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1. Introduction

Rail-Highway grade crossings pose a critical safety concern due to the risk of collisions
between trains and vehicles or pedestrians. According to the US Department of Transportation
(USDOT) and the Federal Railroad Administration (FRA), there were 2,246 incidents, 266
fatalities, and 744 injuries in 2024 (US Department of Transportation 2024). 96% of rail-related
fatalities in the past 10 years are linked to highway-rail grade crossings and trespassing (US
Department of Transportation (USDOT) Federal Railroad Administration (FRA) 2025). There is
a strong need to improve safety at grade crossings to eliminate fatalities, injuries, damage to
property, and disruptions to rail operations. The rail infrastructure in the US is large, with
approximately 140,000 miles of track (The American Society of Civil Engineers (ASCE) 2025).
Considering the vast amount of grade crossings and the wide variety of conditions and traffic at
each one, ensuring safety at all crossings is a difficult endeavor requiring lots of resources. Thus,
there is an ongoing need for effective solutions to monitor grade crossings and prevent accidents.

Many safety measures have already been implemented at crossings. This includes warning
signs, crossbucks, gates, and active warningdevices suchas bells and flashinglights. Additionally,
active warning systems, such as gates, bells, and flashing lights, may be automated according to
incoming train traffic. While these systems are essential and may be installed with site-specific
criteria depending on traffic (Zayandehroodi et al. 2025), they do not detect vehicles and
pedestrians. To address this need, many solutions have been proposed over the past decades to
improve railway safety using different methods of sensing and detection. These solutions range
from systems monitoring traffic or pedestrians to detecting hazards at crossings, stations, or
railways. Many of the proposed systems use methods such as Light Detection and Ranging
(LIDAR) laser detectors (Amaral et al. 2016) and radar systems (Hari Narayanan et al. 2011).
Other proposed methods involve the use of cameras for video surveillance (Salmane etal. 2013;
Sheikh etal. 2004; Shin et al. 2021; Zhang et al. 2018). The cameras used may be regular cameras,
stereo cameras (Hosotani etal. 2009; Yoda et al. 2006), or thermal cameras (Vivek et al. 2023).

In later research, deep learning was introduced to detect hazards in videos. Deep learning
enabled significant scientific and technological breakthroughs in many fields, including railway
safety in general, monitoring of grade crossings, and monitoring traffic conditions at crossings
(Guoetal. 2022; LeCun etal. 2015; Oh et al. 2022a). Advancing Al, Internet-of-Things, big data,

robotics, and other innovative technologies are essential to modernize the railway infrastructure as
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an intelligent system with active safety capabilities (Qin et al. 2023). Given that cameras are
relatively inexpensive androbust, this research capitalizes on deep learning to detecthazards using
video feeds from the cameras.

Overall, there is a need for a hazards monitoring systems that: (1) can be readily usable for
any grade crossing, as opposed to being purpose built for a specific grade crossing or requiring
setting customization to work properly; (2) can detect and classify various types of hazards and
vehicles, which can be valuable for data collectiontowards supporting further operational analytics;
(3) can function in any lighting (day or night), weather, and environment conditions; (5) is cost
effective by using non-expensive equipment; and (6) is automated and requires no human
intervention.

In previous research, the authors collected data for hazards at grade crossing and trained a
neural network (Ali et al. 2024; Espinoza et al. 2024). However, the research was limited due to
(1) the limited size of the dataset; (2) the scarcity of data for some labels; and (3) more
experimentation was needed to try more advanced and established CNNs models. These
limitations affected the accuracy of the model. Accordingly, this research continues the previous
work performed to address limitations and explore methods to create better performing models for

hazards detection such as rail crossings.

2. Goal and Objectives

The goal of this research is to investigate the application of Al to automatically monitor
grade crossings and detecthazards thatmay resultin accidents. Such hazards may include vehicles,
trailers, pedestrians, bicyclists, and animals on the grade crossing. The requirements of the
resulting model include robustness by being able to detect various hazards, adapt to different
crossings, and being functional under different lighting and weather conditions.

The goal of the paperis achieved by following two objectives. The first objective is data
collection. Developing Al models requires large datasets for training. In the case of monitoring
crossings, there is a need for a large dataset of images with labels indicating different conditions
and hazards at crossings. The authors create a database of multi-labelled images relating to grade
crossings and associated hazards. In previous research, the authors collected images and built a
dataset (Alietal. 2024; Espinoza et al. 2024). However, it was limited and struggled with scarcity

of some labels. This research adds model images to it using real data and synthetic data.



In the second objective, a deep artificial convolutional neural network is trained to detect
hazards crossings. The authors experiment with an established computer vision classification
model which is ResNet (He et al. 2020; Li et al. 2017; NVIDIA NGC 2023). Transfer learning is
performed. Multiple model configurations are tested.

