location of the sinkhole near Atlanta; (b) Sentinel 1-A 

coverage of the region; (c) Closer view of the region where the sinkhole took place; (d) 

The sinkhole affecting the driveway of the resident. 

Figure A.19 The soil profile map of the 

region in Dekalb County 
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A.4.3 Data Availability 

The radar satellite Sentinel-1A covers this region once every 12 days. The region 

is located in urban areas, but the area under investigation has significant vegetation cover 

and the tree canopy reduced the radar visibility in the region. Since only one satellite 

covers this area, analysis of the region is restricted to the angle of incidence. The dataset 

for this study is obtained from the Sentinel constellation, and the satellite images are 

downloaded from the Sentinel-1 EU datahub [99] and Alaska Satellite Facility (ASF) 

[100]. Figure A.18(b) shows the path taken by the Sentinel1-A satellite. The analysis 

employs PSInSAR techniques using archived satellite radar images spanning 9 months, 

covering up to the first appearance of the sinkhole. Table A.4 shows the data used for the 

analysis 

A.4.4 PSInSAR Analysis 

The PSInSAR analysis for site mobilization monitoring was conducted using a 

stack of 20 images, at a minimum. The deformation maps from the two orbits are 

superimposed on an optical image taken on April 11, 2022. The displacement observed is 

in mm and plotted on the color-coded PS images that show the total displacement over 

the entire analysis. The negative displacement (blue) indicates subsidence, and the 

positive displacement (red) denotes height gain about the line of sight of each satellite 

and orbit. 

The PSInSAR analysis using Sentinel-1A produced the deformation map shown 

in Figure A.20(a), which reveals that the region experienced low subsidence during the 

monitoring period. Figure A.20(b) shows only the persistent scatterers in the range of  
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Data Set Sentinel 1-A (Ascending) 

Pre-event 02/04/2021 to 11/06/2021 

Figure A.20 (a) The displacement map superimposed on the optical image; (b) PS 

analysis results with high subsidence highlighted;(c) Show the progress of the 

displacement over time of one PS point. 

Table A.4 Satellite Data Acquisition Periods for Dekalb County, Georgia 
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-25mm to -14mm and 14mm to 25mm near the sinkhole region. Several of these PS are 

highlighted with yellow boxes with the progress of displacement of two shown in Figure 

A.20(c). The progress of displacement of these persistent scatters shows they have been 

experiencing displacement at the same rate as points around the county. These 

displacements accelerated at the start of March and progressed throughout the 

observation period.  

A.4.5 Discussion 

The region has a large presence of vegetation in the form of trees surrounding the 

sinkhole. This led to low radar visibility in the region. In the areas where high 

displacement can be observed, the progress of the displacement suggests they are 

experiencing subsidence due to similar reasons. The newspaper article following the 

event suggests that damaged drainpipes were the cause of the initial sinkholes; the same 

reason could also affect the surrounding regions with high subsidence. Since this region 

has access to only one satellite path and since this region cannot be observed from 

alternative angles, we would classify this site as B leaning towards C class. This 

classification is due to the high presence of vegetation and low radar backscatter. PS 

points are sparse due to low coherence caused by vegetation, and DS points are unreliable 

in small-scale subsidence. The restricted satellite line-of-sight prevents cross-validation 

of displacement signals. These factors significantly limit early-warning capabilities in this 

region. PSInSAR techniques can be used to detect sinkholes as one indicator for 

sinkholes is a constant small amount of subsidence before the geohazard, but if the region 

has no access to satellite visibility, then early detection is difficult, as seen in this case 

study. 
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A.4 Burlington, ND 

A.4.1 Event 

According to a report by first responders and the local news station (KFVT TV), a BNSF 

train en route to Minot, North Dakota, derailed on May 1, 2022, with multiple rail cars 

catching fire. The derailment occurred near county road 10, between 107th and 128th 

Avenues Figure A.21(a), approximately 10km away from Minot and 4km from 

Burlington. The test area has no significant slopes, and the derailment may have been 

caused by increased moisture content on the railway track, affecting its stability. 

A.4.2 Site Description 

The region under investigation is located in northern North Dakota at latitude 

longitude (48.25, -101.46). This region is closer to the Canadian border and has a mean 

annual precipitation of 16–23 inches with 110 to 150 frost-free days. The InSAR analysis 

region can be divided into 2 regions. The first is the track region (F148F) and the area 

immediately surrounding it, and the second is the farmland beyond (F657B), indicated by 

Figure A.22. Region A has a loam soil profile of up to 79 inches of soil layer. It is well 

drained with high runoff classification and a capacity to transmit water at moderately low 

to moderately high (0.14 to 1.42 in/hr). Region B, on the other hand, has loam soil in the 

top layer (0 to 8 inch) and clay loam (8 to 35 inch) below it. It is well drained with low 

runoff classification and can transmit water at a similar rate as Region A. Both regions A 

and B have never had problems with flooding and ponding. These consistent hydrological 

and soil characteristics support stable baseline conditions for deformation analysis. 

Additional detailed information related to soil profile can be obtained in [104] 
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Figure A.21 Burlington, North Dakota (a) Location on the map; (b) Sentinel 1-B 

coverage for primary and alternate orbits; (c) Sentinel 1-A coverage of the region 

Figure A.22: The soil profile map of the region in Burlington, ND 
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A.4.3 Data Availability 

The region under investigation is in North Dakota, where Sentinel-1B provided 

coverage until December 2021. The satellite orbited the area twice. However, on 

December 22, 2021, Sentinel-1B lost contact with mission control for unknown reasons, 

creating a gap in the data. Sentinel-1A later covered this gap in March 2022. Since the 

accident zone does not have continuous data access, advanced multi-temporal analysis, 

such as PSInSAR, cannot be conducted in the region before the accident. Instead, 

PSInSAR analysis is conducted until the available data in December 2021, followed by 

CCD analysis using Sentinel-1A data from March 2022. This area exhibits a considerable 

amount of radar backscatter due to low obstructions. Figure A.21(b) illustrates the 

satellite data path and data acquired for PSInSAR analysis, and Figure A.21(c) shows the 

path traveled by satellites used for CCD analysis. The data is downloaded using Sentinel-

1 EU datahub [99] and Alaska Satellite Facility (ASF) [100] for the complete analysis 

period. The investigation is divided into pre-event and post-event periods, and the data 

used is shown in Table A.5. The PSInSAR analysis is included in the pre-event. This 

separation is justified because sudden increases in subsidence, such as those occurring 

during a derailment event, lead to a high loss of coherence and significant changes in 

DEM, which impact continuous analysis. 

A.4.4 PSInSAR analysis 

Pre-event analysis: The PSInSAR analysis for site mobilization monitoring was 

conducted using a stack of 20 images, at a minimum. The deformation maps from the two 

orbits are superimposed on an optical image taken on March 22, 2022. The displacement 

observed is in mm and plotted on the color-coded PS images that show the total  
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Data Set Sentinel 1-A  Sentinel 1-B  

Ascending 

Sentinel 1-B 

Descending 

Pre-event 3/24/2022 to 

4/29/2022 

03/04/2021 to 

12/17/2021 

03/11/2021 to 

12/12/2021 

Post-event 4/29/2022 to 

6/5/2021 

Unavailable Unavailable 

Table A.5 Satellite Data Acquisition Periods for Burlington ND 
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displacement over the entire analysis. The negative displacement (blue) indicates 

subsidence, and the positive displacement (red) denotes height gain about the line of sight 

of each satellite and orbit. 

The PSInSAR analysis using the two orbits produced the deformation map shown 

in Figure A.23(a), which reveals that a group of points within the white highlighted area 

had changed position during the monitoring period. Most of the identified Persistent 

Scatterer (PS) points were stationary. Figure A.23(b) shows only the displacement in the 

range of -25mm to -14mm and 14mm to 25mm.  

This image clearly shows the concentration of high PS points on the track. Figure 

A.23 (c) displays the change in the position of one PS point with the most substantial 

displacement over the analysis period. period T1 in Figure A.23(c) shows the slow 

displacement in the region. The region experienced relative stability in the period T2 

followed by high displacement in the period T3 until the end of the observation period. 

Site mobilization analysis of the region shows this railway track was experiencing slow 

sinking activity until December of 2021, after which displacement analysis data is 

unavailable for this region. 

A.4.5 CCD analysis 

Pre-event analysis The CCD timeline analysis produces coherence analysis results over 

an optical image, and the CCD analysis uses data from the same orbit with 12 days 

between each acquisition. This particular analysis used data from March 24, 2022, and 

April 05, 2022, to capture coherence 25 days before the accident. Figure A.24(a) shows 

moderately high coherence in the region, with some pockets of low coherence indicating  
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Figure A.23(a) The displacement map superimposed on the optical image; (b) PS analysis 

results with high displacement; (c) Shows the progress of the displacement over time of 

one PS point. 

Figure A.24 (a) Coherence from 03/24 to 04/05/2022 (b) Coherence from 04/05 to 

04/17/2022 (c) Coherence from 04/17 to 04/29/2022 
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low moisture content in the topsoil. The track is visible with high coherence due to its 

distinct shape. However, a weather report [105] suggests that the coherence was affected 

by rainfall on April 05. 

Figure A.24(b) displays the results of analyzing SAR images from April 05, 2022, 

and April 17, 2022, which were taken 13 days before the accident. The resulting image 

shows low coherence throughout the region, with the track barely visible in some areas. 

This is attributed to two weather events: rainfall on April 05 and snowfall on April 14, 

with continuous low temperatures until April 17, indicating the presence of snow when 

the image was captured. 

The coherence image in Figure A.24(c) utilizes SAR images from April 17, 2022, 

and April 29, 2022, which is the coherence 2 days before the accident. The resulting 

image shows low coherence across the area, with the track barely visible in some areas. 

This is again attributed to snowfall on April 14, with continuous low temperatures until 

April 17, indicating the presence of snow when the image was captured on the 17th. In 

addition, low rainfall on April 29 affected the SAR image captured that day. 

Post-event analysis: Upon conducting a post-event analysis, it has been observed that the 

railway track regains coherence even in areas with low coherence, except for Figure 

A.25(a). The CCD image in analysis Figure A.25(a) utilizes SAR images taken on April 

29, 2022, and May 11, 2022, 9 days after the event. The image shows low coherence on 

the track for two reasons: rainfall that occurred on April 29, 2022, and the change in 

DEM resulting from the derailment on May 1, 2022. 

On the other hand, Figure A.25(b) of post-event CCD analysis displays high  
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Figure A.25(a) Coherence from 04/29 to 05/11/2022 (b) Coherence from 05/011 to 

05/23/2022 (c) Coherence from 05/23 to 06/05/2022 
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coherence, with only a few parts of the image having low coherence. This analysis 

utilizes both SAR images captured after the accident on May 11, 2022, and May 23, 

2022. The coherence on the track is high, with relatively high coherence compared to the 

surrounding area. The weather report during image acquisition indicates no significant 

activity that could have affected the coherence in the region. This analysis should be 

treated as a baseline for post-event analysis as it uses data after the effect of derailment.  

The coherence Figure A.25(c) of post-event CCD analysis reveals low coherence 

across the area, with the track displaying high coherence. This analysis also utilizes SAR 

images obtained after the accident on May 23, 2022, and June 05, 2022. The weather 

report during image acquisition indicates no significant activity that could have affected 

coherence in the region. The loss of coherence is assumed to be due to vegetation in the 

area, as additional in-situ information is unavailable. The loss of coherence in this image 

needs to be further analyzed with in-situ readings to understand the reason better. 

A.4.6 Discussion 

This region experienced site mobilization from March 2021 to December 2021. It 

is unknown if the subsidence experienced on the track continued after that time period or 

if the subsidence observed on the track caused the derailment later in April 2022. The 

region’s CCD analysis shows a direct relationship between weather activities influencing 

the track profile. The weather events involving rainfall and snowfall influence the 

coherence of the given region and the loss of coherence on the track. Following the event, 

the track showed high coherence even when there was a loss of coherence in the 

surrounding region Figure A.25(c). This suggests that the loss of coherence observed on 

Figure A.24(c) indicates precursive events affecting the railway track.  With the presence 
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of multiple Sentinel data and clear access to the line of sight of the radar sensor, this case 

study can be categorized in class A. Although this region currently has access to only 

Sentinel-1A due to low obstruction to the radar path, it can still be classified as A. This 

case suggests that both CCD and PSInSAR have railway ROW safety applications; these 

techniques can be used for future applications. 

A.5 Shiner, TX 

A.5.1 Event 

A train derailment occurred at approximately 7 p.m. on Friday, June 3, 2022, resulting in 

US Highway 90-A (Avenue E) shutting down for over 20 hours. The incident, which 

involved a Union Pacific train carrying open-top coal cars, occurred near Avenue E’s 

intersection in Shiner, as shown in Figure A.26(a). Eyewitnesses reported smoke 

emanating from one of the train's wheels before the axle broke, causing the car to topple, 

as seen in Figure A.26(b). 

A.5.2 Site Description 

The region under investigation is located in southern Texas at latitude/longitude 

(29.43, -97.18). This region is closer to the Mexican border and has a mean annual 

precipitation of 32-40 inches, with 260 to 280 frost-free days. The typical soil profile of 

Shiner consists of the top 8 inches of soil being sandy clay loam with soil from 8 to 36 

inches being clay loam. Additional properties and qualities of the site include a slope of 1 

to 3 percent and a well-drained drainage class. The runoff class is low, indicating limited 

water runoff. The region transmits water from moderately high to high (0.20 to 1.98 

inches per hour). The depth of the water table exceeds 80 inches, indicating it is well  
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Figure A.26 (a) Shows the location of the derailment near the center of the town shiner; 

(b) shows the derailment; (c) the coverage of Sentinel-1A’s Ascending orbit; (d) the 

coverage of Sentinel-1A’s descending orbit. 



152 

 

below the soil surface. The area does not experience flooding or ponding. Additional 

information related to the soil profile can be found in [106] and is shown in Figure A.27. 

