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Abstract 

 With this project, we investigated the use of Big Data Analytics to help make rail 

transportation safer, by preventing derailments due to equipment failure. Railroads typically 

schedule railcar maintenance on best-practice intervals, but that may not include the plethora of 

information available from their maintenance logs, track data, sensor information, bills of lading, 

manufacturer history, etc. This project explored the use of this data to adapt maintenance 

scheduling to reduce cost and increase safety. We showed the great potential inherent in this 

approach. Train accidents can be attributed to human factors, equipment factors, track factors, 

signaling factors, and miscellaneous factors. Big Data Analytics techniques can be utilized to 

provide insights into possible accident causes, thus resulting in improving railroad safety and 

reducing overall maintenance expenses as well as spotting trends and areas of operational 

improvements. We proposed a comprehensive Big Data approach that provides novel insights 

into the causes of train accidents and find patterns that led to their occurrence. The approach 

utilizes a combination of Big Data algorithms to analyze a wide variety of data sources available 

to the railroads, and is being demonstrated using the FRA train accidents/incidents database to 

identify factors that highly contribute to accidents occurring over the past years. The most 

important contributing factors are then analyzed by means of association mining analysis to find 

relationships between the cause of accidents and other input variables. Applying our analysis 

approach to FRA accident report datasets we found that railroad accidents are correlating 

strongly with the track type, train type, and train area of operation. We utilize the proposed 

approach to identify patterns that would lead to occurrence of train accidents. The results 

obtained using the proposed algorithm are compatible with the ones obtained from manual 

descriptive analysis techniques.  
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Chapter 1 Introduction 

As a result of our frequent communications and close collaborations with the Union 

Pacific Railroad, one major problem that requires in-depth study and analysis is the need for 

new approaches to better understand railcar component failures to improve the safety and 

reliability of rail equipment maintenance and operation.  We firmly believe that Big Data 

analytics is key to significantly improved equipment reliability and reduced failure rates. The 

railroad industry separately collects records on equipment maintenance procedures, railcar 

design and component lists, train movement and bills of lading. But the key to better insights is 

in combining all of the available data and extracting new parameters, new knowledge. 

The overall approach to solving this problem is shown in the following figure: 

 

 

Fig 1 - Envisioned overall architecture for Big Data Analytics for Maintenance Optimization 

 

This seed project aimed at exploring some of the core components of the overall 

architecture. For us, the focus was on demonstrating that Big Data Analytics can be used to 

extract new insights and that there is true potential for improved maintenance scheduling through 

forecasting of component failure. If we know how long before a component fails, then we can 

leverage this analysis across the entire railcar to determine the optimal point in time to conduct 

maintenance. 
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This research effort aimed at addressing a timely and urgent need in transportation safety: 

preventing costly and devastating derailments through optimized equipment maintenance using 

Big Data Analytics. Safety continues to be of a primary concern within the North American 

railroad industry, highlighted by efforts in freight train Wireless Sensor Network monitoring and 

Positive Train Control (PTC).  Despite these efforts, statistics by the Federal Railroad 

Administration (FRA) Office of Safety Analysis [1] show that from 2010 through 2015 over 

1000 derailments occurred directly linked to rolling stock equipment failure, causing over $240 

million in losses.  

Current methods for equipment maintenance rely on fixed schedules, which either are too 

frequent and result in unnecessary operational expenses, or are not frequent enough and result in 

high equipment failure rates. Despite producing detailed records for all maintenance efforts, 

incidents, etc., this data remains largely unutilized in the optimization of operational processes 

such as maintenance scheduling, supplier quality ranking, parts optimization based on past comp 

information includes operational data, accidents/incidents data, track maintenance data, safety 

data, inventory and highway-rail crossing data, and inspection and maintenance data [5]. 

Traditionally, these data sets have been stored in multiple databases and analyzed independently 

using traditional descriptive analysis techniques. However, these databases can be brought 

together and analyzed using Big Data Analytics techniques in order to uncover hidden patterns 

and find correlations that might not be easily discovered from analyzing data separately. In 

addition, Big Data analysis would allow the usage of predictive and perspective analysis 

techniques to forecast future safety measures and provide insights into possible accident causes, 

manufacturer issues, and more as shown in the Fig. 2 below.  