The model presented in this research is proposed as a robust and cost-effective solution
that can use feeds from cameras installed at grade crossings and provide uninterrupted monitoring
of safety hazards to raise warnings of hazards and record data logs for further analysis to improve

safety at crossings.

3. Background

Rail grade crossings are inherently a safety concern due to the risk of collision between
trains and vehicles or pedestrians. An overview of the incidents, fatalities, and injuries over the
past 20 years based on data from the USDOT (US Department of Transportation 2024) is shown
in Figure 1. Many incidents are reported every year and result in injuries and fatalities. There is a
need to reduce the number of accidents by exploring processes and innovative technologies to
improve safety at crossings.
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Figure 1. Number of incidents, fatalities, and injuries at highway-rail grade crossing over the
past 20 years.



Many grade crossings have already implemented safety measures to help preventaccidents.
These measures include passive measures such as warning signs, crossing gates, flashing lights,
and, in some locations, gatekeepers. However, a major flaw in these measures is their inability to
account for human error. For instance, many impatient drivers ignore crossing gates and, in some
cases, even drive into them to avoid waiting, which contributes to the many fatalities and casualties
at level crossings (Starevic et al. 2016). In response, more active measures are being introduced
to automatically detect hazards, secure crossings, and increase awareness.

Given the number of unforeseen accidents with traditional methods, enhancing safety more
actively at grade crossings is a major goal for rail operators and agencies. Many innovative
methods and technologies have been proposed to improve safety at rail crossings. Previous
research in this domain is summarized in Table 1. Proposed technologies involve the use of
hardware such as depth or stereo cameras (Hosotanietal. 2009; Yodaetal. 2006), thermal cameras
(Vivek etal. 2023), or in some instances, a combination of radars and cameras (Wang et al. 2024).
Over the previous years with advances in computing, a combination of computer vision and deep
learning has been used to improve the accuracy of detecting hazards and help with the current
limitations of traditional methods. Computer vision, deep learning techniques, and a combination
of both have gained traction in grade crossing safety research because of their increased accuracy
and low cost, when compared to other technologies (Oh et al. 2022b). While traditional computer
vision methods have been used to monitor movement through CCTV footage (Sheikh et al. 2004;
Shin et al. 2021; Zhang et al. 2018), they often require manual fine-tuning and may struggle to
generalize across different environments. In contrast, deep learning techniques, particularly
convolutional neural networks, have recently gained traction because they can automatically leam
complex patterns from large volumes of training data with minimal manual intervention
(O’Mahony et al. 2020). Deep learning has led to many breakthroughs in speech recognition,
natural language processing, and visual object recognition and detection (LeCun et al. 2015).
Similarly, the railway industry has embraced deep learning. Because both traditional computer
vision methods and deeplearninghave their strengths, recentresearch in railway safety has applied
a combination of both in a plethora of scenarios. This includes monitoring of fall, slip, and trip
incidents at stations, the automation of train stops operations, detection of incoming trains at level
crossings, and the monitoring of traffic conditions near railway crossings (Alawad et al. 2020;

Etxeberria-Garcia et al. 2020; Guo et al. 2022; Murshed et al. 2022). Convolutional Neural



Networks, a subset of deep learning, have also been used to detect defects in rail surfaces, monitor
train vibrations, detect trespassing, and address several other railway safety challenges (Oh et al.
2022a). While previous research has demonstrated success in detecting several types of hazards at
rail grade crossings, these methods often face limitations related to cost, scalability, and limited
environmental adaptability. In addition, many methods are associated with high initial costs to be
implemented. While sensors are individually inexpensive, the cost of deploying and maintaining
them across an entire rail network can be substantial. Moreover, sensors often struggle to detect
hazards at greater distances. To address these issues, some researchers have proposed the use of
pilot vehicles placed in front of trains to identify hazards. However, to keep this cost-effective,
this solution is only being implemented on trains traveling to dangerous areas, leaving other trains
vulnerable (Wang et al. 2024a). Some methods are also designed to detect only one type of hazard
which is either pedestrians, vehicles, orincomingtrains. This lack of versatility can be problematic
in real-world settings, where multiple types of hazards may occur. Furthermore, many of these
systems do not offer reliable monitoring under varying environmental conditions, adding to their
lack of generalizability in real-world applications. To summarize, although many methods and
technologies have been proposed in literature, there are some limitations that hinder their
robustness and versatility. Deep learning is a promising method to overcome previous limitations.
Accordingly, thisresearch investigates the use of deep learningand computer vision for enhancing

safety at grade crossings.

Table 1. Overview of previous research.

Reference Summary

Detection of moving objects in “danger zone” at grade

(Sheikh et al. 2004) : . . .
crossings using video cameras and computer vision.