A.5.3 Data Availability 

The region under investigation is in Texas between San Antonio and Houston, 

where Sentinel-1A covers the region in multiple orbits observing the area in multiple 

directions. Since the accident is located in the city, the region exhibits a considerable 

amount of radar backscatter. Figure A.26(c)(d) illustrates the satellite data path for the 

analysis. The data is downloaded using Sentinel-1 EU datahub [99] and Alaska Satellite 

Facility (ASF) [100]for the complete analysis period. The region is investigated for pre-

event site mobilization using PSInSAR analysis. The post-event analysis is not conducted 

for this case as it was determined that the region is not susceptible to further site 

mobilization activities. Table A.6 shows the data used for the analysis. 

A.5.4 PSInSAR Analysis 

The PSInSAR analysis for site mobilization monitoring was conducted using a 

stack of 20 images, at a minimum. The deformation maps from the two orbits are 

superimposed on an optical image taken on May 21, 2022. The displacement observed is 

in mm and plotted on the color-coded PS images that show the total displacement over 

the entire analysis. The negative displacement (blue) indicates subsidence, and the 

positive displacement (red) denotes height gain about the line of sight of each satellite 

and orbit. The PSInSAR analysis using the two orbits produced the deformation map 

shown in Figure A.28(a), which reveals a group of points that had changed position 

during the monitoring period. Most of the identified Persistent Scatterer (PS) points were  
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Data Set Sentinel 1-A  

Ascending 

Sentinel 1-A  

Descending 

Pre-event 07/10/2021 to 5/30/2022 07/08/2021 to 05/28/2022 

 

Figure A.27 The soil profile map of the region in Shiner Texas 

Table A.6 Satellite Data Acquisition Periods for Shiner, Texas 
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Figure A.28 (a) shows the PSInSAR analysis combining both satellite orbits. (b) shows 

PS with high displacement. (c) shows the near the great crossing where the train 

derailment took place. (d) shows the displacement over time of the PS near the great 

crossing. 
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stationary. Figure A.28(b) shows only the displacement in the range of -25mm to -12mm 

and 12mm to 25mm. This image shows the high PS points in the region are close to the 

track but not on the track. Figure A.28(d) shows the displacement over time for the two 

PS points on the track where the derailment occurred, highlighted in Figure A.28(c). The 

progress of the displacement shows major displacement started during the month of 

October. 

A.5.5 Discussion 

PSInSAR analysis over Shiner, Texas, has shown that the region has some PS with high 

displacement near the railway tracks. Most of the high concentrations of PS are not on the 

track but in the surrounding region. If this region is near a hilly terrain or the 

concentration of these high displacement points is near a sloped surface, it would be 

considered an indicator of landslides being developed in the area. However, subsidence is 

observed at the identified PS on the track suggesting the possibility of track 

settlement/movement.  

A.6 Yellowstone, MT 

A.6.1 Event 

On the morning of June 13, 2022, Yellowstone National Park experienced an 

unprecedented 500-year flood event. The northern parts of the park were hit by a 

combination of heavy rainfall and snowmelt, receiving an astonishing 7.5-9.5 inches of 

precipitation within a 24-hour period. This deluge resulted in severe damage to 

infrastructure and disrupted the normal operations of the park. The flood wreaked havoc 

on transportation routes within the park. Figure A.29(a) shows the regions where large  
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Figure A.29 (a) Shows the locations where significant damage to infrastructure took 

place; (b) Shows the flooding event near Gardiner River; (c) the coverage of Sentinel-1A 

covering Yellowstone Park and cities surrounding it 
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damage has been done due to the flooding event. Figure A.29(b) shows the flooding event 

of the Gardiner River near the northern entrance to Yellowstone. 

A.6.2 Site Description 

The area under analysis is a large area covering over 200 square miles and is 

shown in Figure A.30. The soil profiles information of the region is too extensive to 

summarize, however, details can be obtained from [107]. On average, this region 

experiences 20 to 31 inches of annual precipitation, with frost-free periods of 35 to 60 

days. The average water table is 60 to 80 inches below the soil surface.  

A.6.3 Data Availability 

Two regions are considered, a region in the park where multiple landslides 

occurred, and the BNSF right of way connecting Cody and Ralston. 

Yellowstone Park: The first region under investigation is located on the border of 

Wyoming and Montana. The radar satellite Sentinel-1A covers this region once every 12 

days. The region is in a mountainous environment with a large area exposed to radar 

backscatter. The dataset for this study is obtained from the Sentinel constellation, and the 

satellite images are downloaded from the Sentinel-1 EU datahub [99] and Alaska Satellite 

Facility (ASF) [100]. Figure A.29(c) shows the path taken by the Sentinel1-A satellite. 

The analysis employs PSInSAR techniques using archived satellite radar images 

spanning 10 months, for the dates shown in Error! Reference source not found..  

Cody-Ralston BNSF ROW: The BNSF ROW region is located in Wyoming. The radar 

satellite Sentinel-1A covers this region once every 12 days. The dataset for this study is 

obtained from the Sentinel constellation, and the satellite images are downloaded from  
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Data Set Sentinel 1-A  

Ascending 

Stability monitoring 08/07/2021 to 05/22/2022 

Figure A.30: Shows the region under observation. 

Table A.7: Shows the Sentinel-1A data used for analysis. 
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the Sentinel-1 EU datahub [99] and Alaska Satellite Facility (ASF) [100]. The same data 

set used for monitoring stability in Yellowstone is used here as it covers both regions. 

A.6.4 Stability Monitoring 

Yellowstone Park The PSInSAR analysis for site mobilization monitoring was conducted 

using a stack of 20 images, at a minimum. The deformation maps from the two orbits are 

superimposed on an optical image taken on May 15, 2022. The displacement observed is 

in mm and plotted on the color-coded PS images that show the total displacement over 

the entire analysis. The negative displacement (blue) indicates subsidence, and the 

positive displacement (red) denotes height gain about the line of sight of each satellite 

and orbit. The PSInSAR analysis uses single orbit data to produce the deformation map 

shown in Figure A.31(a). The region shows high radar backscatter as evidenced by the 

density of PS. Figure A.31(b) shows the displacement in the range of -25 to -14 and 14 to 

25 to show the largest deformation in the region without the stationary points. The 

PSInSAR analysis in the region shows that the regions experiencing failure were 

experiencing large displacement patterns before the large rainfall event triggered them. 

BNSF ROW Following the site analysis at Yellowstone Park, a mobilization assessment 

was conducted for the railway right-of-way along the Cody–Ralston line. The analysis 

focused on the rail corridor and a 250-meter buffer zone surrounding it. This monitoring 

approach is designed to detect significant ground displacements that could impact the 

railway infrastructure. However, the analysis was not correlated with any precise location 

of the slope failure and derailment events. Figure A.32(a) shows the location of the BNSF 

railway line as compared to the Yellowstone analysis. Figure A.32(b) shows the regional 

railway lines BNSF uses. The PSInSAR analysis for site mobilization monitoring was  
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Figure A.31 (a) Shows the PSInSAR deformation points; (b) Shows the area of instability 

in the area under observation 

Figure A.32 (a) Shows the Yellowstone monitoring region and the railway track 

connecting Cody and Ralston; (b) Shows the BNSF rail network in the region. 
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conducted using a stack of 20 images, at a minimum. The deformation maps from the two 

orbits are superimposed on an optical image taken on August 10, 2022. The displacement 

observed is in mm and plotted on the color-coded PS images that show the total 

displacement over the entire analysis. The negative displacement (blue) indicates 

subsidence, and the positive displacement (red) denotes height gain about the line of sight 

of each satellite and orbit. 

The PSInSAR analysis uses single orbit data to produce the deformation results 

shown in Figure A.33. Figure A.33(a) shows the region's high radar backscatter as seen 

by the density of PS. Figure A.33(b) shows the displacement in the range of -25 to -14 

and 14 to 25 to show the largest deformation in the region without the stationary point. 

Figure A.33(c) shows the high deformation activity affecting the railway right of way 

outside the city of Cody, with Figure A.33(d) showing the deformation’s average progress 

over the analysis time period. 

A.6.5 Discussion 

PSInSAR analysis over the region showed that several areas were experiencing 

high mobilization events. This region can be classified as A due to high radar returns 

from the area. These areas were triggered during the rainfall event leading to slope 

failure. The displacement measured was detected 20 days before the event took place.  

PSInSAR analysis in the region led to an analysis of the BNSF railway line 

connecting Cody and Ralston in Wyoming. The sponsor (FRA) requested this analysis as 

this line was experiencing frequent derailment events.  PSInSAR analysis over the 

railway right of way connecting Cody and Ralston has shown that the region was  
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Figure A.33 (a) Shows the results from PSInSAR analysis over the region; (b) Shows the 

stable points of analysis being removed with only high subsidence PS; (c) Shows the high 

PS surrounding railway right of way near the railway track connecting the city of Cody 

and Ralston; (d) Shows the average displacement over time of PS points with high 

subsidence. 
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experiencing high subsidence activity. The displacement over time shows that the 

subsidence rate is constant in the region with some sharp activity. At this time, it is 

unknown if derailments in the region are due to the subsidence near the track.   

A.7 Santa Clemente, CA 

A.7.1 Event 

In late September 2022, the San Diego to Los Angeles commuter rail experienced 

disruption near San Clemente. Passengers are required to make a stop in Irvine and 

continue their journey via buses to the San Diego border, where they transfer to another 

train. This disruption is due to safety concerns related to shore erosion on one side and an 

unstable hillside on the other in the San Clemente area. The Orange County 

Transportation Authority (OCTA) has initiated emergency work to stabilize the track and 

slope to ensure passenger safety. These geohazards have previously led to temporary 

closures and service delays in the region. Figure A.34(a) shows the railway line segment 

near the ocean in high risk of disruption. Figure A.34(b) shows the area under 

observation. 

A.7.2 Site Description 

The area under observation covers close to 30 miles of coastal beaches and more 

fertile grounds inland. This region has an annual precipitation of 42 to 48 inches with a 

frost-free period of 190 to 210 days. The coastal beaches have coarse sand with poor 

drainage and negligible runoff. The more fertile ground inland has loam on the top 12 

inches and clay from 12-55 inches of the soil profile. This region has well drained with 

high runoff classification. Figure A.35 shows part of the soil map of the region under  
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Figure A.34 (a) Shows the location of the railway line facing disruption; (b) Shows the 

area under observation; (c) Shows the Sentinel-1A Ascending orbit with the area under 

observation being highlighted; (d) Shows the Sentinel-1A Descending orbit with the area 

under observation being highlighted. 

Figure A.35 Soil map of the region 
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analysis. More in-depth soil data can be obtained from [108]  

A.7.3 Data Availability 

The region under investigation is located between San Diego and Los Angeles. 

The radar satellite Sentinel-1A covers this region twice in ascending and descending 

orbits. The region is exposed to radar backscatter, and large PS data was available. The 

dataset for this study is obtained from the Sentinel constellation, and the satellite images 

are downloaded from the Sentinel-1 EU datahub (ESA, 2023) and Alaska Satellite 

Facility (ASF) (ASF, 2023). Figure A.34(c) and A.34(d) show the images taken by the 

two paths of Sentinel1-A satellite in both orbits of observation. The analysis employs 

PSInSAR techniques using archived satellite radar images spanning 12 months. The data 

used for analysis is shown in Table A.8 

A.7.4 Site Mobilization 

The PSInSAR analysis for site mobilization monitoring was conducted using a 

stack of 20 images, at a minimum. The deformation maps from the two orbits are 

superimposed on an optical image taken on August 11, 2022. The displacement observed 

is in mm and plotted on the color-coded PS images that show the total displacement over 

the entire analysis. The negative displacement (blue) indicates subsidence, and the 

positive displacement (red) denotes height gain about the line of sight of each satellite 

and orbit. 

The PSInSAR analysis using Sentinel-1A ascending orbit produced the 

deformation map in Figure A.36(a). Figure A.36(b) shows the deformation map using 

Sentinel-1A descending orbit. The PS in both images shows only persistent scatterers in  
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Data Set Sentinel 1-A  

Ascending 

Sentinel 1-A 

Descending 

Stability monitoring 10/21/2021 to 09/22/2022 11/26/2021-09/22/2022 

Table A.8: Satellite data for acquisition periods for San Clemente, California 

Figure A.36: (a) shows the high displacement PS for the region using Sentinel-1A 

Ascending orbit; (b) shows the high displacement PS for the region using Sentinel-1A 

Descending orbit. 
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the range of -25mm to -14mm and 14mm to 25mm. Figure A.37(a) and 37(b) show the 

PS near Oceanside, California as obtained from the Sentinel-1A ascending, and 

descending orbits, respectively.  

Figure A.38(a)(c)(e) shows the track region between Santa Clemente and 

Oceanside for Sentinel-1A ascending, and Figure A.38(b)(d)(f) shows the track region 

between Santa Clemente and Oceanside for Sentinel-1A descending. 

A.7.5 Discussion 

PSInSAR analysis over the region showed that several areas were experiencing 

high mobilization events. The regions near the cities of Oceanside and San Clemente 

experienced positive displacement, while the regions in between show clear subsidence 

near the railway lines connecting both cities. Several regions showed positive 

displacement in ascending orbit and negative displacement in the descending orbit, this 

suggests the area was experiencing slope movement in the region. This region can be 

classified as A due to high radar returns from the area and multiple orbits being available. 

A.8 Sandstone, WV 

A.8.1 Event 

A freight train near Sandstone, West Virginia, Figure A.39(a), derailed when it hit 

a rockslide, Figure A.39(b), causing injuries to three crew members and resulting in the 

release of diesel gasoline into the nearby river, Figure A.39(c).   The yellow dotted box in 

Figure A.39(d) indicates the site of the rockfall incident that occurred in the early hours 

of Wednesday, March 8, 2023. The collision in the early morning locomotive footage 

reveals that the debris blocking the railway path caused the derailment.  Furthermore,  
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Figure A.37 Show the high displacement PS near Oceanside with (a) showing the 

Sentinel-1A Ascending orbit and (b) showing the Sentinel-1A Descending orbit 

Figure A.38: Shows the high displacement PS between Oceanside and 

San Clemente (a)(c)(e) shows the PS analysis from Sentinel-1A 

Ascending orbit (b)(d)(f) shows the PS analysis from Sentinel-1A 

Descending orbit. 
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Figure A.39 (a) Incident site; (b) Derailment; (c) Locomotive view of rockfall; (d) 

Two distinct slope failures ~100 m apart. 
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upon careful examination of the images reported in the media, it becomes evident that 

there are two well-defined surface area regions that experienced slope failure, with an 

approximate distance of 100 meters between them, as evidenced in Figure A.39(d). 

