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1. Introduction 

 Rail-Highway grade crossings pose a critical safety concern due to the risk of collisions 

between trains and vehicles or pedestrians. According to the US Department of Transportation 

(USDOT) and the Federal Railroad Administration (FRA), there were 2,246 incidents, 266 

fatalities, and 744 injuries in 2024 (US Department of Transportation 2024). 96% of rail-related 

fatalities in the past 10 years are linked to highway-rail grade crossings and trespassing (US 

Department of Transportation (USDOT) Federal Railroad Administration (FRA) 2025). There is 

a strong need to improve safety at grade crossings to eliminate fatalities, injuries, damage to 

property, and disruptions to rail operations. The rail infrastructure in the US is large, with 

approximately 140,000 miles of track (The American Society of Civil Engineers (ASCE) 2025). 

Considering the vast amount of grade crossings and the wide variety of conditions and traffic at 

each one, ensuring safety at all crossings is a difficult endeavor requiring lots of resources. Thus, 

there is an ongoing need for effective solutions to monitor grade crossings and prevent accidents.  

 Many safety measures have already been implemented at crossings. This includes warning 

signs, crossbucks, gates, and active warning devices such as bells and flashing lights. Additionally, 

active warning systems, such as gates, bells, and flashing lights, may be automated according to 

incoming train traffic. While these systems are essential and may be installed with site-specific 

criteria depending on traffic (Zayandehroodi et al. 2025), they do not detect vehicles and 

pedestrians. To address this need, many solutions have been proposed over the past decades to 

improve railway safety using different methods of sensing and detection. These solutions range 

from systems monitoring traffic or pedestrians to detecting hazards at crossings, stations, or 

railways. Many of the proposed systems use methods such as Light Detection and Ranging 

(LIDAR) laser detectors (Amaral et al. 2016) and radar systems (Hari Narayanan et al. 2011). 

Other proposed methods involve the use of cameras for video surveillance (Salmane et al. 2013; 

Sheikh et al. 2004; Shin et al. 2021; Zhang et al. 2018). The cameras used may be regular cameras, 

stereo cameras (Hosotani et al. 2009; Yoda et al. 2006), or thermal cameras (Vivek et al. 2023).  

 In later research, deep learning was introduced to detect hazards in videos. Deep learning 

enabled significant scientific and technological breakthroughs in many fields, including railway 

safety in general, monitoring of grade crossings, and monitoring traffic conditions at crossings 

(Guo et al. 2022; LeCun et al. 2015; Oh et al. 2022a). Advancing AI, Internet-of-Things, big data, 

robotics, and other innovative technologies are essential to modernize the railway infrastructure as 
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an intelligent system with active safety capabilities (Qin et al. 2023). Given that cameras are 

relatively inexpensive and robust, this research capitalizes on deep learning to detect hazards using 

video feeds from the cameras.  

 Overall, there is a need for a hazards monitoring systems that: (1) can be readily usable for 

any grade crossing, as opposed to being purpose built for a specific grade crossing or requiring 

setting customization to work properly; (2) can detect and classify various types of hazards and 

vehicles, which can be valuable for data collection towards supporting further operational analytics; 

(3) can function in any lighting (day or night), weather, and environment conditions; (5) is cost 

effective by using non-expensive equipment; and (6) is automated and requires no human 

intervention.  

 In previous research, the authors collected data for hazards at grade crossing and trained a 

neural network (Ali et al. 2024; Espinoza et al. 2024). However, the research was limited due to 

(1) the limited size of the dataset; (2) the scarcity of data for some labels; and (3) more 

experimentation was needed to try more advanced and established CNNs models. These 

limitations affected the accuracy of the model. Accordingly, this research continues the previous 

work performed to address limitations and explore methods to create better performing models for 

hazards detection such as rail crossings.  

2. Goal and Objectives 

 The goal of this research is to investigate the application of AI to automatically monitor 

grade crossings and detect hazards that may result in accidents. Such hazards may include vehicles, 

trailers, pedestrians, bicyclists, and animals on the grade crossing. The requirements of the 

resulting model include robustness by being able to detect various hazards, adapt to different 

crossings, and being functional under different lighting and weather conditions.  

 The goal of the paper is achieved by following two objectives. The first objective is data 

collection. Developing AI models requires large datasets for training. In the case of monitoring 

crossings, there is a need for a large dataset of images with labels indicating different conditions 

and hazards at crossings. The authors create a database of multi-labelled images relating to grade 

crossings and associated hazards. In previous research, the authors collected images and built a 

dataset (Ali et al. 2024; Espinoza et al. 2024). However, it was limited and struggled with scarcity 

of some labels. This research adds model images to it using real data and synthetic data.  
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 In the second objective, a deep artificial convolutional neural network is trained to detect 

hazards crossings. The authors experiment with an established computer vision classification 

model which is ResNet (He et al. 2020; Li et al. 2017; NVIDIA NGC 2023). Transfer learning is 

performed. Multiple model configurations are tested. 

