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ABSTRACT 

 

This research examines an automated impairment detection system positioned on a railcar 

capable of traversing multiple bridges along a track to aid in determining critical bridges that 

need to be inspected.  The technology and techniques presented are envisioned as a potential 

enhancement to current visual evaluation methods by providing system-wide trending data for 

human decision makers.  

 The objective of the research is to develop technology that will autonomously detect 

structural deflections in timber railroad bridges using data gathered from rail vehicles that cross 

the bridges.  This was accomplished by recording the behavior of a bridge and the motion of a 

railcar passing over bridge spans.  Artificial neural networks, a type of pattern recognition 

technology, were used to determine relationships between the bridge and vehicle behaviors.  The 

results of a finite element analysis were utilized to train the neural networks to recognize the 

patterns associated with the bridge and railcar motions.  Five different impairment conditions, or 

simulated deflection scenarios, were developed for the training process.  This allowed the 

networks to recognize the patterns correlating the railcar and bridge data streams.  Once the 

artificial neural networks were successfully trained, new vehicle motions from a field test were 

presented to the network and the corresponding bridge behavior was predicted.  The neural 

networks were accurate in predicting the maximum chord deflection to within 0.1 inches in 72% 

tested chords with improved accuracy at faster speeds. 
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NOMENCLATURE 

 

ak Vertical acceleration time history 

b Cross sectional width 

bk Bias 

b(t) Step function 

c Distance from the neutral axis to the extreme fiber of the beam 

𝑑2𝑦

𝑑𝑥2
 Curvature of beam’s neutral surface 

δl Average midspan deflection 

δnet Net deflection 

δtotal Total deflection 

DR Deflection ratio 

ξ Location of the load from the initial support 

ξ1 Distance from point load to end support 

E Modulus of elasticity 

f Acceleration time history 

fn Acceleration value at time n 

F, ℱ Fourier transform 

ℱ−1 Inverse Fourier transform 

h Cross sectional height 

ii Indicates East or West chord 

inm input node 

I Moment of inertia 

jj Indicates wheel path 

k Window size 

k Number of neurons 

l Number of outputs 

L Span length 

m Number of inputs 
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M(x) Bending moment at a location, x, from initial support 

n Current sample being considered 

N Number of time samples 

Nx Number of data points 

σm(x) Maximum flexural stress at a distance, x, from initial support 

outl Output from neural network system 

ρ Mass density 

π Mathematical constant 

P Load 

r2 Coefficient of determination 

s Current frequency being considered 

t Time 

ts Time step 

uk Linear combiner output 

v1 Work train velocity 

vk Transfer function input 

φ( ) Transfer function 

wkj Synaptic weights 

x Distance from initial support 

X Value on the X-axis 

Xi Starting data point 

y Deflection 

yk Output signal from neuron 
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 CHAPTER 1  

INTRODUCTION 

 

1.1 Introduction 

 Timber bridges constitute a significant portion of the total number of railroad bridges in 

the United States, accounting for approximately 20 percent of railroad bridges in some northern 

states and can range from 20 to 40 percent in southern states (Radford et al., 2000).  There are 

nearly 400 miles of timber bridge rail currently used in the United States, and make up roughly 

24% of all bridge rail (FRA, 2008).  Figure 1-1 shows a typical open deck timber trestle railway 

bridge consisting of bents, stringers, cross ties, and rails.  The rails are in direct contact with 

railcar wheels and are supported by cross ties.  The cross ties distribute the load from the rail to 

two chords of stringers, with each chord having four plies.  The stringers span across two bents, 

with half of the stringers in the chords being continuous over a specific bent.  A bent consists of 

a bent cap, piles, and pile bracing, and is responsible for distributing the load from the stringers 

to the ground.  

 

 

Figure 1-1: Open Deck Timber Trestle Railway Bridge 
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 Timber trestle railroad bridges need to be inspected frequently to ensure they can be 

operated safely.  The reason for frequent inspections is a majority of timber trestles have been in 

service for a long period of time while being exposed to increased axle loads and subjected to 

various environmental conditions.  Prior to 1970, railroads were commonly loaded with rail 

vehicles with up to 200 kip gross vehicle weight (GVW).  Axle loads have steadily increased and 

now allow 286 kip GVW for nearly all coal traffic (Martland, 2013).  On top of these load 

increases, the number of rail intermodal freight traffic has multiplied over the past 35 years.  The 

yearly volume of containers and trailers shipped on U.S. rail has risen from 3.1 million in 1980 

to 13.7 million in 2015 (AAR, 2016).  This corresponds to an increase of roughly 3 million 

containers and trailers shipped every decade.  Frequent applications of excessive loads can cause 

physical deflection in timber bridges, such as split stringers and crushed bent caps.   

 In addition to the increased loading, environmental factors also have a negative impact on 

the performance of timber bridges.  Insect infestations and wood rotting are a few of nature’s 

hazards that can be forced upon the structure.  A combination of harmful environmental 

conditions and increased axle loadings over a long time period has a detrimental effect on the 

structural behavior of a timber railway bridge.  

 

1.2 Objective 

 The traditional method of rating timber bridges involves manual inspections performed 

by trained professionals.  These qualitative visual inspections can become costly and timely due 

to the number of bridges that need to be monitored and the availability of the crew required for 

inspection.  Older timber bridges need to be inspected frequently to ensure deflections do not 

escalate into the failure of the structure.  To prevent a structural failure from occurring, all 
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significant deflections must be detected and repaired as quickly as possible.  The objective of this 

research is to develop a technique that is able to enhance these visual inspection methods through 

the implementation of technology that can detect structural deflections using data gathered from 

rail vehicles traversing timber bridges.  This technology will not only reduce the resources 

required to monitor timber bridges, but will also provide quantitative data regarding the health of 

the structure.   

 

1.3 Methodology 

 To accomplish the objective, a structural impairment detection system (SIDS) was 

created.  A SIDS monitors specific characteristics of a structure and relates the values to 

structural deflections.  The proposed SIDS uses pattern recognition capabilities of artificial 

neural networks to determine deflection in a timber railway bridge by analyzing data from a 

railcar crossing the bridge.  Neural networks are a nonlinear parallel processing system that use a 

method of learning to recognize patterns and trends composing a training data set (Haykin, 

1999).  The relationships learned from training can then be used to analyze similar data.   

 The success of the structural impairment detection system is highly dependent on the 

efficiency of the system of neural networks.  The networks must correctly use the input sensor 

data to determine the operating condition (deflection present) of the timber bridges.  A number of 

steps were followed to ensure the effectiveness of the SIDS:   

 

1. A finite element analysis was performed to determine the behavior of an undeflectiond 

timber railway bridge. 
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2. A number of structural deflections were imposed during the finite element analysis, and 

the change in behavior of the system was recorded.   

3. A system of sensors that were susceptible to changes in bridge behavior were mounted on 

a railcar.  An additional set of sensors were attached to the bridge to compare with the 

SIDS output. 

4. The competitive arrays of neural networks were trained to correlate patterns and trends in 

the bridge and railcar finite element analysis data streams to corresponding simulated 

deflections.   

5. The competitive array of neural networks were tested with new data sets from the test 

railcar and the results were compared to the corresponding recorded bridge behavior to 

determine the efficiency of the structural impairment detection system. 

 

 The developed SIDS uses a combination of finite element modeling, experimental 

testing, and artificial neural networks to determine the structural behavior of a timber railway 

bridge from a railcar data stream.  This is accomplished with a system of sensors specifically 

designed to detect changes in the system’s performance relating to bridge deflections.  This SIDS 

does not rely on a single sensor to determine an impairment location, but rather, it uses a number 

of sensors analyzed in unison to provide the structure’s overall health.   

 

1.4 Timber Railway Bridge Background 

 The proposed research presents a new method to monitor the structural health of a timber 

railway bridge, but there are a number of other number of other methods that have been 

developed in the past years to determine the health of timber bridges in service for prolonged 
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periods.  Emerson, et al. (1998) used ultrasonic waves to inspect and determine decay locations 

in timber members.  Morison, et al. (2002) used a form of impact testing while measuring the 

frequency response to locate deflections in a bridge.  Peterson and Gutkowski (1997) used a 

combination of these two techniques.  Global dynamic excitation was used to locate critical 

members in need of testing, and ultrasonic inspection evaluated the critical members.  Ritter 

(1990) and Wipf, et al. (2000) used accelerometers and displacement measurements to monitor 

the response of a timber bridge subjected to live loading.  Babcock, et al. (2006) used finite 

element analysis to quantify the effects of static loading on a laboratory sized timber bridge.   

 All of these techniques and visual inspections require an experienced individual or team 

of individuals with adequate monitoring equipment to be present at the bridge site.  Timber 

railway bridges are still commonly used form of freight and passenger transportation, and require 

an excessive amount of manpower to monitor to ensure the safety of those who travel on them.  

The interest in an inspection device located on a railcar traveling over a number of bridges has 

risen in the past years as technology has continued to improve.   

 Rakoczy, et al. (2015/2016) has done extensive research in recent years in developing 

methods to monitor timber bridges with various onboard devices.  The research was conducted at 

the Bridge Deflection Test Facility at the Transportation Technology Center near Pueblo, CO.  

The bridge tested was able to be modified to mimic various levels of deflection located in 

different spans.  Research included using a NUCARS dynamic computer simulation bridge 

model to simulate the response of a flexible bridge subjected to live train loading.  Another study 

used freight cars equipped with accelerometers and spring displacements, track geometry 

vehicles, and track deflection measurement vehicles as onboard impairment detection systems.  

Additional testing was conducted with T-18 test vehicle and a TUVX 001 loaded hopper 
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modified with an MRail system capable of determining rail deflections.  Testing also involved 

implementing track geometry testing attached to a passenger car.  The results of these studies 

showed promising results for using onboard measurements to locate deflections in a timber 

bridge at a testing facility. 

 One disadvantage of this research is it requires a sophisticated set of technology to 

determine bridge deflections.  Additionally, testing was not conducted on a timber bridge in 

service that had been exposed to a number of years of environmental hazards and continuous 

train loading.  In his Master’s thesis, Orsak (2012) conducted an analytical analysis of a bridge 

subjected to train loading.  The results showed 90% accuracy in determining the theoretical 

impairment condition imposed on the structure.  Story and Fry (2014) outlined a method for 

determining deflection present in members of a heel trunnion bascule bridge in service.  The 

process used a combination of finite element analysis, experimental measurements, and artificial 

neural networks to determine deflections in the bridge.  A similar technique was used to 

determine deflection present in a timber railway bridge in this research.   

 

1.5 Deflections in Timber Railway Bridges 

 Throughout its lifetime, a typical timber railway bridge is subjected to occasional health 

monitoring that leads to repairing individual members or replacing segments of the bridge.  

Upgrading parts or segments of a bridge can lead to structures that remain in service 

continuously for over 100 years (Peterson & Gutkowski, 1997).  Long service life and a number 

of physical and environmental factors negatively influence the bridge performance.  Frequent 

crossing of trains with increasingly large axle weight subjects the bridges to strenuous fatigue 

loading.  Additionally, most climates can cause the wood in the stringers, cross ties, and bents to 
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swell and possibly rot.  Other environmental hazards include insect infestations and attacks by 

various fungi that can degrade structural members.  Evaluating deflections in the timber bridges 

requires considering how each of these factures uniquely affects the bridge performance.     

 A physical factor that can influence bridge performance is frequent train fatigue loading 

that leads to cracks developing within the timber stringers.  Over time, the cracks propagate to 

the surface and spread longitudinally along the length of the stringer.  Once the crack reaches the 

surface and spreads, the stringer is said to have split.  A split stringer has a significantly lower 

flexural stress than an unimpaired member.   

 Figure 1-2 shows the simplified effects of a moving train load on a timber stringer.  The 

boundary conditions are approximated as simply supported with a pin or roller attached to either 

end.  The axle load from the train, P, is approximated as a point load located at a distance ξ from 

the first bent.  ξ increases as the train traverses the bridge.  This example neglects the effects of 

the preceding and following axle loads.   

 

 

Figure 1-2: Simply Supported Beam with a Moving Load 

 

 Figure 1-3 shows the bending moment, M, and flexural stress distribution at a distance, x, 

from the first support for a beam loaded as shown in Figure 1-2.  This loading places the top 
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surface of the beam in compression and the lower surface in tension.  Equation 1-1 provides a 

relationship between the bending moment and the maximum flexural stress, σm, in the beam.  