The derailment site is about one mile from Sandstone and is located between a 

cliff on one side and the New River on the other. This region has a 35 to 80 percent slope 

and is well drained. The area of interest has decaying plant matter and silty clay loam on 

the top 4 inches with stony silty clay loam underneath. The cliff facing the railway track 

has a stony profile, with the region above the cliff having dense forest cover. Based on 

the above factors, the site is classified as B, tending towards C, as indicated in Figure 

A.40 by the red-highlighted path in the decision tree. 

A.8.2 Data Availability 

The region under investigation is covered by Sentinel-1A, also shown in Figure 

A.39(a) by the area marked in red, with a frequency of acquisition of 12 days. The region 

is located in a rural area with radar signals blocked by the cliffs facing away from the 

satellite path. Due to the geolocation of the incident area, a low number of PS points is 

expected. The Sentinel dataset for this study is downloaded from the Sentinel-1 EU 

datahub and Alaska Satellite Facility (ASF). The region also has a high cloud presence, 

reducing the number of optical images available from Sentinel-2.  In view of the 

relatively low site class, it was decided to employ the RS-SBAS technique with an image 

stack size of 25.  The data acquisition begins on November 14, 2021, and continues until 

March 2, 2023, a week before the event. A total of 44 acquisitions were obtained for the 

analysis, yielding seven SBAS analyses for the chosen 25-image rolling stack, as shown 

in Table A.9. 
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Figure A.40 Shows the site classification for the derailment study. 

Table A.9 Sandstone WV Analysis Datasets 
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The ground surface deformation is computed in all cases in the satellite LOS. 

Each analysis cycles three older images to be replaced by three newer images. Since the 

acquisitions are 12 days apart, each new analysis is separated by one month. 

A.8.3 Thresholding and Accumulation  

SBS analysis showed coherence of 0.3, thus, the threshold limits on the 

displacement computed at the DS point is set to +/- 20 mm (see Table A.9).  The DS 

accumulation over the entire observation period is shown in Figure A.41 at different 

times before the event.  The location of the event is marked by the yellow dashed circle.  

DS points are indicated by the white dots that are scarce 7 months before the event in the 

area of the event, and density increases as the points accumulate over time in potentially 

critical areas.  DS points are detected at the onset of the analysis in other areas of the 

region of interest.  By inspection of the optical image, these DS points correspond to 

known scatterers, e.g. buildings. 

A.8.4 Clustering and Critical Area Identification 

The next step in the process is the identification of the critical areas through 

detection of clusters.  The clustering is observed both through visual inspection, and 

through the optical image subset approach discussed in Section 4.5. In both cases the 

identified clusters are marked in Figure A.42 by yellow and red rectangles. In these 

clusters, the density of the DS points increases with time.  The yellow marked areas 

correspond to areas of known scatterers, such as the structures in the town of Sandstone 

(cluster A), or agricultural buildings (clusters B and C), or are detected on flat terrain 

away from the track and are not of immediate interest. However, clusters F and G,  
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Figure A.41 DS Accumulation at (a) 6 months; (b) 5 months; (c) 4 months; (d) 3 months; 

(e) 2 months; (f) 1 months; (g) 19 days; and (h) 7 days before the rockfall event and 

derailment 
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(a) 

Figure A.42 (a) Clustering and critical area identification; (b) DS Clustering timeline 

shows the DS cluster density in the critical subset and the timeline of the change 

(b) 
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marked by the red rectangles, are deemed the critical ones since they exhibit increasing 

activity over time and are located on the path of the track on a highly sloped terrain. 

Cluster G is located at the derailment site and upon closer investigation the two sub-

clusters within the subset are approximately 100 m apart, which is consistent with the two 

distinct slope failures identified in Figure A.39d.  Cluster F is also identified as a critical 

area; however, no failure occurred at the time of derailment.  It was reported that 

following the derailment, remedial action was taken on both F and G critical areas. 

The DS clustering timeline analysis is shown in Figure A.42b. The graph shows 

the DS cumulative and incremental cluster density at the different times of the analysis.  

It is evident in both clustering and timeline analysis that the cluster has become active 

long before the rockfall event and derailment occurred.  Furthermore, the incremental 

change indicates that the activity has become more pronounced about a week before the 

slope failure in cluster G.  The activity in cluster F also raised concern; however, the issue 

was addressed by the railroad before an event occurred. 

A.9 Raymond, MN 

A.9.1 Event 

On March 30th, 2023, a BNSF train carrying highly flammable ethanol derailed 

and caught fire in Raymond, Minnesota, causing concerns about safety and potential 

contamination. Out of the 22 derailed cars, four containing ethanol ruptured and ignited 

Figure A.43(a) leading to a blaze. Other cars carrying ethanol were also at risk of 

releasing the chemical in the region, with the accident highlighted. 

Figure A.43(b) shows the location of the accident on the world map, with Figure  
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(a) 

(c) 

(b) 

(d) 

Figure A.43 (a) The train derailment; (b) The accident on the world map; (c) The location 

of the derailment in the town of Raymond, MN; (d) The data path of Sentinel-1A 

covering the region with the accident highlighted. 
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A.43(c) showing the exact location of the derailment in the town of Raymond, 

Minnesota. The EPA report of the derailment suggests the cause is due to rupturing two 

denatured ethanol tanks, a highly flammable product [109]. This analysis was conducted 

before the report was public to see if the cause of the derailment was due to site 

mobilization or any other factors that are observable by InSAR analysis. 

A.9.2 Site Description 

The region under investigation is located in Minnesota at latitude longitude 

(48.25, -101.46), about 100 miles from Minneapolis, MN. The region under observation 

is in a northern state with a mean annual precipitation of 24-37 inches with 140 to 180 

frost-free days. The InSAR analysis can be divided into the urban area of Raymond, MN, 

and the rural farm area surrounding it, as seen in Figure A.44. The Urban area has a soil 

profile of clay loam in the top 0- 16 inches of the soil layer, with the soil layer from 16 -

79 inches of loam soil. This region is classified as poorly drained, with the depth to the 

water table being 0 to 8 inches. The rural area has diverse soil classifications, with the 

largest having silt loam soil in the top layer of 28 inches of soil and loam from 28 to 79 

inches below it. The water table in this region is about 47 to 59 inches, with a high 

capacity to transmit water (0.2 to 2in/hr). Both regions have never had problems with 

flooding and ponding. Soil profile map is shown in Figure A.44 and complete 

information related to soil profile can be found in [98] 

A.9.3 Data Availability 

The region under investigation is in Minnesota, at Latitude/longitude 45.01, -

95.23. The radar satellite Sentinel-1A covers this region once every 12 days. The  
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Figure A.44 The soil profile map of the region in Raymond, MN 
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derailment occurred in the center of the town of Raymond, located in the urban areas with 

a large area exposed to radar backscatter. The town is surrounded by farmland which has 

a low radar backscatter. Since only one satellite covers this area, analysis of the region is 

restricted to the angle of incidence. The dataset for this study is obtained from the 

Sentinel constellation, and the satellite images are downloaded from the Sentinel-1 EU 

datahub (ESA, 2023) and Alaska Satellite Facility (ASF) (ASF, 2023). Figure A.43(d) 

shows the path taken by the Sentinel1-A satellite. The analysis employs PSInSAR 

techniques using archived satellite radar images spanning 12 months. The analysis has an 

approximately 3 months gap period between May 2022 to Aug 2022 (Table A.10). The 

results are overlayed on the optical image acquired by Sentinel-2 on March 11, 2023, for 

better visualization.  

A.9.4 PSInSAR analysis 

The PSInSAR analysis for site mobilization monitoring was conducted using a 

stack of 20 images, at a minimum. The deformation maps from the two orbits are 

superimposed on an optical image taken on March 11, 2023. The displacement observed 

is in mm and plotted on the color-coded PS images that show the total displacement over 

the entire analysis. The negative displacement (blue) indicates subsidence, and the 

positive displacement (red) denotes height gain about the line of sight of each satellite 

and orbit. The PSInSAR analysis uses single orbit data to produce the deformation results 

shown in Figure A.45. Figure A.45(a) shows that the rural area around Raymond, MN, 

has a low density of PS, while the highlighted region of Raymond has a high amount of 

PS. Figure A.45(b) shows the displacement in the range of -25 to -14 and 14 to 25 to 

show the largest deformation in the region without the stationary point. The town of  
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Figure A.45 (a) shows the total PS over the observation area. (b) Shows high 

displacement PS with stationary points removed. (c) Shows the area where the 

derailment took place. (d) Shows the average subsidence monitored in the region 

Table A.10 Shows the data acquired for conducting 

PSInSAR from Sentinel-1A. 

Data Set Sentinel 1-A  

Ascending 

Stability monitoring 02/18/2022 to 03/09/2023 
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Raymond, MN, highlighted in Figure A.45(b), is shown in Figure A.45(c) in a larger 

scale, with the average displacement of subsidence over time shown in Figure A.45(d). 

A.9.5 Discussion 

PSInSAR analysis over the Raymond, MN, derailment analysis has shown a 

contrast in the density of PS from the urban environment of Raymond, MN, and the 

surrounding rural area. The analysis shows the rural regions of Raymond to have positive 

displacement, while the urban region is experiencing subsidence. By comparing the 

displacement region with the soil reports, we can see that the water table is relatively high 

in the case of the urban region (0-8 inches). Similar conditions have been observed in 

cities where PSInSAR analyses have been conducted [110] [62]. This region can be 

classified as B due to high radar returns from the area for PS analysis, but lack of 

multiple angles for better analysis. 

A.10 Quinn's MT 

A.10.1 Event 

On April 2, 2023, a train derailment occurred southeast of Plains, Montana, across 

the Clark Fork River from Quinn's Hot Springs Resort. The incident, under investigation, 

involved at least 20 cars derailing, including one carrying hazardous materials in the form 

of liquefied petroleum gas (butane).  

The derailed train cars included boxcars carrying powdered clay and beer brands 

in cans and bottles. Motorists traveling along Highway 135 could observe approximately 

18 partially or fully derailed railcars, while additional boxcars were derailed inside a 

century-old tunnel near the visible cars. Law enforcement officers were on the highway 
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to prevent onlookers from blocking the road around blind curves. Figure A.46(a) shows 

the location of the railway derailment, with Figure A.46(b) showing the derailment 

leading to the contents being dumped in the river.  

A.10.2 Data Availability 

This region was formerly covered by Sentinel-1B, covering it from 3 angles; it 

could observe the region from multiple angles Figure A.47(a). But since the loss of 

Sentinel-1B, this region is now in a negative zone not covered by any satellite. Sentinel-

1A covers this region nearby, but as Figure A.47(b) shows, there are gaps in the satellite 

coverage. Due to this reason, InSAR analysis cannot be conducted in this region. 

A.10.3 Conclusion 

This site shows the limitations of SAR analysis and the extent of data availability. 

In the future, when new satellites are launched, these limitations can be mitigated. 

A.11 Pueblo, CO 

A.11.1 Event 

On October 15, 2023, in Pueblo, Colorado, a BNSF freight train carrying coal 

derailed while traveling south on the Pikes Peak Subdivision in the Pueblo West area. The 

incident occurred within an area of interest covering approximately 4 square miles, 

located about 8.4 miles from the city center. The derailment caused the collapse of a 

bridge over Interstate 25, tragically resulting in the death of a truck driver who was 

passing underneath at the time. Preliminary investigations attributed the derailment to a 

broken rail and the failure of trackside warning systems, both of which contributed to the  
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Figure A.46 Quinn’s Hot Springs Resort, Montana, Derailment Site: (a) Location; (b) 

Derailment 

Figure A.47 Data availability for Site: (a) Sentinel-1B original overage; (b) Sentinel-1A 

inadequate coverage 
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accident. As a result, a significant portion of I-25—a major transportation corridor used 

by an estimated 39,000 to 40,000 vehicles per day—was closed, severely disrupting 

regional traffic and freight movement Figure A.48. The event prompted emergency 

response actions, federal safety reviews, and infrastructure damage assessments [111]. 

A.11.2 Site Description  

The region under investigation is located in Pueblo Colorado at latitude/longitude 

(37.76/ -80.89). This region experiences a mean annual precipitation of 11 to 14 inches 

with 145 to 175 frost-free days. This region is classified as not prime farmland 0 to 2 

percent slopes in the area. This region is composed of predominantly channery silty clay 

loam soil, with the top layer having channery silt loam(0 to 3 inches). The region is well 

drained with high runoff classification. Additional detailed information related to soil 

profile can be obtained in [102] 

A.11.3 Data Availability 

The region under investigation is in Colorado, where Sentinel-1A provided 

coverage. This region is covered by Sentinel-1A satellite once every 12 days. T. Due to 

the geolocation of the incident area, we can expect high PS points. The dataset for this 

study is obtained from the Sentinel constellation, and the satellite images are downloaded 

from the Sentinel-1 EU datahub (ESA, 2023) and Alaska Satellite Facility (ASF) (ASF, 

2023). The analysis employs PSInSAR and SBAS techniques using archived satellite 

radar images spanning 12 months, covering the event's occurrence. The analysis uses 

Sentinel-2 for optical images. Since this is, a recent event post-event analysis is not 

available at this time. 
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Figure A.48 Shows the railway derailment taking place  
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This derailment was monitored post-event to identify conditions that led to the 

broken rail. The region's site characteristics include flat terrain with slopes of less than 2 

percent and uneven terrain. It is dry with low vegetation density and a large presence of 

shale rocks close to the surface. The region is well-drained and has no history of flooding 

or ponding. The region is monitored by only one SAR satellite Sentinel-1A, but due to 

site characteristics, this region falls under site class A. The dataset for this analysis is 

acquired from the sentinel-1 constellation and is downloaded using the sentinel-1 EU 

datahub and Alaskan Satellite Facility (ASF). The analysis period covers 10 months using 

25 image stacks for PSInSAR analysis. The analysis covers the deformations taking place 

near the accident site 3 days before the derailment took place. 