3 

 

 

Fig 2 - Freight Trains Input Data for Big Data Analytics 
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Chapter 2 Our Approach 

Big Data Analytics tools can combine railroad accidents/incidents database with 

operational and maintenance databases and allow for prediction of train failures before they 

occur. It could also allow for efficient scheduling of train and track maintenance thus enhance 

rail safety and reduce the costs caused by unnecessary maintenance. There are predictive Big 

Data algorithms that are well known for their accuracy including Random Forest (RF) and 

association mining algorithm. RF is the most popular algorithm in conducting in-depth study of 

Big Data [6]. It has classification and regression capabilities and high-performance efficiency. 

RF also gives estimates of what variables in the input data are more important in achieving 

certain responses [7]. This latter property is very significant as it enables selecting the important 

features and build a simple model based on these features, thereby reducing the computational 

cost.  

Association mining algorithms, on the other hand, analyze the input data set for frequent 

patterns [8]. They automatically find the patterns that would take a long time to find manually 

using descriptive analysis techniques. The advantage of association algorithms over RF 

algorithms is that associations can exist between any of the input variables. While the RF 

algorithm builds rules with only a single conclusion, the association algorithms attempt to find 

many rules, each of which may have a different conclusion. Association algorithms use the 

support and confidence criteria to identify the most important relationships. Support is an 

expression of how frequently the variables appear in the input data, whereas confidence 

expresses how often that relationship has been found to be true within the data set. The main 

drawback in association algorithms is the computational efficiency as they require extensive 

processing time to find patterns within a potentially large search space [9-11].  
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In this work, we develop a comprehensive Big Data algorithm that utilizes the importance 

measurement feature from RF algorithm and the pattern detection capability of association 

mining algorithms. The importance measure helps in choosing the most important variables in 

the input data and thus increase the computation speed of the association mining algorithms.   

Data optimization is made possible through Big Data Analytics. However, the particular nature 

of the railroad applications, combined with the myriad different reporting formats in use by the 

railroads, their supplies, and at various operations centers poses significant challenges to current 

data analytics approaches. Our team studied how to address the various research challenges that 

currently limit Big Data Analytics. We researched required methodologies and demonstrate Big 

Data Analytics’ capabilities using synthetic or real-world data provided by Union Pacific.  

We believe that this effort is a vital component in further enhancing railroad operational safety 

and prevent derailments and the resulting significant monetary and environmental damages. 

2.1 Methodology 

The proposed algorithm utilizes both RF and association mining algorithms. RF allows 

selection of the most important variables in the input data subject to a specific response and feeds 

them to the association algorithm that discovers the connection between the variables. Here is the 

algorithm pseudocode: 

 Let N be the number of rows in the input data, M be the number of columns and K is a 

subset of the possible categories 

 Determine m ⊆M  such that m has high impact on deciding K, using the importance 

feature from RF algorithm 

 Find X→Y where X⊆m, Y∈K  and X∩Y=∅ 

 Find support σ(X→Y ) and the confidence C(X→Y )[11] 
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 Choose X→Y∋σ(X→Y )>0.1 and C(X→Y )≥0.8  

RF used in step 2 is an aggregation of decision trees where every node in the tree is used as a 

binary condition on a single variable of the input data set. The condition at each node splits the 

variables into two groups, such that each group contains data that provides a similar response. 

The measure of the optimal splitting condition is based on Gini impurity. When training RF with 

the input data set, the decrease in the weighted impurity caused by each variable of the input data 

set is computed. The impurity reduction caused by each variable is averaged and the variables 

are ranked according to this measure. Variables that can remove more impurity are ranked as 

more important than the ones that remove less impurity. We can think of the important variables 

(m) as the ones who contributed the most to the rules formed by RF algorithm and thus a change 

in their value would degrade RF prediction ability as measured by out-of-bag (OOB) techniques 

[11].  