Detecting pedestrians on grade crossings using a multi-

(Yoda et al. 2006) . .
point stereo camera system at grade crossing corners.

Detecting pedestrians using a system of two stereo

(Hosotani et al. 2009) -
cameras at corners of crossings.

Detection of railway obstructions using MIMO radars to

(Hari Narayanan et al. 2011) mimic phased array radars in a cost-effective manner.

Detection and tracking of objects using a video-based
(Salmane et al. 2013) system to calculate the level of risk in hazardous
situations at level crossings.
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(LeCun et al. 2015)

(Amaral et al. 2016)

(Zhang et al. 2018)

(Alawad et al. 2020)

(Etxeberria-Garcia et al.

2020)

(Shin et al. 2021)

(Guo et al. 2022)

(Oh et al. 2022a)

(Murshed et al. 2022)

(Vivek et al. 2023)

(Greitans 2023)

(Wang et al. 2024)

Discusses deep learning, how it works, how it has
improved recognition systems, and the future of deep
learning.

Detection of obstacles at level crossings using 2D laser
scanners to scan objects.

Detection of near misses at railway-grade crossings
using video surveillance and computer vision.

Detection of fall, trip, and slip events at railway stations
using a CNN-based computer vision framework for real-
time risk management.

Explores the applicability of existing deep learning and
visual odometry techniques in the railway domain. An
autonomous train stop use case is suggested.

Detection of maintenance signs and maintenance
workers on railways to enhance safety using existing
tunnel-monitoring systems on trains and computer
vision algorithms.

Assessment of traffic congestion conditions at railway
grade crossings using computer-vision based object
detection.

Examines Al applications forrailway safety, specifically
deep learning approaches

Automatinglevel crossings by detectingincomingtrains
using computer vision and Raspberry Pi
microcontrollers.

Uses thermal imaging along with deep learning to
improve detection of obstacles on railway tracks under
various weather conditions

Presents a cost-effective obstacle-detection approach for
level crossings using a combination of a radar and a
camera that can perform reliably even in poor weather
conditions.

Proposes using a small, self-driving vehicle equipped
with a camera and sensors in front of trains traveling
through dangerous areas to help detect anomalies and
prevent accidents.
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4. Methodology

This research capitalizes on deep learningmethodsto create amodel thatcan detecthazards
at crossings. This approach can be described in two major parts as shown in Figure 2: dataset
creation: where data is collected, cleaned, and labelled; and model developed where several
network designs are selected, trained, validated, and compared. The following subsection explains

each part of the process in detail.

. ; ) r )
Dataset Creation Model Development
*Data Collection *Network Design
*Data Cleaning *Training and Validation
*Labelling *Model Comparision

L ) L°Test1ng )

Figure 2. Overview of the methodology.

4.1. Data Collection

A large datasetof images was needed to train the model. In general, havingmore data leads
to better model training and evaluation. The dataset is required to represent diverse situations that
count happen at grade crossings. In addition, the images need to represent a variety of crossings
with different scenarios, and lightingand weather conditions. The process of data collection started
by downloading videos that are publicly available online such as a YouTube channel called
“Virtual RailFan, Inc.” (Virtual Railfan, Inc. 2023). Live streams were downloaded into video
files with a resolution of 640 X 360 pixels. Considering that the videos have an unneeded large
number of frames per second, the number of images collected was reduced by selecting one frame

out of five. A Python package “ytb-dIp” was used to enable video downloading and conversion.

An example of two frames is shown in Figure 3.

Figure 3. Examples of frames extracted.
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4.2. Data Cleaning

The frames collected in the previous step included many images that are repetitive and
would create additional benefits to keep. For instance, there were many images where the grade
crossings are empty. There was a need to remove duplicate images if they share a high degree of
centrality. This was achieved by using an existing package called “Image Duplicator
(Imagededup)” (Jain et al. 2019). The method relies on encoding images using a CNNS, namely
MobileNetV3 (Howard etal. 2019). The encodedimages are compared to findingduplicates based
on a cosine similarity threshold between the encodings. In this research, a similarity threshold of
95% was selected. This approach was tested and found to be effective in removing large numbers
of duplicates.
4.3. Synthetic Data

The data collected from camera feeds have somelimitations due to the lack of images from
some angles. In addition, there are some simultaneous conditions that do not occur often in real
images. In general, collecting additional images with various situations and environments
improves the quality of the dataset and ultimately the performance of a trained model. Additional
images were collected as screenshots from a video game called train simulator. Several scenes and
vehicles were simulated. The collected screenshots were added to the dataset from real sources,
which serves to increase the variety of scenes and situations in the dataset. The images are highly

realistic, offer various angles, and are intended to improve the performance of the model. Some

examples are shown in Figure 4.