A.10.4 PSInSAR Analysis 

The PSInSAR analysis was conducted using a 25-image stack. The deformation 

map is superimposed on an optical image taken on October 15, 2023. The optical image 

was taken before the derailment event. The displacement observed is in mm and plotted 

on the color-coded PS images that show the total displacement over the entire analysis. 

The deformation map in Figure A.49(a) highlights large deformations taking place on the 

track and on the abutment of the bridge. Figure A.49(b) shows the optical image of the 

abutment taken in September 2023, a month before the accident. It shows large cracks 

being formed on the abutment and also on the wing wall in the region where the blue 

deformation point in Figure A.49(a) was observed. Figure A.49(c) shows the deformation 

over time of the high deformation PS 
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Figure A.49 (a) Shows the region where the derailment took place; (b) Shows the 

location of the accident; (c) Highlights the optical image of the cracks in the region; (d) 

Shows the deformation over time of the high PS 

(a) 

(b) 

(c) 

(d) 

https://earth.google.com/web/@38.3885629,-104.61953451,1506.19824219a,0d,60y,50.36244511h,93.22063799t,0r/data=IhoKFmI3aEdyZUgxaXBkNm9qMDJ6OWZqaWcQAjoDCgEw
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A.10.5 Discussion 

The October 15, 2023, train derailment in Pueblo, Colorado, highlights the 

importance of integrating geotechnical, structural, and remote sensing data for 

transportation infrastructure safety. Triggered by a broken rail, the incident caused a 

bridge collapse over Interstate 25 and resulted in fatalities. A PSInSAR analysis using 

Sentinel-1A radar data revealed significant ground and structural deformation near the 

bridge in the days leading up to the event. These deformations, supported by September 

2023 optical imagery showing cracks in the abutment and wing wall, suggest that early 

warning signs were detectable prior to the collapse. 

While the study demonstrates the value of InSAR in monitoring infrastructure in 

semi-arid, low-vegetation areas like Pueblo, limitations remain. The 12-day revisit cycle 

of Sentinel-1A may miss rapid changes, and the lack of post-event data limits full 

forensic analysis. Nonetheless, the findings stress the need for enhanced multi-sensor 

integration, faster data processing, and automated alert systems to support proactive 

maintenance and prevent similar disasters.
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APPENDIX B: COHERENCE AND SOIL MOISTURE MODEL 

 

B.1 Blackville, SC 

B.1.1 Site Description 

The sensors under investigation are located in southern South Carolina at latitude 

longitude (33.36, -81.33), roughly 120 miles from the coast and encompassing 1 km2. 

The sensor's location is approximately 0.3 miles from Clemson University Edisto 

Research Center. The soil is sandy for most of the region, with some regions having 

seasonal vegetation. The sensor region encompasses an area of approximately 1 km2, 

indicating a significant level of uncertainty compared to the SAR sensor's resolution (15 

m2). The region experiences roughly 40 to 55 inches of mean annual precipitation with 

240 to 285 days of frost-free period. The sensor location and surrounding area are 

classified as farmland by the state. This site was chosen due to its proximity to the UofSC 

test center and the availability of the USCRN dataset. The soil profile of the region is 

further explored in [103]. 

B.1.2 Data Availability 

 The region is located close to east coast and has access to Sentinel-1A data. The 

data is typically collected with a 12-day interval and analyzed within the same orbit to 

minimize errors. The datasets for this analysis were obtained from the Sentinel 

constellation and were downloaded using the Sentinel-1 EU datahub and the Alaska 
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Satellite Facility (ASF) (ASF, 2023). The study utilizes data from January 3, 2019, to 

June 18, 2022, with 91 acquisitions taken in the same geometry.  The data used for this 

analysis is shown in Table B.1 

B.1.3 CCD Analysis 

The analysis was based on a large stack of data, and the timeline method was used 

to perform the CCD analysis. Coherence data from each map was converted to text 

format, along with the corresponding coordinates. A total number of 90 CCD analyses are 

conducted in the CCD timeline feature. The soil moisture sensor covered a larger area 

than the SAR analysis resolution, resulting in numerous data points for each CCD 

analysis that covered the region based on the sensor coordinates. 

The mean and standard deviation of coherence readings were calculated based on 

the sensor coordinates to obtain a reliable interpretation of coherence over the sensor's 

coverage area. These readings were tabulated by satellite, orbit direction, and acquisition 

date and normalized in the range 0 to 1. Similarly, the NOAA sensor's relative humidity, 

precipitation, and soil moisture content are tabulated by property and acquisition date. 

Since the C-band sensor has low penetration power, only the top 5cm soil layer data was 

used for the soil moisture analysis. The soil moisture data represents the average hourly 

measurements taken throughout the day.  The NOAA data have also been normalized, 

each in the range 0-1. Since coherence represents a change of the signal between two 

acquisitions, it is necessary to correlate the coherence to the change in moisture content is 

necessary to correlate the coherence to the change in moisture content in developing the 

model.  Furthermore, both the coherence and soil moisture change values are normalized  
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Data Set CCD Timeline  

Sentinel-1A 01/03/2019 to 05/18/2022 

Table B.1 Sentinel-1 Data used for Blackville CCD 

analysis 
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in the range 0 to 1, grouped in increments of 0.1, and the average value in each group is 

computed.  

B.1.4 Discussion 

The relationship between normalized moisture change to normalized coherence is 

shown in Figure B.1. The graph shows that the increasing coherence is inversely 

proportional to moisture change, suggesting a relationship between the two factors.  

B.2 Yosemite, CA 

B.2.1 Site Description 

The sensors under investigation are located in California at latitude and longitude 

(37.76, -119.82) and covers 1 km2. It is near the crane flat lookout in Yosemite National 

Park and roughly 140 miles from the coast. The sensors are located at an altitude 

approximately 6450 feet from the sea level. The region experiences roughly 33 to 45 

inches of mean annual precipitation and 20 to 60 days of free periods. The region is 

classified as not prime farmland with sandy loam on the top 39 inches of soil. It is well 

drained and has a large vegetation content. 

B.2.2 Data Availability 

The region is located close to the west coast and has access to multiple orbits of 

Sentinel-1A data. The data is typically collected with a 12-day interval for each orbit and 

analyzed within the same orbit to minimize errors. The datasets for this analysis were 

obtained from the Sentinel constellation and were downloaded using the Sentinel-1 EU 

datahub and the Alaska Satellite Facility (ASF) (ASF, 2023). The study utilizes data from 

January 4, 2019, until July 29, 2022. The secondary orbit of Sentinel-1A data is available  
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Figure B.1 The relationship between normalized moisture changes and 

normalized coherence 
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only till December 2022. Table B.2 shows the data used for the analysis 

B.2.3 CCD Analysis 

The analysis was based on a large stack of data, and the timeline method was used 

to perform the CCD analysis. Coherence data from each map was converted to text 

format, along with the corresponding coordinates. A total number of 90 CCD analyses are 

conducted in the CCD timeline feature. The soil moisture sensor covered a larger area 

than the SAR analysis resolution, resulting in numerous data points for each CCD 

analysis that covered the region based on the sensor coordinates. 

The mean and standard deviation of coherence readings were calculated based on 

the sensor coordinates to obtain a reliable interpretation of coherence over the sensor's 

coverage area. These readings were tabulated by satellite, orbit direction, and acquisition 

date and normalized in the range 0 to 1. Similarly, the NOAA sensor's relative humidity, 

precipitation, and soil moisture content are tabulated by property and acquisition date. 

Since the C-band sensor has low penetration power, only the top 5cm soil layer data was 

used for the soil moisture analysis. The soil moisture data represents the average hourly 

measurements taken throughout the day.  The NOAA data have also been normalized, 

each in the range 0-1. 

Since coherence represents a change of the signal between two acquisitions, it is 

necessary to correlate the coherence to the change in moisture content in developing the 

model.  Furthermore, both the coherence and soil moisture change values are normalized 

in the range 0 to 1, grouped in increments of 0.1, and the average value in each group is 

computed.  
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Data Set CCD Timeline  

Sentinel-1A 

Orbit-1 

01/10/2019 to 07/29/2022 

Sentinel-1A 

Orbit-2 

01/04/2019 to 12/19/2021 

Table B.2 Sentinel-1 Data used for Yosemite CCD 

analysis 
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B.2.4 Discussion 

The relationship between normalized moisture change, normalized coherence and 

rainfall is shown in Figure B.2 and Figure B.3. The graphs represent the data from both 

orbits and show that the rainfall is influencing the soil moisture. The coherence is highest 

when the rainfall and soil moisture is lowest. This condition is observed in both orbits, 

suggesting the relationship is directly related and can still be observed in regions with the 

presence of vegetation.  

B.3 Bodega, CA 

B.3.1 Site Description 

The sensors under investigation are located in southern California at latitude 

longitude (38.32, -123.07), encompassing 1 km2. It is located on the West Coast and has 

access to both Sentinel-1A and Sentinel-1B, providing access to SAR data from various 

angles. The soil is sandy for most of the region and is close to the Pacific Ocean. The 

region experiences roughly 15 to 35 inches of mean annual precipitation with a 300-day 

frost-free period. The state classifies the sensor location and the surrounding area as 

Duneland.  

B.3.2 Data Availability 

The region is close to the Pacific Ocean and can access Sentinel-1A and 1B data. 

The data is typically collected within a 12-day interval and analyzed within the same 

orbit to minimize errors. The datasets for this analysis were obtained from the Sentinel 

constellation and were downloaded using the Sentinel-1 EU datahub and the Alaska 

Satellite Facility (ASF) (ASF, 2023). The study utilizes data from January 3, 2019; the   
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Figure B.2 The relationship between normalized moisture changes, coherence, and 

rainfall for c Sentinel-1A orbit-1 data. 

Figure B.3 The relationship between normalized moisture changes, coherence, and 

rainfall for Yosemite Sentinel-1A orbit-2 data. 
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last data acquisition was taken on June 18, 2022. Table B.3 shows the data used for the 

analysis 

B.3.3 CCD analysis 

The analysis was based on a large stack of data, and the timeline method was used 

to perform the CCD analysis. Coherence data from each map was converted to text 

format, along with the corresponding coordinates. A total number of 90 CCD analyses are 

conducted in the CCD timeline feature. The soil moisture sensor covered a larger area 

than the SAR analysis resolution, resulting in numerous data points for each CCD 

analysis that covered the region based on the sensor coordinates. 

The mean and standard deviation of coherence readings were calculated based on 

the sensor coordinates to obtain a reliable interpretation of coherence over the sensor's 

coverage area. These readings were tabulated by satellite, orbit direction, and acquisition 

date and normalized in the range 0 to 1. Similarly, the NOAA sensor's relative humidity, 

precipitation, and soil moisture content are tabulated by property and acquisition date. 

Since the C-band sensor has low penetration power, only the top 5cm soil layer data was 

used for the soil moisture analysis. The soil moisture data represents the average hourly 

measurements taken throughout the day.  The NOAA data have also been normalized, 

each in the range 0-1. 

Since coherence represents signal change between two acquisitions, it is 

necessary to correlate it with moisture content change in developing the model. Both 

coherence and soil moisture change values are normalized from 0 to 1, grouped in 0.1 

increments, and the average value in each group is computed.   
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Data Set CCD Timeline  

Sentinel-1A 

Orbit-1 

01/03/2019 to 08/15/2022 

Sentinel-1A 

Orbit-2 

01/08/2019 to 03/05/2022 

Table B.3 Sentinel-1 Data used for Bodega CCD 

analysis 
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B.3.4 Discussion 

The relationship between normalized moisture change, normalized coherence and 

rainfall is shown in Figure B.4 and Figure B.5. The graphs represent the data from both 

orbits and show that the rainfall is influencing the soil moisture. The coherence is highest 

when the rainfall and soil moisture is lowest. This condition is observed in both orbits, 

suggesting the relationship is directly related and can be observed in regions with low 

vegetation. The low vegetation in this region shows the relation between these factors 

more extensively. 

B.4 Santa Barbara, CA 

B.4.1 Site Description 

The sensors under investigation are located in southern California at latitude 

longitude (38.32, -119.88), encompassing 1 km2. It is located on the West Coast and has 

access to both Sentinel-1A and Sentinel-1B, providing access to SAR data from various 

angles. The soil is sandy for most of the region and is close to the Pacific Ocean. The 

region experiences roughly 19 to 20 inches of mean annual precipitation with 360 to 365 

days of frost-free period. The state classifies the sensor location and the surrounding area 

as Duneland. This region is similar to B.2.3 Bodega CA. 

B.4.2 Data Availability 

The region is close to the Pacific Ocean and can access Sentinel-1A and 1B data. 

The data is typically collected within a 12-day interval and analyzed within the same 

orbit to minimize errors. The datasets for this analysis were obtained from the Sentinel 1 

constellation and were downloaded using the Sentinel-1 EU datahub and the Alaska  
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Figure B.4 The relationship between normalized moisture changes, coherence, and 

rainfall for Bodega Sentinel-1A orbit-1 data. 

Figure B.5 The relationship between normalized moisture changes, coherence, and 

rainfall for Bodega Sentinel-1A orbit-2 data. 
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Satellite Facility (ASF) (ASF, 2023). The study utilizes data from January 1, 2019; the 

last data acquisition was taken on September 15, 2022. Throughout the analysis period, 

Sentinel 1-A data is accessible, while Sentinel 1-B data is available until December 2021, 

after which it becomes unavailable. Table B.4 shows the data used for the analysis 

B.4.3 CCD Analysis 

The analysis was based on a large stack of data, and the timeline method was used 

to perform the CCD analysis. Coherence data from each map was converted to text 

format, along with the corresponding coordinates. A total number of 90 CCD analyses are 

conducted in the CCD timeline feature. The soil moisture sensor covered a larger area 

than the SAR analysis resolution, resulting in numerous data points for each CCD 

analysis that covered the region based on the sensor coordinates. 