 The model presented in this research is proposed as a robust and cost-effective solution 

that can use feeds from cameras installed at grade crossings and provide uninterrupted monitoring 

of safety hazards to raise warnings of hazards and record data logs for further analysis to improve 

safety at crossings.  

3. Background 

 Rail grade crossings are inherently a safety concern due to the risk of collision between 

trains and vehicles or pedestrians. An overview of the incidents, fatalities, and injuries over the 

past 20 years based on data from the USDOT (US Department of Transportation 2024) is shown 

in Figure 1. Many incidents are reported every year and result in injuries and fatalities. There is a 

need to reduce the number of accidents by exploring processes and innovative technologies to 

improve safety at crossings.  

 

Figure 1. Number of incidents, fatalities, and injuries at highway-rail grade crossing over the 
past 20 years. 
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Many grade crossings have already implemented safety measures to help prevent accidents. 

These measures include passive measures such as warning signs, crossing gates, flashing lights, 

and, in some locations, gatekeepers. However, a major flaw in these measures is their inability to 

account for human error. For instance, many impatient drivers ignore crossing gates and, in some 

cases, even drive into them to avoid waiting, which contributes to the many fatalities and casualties 

at level crossings (Starčević et al. 2016). In response, more active measures are being introduced 

to automatically detect hazards, secure crossings, and increase awareness.  

Given the number of unforeseen accidents with traditional methods, enhancing safety more 

actively at grade crossings is a major goal for rail operators and agencies. Many innovative 

methods and technologies have been proposed to improve safety at rail crossings. Previous 

research in this domain is summarized in Table 1. Proposed technologies involve the use of 

hardware such as depth or stereo cameras (Hosotani et al. 2009; Yoda et al. 2006), thermal cameras 

(Vivek et al. 2023), or in some instances, a combination of radars and cameras (Wang et al. 2024). 

Over the previous years with advances in computing, a combination of computer vision and deep 

learning has been used to improve the accuracy of detecting hazards and help with the current 

limitations of traditional methods. Computer vision, deep learning techniques, and a combination 

of both have gained traction in grade crossing safety research because of their increased accuracy 

and low cost, when compared to other technologies (Oh et al. 2022b). While traditional computer 

vision methods have been used to monitor movement through CCTV footage (Sheikh et al. 2004; 

Shin et al. 2021; Zhang et al. 2018), they often require manual fine-tuning and may struggle to 

generalize across different environments. In contrast, deep learning techniques, particularly 

convolutional neural networks, have recently gained traction because they can automatically learn 

complex patterns from large volumes of training data with minimal manual intervention 

(O’Mahony et al. 2020). Deep learning has led to many breakthroughs in speech recognition, 

natural language processing, and visual object recognition and detection (LeCun et al. 2015). 

Similarly, the railway industry has embraced deep learning. Because both traditional computer 

vision methods and deep learning have their strengths, recent research in railway safety has applied 

a combination of both in a plethora of scenarios. This includes monitoring of fall, slip, and trip 

incidents at stations, the automation of train stops operations, detection of incoming trains at level 

crossings, and the monitoring of traffic conditions near railway crossings (Alawad et al. 2020; 

Etxeberria-Garcia et al. 2020; Guo et al. 2022; Murshed et al. 2022). Convolutional Neural 
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Networks, a subset of deep learning, have also been used to detect defects in rail surfaces, monitor 

train vibrations, detect trespassing, and address several other railway safety challenges (Oh et al. 

2022a). While previous research has demonstrated success in detecting several types of hazards at 

rail grade crossings, these methods often face limitations related to cost, scalability, and limited 

environmental adaptability. In addition, many methods are associated with high initial costs to be 

implemented. While sensors are individually inexpensive, the cost of deploying and maintaining 

them across an entire rail network can be substantial. Moreover, sensors often struggle to detect 

hazards at greater distances. To address these issues, some researchers have proposed the use of 

pilot vehicles placed in front of trains to identify hazards. However, to keep this cost-effective,  

this solution is only being implemented on trains traveling to dangerous areas, leaving other trains 

vulnerable (Wang et al. 2024a). Some methods are also designed to detect only one type of hazard 

which is either pedestrians, vehicles, or incoming trains. This lack of versatility can be problematic 

in real-world settings, where multiple types of hazards may occur. Furthermore, many of these 

systems do not offer reliable monitoring under varying environmental conditions, adding to their 

lack of generalizability in real-world applications. To summarize, although many methods and 

technologies have been proposed in literature, there are some limitations that hinder their 

robustness and versatility. Deep learning is a promising method to overcome previous limitations. 

Accordingly, this research investigates the use of deep learning and computer vision for enhancing 

safety at grade crossings. 

Table 1. Overview of previous research. 

Reference Summary 

(Sheikh et al. 2004) Detection of moving objects in “danger zone” at grade 
crossings using video cameras and computer vision. 

(Yoda et al. 2006) Detecting pedestrians on grade crossings using a multi-
point stereo camera system at grade crossing corners. 