Figure 4. Screenshots from train simulator video game.
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4.4. Data Labelling

After collecting the dataset, the images were manually labelled according to the objects in
each image. The authors selected 13 labels which are: Rail Track, Train, Grade Crossings, Grade
Crossing Gate Down, Red Light on Grade Crossing, Train on Grade Crossing, Vehicle waiting on
Grade Crossing, Trailer, Vehicle on Grade Crossing, People on Grade Crossing, Animals,
Bicyclists, and Animal on Grade Crossing. The labels are nonexclusive, meaning that each image
may have multiple labels, which creates a multi-label classification approach. The labels were
manually assigned to each image. An open source software, Label Studio, was used to
conveniently streamline the process of labeling the images (Label Studio 2023). The software is
used to create and manage a database of labels to be used in the model development phase.
4.5. Model Selection: ResNet

The authors selected an established and widely used CNN design, ResNet, short for
“Residual Networks”, as the base of the model in this research. It was introduced in 2015 by He et
al. (He et al. 2015, 2016). Traditional deep learning networks in early research suffered from
increased training difficulties as the number of hidden layers is increase. In the ResNet design, an
innovative approach was proposed by using repeating building blocks with residual shortcut
connections, as shown in Figure 5 (Zhang et al. 2023). The addition of residual shortcuts reduces
the training difficulty and results in better performance and generalization (He et al. 2020; Li et

al. 2017).
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3x3 Convolution

Batch

ReLu Activation

3x3 Convolution

Ratch

ReLu Activation
v

Figure 5. Building block in ResNet.

ResNet has been successfully used in many applications such as in medical image
processing (Xu etal. 2023), facial expression recognition (Liand Lima 2021), pose estimating to
reduce accidents involving field workers (Lee et al. 2023), improving construction site safety (Lee
and Lee 2023), and many others. The model implemented in this research is based on ResNet V1.5
and implemented in PyTorch (Imambietal. 2021; NVIDIA NGC 2023). There are several versions
of ResNetbased on the numberofbuildingblocksand accordingly the number of parameter layers.
The versions are ResNet 18, 34, 50, 101, and 152, which are all tested in this research and
compared.

4.6. Transfer Learning / Fine Tuning

Transferlearningdescribes thatamodelis trained for a task and then utilized fora different
activity with some relevance to the former (Gupta et al. 2022). In other words, a model is trained
to perform image classification as an example of a task, then the same model is later used to
perform a different images classification task by modifying and retraining the model. Transfer
learning has been successfully applied in many applications in the deep learning field, including
for computer vision and others. For example, regarding ResNet, transfer learning has been

successfully used with ResNet to achieve satisfactory model performance in classifying medical
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x-ray images (Showkat and Qureshi 2022). Transfer learning offers many benefits in reusing pre-
trained models by requiring less training time and data while offering good performance and
generalization.

Accordingly, pre-trained ResNet models are used in this research by modifying and
training them for the purposes of this research. The weights for ResNetmodel used in this research
were pre-trained using the ImageNet dataset (Denget al. 2009). ImageNet is a large dataset with
more than 14 million images. Previous researchers have trained the ResNet model with each set of
layer configurations using the ImageNet dataset considering 1,000 outputs. The accuracies are
shown in Table 2 (PyTorch 2025a) indicating high accuracy.

Since the models are trained with 1,000 classes, while the dataset in this research describes
13 labels, the pre-trained networks are modified to accommodate that output requirement. The
base ResNet models are designed such that the last layer is a fully connected layer with 1,000
neurons. Accordingly, the last layer in the base models was modified to have 13 neurons which is

the number of labels in this research, and the models were further trained to minimize the losses.

Table 2. Accuracies of pre-trained models. (PyTorch 2025a)

Model Dataset Top 1 Top 5 Number of
Accuracy Accuracy Parameters
ResNetl8 ImageNet 1k V1 69.76% 89.08% 11.7M
ResNet34 ImageNet 1k V1 73.31% 91.42%  21.8M
ResNet50 ImageNet 1k V1 76.13% 92.86%  25.6M
ResNet50 ImageNet 1k V2 80.86%  95.43%  25.6M
ResNet101 ImageNet 1k V1 77.37%  93.55%  44.5M
ResNetl101 ImageNet 1k V2 81.89% 95.78%  44.5M

ResNetl52 ImageNet 1k V1 78.31%  94.05%  60.2M

ResNetl52 ImageNet 1k V2 82.28%  96.00%  60.2M
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4.7. Data Preprocessing and Augmentation

Before data augmentation, all images were resized to have a height and width of 250 pixels
and cropped to remove the borders into a height and width 200 pixels. This step reduced the size
of the images to avoid the unneeded computational burden of processing high-definition images
and is applied to the entire dataset once. During the training and testing, each batch processed by
the neural network model undergoes further data preprocessing by normalizing the batch with a
mean of 0.5 and standard deviation of 0.25.