The implication relationship in step 3 is the association mining rule where X and Y are 

called antecedent and consequent, respectively. In step 4 we select the rules from the set of all 

possible rules found by the association mining algorithm constraints to the thresholds on support 

and confidence measures. A rule is identified as important if the confidence and the support are 

within 0.8 and 0.1, respectively.  
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Chapter 3 Implementation and Results 

3.1 Input Data 

The proposed algorithm was implemented in RStudio [12] by leveraging both RF and 

“arules” packages. In order to assess the algorithm efficiency, we tested the algorithm on the 

Federal Railroad Administration (FRA) accident/incidents database and compared the obtained 

results with the ones from manual descriptive analysis.  

The input data set used is from the Federal Railroad Administration accident data sets 

[13] obtained for the period from January 2013 to December 2016. It contains information 

regarding a variety of conditions or circumstances that may have contributed to the occurrence of 

the reported accidents.  The data accounts for damages to on-track equipment, signals, track, 

track structures, and roadbed. It comprises 50 columns (M), which are the fields from the 

“F.6180.54” form, and 9864 rows (N) that represent the number of accident/incident reports filed 

over the mentioned time period. According to the data base, there are five major classes (K) of 

train accidents, namely: human factors (H), equipment factors (E), track factors (T), signaling 

factors (S), and miscellaneous factors (M). The number of accidents in each accident cause 

category is shown in Fig. 3. 
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Fig 3 - Accident causes category versus number of accidents 

3.2 Important Features Selection 

The input data is applied to the RF algorithm in order to find the variables that 

contributed the most to the cause of these accidents, based on the mean decrease in Gini 

impurity. 

Fig. 4 displays the 30 most important variables in the input data on the y-axis and the 

mean decrease in Gini score on the x-axis. A higher value of mean decrease in Gini score implies 

a higher importance of the associated variable. For example, the grade crossing ID number 

(GXID) and the DRUG in Fig. 4 are the most important variables in predicting the cause of 

accident. Table 1 lists the most important variable and their description. 
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Fig 4 - Importance plot 
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The most important variables are applied to the association algorithm, which resulted in 

58987 patterns. However, it is clear that going through all these patterns manually is not a viable 

option. Therefore, we used the scatter plot to visually see the rules and interactively choose the 

most significant ones based on their confidence value. The scatter plot of the confidence and the 

support for all rules is shown in Fig. 5. The plot consists of the support as x-axis and confidence 

as y-axis and each dot on the plot represents one of the obtained rules. We adjust the logarithm 

so that we can see only the patterns with confidence higher than 80%. Also, the dots are color 

coded so that the red dots indicate that the rule has high confidence value is important and needs 

to be further explored. 

 

 

Fig. 5 - Scatter Plot 

Table 2 displays an example of the four most important patterns and their support and 

confidence. These patterns are regarded as important because the confidence is above 80%. The 

first rule states that accidents due to human factors (H) often occur at rail yards (TYPEQ= yard / 

switching) when no grade crossing is involved (GXID=No) and the train engineers are not under 

the influence of drugs (DRUG=No). The algorithm also states that this pattern is 98.3% reliable 
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and applies to 12.4% of the input data. By analyzing the data manually, we found that among the 

3782 accidents that are caused by human errors, 1397 accident occurred at the rail yards when 

train engineers tested negative on drugs and no GXID report was found. Therefore, the manual 

results are compatible with the automatic results obtained using the proposed algorithm. The 

second pattern states that the accidents caused by Miscellaneous factors (M) often occurs to 

passenger trains (TYPEQ=Passenger train) on a single main track (TRKNAME=Single main 

track) when train engineers are not on drugs (DRUG=No). It also states that this pattern applies 

to 10.5% of the input data and has 97.8% reliability. Manual analysis confirms that the highest 

number of accidents (34/35) due to Miscellaneous (M) factors occurred to passenger train on a 

single main track when train engineers tested negative for drugs. The third significant pattern in 

Table 2 implies that accidents caused by track factors (T) often occurs to freight trains (TYPEQ= 

Freight train) in state 48 (Texas) given no alcohol (ALCOHOL=No) or drugs (DRUG=No) are 

involved and no GXID (GXID=No) is involved. It also states that this pattern applies to 19.5% 

of the input data and has 94.4% reliability. This also agrees with the manual analysis which show 

that among the 639 accidents that happened to freight train in Texas, 200 accidents occurred due 

to track factors as illustrated in Fig. 6. 