The mean and standard deviation of coherence readings were calculated based on 

the sensor coordinates to obtain a reliable interpretation of coherence over the sensor's 

coverage area. These readings were tabulated by satellite, orbit direction, and acquisition 

date and normalized in the range 0 to 1. Similarly, the NOAA sensor's relative humidity, 

precipitation, and soil moisture content are tabulated by property and acquisition date. 

Since the C-band sensor has low penetration power, only the top 5cm soil layer data was 

used for the soil moisture analysis. The soil moisture data represents the average hourly 

measurements taken throughout the day.  The NOAA data have also been normalized, 

each in the range 0-1. 

Since coherence represents a change of the signal between two acquisitions, it is 

necessary to correlate the coherence to the change in moisture content in developing the  
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Data Set CCD Timeline  

Sentinel-1A 

Orbit-1 

01/10/2019 to 09/15/2022 

Sentinel-1A 

Orbit-2 

12/10/2019 to 09/15/2022 

Sentinel-1B 

Orbit-2 

01/04/2019 to 12/19/2021 

Sentinel-1B 

Orbit-2 

08/20/2019 to 12/19/2021 

Table B.4 Sentinel-1 Data used for Santa Barbara 

CCD analysis 
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model.  Furthermore, both the coherence and soil moisture change values are normalized 

in the range 0 to 1, grouped in increments of 0.1, and the average value in each group is 

computed.  

B.4.4 Discussion 

The results from the analysis are plotted in Figure B.6 The graph is plotted with 

the X-axis representing the date of acquisition and the Y-axis measuring from 0-1. The 

results show that coherence is minimum when soil moisture maximizes and vice versa. 

The graph shows a direct correlation between rainfall and coherence but no apparent 

correlation between humidity and coherence. It is also noted that the rainfall peaks 

precede the soil moisture content peaks. The effect of rainfall is essential to developing 

the model as, in practical cases, the soil moisture data will only be available when 

determining if loss of coherence will lead to a geohazard. A model has been developed 

based on data from the normalized coherence using B.3 and B.4 and is discussed in [71] 

B.5 Cortez, CO 

B.5.1 Site Description 

The sensors under investigation are located in Colorado at latitude and longitude 

(37.26, -108.50), encompassing 1 km2. It is in Mesa Verde National Park. The region is 

mountainous, with an elevation of roughly 7100 feet to 8500 feet. It experiences a mean 

annual precipitation of 15 to 20 inches and 80 to 100 frost-free days. The region is 

classified as not prime farmland, with the top 1 to 5 inches of soil having a moderate 

amount of decomposed plant material and the rest of the soil profile being classified as 

very stony clay loam. It is well drained and has a large vegetation content. 
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Figure B.6 Santa Barbara site: Normalized soil moisture, rainfall, relative humidity and 

signal coherence as a function of time 
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B.5.2 Data Availability 

The region is located in Colorado state and has access to Sentinel-1A and 

Sentinel-1B data. The data is typically collected with a 12-day interval and analyzed 

within the same orbit to minimize errors. The datasets for this analysis were obtained 

from the Sentinel constellation and were downloaded using the Sentinel-1 EU datahub 

and the Alaska Satellite Facility (ASF) (ASF, 2023). The study utilizes data starting 

January 9, 2019 and the final acquisition was taken on December 19 2022. Throughout 

the analysis period, Sentinel 1-A data is accessible, while Sentinel 1-B data is available 

until December 2021, after which it becomes unavailable. Table B.5 shows the data used 

for the analysis. 

B.5.3 CCD Analysis 

The analysis was based on a large stack of data, and the timeline method was used 

to perform the CCD analysis. Coherence data from each map was converted to text 

format, along with the corresponding coordinates. A total number of 90 CCD analyses are 

conducted in the CCD timeline feature. The soil moisture sensor covered a larger area 

than the SAR analysis resolution, resulting in numerous data points for each CCD 

analysis that covered the region based on the sensor coordinates. 

The mean and standard deviation of coherence readings were calculated based on 

the sensor coordinates to obtain a reliable interpretation of coherence over the sensor's 

coverage area. These readings were tabulated by satellite, orbit direction, and acquisition 

date and normalized in the range 0 to 1. Similarly, the NOAA sensor's relative humidity, 

precipitation, and soil moisture content are tabulated by property and acquisition date.  
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Data Set CCD Timeline  

Sentinel-1A 

Orbit-1 

01/09/2019 to 12/31/2022 

Sentinel-1B 

Orbit-2 

01/10/2019 to 12/13/2021 

Sentinel-1B 

Orbit-2 

05/15/2019 to 12/18/2021 

Table B.5 Sentinel-1 Data used for Cortez CCD analysis 
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Since the C-band sensor has low penetration power, only the top 5 cm soil layer data was 

used for the soil moisture analysis. The soil moisture data represents the average hourly 

measurements taken throughout the day.  The NOAA data have also been normalized, 

each in the range 0-1. 

Since coherence represents a change of the signal between two acquisitions, it is 

necessary to correlate the coherence to the change in moisture content in developing the 

model.  Furthermore, both the coherence and soil moisture change values are normalized 

in the range 0 to 1, grouped in increments of 0.1, and the average value in each group is 

computed.  

B.5.4 Discussion 

The relationship between normalized moisture change, normalized coherence and 

rainfall is shown in Figure B.7, Figure B.8 and Figure B.9. The graphs represent the data 

from both orbits and show that the rainfall is influencing the soil moisture. The coherence 

is highest when the rainfall and soil moisture is lowest. This condition is observed in both 

orbits, suggesting the relationship is directly related and can be observed in regions with 

low vegetation. Unlike the other site studies there are some periods when this relationship 

is not observed in this site. This loss of coherence could be due to layovering and 

shadowing conditions that are influencing the results. 
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Figure B.7 The relationship between normalized moisture changes, coherence, and 

rainfall for Cortez Sentinel-1A orbit-1 data. 

 

Figure B.8 The relationship between normalized moisture changes, coherence, and 

rainfall for Cortez Sentinel-1B orbit-1 data. 
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Figure B.9 The relationship between normalized moisture changes, coherence, and 

rainfall for Cortez Sentinel-1B orbit-2 data. 
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B.6 Chatham, MI 

B.6.1 Site Description 

The sensors under investigation are located in Northern Michigan at latitude 

longitude (46.33, -86.92), encompassing 1 km2. The sensor's location is approximately 2 

miles from the town center. The sensors are located in high-vegetation areas with dense 

forests surrounding them. The region has the top 2 inches of decomposed plant material 

and sandy loam underneath it. It experiences an annual precipitation of 28 to 37 inches 

and frost-free periods of 80 to 160 days. The region is moderately well-drained and falls 

under the low runoff class. 

B.6.2 Data Availability 

The region is close to the Canadian border and has access to Sentinel-1A data. 

The data is typically collected with a 12-day interval and analyzed within the same orbit 

to minimize errors. The datasets for this analysis were obtained from the Sentinel 

constellation and were downloaded using the Sentinel-1 EU datahub and the Alaska 

Satellite Facility (ASF) (ASF, 2023). The study utilizes data starting January 5, 2019. 

Throughout the analysis, Sentinel 1-A data is accessible. 

B.6.3 CCD Analysis 

The CCD analysis indicates consistently low coherence and is not attributed to 

change in moisture levels. This outcome is primarily attributed to the dense vegetation 

cover surrounding the area, which impedes the Synthetic Aperture Radar (SAR) signal 

from effectively interacting with the ground surface. As a result, the ability to monitor 
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ground changes in this region is significantly constrained. Consequently, further research 

efforts focusing on this region have been suspended due to these limitations. 

B.7 Sandstone, MN 

B.7.1 Site Description 

The sensors under investigation are located in  eastern Minnesota close to the 

border of Wisconsin at latitude longitude (46.11, -92.99) encompassing 1 km2. The 

sensor's location is approximately 4 miles from the town center. The sensors are located 

in high-vegetation areas with dense forests surrounding them. The region has the top 11 

inches of silt loam with rest of soil profile being fine sandy loam. It experiences an 

annual precipitation of 27 to 36 inches and frost-free periods of 80 to 150 days. The 

region is poorly drained and falls under low runoff class. This region is similar to Site B.6 

Chatham, MI  

B.7.2 Data Availability 

The region is located in the northern United States and has access to Sentinel-1A 

data. The data is typically collected with a 12-day interval and analyzed within the same 

orbit to minimize errors. The datasets for this analysis were obtained from the Sentinel 

constellation and downloaded using the Sentinel-1 EU datahub and the Alaska Satellite 

Facility (ASF) (ASF, 2023). The study utilizes data starting January 5, 2019. Throughout 

the analysis, Sentinel 1-A data is accessible. 

B.7.3 CCD analysis 

The CCD analysis indicates consistently low coherence and is not attributed to  
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changes in moisture levels. This outcome is primarily attributed to the dense vegetation 

surrounding the area, which impedes the Synthetic Aperture Radar (SAR) signal from 

effectively interacting with the ground surface. As a result, the ability to monitor ground 

changes in this region is significantly constrained. Consequently, further research efforts 

focusing on this region have been suspended due to these limitations. 

B.8 Columbia, SC 

B.8.1 Site Description 

The region under investigation is located in South Carolina at latitude and 

longitude (33.9359, -81.02877), covering roughly .04 km2. Unlike previous sites that use 

NOAA’s USCRN sensors, the exact location of the sensors used is not uncertain. The 

region is located 4 miles from the UofSC engineering building and is under the purview 

of SCDNR. The region experiences roughly 26 to 74 inches of mean annual precipitation 

and 210 to 2300 days of free periods. The region is located in flood plains and is 

classified as a floodplain forest protected from flooding during the growing season. The 

top 10 inches of soil is silt loam, and the region is well-drained and in a low runoff class. 

B.8.2 Data Availability 

The region is located in the eastern U.S. and has access to a single orbit of 

Sentinel-1A data. The data is typically collected with a 12-day interval for each orbit and 

analyzed within the same orbit to minimize errors. The datasets for this analysis were 

obtained from the Sentinel constellation and were downloaded using the Sentinel-1 EU 

datahub and the Alaska Satellite Facility (ASF) (ASF, 2023). The study utilizes data from 

January 4, 2019, until July 29, 2022. The secondary orbit of Sentinel-1A data is available  
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only till December 2022. 

B.8.3 Equipment  

This analysis employed a comprehensive set of weather monitoring equipment to 

evaluate the impact of various parameters on SAR coherence. The experimental setup 

featured a primary sensor functioning as the central hub, complemented by six auxiliary 

sensors. The primary sensor integrated multiple environmental measurement devices, 

including a leaf wetness smart sensor, a smart soil moisture sensor, and a Davis 

anemometer, rain gauge and PAR (photosynthetically active radiation) light sensor. 

Several of these sensors were multi-functional; for instance, the smart soil moisture 

sensor measured soil moisture, temperature, and electrical conductivity. Collectively, 

these sensors monitored key parameters such as leaf wetness, rainfall, wind speed, soil 

moisture, soil temperature, and PAR. Figure B.10 

B.8.4 Procedure 

The primary and auxiliary sensors were strategically positioned to ensure minimal 

interference with coherence resolution (15 meters). Each auxiliary sensor was placed at 

least 60 meters apart. These sensors transmitted their data to the primary sensor, which 

acted as the data hub. The spatial arrangement of the sensors is depicted in Figure B.11, 

where the triangle represents the main sensor, and the surrounding black boxes represent 

the auxiliary sensors. Since the location of the soil moisture content sensor is known, the 

coordinates' coherence is correlated with the sensor data. Additional factors like the 

height of the vegetation are also included to develop an efficient model. Since the exact 

time of satellite pass is known we can use it to the moisture content in the soil at the time  
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Figure B.10 The equipment deployed in the site (a) Remote Sensing Station (b) Solar 

panel (c) Leaf wetness smart sensor (d) Repeater (e) Modulator (f) Light Sensor (g) Soil 

moisture sensor (h) Soil moisture sensor (i) Solar Radiation Shield (j) Runtime Smart 

Sensor (k) Soil moisture (l) Davis Anemometer (m) Rain Gauge 

  

Figure B.11 The moisture content sensors are denoted 

by the black boxed numbers, and the middle red triangle 

represents the main sensor 
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of passing enabling us to get accurate relationship between radar backscatter and soil 

moisture. 

B.8.5 CCD Analysis 

The analysis was based on a large stack of data, and the timeline method was used 

to perform the CCD analysis. Coherence data from each map was converted to text 

format, along with the corresponding coordinates. A total number of 60 CCD analyses are 

conducted in the CCD timeline feature. The soil moisture sensors cover 15m2 area and 

are placed in the coordinates shown in Table B.6. These coordinates are based on the 

SAR analysis resolution, resulting in numerous data points for the sensor coordinates. 

The mean and standard deviation of coherence readings were calculated based on 

the sensor coordinates to obtain a reliable interpretation of coherence over the sensor's 

coverage area. These readings were tabulated by satellite, orbit direction, and acquisition 

date and normalized in the range 0 to 1.  

B.8.6 Discussion 

 The results from the analysis are shown in Figure B.12. The data shows the 

relationship between normalized moisture content, coherence, and rainfall for the main 

sensor. These results are highlights of the study, with the rest of the sensors and model 

development conducted by other team members. The graph shows a relationship between 

sensor data and coherence, but the relationship is lost in the final part of the analysis. This 

is attributed to a change in vegetation, which reduces the backscattering influence. 