(Hosotani et al. 2009) Detecting pedestrians using a system of two stereo 
cameras at corners of crossings. 

(Hari Narayanan et al. 2011) Detection of railway obstructions using MIMO radars to 
mimic phased array radars in a cost-effective manner. 

(Salmane et al. 2013) 
Detection and tracking of objects using a video-based 
system to calculate the level of risk in hazardous 
situations at level crossings. 
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(LeCun et al. 2015) 
Discusses deep learning, how it works, how it has 
improved recognition systems, and the future of deep 
learning. 

(Amaral et al. 2016) Detection of obstacles at level crossings using 2D laser 
scanners to scan objects. 

(Zhang et al. 2018) Detection of near misses at railway-grade crossings 
using video surveillance and computer vision. 

(Alawad et al. 2020) 
Detection of fall, trip, and slip events at railway stations 
using a CNN-based computer vision framework for real-
time risk management. 

(Etxeberria-Garcia et al. 
2020) 

Explores the applicability of existing deep learning and 
visual odometry techniques in the railway domain. An 
autonomous train stop use case is suggested. 

(Shin et al. 2021) 

Detection of maintenance signs and maintenance 
workers on railways to enhance safety using existing 
tunnel-monitoring systems on trains and computer 
vision algorithms. 

(Guo et al. 2022) 
Assessment of traffic congestion conditions at railway 
grade crossings using computer-vision based object 
detection. 

(Oh et al. 2022a) Examines AI applications for railway safety, specifically 
deep learning approaches 

(Murshed et al. 2022) 
Automating level crossings by detecting incoming trains 
using computer vision and Raspberry Pi 
microcontrollers. 

(Vivek et al. 2023) 
Uses thermal imaging along with deep learning to 
improve detection of obstacles on railway tracks under 
various weather conditions 

(Greitans 2023) 

Presents a cost-effective obstacle-detection approach for 
level crossings using a combination of a radar and a 
camera that can perform reliably even in poor weather 
conditions. 

(Wang et al. 2024) 

Proposes using a small, self-driving vehicle equipped 
with a camera and sensors in front of trains traveling 
through dangerous areas to help detect anomalies and 
prevent accidents. 
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4. Methodology 

 This research capitalizes on deep learning methods to create a model that can detect hazards 

at crossings. This approach can be described in two major parts as shown in Figure 2: dataset 

creation: where data is collected, cleaned, and labelled; and model developed where several 

network designs are selected, trained, validated, and compared. The following subsection explains 

each part of the process in detail. 

 

Figure 2. Overview of the methodology. 

4.1. Data Collection 

 A large dataset of images was needed to train the model. In general, having more data leads 

to better model training and evaluation. The dataset is required to represent diverse situations that 

count happen at grade crossings. In addition, the images need to represent a variety of crossings 

with different scenarios, and lighting and weather conditions. The process of data collection started 

by downloading videos that are publicly available online such as a  YouTube channel called 

“Virtual RailFan, Inc.” (Virtual Railfan, Inc. 2023). Live streams were downloaded into video 

files with a resolution of 640 × 360 pixels. Considering that the videos have an unneeded large 

number of frames per second, the number of images collected was reduced by selecting one frame 

out of five. A Python package “ytb-dlp” was used to enable video downloading and conversion. 

An example of two frames is shown in Figure 3. 

 

Figure 3. Examples of frames extracted. 

Dataset Creation
•Data Collection
•Data Cleaning
•Labelling

Model Development
•Network Design
•Training and Validation
•Model Comparision
•Testing
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4.2. Data Cleaning 

 The frames collected in the previous step included many images that are repetitive and 

would create additional benefits to keep. For instance, there were many images where the grade 

crossings are empty. There was a need to remove duplicate images if they share a high degree of 

centrality. This was achieved by using an existing package called “Image Duplicator 

(Imagededup)” (Jain et al. 2019). The method relies on encoding images using a CNNS, namely 

MobileNetV3 (Howard et al. 2019). The encoded images are compared to finding duplicates based 

on a cosine similarity threshold between the encodings. In this research, a similarity threshold of 

95% was selected. This approach was tested and found to be effective in removing large numbers 

of duplicates.  

4.3. Synthetic Data 

 The data collected from camera feeds have some limitations due to the lack of images from 

some angles. In addition, there are some simultaneous conditions that do not occur often in real 

images. In general, collecting additional images with various situations and environments 

improves the quality of the dataset and ultimately the performance of a trained model. Additional 

images were collected as screenshots from a video game called train simulator. Several scenes and 

vehicles were simulated. The collected screenshots were added to the dataset from real sources, 

which serves to increase the variety of scenes and situations in the dataset. The images are highly 

realistic, offer various angles, and are intended to improve the performance of the model. Some 

examples are shown in Figure 4.  