One of the common problems in deep learning projects is the lack of data which may
ultimately limit the performance of the trained models. Data augmentation is widely used to
increase the amount of training data. Traditional data augmentation methods involve performing
image transformation and color modifications. Transformations may include random translation,
rotation, zoom, shear, etc. This approach is relatively easy to implement is proven to be successful
in increasing training datasets (Chlap et al. 2021; Mikotajczyk and Grochowski 2018; Perez and
Wang 2017).

In this research, traditional data augmentation methods are applied to the training dataset
to artificially increase the number of training images and therefore improve the model. The data
augmentation transformations are randomly applied to the images repeatedly for each new batch
during the training process. The authors implement an established augmentation procedure,
AutoAugment, which was proposed by Cubuk etal. (2019a; b). The method executes a policy of
random image transforms that was optimized in previous research to maximize training
performance.

4.8. Training Parameters

Different sizes of the ResNet were trained and compared, which include ResNetl18, 34, 50,
101, and 152. The networks were trained with an early-stopping criteria such that the training is
stopped when there is no improvement in the validation score for 10 epochs. Each model was
trained separately until its stopping criteria was triggered. The batch size is set to include 16 images
per batch. The networks were trained using the Adam optimizer, which a well-established
stochastic optimization method for neural networks (Kingma and Ba2017). The loss function used
is binary cross entropy (BCE), as shown in Equations (1) and (2), whichis applicable for multilabel
classification problems. The loss uses logits from the neural network and internally applies

sigmoid activation as shown in Equation (3) (PyTorch 2025b). A positive weight (p) is assigned
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asthe ratio between negative and positive values for eachlabel separately, to address the imbalance

between positive and negative values.

loss = mean(l,) (D
I, = —(p yn loga(x) + (1 —y,,) -log(l — a(xn))) (2)
logo(x) =log (1 +1e‘x> )

4.9. Evaluation Metrics

Various metrics are used to evaluate the model for its classification performance. Due to
the high imbalance between positives and negatives in most labels in the dataset, special emphasis
is given to the balanced accuracy metric as it can tackle this imbalance. The following explains
the calculations of the metrics. Actual Positive (AP) and Actual Negative (AN) refer to the values
assigned in the labelling process, or the ground truth. Predicted Positive (PP) and Predicted
Negatives (PN) are the predicted outputs from the neural networks. By comparing the predicted
outcomes of the model with the ground truth, the outcomes of the models are assigned as True
Positive (TP), True Negative (TN), False Positive (FP), or False Negative (FN). Several metrics
can be calculated using TP, TN, FP, and FN. Accuracy is calculated as shown in Equation (4). The
accuracy results indicate the ratio of TP and TN the model can achieve. However, accuracy may
be misleading with unbalanced datasets such as in this dataset. True Positive Rate (TPR), True
Negative Rate (TNR) which is also called the specificity, False Positive Rate (FPR), and False
Negative (FNR) are calculated as shown in equations (5), (6), (7),and (8). It is important to ensure
that the FNR metric of the model, the type Il error, is low. FN implies that the model indicates that
there are no hazards on the grade crossings while there are hazards on the grade crossings, which
must be avoided. Balanced accuracy is calculated as shown in Equation (9). Balanced accuracy is
an important metric to note to the unbalanced nature of the dataset. Finally, the Predicted Positive
Rate (PPR) which is also called the precision, is calculated as shown in Equation (10) and the F;
score is calculated as shown in Equation (11). The F; score is the harmonic mean of precision and
recall. All the metrics are calculated for each model alternative and will be shown in the results

section.

TP+TN TP +TN 4)
AP + AN~ Total

Accuracy =
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L TP 5)
TPR (Recall or Sensitivity) = —

AP
TNR (Specificity) = ) ©)
p Y) =N
FP (7)
FPR (Type I Error) =—=1—TNR
AN
FN ®)
FNR (Type Il Error) = - 1—-TPR
TPR +TNR
Balanced Accuracy = — ©)
- TP TP (10)
PPV (Precision) = TP+ FP — PP
PPV X TPR _ _ Precision X Recall (11)

ES =2 =2
1ocore PPV + TPR Precision + Recall

5. Results and Analysis

In this section, the results present the outcomes of data collection and processing, training
and comparison of the models. The section is presented in the following sub-section (1) Dataset,
(2) Training, (3) Evaluation; and (4) Model Comparison.