During the early stages, although vegetation is present in the region, its density is 

considered low, which changed during the mid time period, affecting data acquisition.  
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Table B.6 Shows the coordinates of the sensor 

Figure B.12 Shows the relationship between normalized coherence, 

rainfall and soil moisture.  
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APPENDIX C: MATHEMATICAL BACKGROUND 

 This chapter describes the mathematical background for the SAR methodology in 

Sections 5.1-5.7 used for geohazard monitoring, as adopted in this work. The post-

processing The MTI used for site mobilization identification and soil moisture change 

measurement have some common steps. These steps are data preparation, interferometric 

formation, coherence generation, and geocoding. The multi-temporal techniques used for 

geohazard monitoring utilize DInSAR analysis to generate the displacement phase; for 

the purpose of this document, we will call DInSAR an InSAR or Interferogram. A 

DInSAR analysis is an interferogram with the terrain phase removed, but due to the high 

use of DInSAR analysis over InSAR analysis, the term InSAR became a synonym with 

DInSAR and replaced it in the lexicon. This document uses the term InSAR when it 

describes DInSAR procedure. 

 Unlike conventional InSAR, which utilizes consecutive image pairs, multi-

temporal techniques pair images based on lower temporal and spatial baselines. This 

chapter explains the workflow for the MTI techniques PSInSAR and SBAS analysis. 

These two multi-temporal SAR techniques are utilized to overcome the limitations of 

deformation analysis from InSAR analysis. Each technique has unique advantages and 

disadvantages. PSInSAR effectively measures deformations with large quantities of 

coherent or highly reflective surfaces. SBAS can generate displacement trend data based 

on distributed scatterers. Two post-processing methods are developed to identify regions 
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showing progressively increasing activity and sudden increase in activity. Coherence 

generation is a by-product of InSAR generation, but coherence is needed from 

consecutive acquisitions for moisture content-model generation. The CCD technique 

generates coherence in these conditions, and the math behind it is described in this 

chapter. 

C.1 Data Preparation of Sentinel-1 (TOPS data type) 

 Sentinel-1 satellite uses Interferometric Wide (IW) swath mode for scanning the 

surface to acquire data of 250km in length and width with spatial resolution of 3.5m X 

22m and pixel spacing of 2.3m X 14.1m [112]. Spatial resolution is the minimum 

distance at which the radar can distinguish between two closely spaced scatterers with 

equal-strength responses. The pixel spacing refers to the distance between adjacent pixels 

in an image measured in meters. IW mode image consists of three sub-swaths acquired 

using the TOPS or TOPSAR technique. It stands for Terrain Observation by Progressive 

Scans, where the sensor scans backward to forward in the azimuth direction for each 

burst, resulting in a near-uniform signal-to-noise ratio (Figure C.1). This method of 

scanning is an improvement on the conventional ScanSAR [113]. ScanSAR method of 

acquiring data has limitations due to calibration errors and varying resolution while 

scanning the target, which is not present in TOPS [114].   

 Sentinel-1 SAR data from the data hubs can be divided into three levels.  

Level-0 SAR products consist of unfocused and compressed SAR raw data. This data 

includes internal calibration and echo sources and is unusable without additional 

focusing. 
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Figure C.1 Show the three sub-swaths in TOPSAR acquisition 
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 Level-1 data types are divided into two types: complex images and detected images. The 

complex data has phase and intensity data, while the detected image uses intensity data 

for single-image analysis. 

Level-2 data are derived from level-1 data and are geolocated with specific applications 

like obtaining ocean wind and wave currents data. These data are derived after being 

internally processed by the data provider.  

 Type-1 SAR data are used in this thesis for SAR analysis. Single Look Complex 

falls into the complex image data type. These images are focused and geo-referenced 

with full available signal bandwidth and complex samples preserving the phase 

information. The phase, which is evenly spread out, does not include valuable 

information about the target. While the phase may appear random, it is a deterministic 

and repeated assessment of random internal structure within a pixel [1]. The phase is 

essential in SAR interferometry as it involves the coherent combination of the phase of 

multiple SAR images. The equation can express each SLC SAR image Z [1]. 

 𝑍(𝑟, 𝑎) = 𝐴(𝑟, 𝑎)𝑒−𝑖𝜙(𝑟,𝑎) (12) 

 Where, “(r, a)” are the image coordinates in range and azimuth; “A” is the 

amplitude, “𝜙” is the phase 

Statistically, an SLC image must follow the following conditions. 

 The measured complex radar reflectivity consists of two components: the real 

part 𝑍𝑟 = 𝐴 cos ∅ and the imaginary part 𝑍𝑖 = 𝐴 sin ∅. These parts are statistically 

independent Gaussian random variables with a mean of zero and a variance of σ/2. Where 

σ is the radar reflectivity. Their combined probability density function (PDF) is: 
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𝜎
)
 

(13) 

The phase that has been observed is distributed uniformly over the interval [0,2π]. 

 The other type of level-1 SAR data is detected images. Ground Range Detected 

falls into the detected image data type. These images are focused and projected onto the 

ellipsoid of Earth. The phase from a single SAR image is not useful, and GRD image 

formats remove phase information that is favored for human viewing. These images are 

created by multiplying a complex image with its conjugate. The intensity image (I) 

formed is of (Equation 14). It is directly proportional to the backscattering signal. 

 𝐼 = 𝐴2 (14) 

 For obtaining coherence and displacement level-1 SLC images are used. These 

images have the phase components to measure the displacement and also the amplitude 

information to measure the backscattering strength. Each SLC image looks like (Figure 

C.2). It is an image with a large “salt” and “pepper” look. Additional preparatory steps 

are performed to accurately measure deformations and to better view the image. 

C.1.1 Polarization Selection 

 Sentinel-1 is a dual-polarization sensor that can transmit radar pulses in a single 

polarization and receive the signal in the same or perpendicular polarization. For the 

analysis conducted in this thesis, VV polarization has been chosen for its ability to 

penetrate the surface.  

C.1.2 Multi-looking 

 Each SAR image looks like (Figure C.3a). These distorted dimensions are due to   
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Figure C.2 Shows part of the unprocessed SAR image of the city 

Columbia, SC. The image shows a distinct salt and pepper look 

separated by multiple swaths  
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the side-looking mode of acquisition. The process of converting the image into normal 

image pixels (Figure C.3b) is called multi-looking [115]. Multilooking is a process that 

enhances the radiometric accuracy and resolution of SAR data by sacrificing spatial 

resolution. This can be accomplished during synthetic aperture radar (SAR) processing 

by partitioning the synthetic aperture into N segments and generating N lower-resolution 

cells called “looks”; these resolution cells are then averaged incoherently. The underlying 

assumption is that the separate looks represent the identical underlying radar reflectivity, 

which is not always accurate in practice. For sentinel-1 images, the range dimension is 

multi-looked at a factor of 4 for every azimuth multi-looking factor [116]. SAR images 

can be cut into smaller subsets following the multi-looking process as the complex 

images are converted to constant-resolution images [1].  

C.1.3 Data Selection 

 Some areas of interest have access to data from several orbits (ascending and 

descending) and satellites (sentinel-1A and Sentinel-1B). The data from multiple orbits 

should not be used in the same analysis as this would increase the spatial baseline. 

Although errors due to spatial baseline can be corrected, the large increase in the special 

baseline when different satellite orbits are used is beyond the existing capabilities. To 

prevent errors in the analysis, the data from these orbits and satellites are sorted so that all 

the SAR images are grouped according to their respective look angle. The sorting is done 

based on two factors: the first is that each satellite passes over the same region every 12 

days, and the second is the look angles.  
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Multi looking 1:1 Multi looking 5:20 

Figure C.3 (a) Shows the SAR image that is not multi-looked. (b) Shows the multilooked 

image (a) to a factor of 5:20 [1] 

(a) (b) 
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C.2 SAR Interferogram  

 SAR Interferometry (InSAR) is a method that utilizes the phase differences of at 

least two SAR images obtained from distinct orbit positions and/or at separate points in 

time. The obtained interferogram data can quantify many geophysical parameters, 

including topography, surface deformations, glacier movements, vegetation 

characteristics, etc. SAR interferometry is widely acknowledged as a highly effective 

technique for mapping the Earth's terrain, specifically for generating Digital Elevation 

Models (DEM). The Differential InSAR technique is a distinctive approach used to 

identify and record surface movements across time and space, with a high accuracy 

ranging from centimeters to even millimeters [14].  

 This thesis describes the core InSAR analysis used in multi-temporal analysis and 

explains the steps required for each analysis. The criteria for an image pair to be able to 

generate an interferogram depends on the baseline between them. The baseline is the 

distance or time between two acquisitions. If it is distance, it's called the spatial baseline, 

and the temporal baseline is time. For an interferogram to be viable, we need to first 

obtain a critical baseline in a perpendicular direction. In interferometry, there exists a 

critical baseline over which the generated interferogram will be pure noise. 

Interferometry becomes impossible as the difference in viewing angle becomes too great 

to prevent the overlapping of the imaged ground spectra. This critical baseline is based on 

the ground resolution cell, the radar frequency, and the sensor-to-target distance. The 

critical baseline for Sentinel-1 interferometry is approximately 5 Km, as determined by 

Equation (15). In practice, anything more than 3/4 of the critical baseline produces 
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significant noise. Interferometry can only be used for point-like targets when the baseline 

is more significant than this [1].  

 
𝐵𝑝𝑒𝑟𝑝

𝑐𝑟𝑖𝑡 =
𝐻. 𝐵𝑊𝑟

𝑓

sin 𝜃

𝑐𝑜𝑠2𝜃
 

(15) 

 

Where, 

𝐵𝑝𝑒𝑟𝑝
𝑐𝑟𝑖𝑡  is the critical baseline in the perpendicular direction; H is the satellite altitude; 𝐵𝑊𝑟 

is the range bandwidth or inverse of the duration of the pulse; 𝑓 is the frequency of the 

radar.  

 Once the baseline between two images is within the limit, we can perform the 

following steps in order to develop an interferogram. 

C.2.1 Coregistration  

 Co-registration overlays two Synthetic Aperture Radar (SAR) images (master and 

slave) that share the same orbit and acquisition mode in slant range geometry. This step 

ensures that the scatterer located on the ground contributes to the relevant pixel in both 

the master and slave images.  

 There are two types of co-registration: conventional co-registration and DEM-

assisted co-registration. 

 Conventional co-registration can be divided into two steps. The first step is coarse 

co-registration. A cross-correlation method matches the corresponding pixels in the 

picture pair after identifying tie points within the imaged area. Tie points refer to specific 

characteristics on the ground that correlate to pixels in the image pair (similar to GCP 
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points explained in 5.x). A portion of the master image is chosen by selecting a window. 

The pixels in the master image within this window are compared with the windows of the 

exact dimensions in the slave image. Thus, the azimuth and ground range offsets of the 

relevant pixels are acquired. The average azimuth and range offsets of the pixels can be 

calculated by matching all the pixels within the windows. According to the calculation 

result, the slave image can be adjusted to align with the position of the master picture. 

The second stage in the conventional co-registration process is known as fine co-

registration. Many pixel pairs that correspond to each other are selected on the master and 

slave images. A second-order polynomial can be derived from the azimuth and range 

coordinates of the pixels on the master image and the coarse coordinate offsets of the 

corresponding pixels on the slave image. This polynomial can then estimate a more 

accurate coordinate offset for the pixel pair. Consequently, instead of calculating the 

average azimuth and range offsets between the pixels during coarse co-registration, a 

mathematical solution is derived to align the SLC image pair during fine co-registration 

precisely [117]. 

 DEM-assisted co-registration follows a more straightforward approach. This 

method of co-registration incorporates elevation data obtained from reference DEM to 

enhance the accuracy of predicting the offset vectors. The offset vectors are calculated 

pixel-by-pixel by performing geocoding on the master image and then applying inverse 

geocoding processes on the slave reference geometry to determine the corresponding 

locations using orbit data [118]. 

 The conventional method of co-registration does not require external 

input(external DEM), but regions with rough topography and long baselines produce a 
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higher number of misalignments. Since this thesis works on regions with rough 

topography DEM assisted co-registration is preferred. The preferred DEM for the co-

registration is the Shuttle Radar Topography Mission (SRTM) with a resolution of 90 X 

90 m (outside the U.S.) and a height accuracy of 15m. The slave image is resampled onto 

the master image at the end of the co-registration step using the 4th cubic convolution. 

According to [119] 4th cubic convolution produces lower interpolation errors than 

alternative methods like nearest neighbor and piecewise linear. These parameters of the 

DEM and resampling method will dictate the spatial resolution of the analysis conducted 

in this thesis. The grid size of 15m used as the resolution is also generated due to these 

factors. Additional analytics of the process are discussed further by [118], where both co-

registration methods are tested on real-world cases with multiple bands of radar data.  

C.2.2 Interferometric Formation  

 Following the process of coregistration and resampling, the pixels in the slave 

image are now aligned with the corresponding pixels in the master image, sharing the 

exact coordinates [62]. As each pixel is represented as a complex number, an 

interferogram can be created by multiplying the complex numbers of the pixels in the 

master image with the conjugate complex numbers of the corresponding pixels in the 

slave image [1]. 

 𝑍𝑖𝑛𝑡 = 𝑍1𝑍2
∗ = 𝐴1𝐴2𝑒𝑖(𝜙1−𝜙2) = 𝐼𝑖𝑛𝑡𝑒𝑖𝜙𝑖𝑛𝑡  (16) 

 

 Where, “𝑍𝑖𝑛𝑡” is the complex interferogram; ”𝜙𝑖𝑛𝑡” is the interferometric phase; 

“𝐼𝑖𝑛𝑡 = 𝐴1𝐴2” is the interferometric magnitude (Equation 17) describes the 



230 

 

interferometric phase in conditions where the effective baseline is zero and the observed 

surface is flat. 

 
𝜙𝑖𝑛𝑡 =

4𝜋

𝜆
(𝑅1 − 𝑅2) =

4𝜋

𝜆
(ΔR) 

(17) 

 Where,“𝑅𝑛” is the slant range distance of acquisition “n”; “ΔR” is the Range 

difference.  

 This demonstrates that variations in the distance between the scatterer and the 

radar during the time interval between repeat-pass acquisitions significantly impact the 

interferometric phase. The interferometric phase is highly sensitive to ΔR, with a range 

difference of half the wavelength, causing a 2π phase change, resulting in one fringe on 

the interferogram. The range difference may arise due to two potential causes: the motion 

of the scatterers during the acquisitions in interferometry, which forms the foundation of 

Differential InSAR (DInSAR), or the difference in viewing angles resulting from the 

interferometric baseline [62].  