The calculation requires known cross sectional properties such as the distance from the neutral 

axis to the extreme fiber of the beam, c, and the moment of inertia with respect to the horizontal 

axis, I. 

 

 

Figure 1-3: Bending Moment and Flexural Stress in a Beam 

 

 
𝜎𝑚(𝑥) =

𝑀(𝑥)𝑐

𝐼
 

Equation 1-1 

 A split beam can be approximated by cutting the original beam along the neutral surface 

to obtain two separate beams as seen in Figure 1-4.  The height of each beam is now half of its 

original value, and causes the moment of inertia in each beam to become 1/8th of its initial 

amount.  The total moment resisted by each beam and their respective distances from the neutral 

axis to the extreme fiber are halved.  The flexural stress experienced by a split stringer then 

becomes two times larger than an unimpaired stringer.   
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Figure 1-4: Bending Moment and Flexural Stress in a Split Beam 

 

 In addition to the increased flexural stress in a split stringer, the moment of inertia 

available in each beam has been reduced by an 1/8th, or a total of 1/4th for the two beams acting 

together to resist the moment.  Overall, this causes a 75% theoretical reduction in the stringers 

ability to resist the train loads being applied to the bridge.  This value is larger than the 62.6% 

reduction in flexural rigidity measured during experimental testing (Orsak & Story, 2013).  The 

testing involved subjecting the stringer to four point fatigue loading and measuring the flexural 

rigidity of a timber stringer before and after the member splits.  The difference between the two 

values comes from the friction in the experimental split beam that was not accounted for in the 

theoretical analysis.  Additionally, the experimental beam may not completely separate into two 

distinct beams that were assumed during the numerical investigation.   

 Physical deflection experienced by stringers from repeated loading is a common cause of 

failure, but there are a number of environmental factors that also need consideration.  Insect 

infestations and rotting can create problems with the structures ability to resist load.  Humar, et 

al. (2006) exposed timber samples to various types of wood rot fungi.  The research showed that 

the modulus or elasticity of the untreated wood was reduced by 76% after being exposed to the 

rotting fungi over eight weeks.  The treated samples showed more resistance to effects of the 



 

 

10 

 

fungi, but there was still a significant reduction in the Young’s Modulus.  Rotting is one of the 

top causes of replacements for timber bridges because it will ultimately occur in wood subjected 

to various weather effects (Forsling et al., 2012).  Therefore, it is important to consider 

environmental hazards when analyzing deflections in timber specimen.   

 Experimental research has shown split stringers can reduce the moment of inertia of a 

timber beam by 62.6% and rotting can decrease the modulus of elasticity by 76%.  If both of 

these were to occur on a stringer in a worst case scenario, the flexural rigidity, EI, of the beam 

would be diminished by 91% of its original value.  Beam theory determines the effect of the 

reduced flexural rigidity on a timber stringer’s performance by examining the governing 

differential equation for an elastic curve shown in Equation 1-2.  This is a second order linear 

differential equation representing the curvature of a neutral surface.   

 

 𝑑2𝑦

𝑑𝑥2
=
𝑀(𝑥)

𝐸𝐼
 

Equation 1-2 

 

 Beam theory can be used with the simply supported beam with a moving load shown in 

Figure 1-2 to determine the equation for the bending moment shown in Equation 1-3.  M(x) is 

the bending moment of the beam at a distance, x, from the first support.  L is the length of the 

span and ξ is the distance of the moving load, P, from the first bent.  The pointed brackets 

represent a singularity function where the output is zero if the value inside is negative.   

 

 
𝑀(𝑥) =

𝑃(𝐿 − 𝜉)𝑥

𝐿
− 𝑃〈𝑥 − 𝜉〉 

Equation 1-3 
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 Equation 1-3 can be inserted into Equation 1-2 to obtain the equation of the elastic curve.  

The boundary conditions y(0)=0 and y(L)=0 can be applied to find the values of the integration 

constants.  The deflection of the beam at the midspan (L/2) for the moving load is provided in 

Equation 1-4.    

 

 
𝑦(𝐿/2) =

𝑃

6𝐸𝐼
(
1

2
(𝐿 − 𝜉)3 − 〈

𝐿

2
− 𝜉〉3 −

3

8
𝐿2(𝐿 − 𝜉)) 

Equation 1-4 

 

 Equation 1-4 shows the midspan deflection of the beam is dependent on the load, span 

length, load location, and flexural rigidity.  The flexural rigidity is inversely proportional to the 

deflection.  If the EI value were to decrease by 50%, the deflection for the load located in the 

same spot would theoretically double.  In a timber railway bridge, there are multiple members 

responsible for resisting load, so one deflectiond stringer wouldn’t have the same effect on the 

structure as seen in this theoretical example.  However, increased stringer deflections are good 

indication that there is deflection present in the bridge.   

 

1.6 Theoretical Axle Acceleration 

 Timber railway bridge midspan deflections are able to indicate deflections that may be 

present in a system.  If this value could be recorded over time, then bridge deflections could be 

detected in a timely manner.  However, implementing timber bridge deflection devices in every 

bridge in the U.S. would be a costly and time consuming expedition.  An ideal method would be 

to relate a measured deflection of the railcar to the midspan bridge deflection.  However, 

measuring the deflections of a moving object requires expensive equipment and specially trained 

personnel to operate it, so a simpler device is needed for this research.  There is a mathematical 
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relationship between the position of an object with respect to time and its acceleration.  

Accelerometers are relatively inexpensive devices that are used to measure vibrations and 

accelerations of moving objects.   

 The theoretical acceleration of a moving object on a bridge can be measured by 

examining the deflection of a beam.  Consider a simply supported beam with a moving point 

load, P, shown in Figure 1-5.  The moving load is once again the axle load of a train 

approximated by a point load on the beam.  The previous section described how to obtain the 

equation for midspan deflection for a moving load.  The same process can be used to find the 

deflection for any point, x, along the span and is shown in Equation 1-5. 

 

Figure 1-5: Simply Supported Beam with Moving Load P 

 

 
𝛿(𝑥) =

−𝑃𝜉1𝑥

6𝐿𝐸𝐼
(𝐿2 − 𝑥2 − 𝜉1

2) 
Equation 1-5 

 

 Determining the acceleration at the point load, P, require calculated the deflection at the 

same point.  Therefore, ξ is set to equal x, making ξ1 the span length, L, minus x.  Setting x equal 

to the product of velocity, v0, and time, t, gives the equation as a function of time.  The velocity 
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is assumed to have a constant horizontal value for this calculation.  After substituting in these 

values, the deflection as a function of time is given in Equation 1-6. 

 

 
𝛿(𝑡) =

−𝑃𝑣0
2

3𝐿𝐸𝐼
(𝐿2𝑡2 − 2𝐿𝑣0𝑡

3 + 𝑣0
2𝑡4) 

Equation 1-6 

 

 The second derivative of Equation 1-6 gives the vertical acceleration values as a function 

of time shown in Equation 1-7.  The equation can be transformed into a function of position by 

substituting time with x divided by velocity.  The acceleration as a function of the distance from 

the initial supports is provided in Equation 1-8.  

 

 
𝑎(𝑡) =

−𝑃𝑣0
2

3𝐿𝐸𝐼
(2𝐿2 − 12𝐿𝑣0𝑡 + 12𝑣0

2𝑡2) 
Equation 1-7 

 

 
𝑎(𝑥) =

−2𝑃𝑣0
2

3𝐿𝐸𝐼
(𝐿2 − 6𝐿𝑥 + 6𝑥2) 

Equation 1-8 

 

 The above equations show the location of the point load on the beam along with a 

number of parameters influence the theoretical acceleration.  These parameters include the 

magnitude of the load, the beam span length, and the flexural rigidity of the system.  Since the 

velocity of the point load is squared in the equations, it has a significant impact on the final 

acceleration value. 

 The acceleration measured by an axle on a moving railcar along with midspan bridge 

deflections was used to implement the SIDS.  A variety of speeds were considered to investigate 

the effect of speed on the impairment detection system.  Additionally, various degrees of 
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structural impairment were simulated by modeling the bridge in a computer simulation.  These 

factors were used in conjunction with a system of neural networks to identify patterns relating 

wheel path accelerations to bridge deflections.  The efficiency of the networks was a crucial 

factor in a successful SIDS implementation.   

 The following chapters of this dissertation provide further details about the development 

and testing of the SIDS.  Chapter 2 details the design and training of the system of artificial 

neural networks.  Chapter 3 provides the experimental testing procedure, while Chapter 4 defines 

the finite element analysis computer simulations.  Chapter 5 discusses the results of the artificial 

neural networks and Chapter 6 provides the conclusions and recommendations for future work.    
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 CHAPTER 2  

ARTIFICIAL NEURAL NETWORKS 

 

2.1 Artificial Neural Networks 

 The objective of this research is to develop technology that can estimate the condition of 

a bridge using data gathered from a vehicle that crossed the bridge.  Developing a technology 

capable of predicting the condition of a bridge using data from a vehicle crossing the bridge 

requires defining a relationship between the vehicle’s behavior and the bridge’s response.  This 

research employs a competitive array of neural networks to determine a connection between the 

vertical wheel path accelerations of a work train and the midspan deflections of the bridge it 

crosses.  

 Artificial neural networks consist of a system of virtual neurons that are able to imitate 

the cognitive abilities of living brain cells (Hagan et al., 1996).  Computing traditionally involves 

executing a specified series of programmed instructions to solve a problem.  Alternatively, 

artificial neural networks use information learned from examples to solve problems (Bishop, 

1994).  During a training phase, the networks are given a set of input and output data.  These 

networks use an iterative process to determine the relationship between the data.  When 

presented with new input data, the neural network can use the learned information to estimate the 

output.  Since neural networks learn from examples, they are able to establish relationships 

between data when little information is known about the system.   

 Analytical models can predict the behavior of complex, real-world system.  However, 

they require significant information about the system and intricate calculations.  In the case of a 

bridge, natural and man-made imperfection make it difficult to accurately determine material 
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properties, component wear, and member connections.  Additionally, complex interactions 

within the system make quantifying the dynamic loading of the bridge difficult.  Because they 

rely on trends rather than exact values, neural networks can analyze real-world, analytical 

problems with the absence of precise information (Bishop, 1994).  .   

 

2.2 History of Artificial Neural Networks 

 Artificial neural networks are a type pattern recognition technology capable of correlating 

a set of input data to output data.  They have evolved throughout history to their current state 

which has a number of practical applications.  In the late nineteenth century, researchers began 

investigating the use of a man-made neural system to solve problems (Priddy & Keller, 2005).  

Early work involved determining how neurons in the human brain process information.  The idea 

was further explored when Hebb (1949) developed a psychological learning rule to explain how 

neurons in the brain react when exposed to a stimulus.  Farley and Clark (1954) constructed the 

first digital artificial neural network with randomly organized neurons designed to perform a 

simple task.   

 Rosenblatt (1958) expanded upon the theories further by developing a hypothetical 

nervous system, referred to as a perceptron, capable of classifying patterns.  The research 

concluded that the efficiency of the perceptron could be improved by increasing the number of 

stimuli that the system has the opportunity to learn from.  The performance was also enhanced 

by increasing the number of neurons used in the process.   

 Werbos (1974) improved existing techniques by developing a new learning rule where 

the output from the network could be propagated back through the system to improve the results.  

When the propagation occurs, the synaptic weights of the system are modified to produce a new 
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output.  The process is iterated to minimize the error associated to the neural network training.  

This iteration allowed the data obtained from a dynamic model to have a better fit with real-

world samples.  This method, now referred to back propagation, is one the of most commonly 

used artificial neural network algorithms (Priddy & Keller, 2005).   

 These researchers set the baseline for the theory and motivation of present-day artificial 

neural network systems.  The ideas and theories have been continually modified over the years to 

construct the advanced models that are currently used today.   

 

2.3 Training Artificial Neural Networks 

 For the artificial neural network to begin learning the patterns in the data, they must first 

analyze training input and training output data.  The training input is the original data stream 

presented to the network.  The training output is a known value that establishes a target for the 

network to generate based on the input.   