5.1. Dataset

Images were collected from video streams of grade crossings. Duplicate images were
removed usingdeep learningas previously described in the methodology section. The images were
labelled manually. Ultimately, the dataset contained 4,947 labelled images, which include 4,699
real images and an additional 248 synthetic images added to improve increase the number of
images with infrequent labels. The dataset contains many images with a variety of objects and
scenes to improve the success of the training process. The distribution of the labels is shown in
Figure 6. Images can have more than one label, such that the model can perform multi-labelling,
The highest number of labels is associated with “Rail Track™ and “Train”. Many images with no
rails or grade crossings were included in the data set to increase the performance of the model. In
addition, it is noted that some labels are relatively infrequent compared to others, such as having

animals or bicyclists on grade crossings, compared to having vehicles on grade crossings. Such
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events are infrequent, and it is tedious to find enough images of those events. Still, they are
included in the dataset to investigate how the model will be able to handle those events. Overall,
the most critical labels such as vehicles or trains on grade crossings, and related to the grade
crossing gate and lights, have a suitable number of images with a relatively good balance between

positives and negatives.

label: Rail Track | I 269
label: Train I 3846
label: Grade Crossing NG 2048
label: Grade Crossing Gate Down I 1431
label: Red Light on Grade Crossing [INNEGGN 1360
label: Train on Grade Crossing NG 1248
label: Vehicle Waiting for Train N 738
label: Trailer IN415

label: Vehicle on Grade Crossing 261

Label

label: People on Grade Crossing M113
label: Bicyclist W95
label: Animals J93

label: Animal on Grade Crossing |23

0 500 1000 1500 2000 2500 3000 3500 4000
Number Images with Label

Figure 6. Count of labels.

An adjacent matrix of the labels is shown in Figure 7 and quantifies the number of images
associated with the label combinations. The diagonal represents the number of images for each
label, which matches the numbers in Figure 6. The non-diagonal represents the number of images
associated with at least the two labels matching the x-axis and the y-axis. It is again noted that
there are some label combinations that have a high number of associated images, which includes
the combinations of images associated with the following labels: grade crossing, rail track, grade
crossing gate down, train, red light on grade crossing, and vehicle on grade crossing. Other labels,
which as animals, trailers, animals on grade crossing, people on grade crossing, and bicyclists,
have relatively limited combinations. Some combinations, such as having animals and vehicles on
grade crossings at the same time, are non-existent. Such situations are highly infrequent relative
to others. This limitation may influence the performance of the model and will be evaluated later

in the results.
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Figure 7. Adjacency matrix represents the label relationships.

5.2. Preprocessing

The labelled images were further preprocessed. As mentioned in the methodology section,
all images were resized and cropped to have a heightand width of 200 pixels. This step was applied
to the entire dataset. During the training process, data augmentation steps were performed to
improve the performance of the model. The augmentation was performed using AutoAugment
(Cubuk et al. 2019a;b). Three examples of images are shown in in Figure 8. The image on the
right demonstrates a clear example of random rotation, which is one of the many random images

processing methods applied to the images. The images were then used to train and test the models.
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Figure 8. Example of Inputs into the Model.

5.3. Training/Validation/Testing

The data was split into training, validation, and testing with 70%, 15%, and 15%
respectively. Ten model alternatives were evaluated, which include transfer learning versions of
the ResNet 18, 34, 50, 101, and 152 by training all the layers and training the last layer only. All
models were trained separately with early stopping criteria triggered after no improvement in
testing score for ten epochs. The training, validation, and testing losses history is shown in Figure
9. The trends in the losses show that the models were trained successfully and reached their
stopping criteria. Table 3 shows that epoch number and losses at the epoch with the lowers testing
loss. The lowest training loss is associated with ResNetl52. However, the same model is also
associated with comparatively high validation loss in comparison with its train loss which may
indicate overfitting. This potential issue may be associated with wrong predictions in labels with
high weights, which is investigated further in the following subsection. The second-best model
consideringtrainingloss is the ReNet50 model. Ithas alow trainingloss compared to other models
except ResNetl52, and a comparatively acceptable validation loss compared to other models.
However, still, the training loss is very high compared to ResNet152. Analysis of the results based
on the loss values alone is not conclusive, especially considering that the evaluation is based on a
multi-labelling problem. Accordingly, more analysis is performed in the following subsection to
explore the multi-labeled performance on the models to evaluate all the models and select the best

performing model.
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Figure 9. Training (top) and testing (bottom) loss for all models.
Table 3. Epoch number and losses of the models.
Model Epoch Train Loss Validation Loss Test Loss
resnetl 8 31 0.1613 0.3845 0.2341
resnet34 54 0.2385 0.5032 0.3995
resnetS0 22 0.1572 0.2998 0.1859
resnet101 16 0.2789 0.5320 0.2589
resnetl152 55 0.0997 0.5386 0.2440

5.4. Model Comparison

The models are compared according to their balanced accuracy in respect to each label
separately. The results are shown in Table 4. The balanced accuracy metric has the advantage of
handling the class imbalance in each label. Itis important to evaluate the models in this research

using balanced accuracy compared to regular accuracy because of the high imbalance between
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positive and negative outcomes. The models have an acceptable balanced accuracy in most labels
exceed 85% and many exceeding 90%. Still, some labels, particularly “animal on grade crossing”
and “animal”, have a relatively very small number of positives which makes the results
inconsistent in those labels. Overall, it is seen that the ResNet152 model has the highest validation
accuracies in many labels compared to other models. Accordingly, based on the validation
balanced accuracy in this subsection, and the losses investigated in the previous subsection,

ResNetl52 is selected as the best performing model.