The last rule implies that most accidents caused by equipment factors (E) are occurring 

for freight trains (TYPEQ= Freight train) in state 48 (Texas) when the engineers are tested 

negative for drugs (DRUG=No). It also states that this pattern applies to 16.5% of the input data 

and has 91.2% reliability. This also agrees with the manual analysis, which shows that among the 

639 accidents of freight train in Texas, 58 accidents occurred due to equipment factors as 

illustrated in Fig. 6. 
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Fig. 6 - Freight train accidents in Texas between 2013 and 2016 
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Notice that the algorithm can be used to predict what cause category the accident should 

fall into. For instance, given that an accident occurred at rail yards (TYPEQ= yard / switching) 

when no grade crossing is involved (GXID=No) and the train engineers are not under the 

influence of drugs (DRUG=No), according to the first rule in Table 2, we can predict with 98.3% 

accuracy that the accident is caused by human factors. 

Studying more closely the rules in Table 2 we can observe that the variables that appear 

in the rules are the ones that have the largest mean Gini score. The variable DRUG, for instance, 

is associated with every accident because the actual number of accidents involving DRUG is 

zero. GXID, on the other hand, has such a large mean Gini score since grade crossing accidents 

are quite common and the presence of a grade crossing is always a factor for a crossing related 

accident. Notice that all the variable that are regarded as important according to Table 1 have 

appeared in some rules generated from the association mining. However, some of those rules 

might have low confidence. 

One of the main advantages of the proposed algorithm as compared to the manual 

analysis is the ability to detect and extract useful information from large-scale data with high 

computational speed and is scalable to very large datasets not feasible for manual analysis. 

Another key differentiator is that with the proposed approach is possible to detect the impact 

from weaker correlations among different parameters that may not be apparent using manual 

analysis. 
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Chapter 4 Data Collection and Generation 

Any of the intended activities involving Big Data depend on available data. We 

envisioned this data to be provided by Union Pacific and other railroads. However, while they 

were eager to support this effort, they simply could not share that data with outside parties, since 

it is highly sensitive and contains a plethora of operational insights. We were this faced with the 

prospect of having to procure the needed data a different way. The solution we pursued was to 

generate our own data sets. This had two key advantages: 

1) It allowed us to control all relevant parameters in the generation of the data.  

2) Because the data generation was fully under our control and we knew what the data 

contained, this also served as cross-validation of the Big Data analytics efforts that would 

utilize this data. 

We therefore developed our own data generation tool, which is a full-fledged macro-train 

movement simulation across the United States. It simulates railcars, their components, train 

consists and cargo, their transit from a source to a destination location, failure events along the 

way, the impact of the train engineers driving habits, and much more. It also tracks component 

and railcar manufacturers and their product and service quality. Below is an image of the 

simulator in action.  
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Fig. 7 - Screenshot from the Train Data Generator in action 

 

In this particular simulation we can observe train movement (blue lines), train arrivals 

(green dots), and railcar failure events (yellow dot). The track network is abstracted as a direct 
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path between two train stations. Train station locations are retrieved from a set of 1000 GPS 

coordinates of real-world train stations in the United States. The simulator randomly selects a 

specified number of train stations and connects them in order to form the track network for the 

simulation instance. 

All parameters used within the simulation is driven by random number distributions, fully 

configurable in a script file. This allows us to adjust any impacting factor for the simulation. 

Also considered by the simulator is the impact of terrain. For example, component wear and tear 

being worse when traversing mountains compared to the Midwestern plains. This is driven 

graphically through map files provided to the simulator. 

The simulator also considers railcar maintenance. Servicing a railcar and its components 

leads to improvements in a component’s quality, or its full replacement with a new component, 

in case the component quality has deteriorated too far. Railcar maintenance is scheduled with a 

fully controllable schedule for each railcar. This will allow us to evaluate different approaches on 

how to utilize Big Data Analytics and the forecasted component wear. 