 The training input and training output are used during a training process to help the 

neural networks operate efficiently.  This involves providing the arrays with a known input and 

output combination that allows them the best opportunity to learn the patterns comprising the 

data.  During the training process, the input training vectors are introduced into the neural 

network where they are multiplied by internal weights and then inserted into a transfer function, 

and produces a simulated output. Next, the error between this output and the training output is 

calculated.  If the error is above a given tolerance, the internal weights are adjusted, and the 

process is iterated until the error is deemed acceptable or other stopping criteria are met.  The 

process, shown in Figure 2-1, is called back propagation.  The training is considered successful if 

the final output produced by the network is similar to the target output from the bridge.   
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Figure 2-1: Artificial Neural Network Training Process by Back Propagation 

 

 The vertical wheel path accelerations obtained from the finite element analysis were 

chosen as the training input for the networks.  A wheel path refers to the motion of a particular 

axle as the train crosses the bridge.  The training output is the average chord midspan bridge 

deflection data obtained from a finite element analysis.  The finite element analysis procedure 

and results are provided in Chapter 4. 

 The training input and training output vectors, shown in Figure 2-2, include a number of 

test parameters.  In the input training vector, the v1 value provides the train velocity speed.  The ii 

and jj parameters indicate the position of the measured acceleration.  The accelerations measured 

over the east chord of the bridge are labeled i1 and i2 is the west chord.  The wheel paths of the 

recorded acceleration are referred to as j1 through j4.  The vertical acceleration time histories are 

labeled as a1 through a8.  For the training output vector, δ1 and δ2 refer to the average midspan 

deflections over the east or west chords of stringers, respectively.   
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Figure 2-2: Training Input and Training Output Vectors 

 

2.4 Artificial Neural Network Architecture 

 Artificial neural networks are complex mathematical systems that can be used for a 

variety of different purposes.  Understanding how a neural network system operates requires 

examining the architecture within the network.  The architecture consists of a number of hidden 

layers.  Each of these layers has a number of neurons relating to a transfer function.  Figure 2-3 

shows an example of an m-2-1 neural network system.  The system is referred to as m-2-1 

because it has m number of inputs, 2 neurons in the first and only hidden layer, and 1 output 

node.  This is just one example of a neural network system.  Artificial neural networks can have 

multiple hidden layers, each with a different number of neurons.   
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Figure 2-3: m-2-1 Neural Network System 

 

 Figure 2-3 shows the basic operating procedure of a neural network system. The m 

number of input nodes inserted into the neural system are labeled as inm.  Every input is 

multiplied by a unique synaptic weight, wkm, before being summed in each of the two neurons in 

the hidden layer.  The linear combiner outputs, uk, are added to a bias, bk, before they are inserted 

into a transfer or activation function, φ( ).  The bias can be thought of as an additional synaptic 

weight that is multiplied by an extra hidden input node with a value of 1.  The bias applies an 

affine transformation of the linear combiner output before it is inserted into the transfer function.  

The output signal from each neuron, yk, is multiplied by another set of synaptic weight and 

summed to produce the output from the neural network system, outl.   

 This neural network system is used in the training procedure explained in the previous 

section. The output from the neural network system would be compared to the training output.  If 

the error between the two data sets was determined to be too high, the system would use back 

propagation to adjust the synaptic weights and continue to repeat the procedure to minimize the 

error.   
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 Defining the number of hidden layers and neurons is one of the key features in 

constructing the neural network architecture.  Another is determining which transfer function 

would provide the best output.  The three transfer functions typically used in neural network 

architectures are the Threshold or Heaviside Function, a Piecewise-Linear Function, and a 

Sigmoid Function.  The input for the transfer function, vk, is the sum of the linear combiner 

output and the bias as seen in Equation 2-1.   

 

 𝑣𝑘 = 𝑢𝑘 + 𝑏𝑘 Equation 2-1 

 

 The limits of the Threshold Function are shown in Equation 2-2.  The output of the 

neuron is equal to 1 if the input is greater than or equal to zero, and zero for negative valued 

inputs.  This is known as the all-or-nothing property and is used in the McCulloch-Pitts Model 

(Haykin, 1999).  A visual representation of the Threshold Function is provided in Figure 2-4. 

 

 
𝜑(𝑣𝑘) = {

1, 𝑣𝑘 ≥ 0
0, 𝑣𝑘 < 0

 
Equation 2-2 
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Figure 2-4: Threshold Function 

 

 The Piecewise-Linear Function, expressed in Equation 2-3., has an output of 1 for an 

input greater than ½, and a value of zero for inputs less than – ½.  The output also increases 

linearly from zero to 1 for values between ± ½.  The Piecewise-Linear Function is shown 

visually in Figure 2-5.  The function represents a common case where the amplification factor in 

the linear region is set equal to 1.  In other specialized cases, the amplification factor can be 

adjusted.  For example, a very large amplification factor causes the range in the linear region of 

the inputs to decrease while the output range remains unchanged, resulting in an output similar to 

a Heaviside Function. 

 

 

𝜑(𝑣𝑘) =

{
 
 

 
 1, 𝑣𝑘 ≥

1

2

𝑣 +
1

2
,

1

2
> 𝑣𝑘 > −

1

2

0, 𝑣𝑘 ≤ −
1

2

 

 

Equation 2-3 
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Figure 2-5: Piecewise-Linear Function 

 

 The most commonly used activation function used in neural systems is the Sigmoid 

Function.  A Sigmoid Function can be represented by the logistic function provided in Equation 

2-4.  This function shows an s-shaped behavior that increases nonlinearly for values ranging 

from zero to 1 and is plotted in Figure 2-6.  This function can be modified by the addition of a 

slope parameter placed in the exponent.  Increasing the slope power towards infinity causes the 

plot to resemble a Threshold Function.  The slope of the line where the input is equal to zero has 

a value of the slope parameter divided by 4.   

 

 
𝜑(𝑣𝑘) =

1

1 + exp(−𝑣𝑘)
 

Equation 2-4 
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Figure 2-6: Sigmoid Function 

 

 All of these functions have outputs ranging from zero to 1.  It may also be necessary for 

the outputs to range from -1 to 1.  This is accomplished in the Threshold functions by setting 

negative values to -1 and positive values to 1.  Adjusting the Piecewise-Linear Function requires 

modifying the limits of the linear range from -1 to 1.  A hyperbolic tangent function is used as 

the Sigmoid Function if output limits between -1 and 1 are desired.   

 

2.5 Competitive Array of Neural Networks 

 The challenge with using artificial neural networks arises when determining the network 

architecture that will produce desirable results.  Neural network architecture consists of a number 

of hidden layers, and each layer has a specified number of neurons.  It also includes transfer 

functions and error criteria, and each of these parameters can affect the efficiency of the system.  

The effectiveness of artificial neural networks can be improved by having several networks 

compete for the chance to train on the input data stream (Hyland & Davis, 2002).  A competitive 

array of neural networks consists of a number of individual neural networks with unique 

architectures.  The training input vector is inserted into every network and each produces an 
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initial simulated output.  A comparator, an additional neural network, examines the simulated 

outputs and determines which network produced a result that was the most comparable to the 

target output.  Only the winning network will be allowed to train on the input through the 

adjustment of its internal weights.  Additionally, the comparator learns which network yielded 

this result and the corresponding input training vector related to this output.  This allows the 

comparator to analyze various inputs and determine the appropriate network in the system that 

would provide the most accurate results.   Figure 2-7 shows an example with neural network 2 

providing the best initial simulated output (indicated by the arrow from the comparator to 

network 2).  This winning network will be allowed to train using back propagation to produce a 

bridge condition vector similar to the target training output. 

 

 

Figure 2-7: Competitive Array of Neural Networks Training Process 

 

 The winning network is chosen by evaluating the dot product of the target training output 

unit vector and the unit vectors of the simulated training output from multiple competing 

networks.  The dot product of two unit vectors has a range from -1 to 1.  Unity specifies the 

vectors are in the same direction, while negative unity signifies opposite directions.  Therefore, 

the dot product closes to 1 is chosen as the winning network, and is allowed to continue training 

using back propagation.   
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 Figure 2-8 illustrates an example using the dot product of unit training vectors to 

determine which network produced the most similar simulated output.  In the example, neural 

network 2 produced the result closest to unity and is therefore the winning network.  Note that 

the simulated vector from neural network 3 has the smallest mean squared error, but produces the 

dot product furthest from unity.  Conversely, the second neural network has the largest mean 

squared error, but it produced the winning network.  This is due to the mean squared error 

determining which simulated output produced a vector location that was the closest to the target, 

while the dot product evaluation considers the patterns within each vector to determine the 

winning network.   

 

 

Figure 2-8: Dot Product Evaluation for Neural Network System 

 

2.6 Testing Artificial Neural Networks 

 Once neural networks have been trained to recognize the patterns within a provided set of 

input and output data, they can be tested with new data.  The testing done during this research 
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was conducted with wheel path acceleration experimental data provided in Chapter 3.  The 

performance of the artificial neural network system is related to the procedure used during the 

training process.  The more variation in patterns and trends learned while training will be 

reflected in the system’s ability to recognize new patterns.  This involves providing the network 

with the same initial input and output data set, and adding various degrees of noise to the results.   

 In addition to adding noise to a sample data set to create multiple variations, the training 

data sets can show different conditions.  The inputs and outputs used during this research 

included the behavior of a timber railway bridge and the corresponding railcar reaction as it 

crossed.  A bridge with various levels of deflection was used to train the artificial neural 

networks to determine the severity of impairment in the structure.   

 It is beneficial to provide different conditions for the neural networks to analyze during 

the training process as the networks learn to recognize the input and corresponding output 

patterns of five different impairment conditions described in Chapter 4.  After completing the 

training process, the operating phase shown in Figure 2-9 was conducted to test the networks.  

During this process, all internal weights have been established and the comparator network is 

presented with a new set of input data.  The comparator analyzes the signal and presents the data 

to a neural network that was trained with data containing similar patterns.  The networks 

generate the estimated average chord midspan deflection as the operating output of the system.  

The estimated deflections can be compared to experimentally measured deflections to determine 

the accuracy of the neural network method.  The capability of artificial neural networks to 

produce reliable results from the experimental data stems from its ability to generalize.  This 

means the networks can provide realistic outputs when presented inputs that were not seen 

during the training process (Haykin, 1999).   
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Figure 2-9: Neural Network Operating Phase 
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 CHAPTER 3  

EXPERIMENTAL TESTING 

 

3.1 Experimental Design 

 This research tested two 15 foot spans of Bridge , an open deck timber trestle railway 

bridge in service, to observe the bridge’s behavior under live loading.  Specific nomenclature 

defined each stringer according to its span, chord, and ply.  Figure 3-1 shows the nomenclature 

of the stringers and bents of Bridge .  Span 7 and span 8, the spans monitored during the tests, 

correspond to the 7th and 8th span crossed by a southbound train.  The western chord was labeled 

as chord 1 and the eastern chord was chord 2.  The ply numbering of the stringers increase from 

west to east. 

 

 
Figure 3-1: Bridge  Nomenclature 

 

 A work train consisting of two locomotives followed by two railcars, shown in Figure 

3-2, provided a dynamic load for bridge testing.  The two railcars were loaded with a large 

amount of steel to simulate the effects of a loaded railcar on the bridge.  These railcars are 
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typically used to determine to effectiveness of the weigh stations that the train would cross along 

its journey.  These railcars commonly travel across timber bridges making them ideal for 

employing the structural impairment technology. 

 

 

Figure 3-2: Work Train Crossing Bridge 

 

 Observing the motion of the train during loading required instrumenting four wheel 

paths.  A wheel path refers to the horizontal and vertical motion of an axle.  Research has shown 

that impairment detection works the most efficiently when monitoring two trucks connecting two 

separate railcars opposed to analyzing two trucks on a single railcar (Orsak, 2012).  Therefore, 

the two trucks connecting the two trailing railcars were instrumented to record the motion of the 

train. 

This configuration resulted in the longest consecutive load to be placed on a single span during 

the train loading.  The locations of the wheel paths with respect to the rest of the work train are 

shown in Figure 3-3.  Wheel path 1 was the first axle to enter a test span, and wheel path 4 was 

the last to exit. 