Table 4. Validation balanced Accuracy for all models.

Label Resnet Resnet Resnet Resnet Resnet
18 34 50 101 152

Rail Track 88.35% 87.65% 86.79% 88.41% 91.72%
Train 87.02% 82.70%  85.90% 84.00%  88.93%
Grade Crossing 92.81% 89.18% 91.38% 93.21% 93.72%
Grade Crossing Gate Down 92.83% 89.20% 92.81% 91.96% 94.13%
Red Light on Grade Crossing 92.32% 89.05% 92.69% 94.15% 95.02%
Train on Grade Crossing 87.88% 85.78% 88.67% 88.15% 89.93%
Vehicle Waiting for Train 91.85% 88.70% 90.28% 91.21% 93.92%
Trailer 95.28% 90.62% 94.98% 94.11% 94.04%
Vehicle on Grade Crossing 93.40% 91.57% 93.26% 93.90% 91.47%
Animals 94.54%  94.79% 95.28% 96.74%  92.61%
Bicyclist 95.57% 94.95%  92.79%  95.50%  92.58%
People on Grade Crossing 88.28% 90.93%  88.35% 92.82% 87.52%
Animal on Grade Crossing 99.32% 99.32%  99.32% 99.32%  99.32%
AVERAGE 92.27% 90.34% 91.73% 92.58%  92.69%

* Highest accuracy for label

5.5. Testing

The ResNetl52 model is selected as the best candidate model based on this validation

performance in the last subsections. However, since the validation performance was used for early
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training stop and for model selection. There is a need to test the model accuracy on an additional
testing set that is not used in the previous tasks. A testing set of 15% of the data was withheld for
this reason. The performance metrics from this testing set represent the performance of the model
on completely unseen data. Several metrics are calculated as previously explained in the
methodology section. The results are shown in Table 5 and continued in Table 6. The model has
an acceptable balanced accuracy, exceeding 90% in most labels. Notably, the model achieved a
balanced accuracy of 94% to detect vehicles at grade crossings. The F1 score is also shown in in
Table 6. While the F1 score is acceptable for many labels, it is also low for many other labels,
notably because they have a low number of actual positives. The F1 score is the harmonic mean
of the PPV (precision) and TPV (recall). In this case, it is affected by the low PPV in some labels.
The PPV is the ratio of TP to Predicted Positives (PP). The F1 score is therefore not considering
the ability of the model to identify TNs in a highly imbalanced dataset, which is reflected in the
balanced accuracy metric. Still, the low F1 score highlights the need for more positive images for

the labels with low F1 to improve the performance of the model.

Table 5. Testing metrics.

Label AP AN PP PN TP TN FP FN Total
label: Rail Track 645 98 611 132 605 92 6 40 743
label: Train 599 144 539 204 527 132 12 72 743
label: Grade Crossing 311 432 303 440 289 418 14 22 743
label: Grade Crossing Gate Down 229 514 227 516 212 499 15 17 743
label: Red Light on Grade 215 528 218 525 207 517 11 8 743
Crossing

label: Train on Grade Crossing 206 537 217 526 183 503 34 23 743
label: Vehicle Waiting for Train 118 625 114 629 106 617 8 12 743
label: Trailer 54 689 62 681 48 675 14 6 743
label: Vehicle on Grade Crossing 28 715 54 689 26 687 28 2 743
label: People on Grade Crossing 21 722 42 701 20 700 22 1 743
label: Bicyclist 15 728 27 716 14 715 13 1 743
label: Animals 13 730 33 710 12 709 21 1 743
label: Animal on Grade Crossing 2 741 10 733 2 733 8 0 743
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Table 6. Testing metrics (continued).