Flat earth correction Due to the curvature of the Earth, objects on the ground at the same 

elevation would generate a phase difference between the two radar acquisitions. This 

phase component in the interferogram's phase is called the flat earth phase and the 

process is called flattening. Estimating the baseline between the two radar antennas is 

essential to remove the flat earth phase. We can determine the baseline using the precise 

location of radar antennas obtained through orbit files of both satellite acquisitions. This 

processing step is called flattening. The flat earth phase can be computed using Equation 

18. 
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𝜙𝑓𝑙𝑎𝑡 𝑒𝑎𝑟𝑡ℎ =

4𝜋

𝜆

𝐵𝑝𝑒𝑟𝑝Δ𝑅

𝑅1𝑡𝑎𝑛𝜃
 

(18) 

 

Based on (Equations (16)(17)(18)) we can obtain the combined interferometric phase in 

conditions with an effective baseline as (Equation 19) 

 
𝜙𝑖𝑛𝑡 =

4𝜋

𝜆

𝐵𝑝𝑒𝑟𝑝Δ𝑅

𝑅1𝑡𝑎𝑛𝜃
+

4𝜋

𝜆

𝐵𝑝𝑒𝑟𝑝h

𝑅1𝑠𝑖𝑛𝜃
+

4𝜋

𝜆
𝑑 + 𝛼ℎ + 𝛼𝑡 + 𝑛 

(19) 

 

 Where, d is the displacement of the observed region in a satellite line of sight; h is 

the terrain variation element that incorporates the changing height of the area under 

observation. 𝛼ℎ is the phase difference in atmospheric components influenced by 

topography and is caused by atmospheric stratification; 𝛼𝑡 is the phase difference in 

atmospheric components influenced by turbulence in the troposphere; 𝑛 is the phase 

decorrelation due to the geometry of acquisition and time. 

 All phase contributions in Equation 19 are present and combined together in 

multi-temporal SAR interferograms. Equation 19 offers a systematic approach to unravel 

distinct phase contributions and is an important equation related to InSAR [62]. 

Atmospheric phase delay correction The precision of surface displacements acquired 

from InSAR can be significantly impacted by the spatiotemporal fluctuations of 

atmospheric (tropospheric) water vapor(𝛼𝑡), leading to errors of a magnitude similar to 

those caused by crustal deformation. Two atmospheric filtration methods are available to 

reduce the error due to the tropospheric atmospheric component.  



232 

 

MODIS, short for Moderate Resolution Imaging Spectroradiometer, is a crucial device 

found on both the Terra and Aqua satellites. MODIS sensors capture images of the entire 

Earth's surface at intervals of 1 to 2 days. They collect data in 36 spectral bands based on 

different wavelengths. MODIS quantifies the characteristics of aerosols, which are 

minuscule liquid or solid particles in the atmosphere. MODIS assists scientists in 

quantifying the quantity of water vapor in the atmosphere and the arrangement of 

temperature and water vapor at different heights of the atmosphere. These observations 

are used as a dynamic filter for SAR analysis [120]. 

GACOS, Short for Generic Atmospheric Correction Online Service, is a comprehensive 

InSAR atmospheric correction tool that uses the tropospheric decomposition model (ITD) 

to distinguish between stratified and turbulent signals in tropospheric total delays. The 

delay maps are created by integrating operational high-resolution European Centre for 

Medium-Range Weather Forecasts (ECMWF) data and the precise and continuous 

pointwise measurements obtained from GPS with appropriate weighting. These maps 

correct InSAR observations that arise due to water vapor delay and are updated every 6 

hrs with a resolution in 11.1 km (6.9 miles) based on the available ECMWF sensors data 

[121].  

 Several studies [122] [123] [124] into both methods showed GACOS 

outperformed MODIS in most conditions. The GACOS atmospheric model was used in 

all the cases in this thesis. The efficiency of each atmospheric model was not tested for 

this thesis as local on-site data was not available for most of the test cases. 

C.2.3 Speckle Filtering 

 Phase filtering has become a critical step in the processing of InSAR data in order  
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to decrease the complexity of phase unwrapping and increase the precision of the 

unwrapped phase. The ideal phase filter would reduce phase residues without losing 

phase fringe information. The produced interferogram undergoes filtering following 

flattening (flat earth phase removal), topographic phase removal, and atmospheric 

adjustment to enhance the accuracy and precision of potentially inaccurate pixels. 

Various filters, such as the Goldstein, Boxcar, or Adaptive Non-Local filter, are available 

for speckle reduction [125].  

 This thesis uses modified Goldstein adaptive filtering for phase filtering because 

of its noise reduction and quick operation capacity. Goldstein's approach suppresses noise 

by analyzing usable signals and noise characteristics [126]. The conventional Goldstein 

filter works by multiplying the Fourier spectrum of an interferometric patch by its 

smoothed absolute value to the power of the exponent 𝛼. The filter's parameter 𝛼 is 

arbitrarily selected from zero to one, and it significantly influences the filter's 

performance [127]. An issue arises when applying a high parameter value with the 

conventional Goldstein radar interferogram filter. Subtracting the filtered interferogram 

from the unfiltered one reveals a residual systematic phase trend, which suggests a 

decrease in resolution in the filtered phase.  To overcome this problem, the absolute value 

of 𝛼 is replaced with an adaptive filter (1 − 𝛾̅)  based on the mean coherence value (𝛾̅) of 

the region [128]. The filtered interferogram using the modified Goldstein approach can 

be expressed as 

 𝐻(𝑟, 𝑎) = 𝑆{|𝑍(𝑟, 𝑎)|}1−𝛾̅. 𝑍(𝑟, 𝑎) (20) 
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 Where, “𝐻(𝑟, 𝑎)” is the filtered interferogram; “(𝑟, 𝑎)" represent the spatial 

frequencies in range and azimuth direction; “𝑍(𝑟, 𝑎)" is the Fourier spectrum of each 

filtering window in range and azimuth direction. “𝑆{. }” is the smoothing operator. 

 The filter parameter is automatically configured depending on the mean 

coherence value, requiring no additional input. This adjustment adjusts the Goldstein 

interferogram filter to avoid excessive filtering in regions with high coherence (less 

noise), while allowing for stronger filtering in regions with low coherence (high noise). 

Therefore, the reduction in resolution in the interferogram caused by filtering can be 

minimized in regions with strong coherence [128]. 

C.2.4 Phase Unwrapping  

 The interferogram's phase of two SAR images can only be measured to a modulo 

2π value. Phase unwrapping (PU) aims to recover the integer number of cycles 𝑛 that 

must be added to the wrapped phase 𝜙 to obtain the unambiguous phase value Ψ for each 

resolution cell in the image. 

 Ψ = 𝜙 + 2𝜋. 𝑛 (21) 

 The phase resets whenever the phase change exceeds 2π, and the cycle restarts. 

The restart is seen in the interferogram as multiple color fringes. Phase unwrapping is the 

procedure that resolves the ambiguity of a 2π cycle. Resolving the ambiguity involves 

adding or subtracting an integer multiple of 2𝜋 from the wrapped phase. The accurate 

phase is determined using numerical analysis or geometric techniques to get the 

corresponding integer period.  

 Most PU algorithms assume that the true unwrapped phase field is "smooth" and  
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"slowly" varying. More specifically, neighboring phase values are assumed to be within a 

half cycle (π radians). While most image pixels tend to support this idea, discrepancies 

arise when certain phase discontinuities occur (i.e., absolute phase changes between 

nearby pixels higher than π radians). Various approaches have been implemented to 

address phase discontinuities, and distinct algorithms have been devised. In this thesis, 

Delaunay Minimum Cost Flow (MCF) approach is used for phase unwrapping. Delaunay 

MCF is further explored in [129] [130] [131] Its advantages, when used for surface 

deformation, make it preferable to alternatives.  

C.3 CCD 

 Coherence change detection is a method of generating coherence between two 

SAR images. Coherence, interferometric coherence, or magnitude of coherence measures 

the similarity between the two acquired SAR images. It is calculated as the complex 

correlation coefficient between the two interfering SAR images [62].  

 To generate a coherence map of the area of interest, CCD analysis follows the 

following steps on two SAR images with the same polarization and look angle.  

Co-registration >Interferometric formation > Coherence generation 

 The above steps are similar to those used to generate an interferogram, except for 

the coherence generation step. This is partly because coherence is a byproduct of the 

process and is used to observe an interferogram's signal-to-noise ratio (SNR). However, 

coherence has uses beyond the SNR in this thesis. 

 The Equation (22) can describe the coherence between two SAR images Equation 

(16) from previously used parameters. 
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𝛾̅ =

|∑ 𝑍1𝑍2
∗|

√∑|𝑍1|2 ∑|𝑍2|2
 

(22) 

 Where, 𝛾̅ is the complex interferometric coherence and the magnitude of 

coherence. In practice, Coherence maps are produced by substituting the spatial average 

in the equation with the "sampled estimator" and calculating for each image pixel, which 

is equivalent to Equation 23. 

 
|𝛾̅| =

|∑ 𝑍1𝑘𝑍2𝑘
∗𝑁

𝑘=1 |

√∑ |𝑍1𝑘|2𝑁
𝑘=1 ∑ |𝑍2𝑘|2𝑁

𝑘=1

 
(23) 

 The summation is extended to a suitable 2D window N. The numerator in the 

equation is just a complex average of the SAR interferogram, which is why coherence is 

considered a byproduct of an interferogram.   

C.3.1 Processing Coherence Data for Moisture Content Model Development 

 The results from the analysis are correlated with normalized data from soil 

moisture, rainfall data and relative humidity. This data is used for soil moisture and 

coherence model development not part of this thesis. 

C.4 Multi-Temporal SAR 

 DInSAR analysis can detect surface deformation in the satellite line of sight. 

However, the DInSAR technique is affected by atmospheric conditions and other error 

sources, as mentioned in 2.7. This thesis uses two multi-temporal SAR techniques to 

obtain deformation data that negates the limitations of DInSAR.  These techniques are 

further used in post-processing methods to overcome some limitations of using large 

stacks of data while keeping the advantages of MT-InSAR techniques over DInSAR. 
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 Both MTI techniques follow the workflow mentioned in Figure C.4 However, the 

criteria differ in the connection graph and 1st inversion stages. 

C.4.1 Data Preparation 

 The Interferometric datasets used for MTInSAR in this thesis were collected from 

Sentinel-1A and Sentinel-1B, using 25 SAR images in each implementation example. 

The data are 12 days apart in most cases, with few exceptions due to satellite 

maintenance and extreme weather affecting satellite acquisitions. Each MTInSAR 

analysis requires 20 SAR image stacks for deformation recognition. This thesis uses 25 

SAR image stacks to reduce the number of false positives. Further, an increase in the 

number of SAR image stacks will reduce the detection capabilities of MTInSAR as some 

scatterers stop being coherent targets following an increased time period. Each SAR 

image used for the MTInSAR stack follows the data preparation from (5.1). It is VV 

polarized and multi-looked to a 15m grid size, and the data is separated based on the 

sensor look angle.  

C.5 PSInSAR 

C.5.1 Connection Graph 

 The initial stage of the PSINSAR stacking technique involves constructing a 

connection graph. This step establishes a network connecting the master and slave pairs 

based on their baseline values, ultimately generating differential interferograms. The 

images in the network have a common master image based on a minimum temporal 

baseline for the most extreme pair. The maximum number of possible connections is 

equal to N-1, where N is the number of acquisitions.  
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Figure C.4 Shows the workflow of MT-InSAR process 
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C.5.2 Interferogram formation 

 This procedure encompasses essential steps of Interferogram generation as 

described in C.2. The steps involved are co-registration, interferogram generation, 

implementation of an adaptive filter, the generation of coherence, and phase unwrapping. 

The images are paired based on the connection graph. The interferogram formation 

determines the distance between the ground surface and the radar sensor between the co-

registered image data pairs.  

C.5.3 First Inversion 

 This stage involves calculating the residual height and the displacement velocity. 

The PS approach identifies a series of "coherent radar signal reflectors" called Persistent 

Scatterers. The PS are identified using amplitude dispersion 𝑀𝑢𝑆𝑖𝑔𝑚𝑎 . In the time 

frame under consideration, the amplitude dispersion index is calculated as the ratio of the 

mean value to the standard deviation σA of the picture intensity. 

 
𝑀𝑢𝑆𝑖𝑔𝑚𝑎 =

𝑚𝐴

σA
 

(24) 

 A PS is present when backscattering intensity shows little temporal variability. 

The amplitude dispersion index calculation enables the selection of candidates for PSC 

(Permanent Scatterers Candidates) points at the outset without the need for phase 

coherence analysis. High dispersion index pixels (MuSigma=0.60%), which have 

comparable values throughout time and relatively high amplitude values in most 

conditions, make them suitable candidates for persistent scatterers. After identifying these 

targets, a phase history analysis is conducted to identify potential PS candidates based on 

their coherence. MuSigma should always be less than the threshold for coherence, as a 
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larger MuSigma will reduce the number of PS in the identification stage. A threshold of 

0.7 coherence is chosen to identify PS targets.  A higher threshold for coherence would 

reduce the number of PS but increase the accuracy of the measured displacement. 

However, due to a large temporal baseline for a 25-image SAR stack, a 0.7 coherence 

threshold is preferable; a higher threshold reduces the presence of PS in the active 

monitoring region. The PS technique employs a linear model exclusively during the first 

inversion process to obtain residual height and displacement velocity. The linear model 

can be described by the Equation 25 

 
𝜙(𝑀) = (𝐻 × 𝐾) + (𝑉 × 𝑇 ×

4π

𝜆
) 

(25) 

 Where, “𝜙(𝑀)” is the displacement phase for the Mth interferogram pair; “V” is 

the mean displacement velocity of the observation time period; “T” is the temporal 

baseline between the two acquisitions in the interferogram; “𝜆” is the wavelength of the 

radar signal used; “H” is the residual height error due to the reference DEM used; “K” is 

the geometric parameter which depends on the baseline and incidence angle 

 Equation 25 is solved using a brute force approach to obtain the displacement 

velocity and residual height. The software utilizes a "Brute Force" method to 

systematically test various velocity values on a date-by-date basis to determine the most 

accurate fit with the interferogram phases [59]. 