 

Figure 3-3: Work Train 
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 Data was collected with the work train traveling in the southbound direction at speeds 

ranging from 10 mph to 50 mph collected at increments of 10.  Table 3-1 shows each speed was 

repeated twice to provide multiple measurements for every test velocity.  Multiple speeds were 

employed during testing because previous numerical research by Orsak (2012) indicated that 

faster speeds were more accurate at detecting deflections using artificial neural networks. 

 

Table 3-1: Test Speeds 

Test Speed (MPH)

1 10

2 10

3 20

4 20

5 30

6 30

7 40

8 40

9 50

10 50  

 

3.2 Time Sync Apparatus 

 The motion of the wheel paths were observed with two different devices: photoresistors 

and accelerometers.  The photoresistors were used as wheel path positon sensors to track the 

horizontal progress of the axles as the train traversed the bridge.  A photoresistor will decrease in 

resistance while in the presence of light.  The devices were placed in dark tubes so they would 

not be affected by ambient light from the environment.  A 360 lumen flashlight was used to 

excite the photoresistors.  This excitation is seen as a spike in voltage in the results produced by 

the data acquisition systems.  The photoresistor devices and flashlights were placed on wooden 

posts that were located at bent locations.  Another photoresistor and flashlight combination was 
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magnetically attached to the work train.  The experimental setup for these devices is shown in 

Error! Reference source not found.. 

 

 

Figure 3-4: Photoresistor Experimental Setup 

 

 The photoresistors were constructed in the form of a Wheatstone bridge as seen in Error! 

Reference source not found..  The photoresistor was placed into one of the resistor spots, R, on 

the diagram while the other locations were filled with normal resistors.  The excitation voltage, 

Vin, supplied to the circuit was set to 10 V.  The resistances in the three resistors was setup to 

create a balanced bridge when the photoresistor was not in the presence of light.  This led the 

output voltage, Vac, of the system to read a value of zero when the device was in the dark.  Once 

the photoresistor was place in front of a light source, the resistance of the device was decreased, 

thus creating an unbalance bridge circuit. This imbalance was seen as an increase in the output 

voltage produced by the system.  The amount of voltage increase was proportional to the amount 

of light being measured by the photoresistor.  For example, there were higher voltage readings 

for direct sunlight compared to fluorescent lighting inside a building.   There was also an 

observable difference seen in the output when pointing the device at the ground and directly at 
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the light source.  Dark hollow tubes and high lumen flashlights were needed to allow these 

devices to be used properly in an outdoor setting.   

 

 

Figure 3-5: Wheatstone Bridge Circuit 

 

 These devices were required because there were two different data acquisition systems 

used during testing.  A portable Dewetron system was strapped to the work train to measure the 

vertical acceleration and photoresistor signals.  Additionally, a StrainBook was used to record 

the deflections and photoresistor signals from the bridge.  For the neural networks to operate 

efficiently, the time history of the accelerometers needs to match the time history of the string 

potentiometers.  The internal clocks could be manually set to the same time, but there is a factor 

of human error that needs to be accounted for.  If the time was off by as little as a half a second, 

the work train could travel nearly 37 feet for a 50 mph test.  The use of photoresistors narrowed 

this error down to inches for any speed.   
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 A photoresistor and flashlight were fastened to three posts and mounted above bents 

adjacent to the test spans.  A second photoresistor/flashlight combination was magnetically 

attached to the work train above wheel path 1.  The flashlights on the posts stimulated the 

photoresistors on the vehicle and vice versa.  This setup allowed the time wheel path 1 crossed 

each bent to be seen in the results, and was used to determine the velocity of the work train for 

each test.   

 

3.3 Deflection Measurement  

 String Potentiometers measured the deflection of each stringer.  String potentiometers act 

as variable resistors converting displacement changes to resistance changes.  These devices 

typically consist of a displacement cable, wire spool, rotational spring, and a sensor to monitor 

the motion.  The displacement cable extends from the shell of the device to attach to a moving 

object.  The other end of the cable wraps around a spool inside the device shell.  A torsional 

spring applies a small force to the spool to remove any slack in the cable.  The wiper remains 

stationary in the device shell and contacts the displacement cable in one location.   

 The circuit of the device consists of a supplied voltage, a resistor, and a grounding 

mechanism shown in Error! Reference source not found..  As the cable extends and retracts 

from the transducer, the wiper contacts the cable at a different location along its length.  The 

longer the effective length of the cable the higher the resistance in the circuit. As the resistance 

changes, the output voltage also changes.  The voltage change is linearly proportional to the 

length of the displaced cable.  
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Figure 3-6: String Potentiometer Circuit 

 

 String potentiometers were placed on the ground below the bridge.  The devices were 

mounted to steel plates to prevent them from sliding or lifting off the ground during testing.  The 

displacement cable was pulled out halfway from the device shell to capture both positive and 

negative deflections.  Stainless steel fishing line was used to connect the string potentiometer 

cables to a cup hook screwed into the bottom face of the stringers.  Since the tensile force was 

minimal, any change in the wire length was assumed to be negligible compared to the bridge 

deflection.  Error! Reference source not found. shows two rows of string potentiometers 

attached to the underside of the bridge stringers.   
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Figure 3-7: String Potentiometer Setup under Span 7 

 

 String potentiometers measured both the total and net midspan stringer deflections.  The 

locations of the string potentiometers on the two spans are shown in Error! Reference source 

not found..  The devices located in the center of the stringers record the total midspan stringer 

deflection while the sensors on the ends are used to calculate the net deflection.  The net 

deflection is an additional measurement that takes the settlement of the supports into account.  

The net stringer deflection is found by subtracting the average of a stringer’s north and south end 

deflections from the total deflection, as seen in Error! Reference source not found..   
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Figure 3-8: String Potentiometer Locations 

 

 
𝛿𝑁𝑒𝑡 = 𝛿𝑇𝑜𝑡𝑎𝑙 −

𝛿𝑁𝑜𝑟𝑡ℎ𝐸𝑛𝑑 + 𝛿𝑆𝑜𝑢𝑡ℎ𝐸𝑛𝑑
2

 
Equation 3-1 

 

 The net defection of a span differs from the total deflection of that span, as seen in 

Error! Reference source not found..  As a rail vehicle traverses the bridge, the stringers will 

deflect along the span, and the bents compress under the weight of the train.  In the figure, dave 

represents midspan deflection if the stringer remained completely rigid while the ends deflected.  

The average deflection and the deflection due to the stringer bending both contribute to the total 

midspan deflection, δtotal.  Thus, the net deflection, δnet, can be calculated by determining the 

difference between dave and δtotal.  The net deflection relates to stringer bending, and therefore 

provides a method for quantifying deflection in the beam.  
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Figure 3-9: Side View of Stringer Bending 

 

 A data acquisition system recorded the output voltage from the string potentiometers and 

converted it to a corresponding displacement measurement.  A sample rate of 1,000 Hz was used 

for all stringer deflection measurements during testing.  A large sampling frequency was required 

for this test because high speed railcar velocities were employed.   

 

3.4 Midspan Deflection Results 

 Error! Reference source not found. shows the time history of the total midspan 

deflection for span 7 of test 9.  The eight discernable peaks in the plot that correspond to a truck 

in the work train crossing the midspan.  The stringer plies in chord 1 (West chord) were plotted 

with solid lines, and dotted lines were used for chord 2 (East chord).  The four vertical lines in 

Error! Reference source not found. indicate the time each wheel path is positioned over the 

midspan.  The four stringers in chord 2 all have larger deflection values than those in chord 1.   
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Figure 3-10: Work Train Midspan Deflection Time History for Span 7 Test 9 

 

 Error! Reference source not found. modifies the time axis so it begins when WP1 

enters span 7 and ends when WP 4 exits the span.  The time axis for this plot is in sync with the 

wheel path vertical acceleration plots.  The photoresistor wheel path position sensors were used 

to synchronize these data sets.  To accurately compare the bridge deflections produced from the 

neural networks, the time axis of the data collected from the railcars needed to match the bridge 

deflection time axis.   

 

 

Figure 3-11: Work Train Total Midspan Deflection for Span 7 
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 Error! Reference source not found. shows the net midspan stringer deflection for span 

7 of test 9.  The net deflection takes into account the settlement of the supports, therefore the 

maximum values for each individual stringer has decreased compared to the total deflections.  

The two peaks corresponding to the instrumented trucks can be seen in these plots.  They occur 

after the first axle in the truck crosses the midspan but before the second axle reaches that 

location.   

 

 

Figure 3-12: Work Train Net Midspan Deflection for Span 7 

 

 Error! Reference source not found. indicates approximately how the stringers deflect 

across the cross section when the bridge is loaded with the railcar.  The figure shows that there is 

more deflection located in the east chord of stringers than in the west chord.  The value of the 

stringer deflection also increases from the westernmost stringer in each chord to the easternmost 

stinger.   
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Figure 3-13: Cross Sectional Stringer Deflection 

 

 A plot of the midspan stringer deflection values compared to their distance from the 

westernmost stringer at a time of 0.178 seconds is shown in Error! Reference source not 

found..  This period corresponds to the time at which wheel path 2 is positioned over the 

midspan of the test bridge.  The plot indicates that the stringers increase from west to east in a 

nearly linear manner.  The coefficient of determination, r2, for this plot is 0.987.  This indicates 

that there is a strong linear correlation between the midspan deflection values and the stringer’s 

respective location along the cross section.   

 

 

Figure 3-14: Stringer Cross Section Deflection at Time = 0.178 s 
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3.5 Deflection Ratio 

 There were five different work train velocities used during the experimental testing 

portion of the research.  The purpose of using various test speeds was to determine the effect of 

speed on the ability of the artificial neural networks to analyze the behavior of the bridge.  It was 

also observed how the differing velocities influenced the measured maximum deflection values.  

Error! Reference source not found. shows maximum average chord deflection values 

determined from each speed.  The average chord deflections were calculated by finding the mean 

of the four plies of stingers in each chord as seen in Error! Reference source not found..  The 

reason for using the average chord deflections for the comparison are twofold.  First, the average 

chord deflections are used as an output while training the artificial neural networks, and the 

comparison shows how speed affected the results.  Secondly, this measurement indicates how the 

four stingers in a bridge chord behave as a unit, and eases the process of comparing different 

spans, speeds, and sides of the bridge.   

 

 
𝛿𝑎𝑣𝑒 =

𝛿𝑝𝑙𝑦1 + 𝛿𝑝𝑙𝑦2 + 𝛿𝑝𝑙𝑦3 + 𝛿𝑝𝑙𝑦4

4
 

Equation 3-2 

 

Table 3-2: Maximum Average Chord Total Deflections 

Test 

 

Speed 

(mph) 

S7 C1 

(in) 

S7 C2 

(in) 

S8 C1 

(in) 

S8 C2 

(in) 

1 10 -0.395 -0.929 -0.385 -0.829 

2 10 -0.396 -0.926 -0.392 -0.841 

3 20 -0.398 -0.923 -0.382 -0.879 

4 20 -0.396 -0.929 -0.376 -0.886 

5 30 -0.422 -0.884 -0.387 -0.865 

6 30 -0.426 -0.884 -0.386 -0.877 

7 40 -0.427 -0.883 -0.399 -0.864 

8 40 -0.426 -0.901 -0.402 -0.865 

9 50 -0.430 -0.934 -0.411 -0.886 

10 50 -0.434 -0.941 -0.412 -0.885 
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 The table above provides the maximum average chord total deflection values measured 

for each test.  It also shows tests of the same speed have slightly different maximum values 

measured in each chord.  This occurs because there are slight differences in the actual velocity 

the work train was travelling, and wind speed and direction at the time of the test also influence 

the results.  In addition to the variation in values for similar speeds, the maximum values also 

tend to increase as the speed increases.  This behavior is not consistent for each chord, as there 

are instances where the measured deflection decreases in faster speeds.   

 One method of comparing the values measured in one speed to another is to use a 

deflection ratio.  The deflection ratio, DR, is calculated by dividing the maximum deflection 

measured at a specific speed by the maximum deflection at 10 mph as seen in Error! Reference 

source not found..  The 10 mph values were used as the denominator because this speed had the 

lowest values for each chord for a majority of the speeds.  It was closest the experiment came to 

a crawl speed, where the dynamic impacts seen in higher speeds would be minimized.  Since 

there are two values for each speed, these values were averaged before Error! Reference source 

not found. was calculated.  This allowed the DR for every speed the chords experienced to be 

determined.  The average DR for all speeds were calculated by averaging the values found from 

each chord.  The deflection ratio that was determined using this process is provided in Error! 