 

Figure 4. Screenshots from train simulator video game. 
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4.4. Data Labelling 

 After collecting the dataset, the images were manually labelled according to the objects in 

each image. The authors selected 13 labels which are: Rail Track, Train, Grade Crossings, Grade 

Crossing Gate Down, Red Light on Grade Crossing, Train on Grade Crossing, Vehicle waiting on 

Grade Crossing, Trailer, Vehicle on Grade Crossing, People on Grade Crossing, Animals, 

Bicyclists, and Animal on Grade Crossing. The labels are nonexclusive, meaning that each image 

may have multiple labels, which creates a multi-label classification approach. The labels were 

manually assigned to each image. An open source software, Label Studio, was used to 

conveniently streamline the process of labeling the images (Label Studio 2023). The software is 

used to create and manage a database of labels to be used in the model development phase. 

4.5. Model Selection: ResNet 

 The authors selected an established and widely used CNN design, ResNet, short for 

“Residual Networks”, as the base of the model in this research. It was introduced in 2015 by He et 

al. (He et al. 2015, 2016). Traditional deep learning networks in early research suffered from 

increased training difficulties as the number of hidden layers is increase. In the ResNet design, an 

innovative approach was proposed by using repeating building blocks with residual shortcut 

connections, as shown in Figure 5 (Zhang et al. 2023). The addition of residual shortcuts reduces 

the training difficulty and results in better performance and generalization  (He et al. 2020; Li et 

al. 2017).  
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Figure 5. Building block in ResNet. 

 ResNet has been successfully used in many applications such as in medical image 

processing (Xu et al. 2023), facial expression recognition (Li and Lima 2021), pose estimating to 

reduce accidents involving field workers (Lee et al. 2023), improving construction site safety (Lee 

and Lee 2023), and many others. The model implemented in this research is based on ResNet V1.5 

and implemented in PyTorch (Imambi et al. 2021; NVIDIA NGC 2023). There are several versions 

of ResNet based on the number of building blocks and accordingly the number of parameter layers. 

The versions are ResNet 18, 34, 50, 101, and 152, which are all tested in this research and 

compared.  

4.6. Transfer Learning / Fine Tuning 

 Transfer learning describes that a model is trained for a task and then utilized for a different 

activity with some relevance to the former (Gupta et al. 2022). In other words, a model is trained 

to perform image classification as an example of a task, then the same model is later used to 

perform a different images classification task by modifying and retraining the model. Transfer 

learning has been successfully applied in many applications in the deep learning field, including 

for computer vision and others. For example, regarding ResNet, transfer learning has been 

successfully used with ResNet to achieve satisfactory model performance in classifying medical 
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x-ray images (Showkat and Qureshi 2022). Transfer learning offers many benefits in reusing pre-

trained models by requiring less training time and data while offering good performance and 

generalization.  

 Accordingly, pre-trained ResNet models are used in this research by modifying and 

training them for the purposes of this research. The weights for ResNet model used in this research 

were pre-trained using the ImageNet dataset (Deng et al. 2009). ImageNet is a large dataset with 

more than 14 million images. Previous researchers have trained the ResNet model with each set of 

layer configurations using the ImageNet dataset considering 1,000 outputs. The accuracies are 

shown in Table 2 (PyTorch 2025a) indicating high accuracy.  

 Since the models are trained with 1,000 classes, while the dataset in this research describes 

13 labels, the pre-trained networks are modified to accommodate that output requirement. The 

base ResNet models are designed such that the last layer is a fully connected layer with 1,000 

neurons. Accordingly, the last layer in the base models was modified to have 13 neurons which is 

the number of labels in this research, and the models were further trained to minimize the losses.  

Table 2. Accuracies of pre-trained models. (PyTorch 2025a) 

Model Dataset Top 1 
Accuracy 

Top 5 
Accuracy 

Number of 
Parameters 

ResNet18 ImageNet 1k V1 69.76% 89.08% 11.7M 

ResNet34 ImageNet 1k V1 73.31% 91.42% 21.8M 

ResNet50 ImageNet 1k V1 76.13% 92.86% 25.6M 

ResNet50 ImageNet 1k V2 80.86% 95.43% 25.6M 

ResNet101 ImageNet 1k V1 77.37% 93.55% 44.5M 

ResNet101 ImageNet 1k V2 81.89% 95.78% 44.5M 

ResNet152 ImageNet 1k V1 78.31% 94.05% 60.2M 

ResNet152 ImageNet 1k V2 82.28% 96.00% 60.2M 
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4.7. Data Preprocessing and Augmentation 

 Before data augmentation, all images were resized to have a height and width of 250 pixels 

and cropped to remove the borders into a height and width 200 pixels. This step reduced the size 

of the images to avoid the unneeded computational burden of processing high-definition images 

and is applied to the entire dataset once. During the training and testing, each batch processed by 

the neural network model undergoes further data preprocessing by normalizing the batch with a 

mean of 0.5 and standard deviation of 0.25.  