C.5.4 Second Inversion 

 In this step, the atmospheric component is filtered from the displacement rate 

using the grids developed in the first inversion. This step uses a Low-Pass spatial 

filter(1200m) and a High-Pass temporal filter(365  days) to get a displacement rate with 
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the contributions of atmospheric effects reduced. The parameters for the atmospheric 

filtering in the second inversion step are described further in [86] [87] [88]. Data from the 

second inversion is processed through geocoding to convert it from satellite coordinates 

to a datum of our choice. 

C.6 SBAS 

C.6.1 Connection Graph 

 The SBAS technique uses multiple master files to develop interferogram data 

pairs with narrow temporal and spatial baselines. The connection graph specifies the 

combination of SAR pairs (Masters and Slaves) and the connections network utilized to 

generate numerous differential interferograms. The pairs to be processed are represented 

as connections in a network that connects each acquisition to the others. Given N 

acquisitions, the most significant number of viable connections M between all of the 

acquisitions is 

 𝑁 + 1

2
≤ 𝑀 ≤ 𝑁(

𝑁 + 1

2
) 

(26) 

 The differential interferograms are generated based on the spatial baseline shorter 

than 2% of the critical baseline. A critical baseline is the maximum viable baseline for the 

satellite platform—a temporal baseline in the 90 to 180-day range. An additional criterion 

based on the maximum connections for each master file is set at 10. Increasing the 

maximum connections increases the processing time as the number of interferograms 

increases, but the improvement in accuracy falls significantly after 10. Reducing the 

number of connections to less than 5 increases the atmospheric errors as the number of 

redundant interferograms decreases substantially [60]. 
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C.6.2 Interferogram Formation 

 This step calculates the interferogram and arranges the deformation data into a 

matrix form for use in the first inversion stage. The matrix is formed based on the steps 

described below. The connection graph generates multiple InSAR pairs. Each 

interferogram formation follows the steps as described in (C.2) and the interferometric 

phase can be described by the equation 

 𝛿𝜙𝑖𝑛𝑡(𝑟, 𝑎) = 𝜙(𝑡𝐵, 𝑟, 𝑎) − 𝜙(𝑡𝐴, 𝑟, 𝑎)

≈ ∆𝜙𝑑𝑖𝑠𝑝 + ∆𝜙𝑡𝑜𝑝𝑜 + ∆𝜙𝑎𝑡𝑚 + ∆𝜙𝑜𝑟𝑏 + ∆𝜙𝑛𝑜𝑖𝑠𝑒 

(27) 

Equation 27 represents the DInSAR interferogram where, 

 “𝜙𝑖𝑛𝑡(𝑟, 𝑎)” is the interferometric phase for range (r) and azimuth(a) coordinates, 

with 𝛿 denoting the differential interferogram i.e, interferometric phase without the 

topographic phase component; “𝑡𝐴&𝑡𝐵“ represent the time of acquisition of the SAR 

images with 𝑡𝐴 < 𝑡𝐵; “∆𝜙𝑑𝑖𝑠𝑝”is the deformation phase along the line of sight direction 

between 𝑡𝐴&𝑡𝐵; “∆𝜙𝑡𝑜𝑝𝑜”is the residual topographic phase caused by DEM inaccuracy; 

“∆𝜙𝑎𝑡𝑚” is the atmospheric phase error; “∆𝜙𝑜𝑟𝑏"is the phase error caused by the orbit; 

“∆𝜙𝑛𝑜𝑖𝑠𝑒”is the random phase noise error;  

 The set of M differential interferograms from the connection graph can be 

represented by a system of M equations with N unknowns, which can be defined as 

 𝐴𝜙 = 𝛿𝜙 (28) 

 Where, A is the M X N matrix; 𝜙 = (𝜙(𝑡1), 𝜙(𝑡1), 𝜙(𝑡2), 𝜙(𝑡3), … . . , 𝜙(𝑡𝑁))𝑇 is 

the deformation phase N X 1 vector; The vector for the differential interferogram phase  
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𝛿𝜙 can be expressed as  

 𝛿𝜙 = ( 𝛿𝜙(𝑡1), 𝛿𝜙(𝑡1), 𝛿𝜙(𝑡2), 𝛿𝜙(𝑡3), … . . , 𝛿𝜙(𝑡𝑁))𝑇 (29) 

Based on the Equation 28 the deformation velocity can be described by  

 𝐵𝑣 =  𝛿𝜙 (30) 

Where B is M X N matrix and 𝑣 is the mean phase velocity and is described as  

 𝑣 = [𝑣1, 𝑣2, 𝑣3, … … … , 𝑣𝑁]𝑇

= [
𝜙1

𝑡1 − 𝑡0
,
𝜙2−𝜙1

𝑡2 − 𝑡1
,
𝜙3−𝜙2

𝑡3 − 𝑡2
… … . . ,

𝜙𝑁−𝜙𝑁−1

𝑡𝑁 − 𝑡𝑁−1
]𝑇 

(31) 

 The least square method can calculate the deformation velocity in conditions 

where matrix B is M>N. In most conditions where the matrix B is M≤N, the deformation 

velocity can be estimated using the singular value decomposition(SVD) method [60]. 

C.6.3 First Inversion 

 The singular value decomposition (SVD) is implemented to calculate the 

displacement rate over a specific time series. The first inversion of the SBAS method 

involves flattening the unwrapped interferograms and repeating the orbital refining and 

phase unwrapping to enhance the quality of the results. The SBAS technique can employ 

linear, quadratic, and cubic models to calculate acceleration and acceleration variation, as 

well as height, displacement, and velocity.  

 This thesis uses linear models for deformation generation. 

C.6.4 Second Inversion 

 The second inversion step involves calculating the displacement inside time  
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series using SBAS first inversion. The second inversion utilizes the ground control points 

(GCPs) as fixed reference points, assuming that these are stable points on the ground in 

those specific areas. The ground control points (GCPs) were utilized to reduce the phase 

constant, so the first inversion was corrected. The outcomes of this procedure are used to 

compute the velocity rate and the vertical displacement across the regions within a time 

series [132]. 

C.6.5 Ground Control Points 

 In the MT-InSAR study, ground control points (GCPs) are utilized for two 

objectives. They are employed for orbital error and residual phase adjustments. They 

serve as reference points for calculating surface displacements along the line of sight 

(LOS) direction. Consequently, the GCPs significantly affect the accuracy of InSAR-

derived outcomes.  

 Ground Control Points (GCPs) can be selected based on field observations. In the 

absence of in situ data, selections are made at areas where surface deformation is 

typically not presumed. Consequently, ground control points (GCPs) i) must not be 

situated at residual topographic features and ii) should be distanced from deformation 

zones. By visually recognizing regions that meet the interferometric phase consistency 

requirements for both selection criteria, one may traditionally establish the GCPs [133].   

C.6.6 Geocoding 

 The process of geocoding uses precise information about the imaging geometry 

and terrain relief in the form of a Digital Elevation Model (DEM) to project the data into 

a chosen map projection where each imaged terrain feature is located at its correct map 
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coordinates. This can help reduce the effects of the inherent geometric distortions in SAR 

imaging. 

 Geocoding constitutes the final phase in the MT-interferogram generating 

process. The geocoding process involves resampling the interferogram onto a uniform 

grid on the reference ellipsoid. In the geocoding process, two equations are combined: a) 

the Doppler equation (a plane orthogonal to sensor-target velocity in the case of zero-

Doppler focusing), which yields a circle in three dimensions, and b) the range distance 

equation, which is a sphere centered at the sensor site. The precise location of the 

scatterer is determined by intersecting with the hyperbola derived from the known Digital 

Elevation Model (DEM). Following this, processing is repeated for every point, until the 

complete SAR image is calibrated [134]. 

C.7 Proposed Post-Processing Methods 

 One of MTInSAR's key features is its ability to accurately identify small surface 

changes over a long time. But during the analysis period, if there is a large change (e.g. 

movement > 30mm) between two acquisitions or the scatterer loses coherence due to 

other factors, the change cannot be monitored even if the surface is experiencing the 

deformation. During geohazard monitoring, regions classified as A or B have been 

identified as good candidates for geohazard monitoring. These regions are characterized 

by low vegetation and high radar backscatter coverage and, thus, conventional MTInSAR 

can be applied for monitoring deformations over the period covered by the SAR image 

stack. However, as the time period of the analysis increases, seasonal vegetation coverage 

and errors due to larger satellite spatial baseline make the detection of both PS and DS 

scatterers scarce due to the loss of continuity in the observable scatterers.  Therefore, 
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detection of critical areas through deformation monitoring using conventional MTInSAR 

is not possible. The proposed approach implements MTInSAR techniques using a 

“Rolling Stack” (RS) concept to detect the presence scatterers over longer time periods, 

in conjunction with three post-processing operations, i.e., “Thresholding”, “Scatterer 

Accumulation” and “Clustering Timeline”.  Details are presented in [66] [71]. 

C.7.1 Rolling Stack MTInSAR  

 The proposed RS-MTInSAR limits the size of the stack of SAR images in the 

conventional implementation to a number of images that are necessary to preserve 

accuracy and to control noise, typically between 15 and 25, depending on the site class 

and the particular MTInSAR method.  Subsequently, site monitoring for a period of time 

that exceeds the time spanned by the stack is achieved by performing a series of 

MTInSAR analysis.  Each analysis uses an updated SAR image stack where the first SAR 

image is dropped from the head of the stack and a new SAR image is added to the tail of 

the stack, creating a “rolling stack” effect. Figure C.5 demonstrates the concept assuming 

a monitoring period of one year, and temporal image acquisition baseline of 12 days 

yielding a total number of 30 SAR images.  Assuming for demonstration purposes only a 

stack size of 20 SAR images, 12 MTInSAR analyses need to be performed.  Each 

analysis produces the geolocation of the PS, or DS scatterers, within the analysis stack as 

well as the time history of movement at each point.  This information is considered in the 

post processing steps of the proposed method. 

C.7.2 Thresholding 

 MTInSAR methods implement filters to treat temporal and spatial decorrelation 

of the signals in order to improve the quality of the deformation results, but only to a  
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Figure C.5: Rolling Stack MTInSAR analysis concept 
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certain extent. Loss of coherence due to atmospheric contributions results to higher noise 

in the deformation measurements derived from the MTInSAR and hinders the detection 

of critical areas.  The proposed Thresholding is a post-processing filtering method 

implemented to all deformation analyses from the proposed RS-MTInSAR. The objective 

of the proposed filtering is to identify and remove the scatterers from the solutions that 

are formed by residual coherence losses from decorrelations, or represent points that, 

although they are properly identified, they exhibit small movement and are of no interest 

in the identification of the critical areas.   

 The criterion for the threshold is based on the coherence threshold used in the PS 

and DS identification process. In the case of PSInSAR, a coherence threshold of 0.7 is 

used as an indicator of PS, while in the case of SBAS, a coherence threshold of 0.3 is 

used as an indicator for DS points. The magnitude of the filter is determined by the 

theoretical precision of SAR deformation data as reported in [90] [91] is based on 

Equation 32.  The precision depends on the wavelength of the SAR sensor and the 

measured coherence. For example, for a C-band sensor and a scatterer with 0.7 

coherence, the theoretical precision is 20 mm and any deformation above the theoretical 

is considered the true deformation. However, any deformation below the theoretical value 

may be masked by noise. In the proposed RS-MTInSAR, the theoretical precision should 

not be used as the threshold criterion because the coherence fluctuates in each SAR 

image pair in the stack. Thus, to prevent active deformation points from being filtered, 

conservative threshold values are recommended, as shown in Table C.1.  
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Table C.1 Recommended Threshold Values 

Coherence 

Theoretical 

Precision 

(mm) 

Threshold 

Value 

+/-  (mm) 

0.9 8 6 

0.8 14 8 

0.7 20 10 

0.65 23 11 

0.6 26 12 

0.55 30 14 

0.5 35 16 

0.45 41 18 

< 0.4 > 50 20 
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 𝜇 = √
1 − 𝛾

2𝛾

𝜆

4𝜋
 

(32) 

C.7.3 Scatterer Accumulation  

 The identification of the critical areas in the region of interest starts with 

establishing the Landsat optical image of the region to geolocate the scatterers. Landsat is 

publicly available through Google Earth. At the end of each RS-MTInSAR analysis the 

identified set of scatterers are filtered as discussed in the “Thresholding” section and 

superimposed on the optical image of the region.  For both event investigation and active 

monitoring, it is recommended that the monitoring period starts at least one year before 

the date of the event, or before the active monitoring commences.  The scatterer 

accumulation will result in a continuously updated deformation map with the location of 

all scatterers appearing on the optical image. At this step, the critical locations can be 

identified by visual inspection, as areas where the density of accumulated scatterers 

increases over time.  The detection of the critical locations, however, is implemented in a 

structured manner in the last post-processing tool, i.e. Clustering Timeline, discussed 

next. 

C.7.4 Clustering Timeline 

 The last step in the proposed process for identifying the critical location within a 

larger monitoring region pertains to identifying the formation and progression of cluster 

of scatterers every time a new set of RS-MTInSAR analysis data becomes available.  To 

this end, a grid is overlayed on the optical image with a subset size dependent on a 

combination of the desired resolution of the critical areas and the average number of the 
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detected scatterers in the region.  Higher risk areas are identified as those subsets, or 

group of subsets, that exhibit higher density of the clustered scatterers compared to their 

surrounding subsets. At this stage, although regions with a high potential for geohazard 

failure are identified, the imminency of the failure is not evident. A timeline analysis 

showing the rate at which the clusters are formed between any two successive data sets is 

used as an indication that a geohazard event failure is imminent. The timeline method is 

based on the geohazard observation that before the triggering event there is a rapid 

increase in density of the cluster in the geohazard vicinity. 