Reference source not found..  

 

 
𝐷𝑅 =

𝑀𝑎𝑥.𝐶ℎ𝑜𝑟𝑑𝐷𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑡𝑆𝑝𝑒𝑒𝑑𝑥

𝑀𝑎𝑥.𝐶ℎ𝑜𝑟𝑑𝐷𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑡10𝑚𝑝ℎ
 

Equation 3-3 
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Table 3-3: Total Defection Ratio 

Speed S7C1 S7C2 S8C1 S8C2 Average 

10 1.000 1.000 1.000 1.000 1.000 

20 1.004 0.998 0.976 1.057 1.009 

30 1.072 0.953 0.995 1.043 1.016 

40 1.077 0.961 1.032 1.035 1.026 

50 1.093 1.010 1.059 1.060 1.056 

 

 Error! Reference source not found. shows the deflection ratio for the chords and the 

average of the four values.  A trend in the DR results can be seen by examining the average value 

for each speed.  As the figure shows, the deflection ratio increases for faster speeds.  This implies 

the timber bridge maximum deflection also increases at higher speeds.  The difference between 

the largest speed and smallest speed maximum deflections amounts to less than 0.05 inches.  

While faster rail vehicle speeds also increases the deflection, the amount increased isn’t as 

significant as those seen from other factors.  The level of deflection in the bridge and the load of 

the rail vehicle both tend have a more meaningful impact on the bridge behavior.   

 

 

Figure 3-15: Total Deflection Ratio 
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 This process was also repeated for the measured net deflections calculated for the timber 

railway bridge.  Error! Reference source not found. shows the maximum average chord net 

deflections for all test speeds.  The results are similar to those obtained using the total chord 

deflections.  Slower test speeds tend to show smaller maximum values, while fast work train 

speed have larger deflection values.  The net deflection values measured in this test were found 

to be approximately half of the total deflection values.   

  

Table 3-4: Maximum Average Chord Net Deflections 

Test 

 

Speed 

(mph) 

S7 C1 

(in) 

S7 C2 

(in) 

S8 C1 

(in) 

S8 C2 

(in) 

1 10 -0.151 -0.561 -0.169 -0.431 

2 10 -0.153 -0.558 -0.174 -0.436 

3 20 -0.152 -0.558 -0.171 -0.457 

4 20 -0.149 -0.561 -0.164 -0.462 

5 30 -0.160 -0.533 -0.174 -0.453 

6 30 -0.162 -0.532 -0.171 -0.459 

7 40 -0.163 -0.539 -0.181 -0.450 

8 40 -0.163 -0.539 -0.182 -0.452 

9 50 -0.166 -0.574 -0.185 -0.463 

10 50 -0.168 -0.579 -0.186 -0.463 

 

 The net deflection ratio values are provided in Error! Reference source not found., and 

shown visually in Error! Reference source not found..  The average net deflection ratios 

calculated from this research were found to be slightly larger than the total deflection ratios.  For 

example, the 40 mph and 50 mph tests showed net DR values that were 0.78% and 1.42% larger 

than the total DR values.  The average net deflection ratio increased as the pace of the railcar 

quickened.  This is consistent with the results seen in the total deflection ratio plot.   
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Table 3-5: Net Deflection Ratio 

Speed S7C1 S7C2 S8C1 S8C2 Average 

10 1.000 1.000 1.000 1.000 1.000 

20 0.993 0.999 0.976 1.061 1.007 

30 1.059 0.952 1.005 1.053 1.018 

40 1.075 0.963 1.058 1.040 1.034 

50 1.103 1.030 1.081 1.070 1.071 

 

 

Figure 3-16: Net Deflection Ratio 

 

3.6 Vertical Acceleration Measurement 

 The vertical motion of the four wheel paths were monitored with uniaxial accelerometers.  

The accelerometers were magnetically attached to the side frame of the railcar truck just above 

the axle (Error! Reference source not found.).  This location was chosen to capture the motion 

of the wheels as the vehicle crossed the bridge.  The devices were placed on the side frame 

because the railcar itself is affected by vibrations that are dampened by the truck springs.  Eight 

accelerometers were used to capture the vertical motion of the vehicle axles.  There were two 

accelerometers placed on each wheel path with one device located on either side of the axle.  

This allowed for the acceleration to be measured on the east and west sides of the railcar. 
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Figure 3-17: Accelerometer Placement 

 

 A variable capacitance accelerometer was used to measure the wheel path accelerations 

during the experimental test.  A typical configuration for a variable capacitance accelerometer is 

shown in Error! Reference source not found..  This type of accelerometer consists of an 

inertial mass that is anchored to shell of the device by a material with a designed stiffness 

indicated by a spring in the figure.  There are two capacitor plates used in this general 

configuration.  One is mounted on the outside shell and will remain stationary when the 

accelerometer is subjected to motion.  The second capacitor plate is attached to the inertial mass 

and will move if the device accelerates.  

 

 

Figure 3-18: Capacitive Accelerometer General Concept 
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 The capacitance produced by the accelerometer is a function of the distance between the 

two capacitor plates.  As the distance between the plates decreases, the capacitance produced by 

the device will increase.  While at rest, the original distance between the plates, do, is steady and 

capacitance of the system is constant.  When the accelerometer is subjected to motion, the 

distance between the two plates, df, will also change, and the corresponding change in 

capacitance can be measured.  The effect of acceleration on the general configuration of a 

capacitive accelerometer is shown in Error! Reference source not found..  The change in 

capacitance can be calibrated to correspond to a change in the measured acceleration.   

 

 

Figure 3-19: Capacitive Accelerometer Subjected to Acceleration 

 

 The above figures show how a capacitance accelerometer measures acceleration using 

capacitance.  Accelerometers used in industry typically use a number of capacitor plates to 

measure acceleration values as seen in Error! Reference source not found..  In the figure, the 

inertial mass is connected to the shell of the accelerometer through a number of flexible spring 

legs.  There are also a number of capacitive plates that are connected to the mass and will move 

when the system accelerates.  Stationary capacitive plates are used to create a change in the 

output capacitance that can be related to a measured acceleration.  Using a number of plates in 
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this configuration will improve the accuracy of the measured acceleration to produce more 

reliable results.   

 

 

Figure 3-20: Variable Capacitance Accelerometer with Multiple Plates 

 

 The vertical acceleration of the 4 wheel paths on the work train were measured using 8 of 

these variable capacitance accelerometers.  The acceleration data plots for span 7 of the first 50 

mph test are given in Error! Reference source not found..  The four wheel paths (WP) are 

shown in separate plots.  The accelerometers positioned over the west chord, or chord 1, were 

plotted with a blue line and the east chord is indicated in red.  The time axis starts when wheel 

path 1 enters span 7 (or crosses over bent 7), and ends when wheel path 4 exits span 7 (or crosses 

over bent 8).  The time a wheel path is located over a bent is indicated in the plots with colored 

squares.  All acceleration data sets were filtered with a 100 point moving average.  This filter 

helps to reduce the effects of high frequency vibration caused by the train’s moving parts, and 

captures the vertical motion of the wheel paths. 
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Figure 3-21: Span 7 Test 9 Vertical Acceleration: WP1 (Top Left), WP2 (Top Right), WP3 (Lower Left), WP4 

(Lower Right)  

 

3.7 Accelerometer Filtering 

 All of the wheel path acceleration data signals presented in this research were filtered 

using a 100 point simple moving average.  The equation for implementing a moving average on 

a data set is shown in Error! Reference source not found..  Xi refers to the starting data point 

for the moving average filter, and Nx is number of points averaged.  A simple moving average is 

often used when analyzing the history of stock prices to better visualize trends within the data, 

but it has also been used to filter out excess noise from data sets.  For stocks, the moving average 

is calculated by determining the mean of the preceding Nx number of day’s final prices.  Once a 

new day begins, the mean is recalculated with the new Nx number of day’s closing prices.  The 

average moves with each new day, and the trend in the data can be observed.   
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𝑆𝑖𝑚𝑝𝑙𝑒𝑀𝑜𝑣𝑖𝑛𝑔𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =

𝑋𝑖 + 𝑋𝑖−1 +⋯+ 𝑋𝑖−(𝑁−1)

𝑁𝑥
 

Equation 3-4 

 

 A similar process was used to compute the moving average of the acceleration signals.  

The formula was adjusted slightly because the current method caused a phase shift in the filtered 

data.  The phase shift was corrected by starting the moving average N/2 points before the point 

of interest and stopping N/2-1 after the data point.  This placed the calculated mean 

approximately in the center of the moving average.  The original simple moving average and 

phase shift corrected plots compared with sin(2πX) and random noise is provided in Error! 

Reference source not found..  The figure shows the original moving average was able to 

determine the correct peak and trough values of 1 and -1 respectively.  The corrected plot shows 

accurate peaks as well as determining the X intercept values of 0, 0.5, and 1.  The final shape of 

the plot resembles the original sin(2πX) without noise. 

 

  

Figure 3-22: Simple Moving Average: Original (Left), Corrected (Right)  

 

 The moving average filter was chosen for its ability to determine original data signals in 

the midst of relatively larger noise values.  The reason it acts as an efficient filter is a simple 

moving average is finite impulse response low pass filter with a rectangular window.  This filter 
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keeps a majority of the lower frequency vibrations while lessening the effects of the higher 

frequency accelerations.  The motion of the axles as they cross the bridge is in the lower 

frequency range, and the larger frequencies arise from the moving parts of the railcar.  The 

smaller frequencies are of the most interest for this study, so a low pass filter is and adequate 

filtering method.  The process for implementing a finite impulse response filter with a 

rectangular window is summarized in the following.  An original unfiltered wheel path 

acceleration signal is provided in Error! Reference source not found..  The figure indicates 

acceleration spikes ranging approximately from -6g to 8g.  It is also difficult to discern any 

pattern within the data that may show the axle is traversing a bridge.  The excessive acceleration 

values accompanied by the lack of visible patterns and trends would make it difficult for the 

neural networks to analyze the data as it is.  A low pass filter was needed to help reduce the 

effects of the high frequency accelerations.   

 

 

Figure 3-23: Unfiltered Wheel Path Acceleration Signal 

  

 To apply the finite impulse response filter, the acceleration must be converted from the 

time domain to the frequency domain using a Fourier transform, F or ℱ.  The equation for a 
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Fourier transform is given in Error! Reference source not found..  N is the number of time 

samples, n is current sample being considered, fn is the acceleration value at time n, and s is the 

current frequency being considered.  The acceleration signal transformed in to the frequency 

domain is shown in Error! Reference source not found..  The figure shows there are relatively 

large spikes in the 150, 275, and 375 frequency ranges.  The accelerations related to the motion 

of the railcar and the natural bridge movement are considerably less than these values, so the 

effects of the larger frequencies needed to be dampened.   

 

 

𝐹(𝑠) = ℱ{𝑓(𝑡)} =∑ 𝑓
𝑛
𝑒
−𝑖2𝜋𝑠𝑛
𝑁

𝑁−1

𝑛=0

 Equation 3-5 

 

 

Figure 3-24: Acceleration Signal in the Frequency Domain 

 

 The finite impulse response filter is applied by multiplying the frequency domain of the 

acceleration signal by the frequency domain of a rectangular step function.  The step function, b, 

as a function of time, t, is defined in Error! Reference source not found..  The function is also 

dependent on the specified window size, k, and time step, ts.  The rectangular step function is 
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plotted in Error! Reference source not found..  The window size chosen for this acceleration 

signal was 100 and a time step of 0.001.  Thus, the plot begins at a 1/k value of 0.01 before 

dropping to zero at 0.099 s.  The rectangular shape of the plot can be observed in the figure.   