 One of the common problems in deep learning projects is the lack of data which may 

ultimately limit the performance of the trained models. Data augmentation is widely used to 

increase the amount of training data. Traditional data augmentation methods involve performing 

image transformation and color modifications. Transformations may include random translation, 

rotation, zoom, shear, etc. This approach is relatively easy to implement is proven to be successful 

in increasing training datasets (Chlap et al. 2021; Mikołajczyk and Grochowski 2018; Perez and 

Wang 2017).  

 In this research, traditional data augmentation methods are applied to the training dataset 

to artificially increase the number of training images and therefore improve the model. The data 

augmentation transformations are randomly applied to the images repeatedly for each new batch 

during the training process. The authors implement an established augmentation procedure, 

AutoAugment, which was proposed by Cubuk et al. (2019a; b). The method executes a policy of 

random image transforms that was optimized in previous research to maximize training 

performance.  

4.8. Training Parameters 

 Different sizes of the ResNet were trained and compared, which include ResNet18, 34, 50, 

101, and 152. The networks were trained with an early-stopping criteria such that the training is 

stopped when there is no improvement in the validation score for 10 epochs. Each model was 

trained separately until its stopping criteria was triggered. The batch size is set to include 16 images 

per batch. The networks were trained using the Adam optimizer, which a well-established 

stochastic optimization method for neural networks (Kingma and Ba 2017). The loss function used 

is binary cross entropy (BCE), as shown in Equations (1) and (2), which is applicable for multilabel 

classification problems. The loss uses logits from the neural network and internally applies 

sigmoid activation as shown in Equation (3) (PyTorch 2025b). A positive weight (𝑝𝑝) is assigned 
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as the ratio between negative and positive values for each label separately, to address the imbalance 

between positive and negative values. 

 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑙𝑙𝑛𝑛) (1) 

 ln = −�𝑝𝑝 𝑦𝑦𝑛𝑛  log𝜎𝜎(𝑥𝑥) + (1 −𝑦𝑦𝑛𝑛) ∙ log�1 −𝜎𝜎(𝑥𝑥𝑛𝑛)�� (2) 

 log𝜎𝜎(𝑥𝑥) = log �
1

1 + 𝑒𝑒−𝑥𝑥
� 

(3) 

4.9. Evaluation Metrics 

 Various metrics are used to evaluate the model for its classification performance. Due to 

the high imbalance between positives and negatives in most labels in the dataset, special emphasis 

is given to the balanced accuracy metric as it can tackle this imbalance. The following explains 

the calculations of the metrics. Actual Positive (AP) and Actual Negative (AN) refer to the values 

assigned in the labelling process, or the ground truth. Predicted Positive (PP) and Predicted 

Negatives (PN) are the predicted outputs from the neural networks. By comparing the predicted 

outcomes of the model with the ground truth, the outcomes of the models are assigned as True 

Positive (TP), True Negative (TN), False Positive (FP), or False Negative (FN). Several metrics 

can be calculated using TP, TN, FP, and FN. Accuracy is calculated as shown in Equation (4). The 

accuracy results indicate the ratio of TP and TN the model can achieve. However, accuracy may 

be misleading with unbalanced datasets such as in this dataset. True Positive Rate (TPR), True 

Negative Rate (TNR) which is also called the specificity, False Positive Rate (FPR), and False 

Negative (FNR) are calculated as shown in equations (5), (6), (7), and (8). It is important to ensure 

that the FNR metric of the model, the type II error, is low. FN implies that the model indicates that 

there are no hazards on the grade crossings while there are hazards on the grade crossings, which 

must be avoided. Balanced accuracy is calculated as shown in Equation (9). Balanced accuracy is 

an important metric to note to the unbalanced nature of the dataset. Finally, the Predicted Positive 

Rate (PPR) which is also called the precision, is calculated as shown in Equation (10) and the 𝐹𝐹1  

score is calculated as shown in Equation (11). The 𝐹𝐹1  score is the harmonic mean of precision and 

recall. All the metrics are calculated for each model alternative and will be shown in the results 

section. 

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝐴𝐴𝐴𝐴 + 𝐴𝐴𝐴𝐴 =

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  

(4) 
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 𝑇𝑇𝑇𝑇𝑇𝑇  (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) =
𝑇𝑇𝑇𝑇
𝐴𝐴𝐴𝐴 

(5) 

 𝑇𝑇𝑇𝑇𝑇𝑇 (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) =
𝑇𝑇𝑇𝑇
𝐴𝐴𝐴𝐴 

(6) 

 𝐹𝐹𝐹𝐹𝐹𝐹 (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐼𝐼 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸) =
𝐹𝐹𝐹𝐹
𝐴𝐴𝐴𝐴 = 1 − 𝑇𝑇𝑇𝑇𝑇𝑇 

(7) 

 𝐹𝐹𝐹𝐹𝐹𝐹 (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐼𝐼𝐼𝐼 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸) =
𝐹𝐹𝐹𝐹
𝐴𝐴𝐴𝐴 = 1− 𝑇𝑇𝑇𝑇𝑇𝑇 

(8) 

 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑇𝑇

2  
(9) 

 𝑃𝑃𝑃𝑃𝑃𝑃 (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 =
𝑇𝑇𝑇𝑇
𝑃𝑃𝑃𝑃 

(10) 

 
𝐹𝐹1𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2 

𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑇𝑇𝑇𝑇𝑇𝑇
𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑇𝑇𝑇𝑇𝑇𝑇 = 2 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  

(11) 

 

5. Results and Analysis 

 In this section, the results present the outcomes of data collection and processing, training 

and comparison of the models. The section is presented in the following sub-section (1) Dataset, 

(2) Training, (3) Evaluation; and (4) Model Comparison. 