Accuracy TPR TNR FPR FNR PPV F1 Balanced

Accuracy
label: Rail Track 93.81% 93.80%  93.88% 6.12% 6.20% 99.02%  96.34% 93.84%
label: Train 88.69% 87.98%  91.67% 833% 12.02%  97.77%  92.62% 89.82%

label: Grade Crossing 95.15% 92.93%  96.76% 3.24% 7.07% 95.38% 94.14% 94.84%

label: Grade Crossing 95.69% 92.58%  97.08% 2.92% 7.42% 93.39% 92.98% 94.83%
Gate Down

label: Red Light on 97.44% 96.28%  97.92% 2.08% 3.72% 94.95%  95.61% 97.10%
Grade Crossing

label: Train on Grade 92.33% 88.83%  93.67% 6.33% 11.17%  84.33%  86.52% 91.25%
Crossing

label: Vehicle Waiting 97.31% 89.83%  98.72% 1.28% 10.17% 92.98% 91.38% 94.28%
for Train

label: Trailer 97.31% 88.89%  97.97% 2.03% 11.11%  77.42% 82.76% 93.43%

label: Vehicle on Grade 95.96% 92.86%  96.08% 3.92% 7.14% 48.15%  63.41% 94.47%
Crossing

label: People on Grade 96.90% 95.24%  96.95% 3.05% 4.76% 47.62% 63.49% 96.10%

Crossing
label: Bicyclist 98.12% 93.33%  98.21% 1.79% 6.67% 51.85%  66.67% 95.77%
label: Animals 97.04% 92.31%  97.12% 2.88% 7.69% 36.36%  52.17% 94.72%

label: Animal on Grade 98.92% 100.00%  98.92% 1.08% 0.00% 20.00%  33.33% 99.46%
Crossing

Considering that the goal of the mode is to identify hazards and avoid potential accidents,
it is important to avoid False Negatives (FN). A FN means that the model output indicates that
there are no hazards (such as vehicle, train, or bicyclist) of the grade crossing, while there is a
hazard on the grade crossing. This situation may result in an avoidable accident and must be
minimized. Accordingto Table 6 if can be seen as the False Negative Rate (FNR), which is the
type II error, relatively high in some labels. For the label “Vehicle on Grade Crossing”, the FNR
is 7.14%. Lowering the FNR of the model can be achieved by calibrating the threshold to consider
positives. However, this adjustment is a tradeoff that would increase FP. The need to evaluate the

thresholds of the modelis achieved by plottingthe Receiver Operating Characteristic (ROC) curve
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as shown in Figure 10. The ROC curve shows the TPR vs. FPR. It indicates the performance of

the classifiers using a variety using a range of threshold values. The ROC Area Under the Curve

(AUC) measures the performance of the model and can range from zero to one where a random

classifier would have a score of 0.5. The ResNetl52 model can achieve high AUC scores,

exceeding 0.96 in all labels, as shown in Figure 10, which indicates that the model has a good

performance considering various thresholds.
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Figure 10. ROC Curves.

Finally, a selection of successful examples of model outcomes is shown in Figure 11. The

examples depict that the model can correctly identify various situations in the images, such as

vehicles, humans, and traffic lights, in different scenarios, environments, and lighting conditions,

which achieves the goal of this research.
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Figure 11. Examples of model outputs.

6. Conclusion

The goal of this research was to investigate the application of Al and computer vision to
detect hazards at grade crossings. This goal was achieved by (1) collecting and labelling a large
dataset of images and (2) developinga CNN model using the collected dataset. Several versions
of the established ResNet model were adopted and finetuned. ResNetl 52 was selected as the best

candidate. Testing results indicate that the model has a high balanced accuracy, exceeding 90% in
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most labels. Notably, the model achieved a balanced accuracy of 94% to detect vehicles at grade
crossings. The model also has a high ROC AUC score exceeding 0.96 in all labels.

The contribution of this model is to improve safety at grade crossings by detecting hazards
using camera feeds. The model can use feeds from regular cameras including existing CCTV
cameras. Furthermore, the model is trained to handle any grade crossing with various scenarios,
lighting, and weather conditions. The model does not require human intervention to customize it
for new locations and can readily detect various hazards. Overall, the model is intended to be a
robust, cost-effective, and automated tool to monitor crossings.

This model can be implemented in several ways. First, the model can be deployed at high-
traffic grade crossings as an additional safety monitoring system. It may be connected to positive
train control systems to raise alarms when a hazardous situationis detected while a train is expected.
As such, the model may alert train crew and initiate stopping mechanisms. Second, the model may
be implemented to assist field inspectors to monitor hazards at crossings and report summary
statistics of hazardous events. The data may be further analyzed to identify high-risk crossings,
evaluate the effectiveness of safety plans, and to support decision making.

However, the limitations of the model are noted in some labels that have a very high imbalance
due to the low number of positives. These labels are associated with relatively infrequent cases
such ashavingbicyclists oranimals on grade crossings. Such limitations can be addressed in future
work by collecting more images for these labels or synthesizing the images. Furthermore, the
authors used ResNet as the based model. Other established or emerging models can be tested in

future work to pursue better performance.
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