 

𝑏(𝑡) = {
1

𝑘
, 0 < 𝑡 < (𝑘 − 1) ∗ 𝑡𝑠

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 Equation 3-6 

 

 

Figure 3-25: Rectangular Step Function 

 

 The rectangular step function is then transformed from the time domain to the frequency 

domain using the Fourier transform function in Error! Reference source not found..  The step 

function in the frequency domain is plotted in Error! Reference source not found..  The plot 

begins with an amplitude of 1 and exponentially approached zero at higher frequencies.  The plot 

also spikes towards zero in intervals of 10 Hz along the length.  This interval is dependent on the 

window size used for the filter.  The distance between the downward spikes will decrease as the 

window size increases and vice versa.  Therefore, the window size affects how quickly the plot 

will exponentially approach zero.   
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Figure 3-26: Rectangular Step Function in the Frequency Domain 

 

 The acceleration signal is filtered by multiplying the frequency domain of the 

acceleration signal by the frequency domain of the rectangular window step function.  The 

filtered acceleration signal in the frequency domain is shown in Error! Reference source not 

found..  The new figure appears similar to the rectangular step function in the frequency domain 

with the main difference occurring in the peak amplitude values.  The filter also effectively 

lowered the amplitudes of the frequencies in excess of 100 Hz.   

 

 

Figure 3-27: Filtered Acceleration in the Frequency Domain 
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 The filtered acceleration frequency data was then converted back to the time domain 

using the inverse Fourier transform (ℱ−1) shown in Error! Reference source not found..  

Similar to a simple moving average, the finite impulse response filter has a slight phase shift that 

occurs during the procedure.  The phase shift can be corrected by using Error! Reference 

source not found..  The filtered acceleration signal in the adjusted time domain resulting from 

the inverse transform is shown in Error! Reference source not found..  There are now 

observable peaks and troughs in the data that indicates the railcar traversing the bridge.  The 

amplitudes of the peaks and troughs now range from 0.25g to -0.3g.  This is a significant 

reduction in the 8g and -6g spikes observed in the unfiltered data. 

 

 

𝑓(𝑡) = ℱ−1{𝐹(𝑠)} =
1

𝑁
∑ 𝐹𝑠𝑒

𝑖2𝜋𝑠𝑛
𝑁

𝑁−1

𝑠=0

 Equation 3-7 

 

 
𝑡𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑡 −

𝑘 − 1

2𝑁
 Equation 3-8 

 

 

Figure 3-28: Filtered Wheel Path Acceleration Time History 
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3.8 Vertical Acceleration Speed Comparison 

 In addition to observing how differing work train velocities affected the behavior of the 

bridge, the vertical wheel path accelerations from the vehicle were also compared.  Error! 

Reference source not found. shows the maximum measured acceleration for each test, span, 

and chord of the bridge.  The maximum value was determined during the period of time in which 

the axle containing the accelerometer was traversing the span.  Since there were four 

instrumented wheel path axles crossing each chord for every test, these values were averaged to 

give the values seen in the table.   

 

Table 3-6: Maximum Vertical Acceleration Speed Comparison 

Test 

 

Speed 

(mph) 

S7 C1 

(g) 

S7 C2 

(g) 

S8 C1 

(g) 

S8 C2 

(g) 

1 10 0.026 0.034 0.058 0.046 

2 10 0.033 0.046 0.026 0.063 

3 20 0.106 0.088 0.085 0.104 

4 20 0.051 0.086 0.077 0.115 

5 30 0.120 0.207 0.186 0.174 

6 30 0.106 0.138 0.179 0.148 

7 40 0.131 0.252 0.107 0.203 

8 40 0.108 0.161 0.117 0.196 

9 50 0.211 0.240 0.236 0.233 

10 50 0.186 0.296 0.249 0.241 

 

 Error! Reference source not found. provides the maximum acceleration values for 

every test, span, and chord monitored during the experiment.  A majority of the tested spans 

show chord 2 or the east side of the bridge experienced larger accelerations than chord 1.  This 

behavior can also be seen in the maximum chord acceleration data shown in Error! Reference 

source not found..  These values were determined by averaging the maximum accelerations of 

both chords for all test speeds.  This table shows that chord 2 tends to have a larger peak 
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acceleration than chord 1 for all vehicle velocities.  This behavior is related to maximum 

deflections observed in the previous section.  The east side of the test bride experienced larger 

deflections than the west, and this uneven behavior is detected in the acceleration data.  The 

maximum acceleration values also see significant increases as the work train speed increases.  

There were slight increases in deflections with changes in speed, but none were as dramatic as 

those seen in Error! Reference source not found..  The wheel path acceleration values are 

largely dependent on the velocity of rail vehicle, and also have the ability to distinguish various 

levels of bridge deflections based on this data.   

 

Table 3-7: Maximum Average Chord Acceleration Comparison 

Speed 

(mph) 

Chord 1 

(g) 

Chord 2 

(g) 

10 0.036 0.047 

20 0.080 0.098 

30 0.148 0.167 

40 0.116 0.203 

50 0.220 0.252 
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 CHAPTER 4  

COMPUTER SIMULATION 

 

4.1 Finite Element Mesh 

 A finite element analysis using LS-Dyna computer software was used to simulate the 

field test results and train the artificial neural networks.  Error! Reference source not found. 

shows a five span finite element mesh and the corresponding simulated train travel direction.  

The third span was used to calculate the total and net midspan stringer deflections.  This span 

was chosen because it is influenced by loads placed on the adjacent spans.  Five spans were used 

for this analysis because the length from wheel path 1 to wheel path 4 is greater than the span 

length of the bridge.  The trailing wheel path would be positioned in span 1 while the leading 

wheel path enters the span of interest.  Five spans are able to account for the effect of every axle 

load on the behavior of the bridge.   

 

 
Figure 4-1: Five Span Finite Element Mesh 
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 The mesh consists of rails, cross ties, and stringers modeled with linear elastic Hughes-

Liu beam elements with cross sectional integration and were connected with discrete beam link 

elements shown in Error! Reference source not found..  The structural properties of these 

elements are similar to those from the open deck timber railway bridge used during testing and 

are provided in Error! Reference source not found..  Each stringer covered two spans and 

included staggered continuity seen in the test bridge.  Error! Reference source not found. 

shows stringers 2 and 4 of the western (top) chord are continuous over bent 5, and stringers 1 and 

3 show two stringers meeting at slightly translated locations.  Similar observations can be made 

about the stinger in the eastern (lower) chord except the opposite stringers are continuous.   

 

 

Figure 4-2: Finite Element Mesh (Zoomed) 
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Table 4-1: Material Properties 

 

 

 The reaction of the bents were simulated with a link element fixed at one end and 

attached to the stringers at the other.  This was needed because a simply supported boundary 

condition caused excessive midspan uplift values when a load is applied to an adjacent span.  

This phenomenon was not witnessed in the experimental bridge deflection data.  Additionally, a 

fixed support restrained the bent such that no effect from the adjacent loading was seen on the 

midspan.  A support that lies between these two common boundary conditions was needed to 

accurately depict the behavior observed during experimental testing.  The rotational stiffness of 

the links were adjusted such that there would be a slight uplift in the midspan deflection results.  

Additionally, the longitudinal stiffness of the elements were adjusted to account for the support 

settlement seen in the field test.   

 

4.2 Simulated Loading 

 The vehicle load was simulated with nodal masses that were ramped up and down at 

wheel locations of the moving work train.  Since the two trucks connecting the railcars were 

instrumented with motion devices, only the connection seen in Error! Reference source not 

found. was analyzed.  The two railcars were filled with steel scrap metal.  However, the total 

weight of these cars was unknown, so an assumed value of 80 kips per axle was used for the 

leading truck and 86 kips per axle for the trailing truck.  The effects of the remaining six trucks 

were assumed to have a negligible impact on the behavior of the wheel path acceleration and 

Material E b h E*Ihoriz ρ

(kip/in
2
) (in) (in) (kip*in

2
) (kip*s

2
/in

4
)

Stringer 1100 8 16 3003733 3.28E-08

Cross Tie 1100 7 8 328533 3.28E-08

Rail 29000 3.2 5.7 1419689 7.35E-07
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midspan deflection, so they were neglected from the analysis.  Additionally, it was assumed the 

wheel remains in direct contact with the rail.  Therefore, the wheel path accelerations were 

approximated with vertical acceleration values of the rail at wheel locations.   

 

 

Figure 4-3: Simulated Railcar Loading 

 

4.3 Applied Damping 

 A global damping value was applied to the bridge during the finite element analysis to 

lessen the vibrational effects of the dynamic loading on the structure.  Determining the correct 

damping value involved comparing the maximum midspan deflection values of the 50 mph 

experimental test to the 10 mph test.  Testing showed that as the speed increased, the total 

deflection also increased, thus, a deflection ratio (DR) could be determined.  The DR is the ratio 

of the maximum midspan deflection measured at a specific speed to the maximum deflection at 

10 mph.  It was found that the damping value did not have a significant effect on the maximum 

deflection at slower speeds.  Therefore, the global damping value was adjusted by trial and error 

until the DR from the analytical analysis matched the experimental value.   
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4.4 Impairment Conditions 

 Five levels of simulated deflection labeled impairment conditions, or ICs, were imposed 

during the finite element analysis.  A summary of these impairment conditions are provided in 

Error! Reference source not found..  The purpose of the ICs were to provide variability to the 

artificial neural networks during the training process.  The networks analyzed the test data, and 

predicted the bridge deflection by determining which IC most closely resembled the behavior 

from the test.   

 

Table 4-2: Impairment Condition 

West Chord East Chord

IC1 0% 0%

IC2 25% 50%

IC3 0% 75%

IC4 50% 25%

IC5 75% 0%

EI Reduction
Impairment Condition

 

 

 IC 1 is a deflection scenario simulating a new bridge with no deflection present.  Damage 

was inflicted in the four remaining impairment conditions by reducing the flexural rigidity, or EI, 

in the east or west chord of stringers.  As discussed in Chapter 1 the flexural rigidity is a 

combination of the Young’s modulus, E, and moment of inertia, I, of a structural member.  

Structural deflection, such as shear cracking, will reduce the moment of inertia of a member.  

Environmental deflection, such as rotting or insect infestations, could diminish a beam’s 

Young’s modulus.  Both of these properties affect a member’s ability to resist bending or 

deflection, so both need be considered when evaluating deflection in the stringers.   
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4.5 Computer Simulation Results 

 The tested timber railway bridge showed very large deflections in the east chord and 

relatively small deflections in the west chord, and this behavior is similar to the results in IC 3.  

Error! Reference source not found. shows the total midspan stringer deflections obtained from 

the finite element analysis for IC 3 during a 50 MPH test.  The deflection values corresponding 

to the four plies of stringers in the eastern chord of the plot are roughly twice as large as those in 

the western chord. 

  

 

Figure 4-4: Total Midspan Stringer Deflection for IC 3 50 MPH Test 

 

 The artificial neural networks were trained to produce the average chord midspan 

deflections as an output.  Error! Reference source not found. shows a plot of the average chord 

deflections of the field test compared to the finite element analysis results.  The deflections were 

obtained by averaging the values of the four stringers in a chord throughout its time history.  The 

figure shows that IC 3 compares favorably to the average chord deflections measured during test 

9.  The calculated deflection from the east chord of the computer starts closer to zero than the 

experimental test.  However, the deflection values corresponding to the time when the train axles 
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are positioned over the bridge midspan are similar.  The similarity also remains after the train has 

begun to leave the span.  

 

 

Figure 4-5: Span 7 Test 9 Average Chord Deflection and IC3 Computer Simulation Comparison 

 

 The net stringer midspan deflections were calculated from the finite element mesh.  The 

net deflections were determined by subtracting the average of the end deflections from the total 

midspan deflection.  The average chord net deflections from the computer simulation for IC3 is 

compared to the experimental deflections for span 7 test 9 in Error! Reference source not 

found..  The figure shows the net deflections for impairment condition three were similar to the 

experimental measurements for the east and west chords.  There is some initial uplift in the east 

chord of the computer simulation and the maximum deflection is slightly larger than test values.  