5.1. Dataset 

 Images were collected from video streams of grade crossings. Duplicate images were 

removed using deep learning as previously described in the methodology section. The images were 

labelled manually. Ultimately, the dataset contained 4,947 labelled images, which include 4,699 

real images and an additional 248 synthetic images added to improve increase the number of 

images with infrequent labels. The dataset contains many images with a variety of objects and 

scenes to improve the success of the training process. The distribution of the labels is shown in 

Figure 6. Images can have more than one label, such that the model can perform multi-labelling. 

The highest number of labels is associated with “Rail Track” and “Train”. Many images with no 

rails or grade crossings were included in the data set to increase the performance of the model. In 

addition, it is noted that some labels are relatively infrequent compared to others, such as having 

animals or bicyclists on grade crossings, compared to having vehicles on grade crossings. Such 
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events are infrequent, and it is tedious to find enough images of those events. Still, they are 

included in the dataset to investigate how the model will be able to handle those events. Overall, 

the most critical labels such as vehicles or trains on grade crossings, and related to the grade 

crossing gate and lights, have a suitable number of images with a relatively good balance between 

positives and negatives. 

 

Figure 6. Count of labels. 

 An adjacent matrix of the labels is shown in Figure 7 and quantifies the number of images 

associated with the label combinations. The diagonal represents the number of images for each 

label, which matches the numbers in Figure 6. The non-diagonal represents the number of images 

associated with at least the two labels matching the x-axis and the y-axis. It is again noted that 

there are some label combinations that have a high number of associated images, which includes 

the combinations of images associated with the following labels: grade crossing, rail track, grade 

crossing gate down, train, red light on grade crossing, and vehicle on grade crossing. Other labels, 

which as animals, trailers, animals on grade crossing, people on grade crossing, and bicyclists, 

have relatively limited combinations. Some combinations, such as having animals and vehicles on 

grade crossings at the same time, are non-existent. Such situations are highly infrequent relative 

to others. This limitation may influence the performance of the model and will be evaluated later 

in the results.  
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Figure 7. Adjacency matrix represents the label relationships. 

5.2. Preprocessing  

 The labelled images were further preprocessed. As mentioned in the methodology section, 

all images were resized and cropped to have a height and width of 200 pixels. This step was applied 

to the entire dataset. During the training process, data augmentation steps were performed to 

improve the performance of the model. The augmentation was performed using AutoAugment 

(Cubuk et al. 2019a; b). Three examples of images are shown in in Figure 8. The image on the 

right demonstrates a clear example of random rotation, which is one of the many random images 

processing methods applied to the images. The images were then used to train and test the models.  
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Figure 8. Example of Inputs into the Model. 

5.3. Training/Validation/Testing 

 The data was split into training, validation, and testing with 70%, 15%, and 15% 

respectively. Ten model alternatives were evaluated, which include transfer learning versions of 

the ResNet 18, 34, 50, 101, and 152 by training all the layers and training the last layer only. All 

models were trained separately with early stopping criteria triggered after no improvement in 

testing score for ten epochs. The training, validation, and testing losses history is shown in Figure 

9. The trends in the losses show that the models were trained successfully and reached their 

stopping criteria. Table 3 shows that epoch number and losses at the epoch with the lowers testing 

loss. The lowest training loss is associated with ResNet152. However, the same model is also 

associated with comparatively high validation loss in comparison with its train loss which may 

indicate overfitting. This potential issue may be associated with wrong predictions in labels with 

high weights, which is investigated further in the following subsection. The second-best model 

considering training loss is the ReNet50 model. It has a low training loss compared to other models 

except ResNet152, and a comparatively acceptable validation loss compared to other models. 

However, still, the training loss is very high compared to ResNet152. Analysis of the results based 

on the loss values alone is not conclusive, especially considering that the evaluation is based on a 

multi-labelling problem. Accordingly, more analysis is performed in the following subsection to 

explore the multi-labeled performance on the models to evaluate all the models and select the best 

performing model. 
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Figure 9. Training (top) and testing (bottom) loss for all models. 

Table 3. Epoch number and losses of the models. 

