

Exhibit F - UTCRS

UTC Project Information	on
Project Title	Effects of Vapor Grown Carbon Nanofibers on Electrical and
	Mechanical Properties of a Thermoplastic Elastomer
University	The University of Texas Rio Grande Valley (UTRGV)
Principal Investigator	Robert Jones, Ph.D., Mechanical Engineering (PI)
	Constantine Tarawneh, Ph.D., Mechanical Engineering (Co-PI)
PI Contact Information	Mechanical Engineering
	ENGR 3.246
	Dept. (956) 665-2394
	Office (956) 665-5019
	robert.jones@utrgv.edu
Funding Source(s) and	
Amounts Provided (by	Federal Funds (USDOT UTC Program): \$52,068
each agency or	Cost Share Funds (UTPA): \$14,628
organization)	
Total Project Cost	\$66,696
Agency ID or Contract	
Number	
Start and End Dates	November 2013 – December 2014
	This research developed a formulation of conductive additives for use
	in thermoplastic elastomers currently in use in railcar steering pads.
	Plain elastomers are insulators and prevent transmission of current
	from rail to frame to signal door or gate opening devices. In addition,
	the thermal insulating properties of these materials slow heat flow
Brief Description of	from bearings through the bearing adapter into the side-frame where
Research Project	it can be dissipated. Traditional conductive additives such as carbon
	black must be applied at high volume fraction and result in
	substantial increases in pad stiffness and degradation of pad
	durability. Carbon nano-fibers are extremely efficient conductive
	additives and can produce the desired conductivity at much lower
	concentrations and with less impact on mechanical performance.
Describe Implementation	Project achieved its goal of developing a combination of TPU and
of Research Outcomes	conductive polymer which met application requirements. The final

The University of Texas Rio Grande Valley / 1201 West University Drive / ENGR Portable 1.100 / Edinburg, Texas 78539-2999 +1 (956) 665-8878 Phone / +1 (956) 665-8879 FAX / railwaysafety@utrgv.edu / railwaysafety.utrgv.edu

(or why not	formulation involved the use of a lower stiffness TPU than that
implemented)	traditionally used in the application to allow for the stiffening effect
Place Any Photos Here	of the conductive additive. The minimum additive level which
	produced the necessary conductivity was determined and lab scale
	batches produced. The trial material was subjected to extensive small
	scale material testing including tensile testing, wear resistance,
	thermal stability, thermal conductivity, and impact. The formulation
	which was developed is currently in scale-up trials for use in a
	conductive pad. Development was necessarily done with laboratory
	scale equipment and transfer molding procedures due to limits on
	material quantity. Scale-up of the blending process has not been a
	problem and commercial quantities have been prepared. These have
	been successfully molded into conductive parts by transfer molding.
	However, commercial production requires use of plasticizing screw
	fed injection molding. If subjected to a high enough stress during
	melting, the material can lose conductivity as fibers fracture. This is
	the current technical barrier being addressed by the PI, working with
	commercial providers and members of the railroad research team at
	UTPA.
	Figure 1 Elastomeric Steering Pad Figure 2 Test Puck of Compounded TPU (Picture courtesy of Amsted Rail)
	The program produced a commercially viable conductive TPU
	formulation which can make the standard pad design conductive
	without changing the mechanical response of the pad/adapter
Impacts/Benefits of	system. In the process, the UTCRS also developed new capabilities for
Implementation (actual,	molding test quantities of material by transfer molding, acquired
not anticipated)	expertise working with nanofibers, and advanced the state of the art
	in understanding the effects of high fiber fractions on the behavior of
	elastomeric polymer systems. Production of material for field trials is
	underway as a first step before going into commercialization by the

	railroad industry.
	Furthermore, the work done in this area has resulted in a Master's Thesis entitled:
	 Basaldua, D., Effects of Vapor Grown Carbon Nanofibers on Electrical and Mechanical Properties of a Thermoplastic Elastomer," Master's Thesis, The University of Texas Rio Grande Valley, December 2014. [Link to PDF (6 MB)]
Web Links Report Project Website 	http://www.utrgv.edu/railwaysafety/research mechanical/2014/ conductive-railroad-bearing-suspension-element/index.htm