However, the overall patterns and trends seen in the computer simulation are similar to those 

observed in the experimental analysis.  This similarity is useful for obtaining efficient results 

from the neural network analysis.   
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Figure 4-6: Span 7 Test 9 50 mph Average Chord Net Deflection and IC3 Computer Simulation Comparison 

 

 Four wheel path vertical acceleration plots comparing the east and west chord for an IC 3 

50 mph test are given in Error! Reference source not found..  The plots show different shapes 

and maximum values for each wheel path; however, there are a few noticeable similarities.  In 

this impairment condition, the eastern chord deflects more than the western chord, and this 

behavior affects the acceleration values.  The peak accelerations in the east chord are all greater 

than the west chord.  Additionally, the peaks occur around the midspan while the dips appear 

approximately at bent locations.       
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Figure 4-7: 50 mph IC 3 Vertical Acceleration: WP1 (Top Left), WP2 (Top Right), WP3 (Lower Left), WP4 (Lower 

Right) 

 

4.6 Computer Simulation Speed Analysis 

 In addition to modifying the computer simulation to provide the results of the five 

impairment conditions, the finite element analysis was also conducted for the five different work 

train speeds used during experimental testing.  Error! Reference source not found. provides 

the maximum average chord deflection for each test speed and impairment condition for the east 

chord (chord 2) and the west chord (chord 1).  The table shows that the impairment condition has 

a large influence on the total deflection value for each chord.  The maximum deflection values 

for IC3 and IC5 are nearly twice as large as those from the condition with no deflection (IC1).  

This behavior is seen in each of the five speeds for this simulation.  
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Table 4-3: Maximum Average Chord Total Deflection for Computer Simulation 

Speed (mph) 

Impairment 

Condition 

West Chord 

(in) 

East Chord 

(in) 

10 1 -0.394 -0.394 

10 2 -0.403 -0.545 

10 3 -0.344 -0.774 

10 4 -0.545 -0.403 

10 5 -0.774 -0.344 

20 1 -0.400 -0.400 

20 2 -0.411 -0.555 

20 3 -0.349 -0.782 

20 4 -0.555 -0.411 

20 5 -0.782 -0.349 

30 1 -0.408 -0.408 

30 2 -0.411 -0.561 

30 3 -0.351 -0.785 

30 4 -0.561 -0.411 

30 5 -0.785 -0.351 

40 1 -0.408 -0.408 

40 2 -0.415 -0.558 

40 3 -0.359 -0.786 

40 4 -0.558 -0.415 

40 5 -0.786 -0.359 

50 1 -0.434 -0.434 

50 2 -0.449 -0.605 

50 3 -0.393 -0.848 

50 4 -0.605 -0.449 

50 5 -0.848 -0.393 

 

 The maximum average chord net deflections were also calculated for each impairment 

condition and speed.  Error! Reference source not found. provides the maximum net deflection 

values for the east and west chords in the finite element mesh.  The results from the net 

deflections are similar to those seen in the total chord deflection table.  The impairment condition 

has a larger impact on the net defections compared to the total values.  The largest deflections in 

IC3 and IC5 are nearly three times as large as those in IC1. 
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Table 4-4: Maximum Average Chord Net Deflection for Computer Simulation 

Speed 

(mph) 

Impairment 

Condition 

West Chord 

(in) 

East Chord 

(in) 

10 1 -0.185 -0.185 

10 2 -0.212 -0.318 

10 3 -0.168 -0.518 

10 4 -0.318 -0.212 

10 5 -0.518 -0.168 

20 1 -0.186 -0.186 

20 2 -0.212 -0.318 

20 3 -0.168 -0.515 

20 4 -0.318 -0.212 

20 5 -0.515 -0.168 

30 1 -0.183 -0.183 

30 2 -0.204 -0.313 

30 3 -0.156 -0.510 

30 4 -0.313 -0.204 

30 5 -0.510 -0.156 

40 1 -0.183 -0.183 

40 2 -0.207 -0.317 

40 3 -0.166 -0.526 

40 4 -0.317 -0.207 

40 5 -0.526 -0.166 

50 1 -0.177 -0.177 

50 2 -0.208 -0.324 

50 3 -0.166 -0.541 

50 4 -0.324 -0.208 

50 5 -0.541 -0.166 

 

 The deflection ratio for the computer simulation for the maximum midspan chord 

deflections was calculated for the five test speeds.  The ratio is determined by dividing the 

deflection at a specific speed by the value measured at 10 mph.  Since there are five impairment 

conditions measured, each of these values was averaged to obtain the deflection ratio presented 

in Error! Reference source not found..  The table shows that the deflection ratio increases as 
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the speed of the railcar increases, and this behavior is similar to the experimental deflection ratio 

results. 

Table 4-5: Deflection Ratio for the Computer Simulation 

Speed 

(mph) 

West Chord 

(in) 

East Chord 

(in) 

10 1 1 

20 1.015 1.015 

30 1.023 1.023 

40 1.027 1.027 

50 1.109 1.109 

 

 The maximum acceleration values for each speed, impairment condition, and chord 

measured during the computer simulation are provided in Error! Reference source not found..  

The table shows the impairment condition has a significant impact on the maximum acceleration 

recorded in each chord.  The maximum values seen in IC3 and IC5 are approximately three times 

as large as those seen in the undeflectiond condition (IC1).  This observation is similar to the 

effect the impairment condition has on the maximum deflection.  

 Error! Reference source not found. shows the acceleration ratio for each speed used 

while testing the computer simulation.  The acceleration ratio is calculated in the same manner as 

the deflection ratio.  It is used to examine the effect of speed on the maximum acceleration 

values.  The table shows there are significant leaps in the maximum acceleration values for every 

incremental speed increase.  The 50 mph acceleration ratio, for instance, is nearly 19 times as 

large as the 10 mph value.  This is a substantial difference compared to the modest 10.9 percent 

difference in deflection ratio values for the same speeds.  The table also shows the acceleration 

values for the east and west chords have identical values.  The impairment conditions were 

designed to allow for different deflection values for each chord.  However, impairment 

conditions were also intended to have some symmetry with IC2 and IC3 having the opposite 
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values of IC4 and IC5.  Additionally, the two tables indicate the measured values are highly 

sensitive to impairment conditions and changes in speeds.  
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Table 4-6: Computer Simulation Maximum Acceleration Comparison 

Speed 

(mph) 

Impairment 

Condition 

West Chord 

(g) 

East Chord 

(g) 

10 1 0.007 0.007 

10 2 0.008 0.014 

10 3 0.006 0.023 

10 4 0.014 0.008 

10 5 0.023 0.006 

20 1 0.027 0.027 

20 2 0.032 0.048 

20 3 0.024 0.073 

20 4 0.048 0.032 

20 5 0.073 0.024 

30 1 0.044 0.044 

30 2 0.056 0.091 

30 3 0.043 0.159 

30 4 0.091 0.056 

30 5 0.159 0.043 

40 1 0.079 0.079 

40 2 0.089 0.142 

40 3 0.079 0.256 

40 4 0.142 0.089 

40 5 0.256 0.079 

50 1 0.127 0.127 

50 2 0.155 0.248 

50 3 0.138 0.427 

50 4 0.248 0.155 

50 5 0.427 0.138 

 

Table 4-7: Acceleration Ratio for Computer Simulation 

Speed 

(mph) 

West Chord 

(g) 

East Chord 

(g) 

10 1 1 

20 3.59 3.59 

30 6.59 6.59 

40 11.09 11.09 

50 18.84 18.84 
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4.7 Neural Network Training 

 The array of artificial neural networks were trained using LS-Dyna finite element 

analysis results.  The wheel path accelerations were the inputs and the average chord midspan 

deflections were the outputs.  To successfully train the neural networks, a number of input and 

output data sets need to be presented to the array to help the networks determine the patterns and 

trends comprising the data.  This is difficult to accomplish using only the results from the finite 

element analysis since the program can be run multiple times, but the produced results will not 

differ.  This behavior is not witnessed in experimental testing.  There will be variations within 

the input and output data sets caused by nature and slight human error (e.g. wind gusts and 

different train speeds).   

 The data from the finite element analysis results is post processed to simulate the 

variability that occurs in field testing.  The wheel path vertical acceleration data produced from 

the LS-Dyna software were manipulated by adding random noise throughout its time history as 

seen in Error! Reference source not found..  This additional noise simulates the extra signal 

measured from the experimental test that is caused by the high frequency vibration from moving 

parts.  The noise is not as severe as the results from the field test, but the effect on the output is 

similar.   
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Figure 4-8: Wheel Path 1 IC 3 Vertical Acceleration with Noise 

 

 The addition of noise shown in Error! Reference source not found. makes the results 

produced from the finite element analysis closer to those from the experimental testing.  Since 

the field test produced accelerations with large spikes, the data was filtered with a moving 

average filter to alleviate the effects of the higher frequency vibrations.  To make the inputs 

similar to the field test results, the LS-Dyna vertical accelerations were filtered with a 10 point 

moving average filter shown in Error! Reference source not found..   

 

 

Figure 4-9: Wheel Path 1 IC 3 Vertical Acceleration with Filtered Noise 
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 The wheel path accelerations are not the only experimental parameter that varies during 

field testing.  The average chord midspan deflections also show slight variations during repetitive 

tests.  The variations are different than those experience by the accelerometers, as they tend to 

increase and decrease uniformly opposed to the extra noise seen in the accelerations.  The 

uniform shift in average chord deflections is shown in Error! Reference source not found..  

 

 

Figure 4-10: Average Chord Midspan Deflection with Uniform Noise 

 

 Additional noise was applied to the wheel path accelerations and bridge deflections from 

the finite element analysis results.  The noise was used to help simulate the randomness that may 

occur during experimental testing.  It was also useful for providing additional tests to apply to 

the artificial neural network training.  The process described above was repeated 10 times for 

each chord and every impairment condition.  It was also imposed on all four wheel paths to 

provide variability in the wheel path accelerations.  The extra tests were beneficial in aiding the 

neural networks in recognizing the patterns in the data and determining the inconsistency that 

may be associated with each data set.   



 

 

76 

 

4.8 Finite Element Analysis Verification 

 A number of steps were taken to ensure the results of the finite element analysis were as 

accurate as possible.  In addition to using reasonable material properties and appropriate 

boundary conditions in the final result, a simple two span system was compared to results from 

theory and a quasi-static finite element analysis performed on a program called SAP2000.  The 

output from the theoretical analysis were compared with 2 span LS-Dyna finite element analysis 

results at a speed of 2 mph to minimize the dynamic effects.   

 The theoretical deflections were determined by beam theory described in Chapter 1 and 

were computed using a Matlab script.  The deflections for this analysis were analyzed at the load 

location as it moved along the beam.  The wheel path deflections, δ, for the theoretical analysis 

of a moving load, P, were found using Error! Reference source not found..  The deflections of 

the rail and stringers attributed to a unit load are indicated by wr and ws. Error! Reference 

source not found. provides the deflections of a continuous two span simply supported beam 

with x at the load locations.  The reaction at the first support, v0, and the middle support, Rb, 

along with the initial slope, ϴ0, are the unknowns in the equation.  Error! Reference source not 

found. and Error! Reference source not found. provide the values of the unknowns when the 

load is located in the first and second spans.   

 

 
𝛿 =

𝑃 ∗ 𝑤𝑟 ∗ 𝑤𝑠
𝑤𝑟 + 𝑤𝑠

 
Equation 4-1 
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Equation 4-4 

 

 The boundary conditions were approximated as simply supported for each of these 

systems, and two 14 foot spans were imposed.  This research was implemented before the 

experimental testing was conducted so approximate values for the work train and the bridge were 

used.  Similar to the actual experiment, the connection between two railcar trucks was used as 

the applied loading.  The distance between wheel paths 1 and 2 along with wheel paths 3 and 4 

was approximated as 6 feet.  The distance between wheel paths 2 and 3 was assumed to be 

slightly longer with a distance of 6.67 feet.  78.75 kips was assumed as the load for each of the 

four wheels in the system.  A flexural rigidity of 2.83x106 kip-in2 and 2.99x106 kip-in2 was used 

for each rail and stringer, respectively.  These values were also used during the SAP2000 and 

LS-Dyna finite element analyses. 

 SAP2000 is a type of finite element software capable of modeling 2D and 3D structures 

and systems.  A 3D two span bridge model was created using this software and is shown in 

Error! Reference source not found..  The figure shows the rails, cross ties, and stringers were 

all meshed during the construction of this model.  These elements were connected with stiff 
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spring elements to transfer the loads from the rails to the remaining members.  Pin supports were 

applied as the boundary conditions at the bent locations.  A quasi-static analysis was applied to 

this system, as a load was placed on the rails at the wheel locations and the deflections were 

recorded.  The loads were then moved and the process was repeated to gather numerous data 

points as the four axles crossed the two spans.   