Model Epoch Train Loss Validation Loss Test Loss 

resnet18 31 0.1613 0.3845 0.2341 

resnet34 54 0.2385 0.5032 0.3995 

resnet50 22 0.1572 0.2998 0.1859 

resnet101 16 0.2789 0.5320 0.2589 

resnet152 55 0.0997 0.5386 0.2440 

 

5.4. Model Comparison 

The models are compared according to their balanced accuracy in respect to each label 

separately. The results are shown in Table 4. The balanced accuracy metric has the advantage of 

handling the class imbalance in each label. It is important to evaluate the models in this research 

using balanced accuracy compared to regular accuracy because of the high imbalance between 
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positive and negative outcomes. The models have an acceptable balanced accuracy in most labels 

exceed 85% and many exceeding 90%. Still, some labels, particularly “animal on grade crossing” 

and “animal”, have a relatively very small number of positives which makes the results 

inconsistent in those labels. Overall, it is seen that the ResNet152 model has the highest validation 

accuracies in many labels compared to other models. Accordingly, based on the validation 

balanced accuracy in this subsection, and the losses investigated in the previous subsection, 

ResNet152 is selected as the best performing model.  

Table 4. Validation balanced Accuracy for all models. 

Label Resnet 
18 

Resnet 
34 

Resnet 
50 

Resnet 
101 

Resnet 
152 

Rail Track 88.35% 87.65% 86.79% 88.41% 91.72% 

Train 87.02% 82.70% 85.90% 84.00% 88.93% 

Grade Crossing 92.81% 89.18% 91.38% 93.21% 93.72% 

Grade Crossing Gate Down 92.83% 89.20% 92.81% 91.96% 94.13% 

Red Light on Grade Crossing 92.32% 89.05% 92.69% 94.15% 95.02% 

Train on Grade Crossing 87.88% 85.78% 88.67% 88.15% 89.93% 

Vehicle Waiting for Train 91.85% 88.70% 90.28% 91.21% 93.92% 

Trailer 95.28% 90.62% 94.98% 94.11% 94.04% 

Vehicle on Grade Crossing 93.40% 91.57% 93.26% 93.90% 91.47% 

Animals 94.54% 94.79% 95.28% 96.74% 92.61% 

Bicyclist 95.57% 94.95% 92.79% 95.50% 92.58% 

People on Grade Crossing 88.28% 90.93% 88.35% 92.82% 87.52% 

Animal on Grade Crossing 99.32% 99.32% 99.32% 99.32% 99.32% 

AVERAGE 92.27% 90.34% 91.73% 92.58% 92.69% 

* Highest accuracy for label 
 

5.5. Testing 

The ResNet152 model is selected as the best candidate model based on this validation 

performance in the last subsections. However, since the validation performance was used for early 
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training stop and for model selection. There is a need to test the model accuracy on an additional 

testing set that is not used in the previous tasks. A testing set of 15% of the data was withheld for 

this reason. The performance metrics from this testing set represent the performance of the model 

on completely unseen data. Several metrics are calculated as previously explained in the 

methodology section. The results are shown in Table 5 and continued in Table 6. The model has 

an acceptable balanced accuracy, exceeding 90% in most labels. Notably, the model achieved a 

balanced accuracy of 94% to detect vehicles at grade crossings. The F1 score is also shown in in 

Table 6. While the F1 score is acceptable for many labels, it is also low for many other labels, 

notably because they have a low number of actual positives. The F1 score is the harmonic mean 

of the PPV (precision) and TPV (recall). In this case, it is affected by the low PPV in some labels. 

The PPV is the ratio of TP to Predicted Positives (PP). The F1 score is therefore not considering 

the ability of the model to identify TNs in a highly imbalanced dataset, which is reflected in the 

balanced accuracy metric. Still, the low F1 score highlights the need for more positive images for 

the labels with low F1 to improve the performance of the model. 

Table 5. Testing metrics. 

Label AP AN PP PN TP TN FP FN Total 

label: Rail Track 645 98 611 132 605 92 6 40 743 

label: Train 599 144 539 204 527 132 12 72 743 

label: Grade Crossing 311 432 303 440 289 418 14 22 743 

label: Grade Crossing Gate Down 229 514 227 516 212 499 15 17 743 

label: Red Light on Grade 
Crossing 

215 528 218 525 207 517 11 8 743 

label: Train on Grade Crossing 206 537 217 526 183 503 34 23 743 

label: Vehicle Waiting for Train 118 625 114 629 106 617 8 12 743 

label: Trailer 54 689 62 681 48 675 14 6 743 

label: Vehicle on Grade Crossing 28 715 54 689 26 687 28 2 743 

label: People on Grade Crossing 21 722 42 701 20 700 22 1 743 

label: Bicyclist 15 728 27 716 14 715 13 1 743 

label: Animals 13 730 33 710 12 709 21 1 743 

label: Animal on Grade Crossing 2 741 10 733 2 733 8 0 743 
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Table 6. Testing metrics (continued). 
 