Finally, the simulator also tracks accumulated expenses for each railcar over its lifetime, 

including all maintenance and component replacements. It also considers, at a macro level, the 

cost of derailments. This allows us to express the economic impact of improving railcar 

maintenance scheduling. 

The output of the simulator is a plethora of log files, such as information about each 

individual component’s status, each railcar’s complete history, maintenance records, and more.  

These data sets can then be processed using Big Data Analytics and compared to the initial 

conditions scripted into the data generator, in order to validate the accuracy of the conducted data 

analysis. 



18 

 

Chapter 5 Data Processing 

One of the key aspects in data analytics is to know what to focus on. With such a plethora 

of information available as in Big Data, it is easy to be deterred by the large number of input 

parameters and properties. Hence, our first focus was on exploring the use of Random Forest in 

gauging the importance of input parameters to the overall end result. 

Random Forest is ideally suited for this task, because it produces as output an importance 

measure. We utilized it throughout our work. Random forests or random decision forests are an 

ensemble learning method for classification, regression and other tasks, that operate by 

constructing a multitude of decision trees at training time and outputting the class that is the 

mode of the classes (classification) or mean prediction (regression) of the individual trees.  

established that forests of trees splitting with oblique hyperplanes can gain accuracy as they grow 

without suffering from overtraining, as long as the forests are randomly restricted to be sensitive 

to only selected feature dimensions. A subsequent work along the same lines concluded that 

other splitting methods, as long as they are randomly forced to be insensitive to some feature 

dimensions, behave similarly. Note that this observation of a more complex classifier (a larger 

forest) getting more accurate nearly monotonically is in sharp contrast to the common belief that 

the complexity of a classifier can only grow to a certain level of accuracy before being hurt by 

overfitting.  

The training algorithm for random forests applies the general technique of bootstrap 

aggregating, or bagging, to tree learners. Given a training set X = x1, ..., xn with responses Y = y1, 

..., yn, bagging repeatedly (B times) selects a random sample with replacement of the training set 

and fits trees to these samples: 

For b = 1, ..., B: 

https://en.wikipedia.org/wiki/Bootstrap_aggregating
https://en.wikipedia.org/wiki/Bootstrap_aggregating
https://en.wikipedia.org/wiki/Sampling_(statistics)#Replacement_of_selected_units
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1. Sample, with replacement, n training examples from X, Y; call these Xb, Yb. 

2. Train a classification or regression tree fb on Xb, Yb. 

After training, predictions for unseen samples x' can be made by averaging the predictions from 

all the individual regression trees on x'. 

𝑓𝑓 =  
1
𝐵𝐵
�𝑓𝑓𝑏𝑏

𝐵𝐵

𝑏𝑏=1

(𝑥𝑥′) 

This can also be derived by taking the majority vote in the case of classification trees. 

𝜎𝜎 = �∑ (𝑓𝑓𝑏𝑏(𝑥𝑥′)−�̂�𝑓 )2𝐵𝐵
𝑏𝑏=1

𝐵𝐵−1
 

This bootstrapping procedure leads to better model performance because it decreases the 

variance of the model, without increasing the bias. This means that while the predictions of a 

single tree are highly sensitive to noise in its training set, the average of many trees is not, as 

long as the trees are not correlated. Simply training many trees on a single training set would 

give strongly correlated trees (or even the same tree many times, if the training algorithm is 

deterministic); bootstrap sampling is a way of de-correlating the trees by showing them different 

training sets. The above procedure describes the original bagging algorithm for trees. Random 

forests differ in only one way from this general scheme: they use a modified tree learning 

algorithm that selects, at each candidate split in the learning process, a random subset of the 

features. This process is sometimes called "feature bagging". The reason for doing this is the 

correlation of the trees in an ordinary bootstrap sample: if one or a few features are very strong 

predictors for the response variable (target output), these features will be selected in many of the 

B trees, causing them to become correlated. This can be analyzed as how bagging and random 

subspace projection contribute to accuracy gains under different conditions.  



20 

 

Typically, for a classification problem with p features, √p (rounded down) features are 

used in each split. For regression problems the inventors recommend p/3 (rounded down) with a 

minimum node size of 5 as the default. 

We can see that one of the most important factors overall was the grade crossing, 

indicating that a significant number of accidents occurred at highway-rail intersections.  

When we applied the same approach to our simulator data, we could see that one of the most 

important factors actually was the distance travelled and the manufacturer. This indicates that the 

reliability of manufacturing processes are a key focus, but also that normal operational tracking 

over a railcar’s work orders plays a big role in predicting component failure. Also an important 

characteristic was the route travelled, indicating that the terrain impact in our simulator played an 

important role. 

When focusing on the available railcar travel logs we could then analyze it to predict how 

much farther a railcar could travel before a component failure occurred. Due to the simplified 

nature in which our simulator produces wear and tear on components this could be extracted as a 

mathematical expression for a given railcar. In real-world applications, Big Data Analytics 

would be monitoring this property instead of making long-term forecasts using simple 

mathematical models. But the end result is the same: given the output of Big Data Analytics it 

was possible for each railcar to determine an approximate failure point, which can then directly 

be used to update maintenance scheduling. Furthermore, it also helped indicate what the most 

likely component contributing to the predicted failure will be, this directing maintenance efforts 

and streamlining the turnaround time. Overall, this has tremendous potential in helping the 

railroads reduce maintenance efforts while also increasing reliability and safety. 
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Different scenarios for analyzing breaks, axels, and bearing for different number of cars 

over multiple years have been simulated and analyzed. The results for each case is presented in 

the following Fig. 8 through 21.    
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Fig. 8 - US map with the mountains 

 

 

Fig. 9 - Damage based map 
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Fig. 10 - One car over period of 1 year 

 

Fig. 11 - One car over the period of 10 years 
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Fig. 12 - 5 cars over one year period 

 

Fig. 13 - 5 cars over period of 5 years 
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Fig. 14 –Scenario for the break quality 

 

Fig. 15 - 5 cars over period of 10 years (Breaks) 
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Fig. 16 –Scenario for the Axel quality 

 

Fig. 17 - 5 cars over period of 10 years (Axel) 
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Fig. 18 - Scenario for the Bearing quality 

 

Fig. 19 - Two cars over period of 15 years 
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Fig. 20 - 2 cars over period of 20 years 

 

Fig. 21 - Quality versus distance for failed wheels for 2 cars over period of 20 years 
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Chapter 6 Summary and Conclusions 

6.1 Summary 

We proposed a comprehensive Big Data algorithm that utilizes the importance feature 

from RF algorithms and the pattern detection ability from the association mining algorithms in 

combination to reduce computational complexity while retaining all the insights available from 

the collective data set. The developed algorithm was applied to the FRA accidents/incidents data 

as an evaluation tool for its efficacy and has shown results similar to the results that were 

obtained using manual analysis, thus validating its accuracy. Our work shows that Big Data 

analytics applies to maintenance and operational data can reliably identify accident categories 

and cause factors, and thus assist with improving the productivity, reliability, and safety of the 

rail operations. 

6.2 Future Work 

This was a truly exciting and engaging project, focused on a topic of vital importance for 

the freight railroad industry in North America – leveraging all of their collected data and 

analyzing it to obtain new insights into component and railcar degradation that can lead to 

derailments if not detected or repaired in time. But maintenance scheduling thus far is driven 

based on best-practice intervals, without insights from such data, and thus either misses 

approaching component failure or is performed too frequently and thus unnecessary expense. 

By leveraging our insights from this project, which shows that Big Data can make a significant 

impact on maintenance schedule optimization, we can help improve rail safety and reduce 

operational expenses. 
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6.3 Publications Resulting from Research 

During this project we have thus far published one conference paper, and are in the 

process of completing the writing on two more papers. The published conference paper is titled 

“Novel Insights For Railroad Maintenance Using Big Data Analytics”, by N. Albakay, M. 

Hempel, and H. Sharif, presented at and published in the conference proceedings of the 2018 

ASME Joint Rail Conference, held April 18-21, 2018 in Pittsburgh, PA, USA [3]. 
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