Accuracy TPR TNR FPR FNR PPV F1 Balanced 
Accuracy 

label: Rail Track 93.81% 93.80% 93.88% 6.12% 6.20% 99.02% 96.34% 93.84% 

label: Train 88.69% 87.98% 91.67% 8.33% 12.02% 97.77% 92.62% 89.82% 

label: Grade Crossing 95.15% 92.93% 96.76% 3.24% 7.07% 95.38% 94.14% 94.84% 

label: Grade Crossing 
Gate Down 

95.69% 92.58% 97.08% 2.92% 7.42% 93.39% 92.98% 94.83% 

label: Red Light on 
Grade Crossing 

97.44% 96.28% 97.92% 2.08% 3.72% 94.95% 95.61% 97.10% 

label: Train on Grade 
Crossing 

92.33% 88.83% 93.67% 6.33% 11.17% 84.33% 86.52% 91.25% 

label: Vehicle Waiting 
for Train 

97.31% 89.83% 98.72% 1.28% 10.17% 92.98% 91.38% 94.28% 

label: Trailer 97.31% 88.89% 97.97% 2.03% 11.11% 77.42% 82.76% 93.43% 

label: Vehicle on Grade 
Crossing 

95.96% 92.86% 96.08% 3.92% 7.14% 48.15% 63.41% 94.47% 

label: People on Grade 
Crossing 

96.90% 95.24% 96.95% 3.05% 4.76% 47.62% 63.49% 96.10% 

label: Bicyclist 98.12% 93.33% 98.21% 1.79% 6.67% 51.85% 66.67% 95.77% 

label: Animals 97.04% 92.31% 97.12% 2.88% 7.69% 36.36% 52.17% 94.72% 

label: Animal on Grade 
Crossing 

98.92% 100.00% 98.92% 1.08% 0.00% 20.00% 33.33% 99.46% 

 

Considering that the goal of the mode is to identify hazards and avoid potential accidents, 

it is important to avoid False Negatives (FN). A FN means that the model output indicates that 

there are no hazards (such as vehicle, train, or bicyclist) of the grade crossing, while there is a 

hazard on the grade crossing. This situation may result in an avoidable accident and must be 

minimized. According to Table 6 if can be seen as the False Negative Rate (FNR), which is the 

type II error, relatively high in some labels. For the label “Vehicle on Grade Crossing”, the FNR 

is 7.14%. Lowering the FNR of the model can be achieved by calibrating the threshold to consider 

positives. However, this adjustment is a tradeoff that would increase FP. The need to evaluate the 

thresholds of the model is achieved by plotting the Receiver Operating Characteristic (ROC) curve 
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as shown in Figure 10. The ROC curve shows the TPR vs. FPR. It indicates the performance of 

the classifiers using a variety using a range of threshold values. The ROC Area Under the Curve 

(AUC) measures the performance of the model and can range from zero to one where a random 

classifier would have a score of 0.5. The ResNet152 model can achieve high AUC scores, 

exceeding 0.96 in all labels, as shown in Figure 10, which indicates that the model has a good 

performance considering various thresholds. 

 

Figure 10. ROC Curves. 

 Finally, a selection of successful examples of model outcomes is shown in Figure 11. The 

examples depict that the model can correctly identify various situations in the images, such as 

vehicles, humans, and traffic lights, in different scenarios, environments, and lighting conditions, 

which achieves the goal of this research. 
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Figure 11. Examples of model outputs. 

6. Conclusion 

 The goal of this research was to investigate the application of AI and computer vision to 

detect hazards at grade crossings. This goal was achieved by (1) collecting and labelling a large 

dataset of images and (2) developing a CNN model using the collected dataset. Several versions 

of the established ResNet model were adopted and finetuned. ResNet152 was selected as the best 

candidate. Testing results indicate that the model has a high balanced accuracy, exceeding 90% in 
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most labels. Notably, the model achieved a balanced accuracy of 94% to detect vehicles at grade 

crossings. The model also has a high ROC AUC score exceeding 0.96 in all labels.  

The contribution of this model is to improve safety at grade crossings by detecting hazards 

using camera feeds. The model can use feeds from regular cameras including existing CCTV 

cameras. Furthermore, the model is trained to handle any grade crossing with various scenarios, 

lighting, and weather conditions. The model does not require human intervention to customize it 

for new locations and can readily detect various hazards. Overall, the model is intended to be a 

robust, cost-effective, and automated tool to monitor crossings.  

This model can be implemented in several ways. First, the model can be deployed at high-

traffic grade crossings as an additional safety monitoring system. It may be connected to positive 

train control systems to raise alarms when a hazardous situation is detected while a train is expected. 

As such, the model may alert train crew and initiate stopping mechanisms. Second, the model may 

be implemented to assist field inspectors to monitor hazards at crossings and report summary 

statistics of hazardous events. The data may be further analyzed to identify high-risk crossings, 

evaluate the effectiveness of safety plans, and to support decision making. 

However, the limitations of the model are noted in some labels that have a very high imbalance 

due to the low number of positives. These labels are associated with relatively infrequent cases 

such as having bicyclists or animals on grade crossings. Such limitations can be addressed in future 

work by collecting more images for these labels or synthesizing the images. Furthermore, the 

authors used ResNet as the based model. Other established or emerging models can be tested in 

future work to pursue better performance.  
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