 

 

Figure 4-11: SAP2000 Finite Element Analysis Model 

 

 LS-Dyna was the third method used for comparing the deflections produced by a 

simulated passing train.  LS-Dyna is capable of performing dynamic finite element analyses of 

2D and 3D structures.  This method differs from the previous two because this program can 

determine the effect of speed on the performance of the system.  The Matlab and SAP2000 

programs are independent of speed, so they would not produce different results for increased 
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train speeds.  For comparison, the LS-Dyna mesh was run with a train speed of 0.4 mph to 

minimize the dynamic effects from the increased velocity.  The two span finite element model is 

shown in Error! Reference source not found..  The rails, cross ties, and stringers were modeled 

with beam elements and connected with rigid link elements.  The train load and speed was 

implemented using nodal masses ramped up and down at the wheel locations.  Additionally, 

simply supported boundary conditions were applied to the model.   

 

 

Figure 4-12: LS-Dyna 2 Span finite Element Analysis Mesh 

 

 Each of the three methods of determining the deflections used a two span system with 

beam elements with the same flexural rigidity.  Error! Reference source not found. shows the 

deflection comparison of the three methods for the first wheel path traveling in the first bent.  

Since the Matlab and SAP2000 methods are not affected by time, the horizontal axis is converted 

into the wheel’s distance from the first bent.  The figure shows each of the methods produce and 

an almost identical deflection plot.  They all reach a peak value of approximately 0.25 in when 

the wheel is positioned slightly past the midspan.  There is also a minor hump witnessed when 
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the wheel is 6 feet from the first bent.  This corresponds to the time where the second axle would 

be entering the span.   

 

Figure 4-13: Deflection Comparison for 2 Span Bridge 

 

 These results show the original LS-Dyna model provided comparable results to 

theoretical beam theory and a quasi-static finite element analysis.  There were a number of 

additional modifications made to this original mesh to create the result presented in this research.  

Some of these include adjusting the mass and speed of the railcar, bridge dimensions, and 

boundary conditions.  However, it is believed these adjustments improved the final result and 

made for a more accurate system.  This section verified the LS-Dyna program as a trustworthy 

program that can be useful for modeling both simple and complex structures.   
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 CHAPTER 5  

RESULTS 

 

5.1 Artificial Neural Network Results 

 The competitive array of neural networks was trained using the wheel path accelerations 

and average chord midspan bridge deflections obtained from the LS-Dyna finite element analysis 

results.  The networks were then provided the acceleration data from two field tests to estimate 

the condition of the bridge by recognizing patterns comprising the input signals.  Error! 

Reference source not found. shows a plot depicting the output estimated by the neural network 

compared to the experimentally measured average chord deflections for bent 7 of test 9.  This 

figure helps depict the accuracy of the array of neural networks.  The chord deflections found 

using the neural network method are similar to those measured during testing.  The value of the 

maximum deflections are similar, but the locations of the peak show a slight shift.  This occurs 

because the artificial neural networks were trained to recognize the patterns from finite element 

analysis results.  The shift in the deflections from the neural network output was also seen in the 

computer simulation results.   
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Figure 5-1: Span 7 Test 9 Neural Network Output and Experimental Deflection Comparison 

 The average chord net deflections were also determined from the array of artificial neural 

networks.  The net deflections subtract the compression of the supports from the total deflection.  

Thus, the net deflection produced smaller values compared to the total deflection.  Error! 

Reference source not found. shows a comparison plot between the measured net deflections 

and predicted deflections in span 7 test 9.  The plots of the deflections produced from the neural 

networks are similar to the experimentally recorded deflections.  The shift in the peak deflections 

that was seen in the total deflection comparison is also observed in this figure.  

 

 

Figure 5-2: Span 7 Test 9 Neural Network Output and Experimental Net Deflection Comparison 
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 The maximum average chord deflection values for the neural network and experimental 

results are summarized in Error! Reference source not found..  The results are provided for 

each span, chord, and test that was conducted.  The difference between the two values are 

provided to quantify how close the predicted results were from the experimental values.  It also 

shows whether the array of networks over or under predicted the measured values.  The percent 

difference is calculated to show the error between the two measured values.  The string 

potentiometer displacement transducers have been properly calibrated and were deemed to have 

accuracy to within 0.01 inches with respect to the actual deflection of the stringers.  The neural 

network deflections are a new method, so most of the error in the percent difference is attributed 

to the predicted results.   

 Tests 1 and 2 were measured with a train velocity of approximately 10 mph and the speed 

incrementally increased to 50 mph.  The results in the table show the tests with smaller 

deflection values tend to have larger errors.  Therefore, the error tends to be comparatively larger 

in the west chord of a span.  This is due to the west chord having a smaller initial deflection, so a 

small difference between the measured and predicted results will cause a relatively larger percent 

difference.  In every experimental test, the maximum deflection in the east chord was noticeably 

larger than the west chord.  This is a unique characteristic of Bridge , and it needed to be 

determined if the proposed method could capture this behavior.  Error! Reference source not 

found. shows that for all tests and spans, the neural network method predicted there would be 

more deflection in the east chord than the west.  The difference between the two values is not 

always as large as those seen in the test, but it is accurate for a majority of the spans. 
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 Error! Reference source not found. shows a comparison between the maximum 

average chord net deflations for the experiment and neural network method.  The table also 

includes the difference and percent difference between the results.  Similar conclusions can be 

drawn from the net deflections as those from the total deflections.  The difference and percent 

difference columns show larger error values for early tests with slower speeds.  There are a few 

instances (such as test 1 and span 7) where the maximum deflection in the west chord was 

predicted to be slightly larger than the east chord.  This was not seen in the table showing the 

total deflection values. 
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Table 5-1: Maximum Chord Total Deflections 

Test Span Chord Test (in) NN (in) Difference Percent Difference 

1 7 East -0.86 -0.58 0.28 38.9% 

1 7 West -0.37 -0.54 -0.18 38.6% 

1 8 East -0.73 -0.85 -0.12 15.4% 

1 8 West -0.35 -0.79 -0.44 77.0% 

2 7 East -0.87 -0.70 0.17 21.9% 

2 7 West -0.37 -0.08 0.29 126.8% 

2 8 East -0.74 -0.51 0.23 36.8% 

2 8 West -0.36 -0.42 -0.06 14.3% 

3 7 East -0.88 -0.79 0.09 10.7% 

3 7 West -0.37 -0.49 -0.11 26.7% 

3 8 East -0.79 -0.84 -0.05 5.7% 

3 8 West -0.32 -0.44 -0.12 30.8% 

4 7 East -0.89 -0.83 0.06 6.6% 

4 7 West -0.37 -0.43 -0.06 15.0% 

4 8 East -0.79 -0.77 0.02 2.9% 

4 8 West -0.32 -0.45 -0.13 33.7% 

5 7 East -0.79 -0.86 -0.07 9.1% 

5 7 West -0.40 -0.39 0.00 0.6% 

5 8 East -0.84 -0.85 -0.02 1.9% 

5 8 West -0.32 -0.41 -0.09 24.1% 

6 7 East -0.79 -0.79 0.00 0.3% 

6 7 West -0.40 -0.39 0.01 1.3% 

6 8 East -0.84 -0.78 0.06 7.9% 

6 8 West -0.32 -0.42 -0.10 27.3% 

7 7 East -0.76 -0.82 -0.06 7.4% 

7 7 West -0.41 -0.46 -0.04 10.3% 

7 8 East -0.79 -0.82 -0.03 3.8% 

7 8 West -0.34 -0.46 -0.12 28.9% 

8 7 East -0.77 -0.83 -0.06 7.9% 

8 7 West -0.41 -0.46 -0.04 10.1% 

8 8 East -0.79 -0.87 -0.08 9.4% 

8 8 West -0.35 -0.44 -0.09 23.3% 

9 7 East -0.80 -0.82 0.02 2.7% 

9 7 West -0.41 -0.42 0.01 3.4% 

9 8 East -0.79 -0.83 0.04 5.3% 

9 8 West -0.34 -0.42 0.07 19.0% 

10 7 East -0.81 -0.83 0.02 2.2% 

10 7 West -0.41 -0.43 0.02 5.0% 

10 8 East -0.78 -0.83 0.05 5.7% 

10 8 West -0.34 -0.42 0.08 20.2% 
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Table 5-2: Maximum Chord Net Deflections 
Test Span Chord Test (in) NN (in) Difference Percent Difference 

1 7 East -0.52 -0.31 0.21 49.3% 

1 7 West -0.14 -0.38 -0.24 92.3% 

1 8 East -0.36 -0.51 -0.15 34.8% 

1 8 West -0.16 -0.57 -0.41 112.3% 

2 7 East -0.53 -0.37 0.15 34.4% 

2 7 West -0.14 -0.05 0.08 88.0% 

2 8 East -0.36 -0.28 0.08 24.6% 

2 8 West -0.17 -0.23 -0.07 34.9% 

3 7 East -0.53 -0.42 0.12 25.0% 

3 7 West -0.14 -0.28 -0.14 66.7% 

3 8 East -0.40 -0.48 -0.09 19.8% 

3 8 West -0.15 -0.23 -0.08 44.2% 

4 7 East -0.54 -0.48 0.06 11.7% 

4 7 West -0.14 -0.23 -0.09 47.1% 

4 8 East -0.39 -0.45 -0.06 14.2% 

4 8 West -0.14 -0.23 -0.09 46.4% 

5 7 East -0.47 -0.48 -0.01 1.3% 

5 7 West -0.15 -0.21 -0.06 30.8% 

5 8 East -0.43 -0.50 -0.07 14.9% 

5 8 West -0.14 -0.23 -0.09 49.6% 

6 7 East -0.47 -0.48 0.00 1.0% 

6 7 West -0.15 -0.22 -0.06 34.0% 

6 8 East -0.43 -0.50 -0.07 14.9% 

6 8 West -0.13 -0.21 -0.08 45.8% 

7 7 East -0.45 -0.48 -0.03 5.6% 

7 7 West -0.16 -0.23 -0.07 34.3% 

7 8 East -0.40 -0.48 -0.08 18.3% 

7 8 West -0.15 -0.25 -0.09 46.6% 

8 7 East -0.46 -0.47 -0.01 3.0% 

8 7 West -0.16 -0.23 -0.07 37.5% 

8 8 East -0.40 -0.48 -0.08 18.2% 

8 8 West -0.15 -0.23 -0.08 42.5% 

9 7 East -0.49 -0.50 0.01 2.4% 

9 7 West -0.16 -0.21 0.06 30.4% 

9 8 East -0.40 -0.51 0.11 23.6% 

9 8 West -0.15 -0.21 0.06 34.1% 

10 7 East -0.49 -0.50 0.00 0.7% 

10 7 West -0.16 -0.21 0.06 29.7% 

10 8 East -0.40 -0.51 0.11 24.2% 

10 8 West -0.15 -0.21 0.06 33.5% 
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 Error! Reference source not found. shows the average error between the measured and 

predicted chord deflections for each test.  The average difference was determined by taking the 

mean of the absolute value of the difference for each chord measured in Error! Reference 

source not found..  The absolute value was used because there were both positive and negative 

difference values and this could lead to lower average values than actually seen in the testing.  

The average percent difference is also shown in the table, and was calculated in a similar 

manner.  The neural network method was accurate to within 1/10 of an inch in speeds 20 mph 

and over for the total deflection table. 

 

Table 5-3: Average Error for Total Chord Deflections 

Test Speed (mph) Ave. Difference (in) Ave. Perc. Difference 

1 10 0.25 42.5% 

2 10 0.19 50.0% 

3 20 0.09 18.5% 

4 20 0.07 14.5% 

5 30 0.05 8.9% 

6 30 0.04 9.2% 

7 40 0.06 12.6% 

8 40 0.07 12.7% 

9 50 0.04 7.6% 

10 50 0.04 8.3% 

 

 Error! Reference source not found. shows the same columns as the table above, but 

was calculated using the net chord deflections given in Error! Reference source not found..  

This table follows a similar pattern that occurred in the preceding tables.  The calculated error 

tends to decrease as the speed of the work train increased.  The speeds with the lowest errors 

happened when the rail vehicle was traveling 30 and 50 mph.  It was accurate to within 1/10 of 

an inch in speeds in excess of 30 mph in the net deflection table.   
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Table 5-4: Average Error for Net Chord Deflections 

Test Speed (mph) Ave. Difference (in) Ave. Perc. Difference 

1 10 0.25 72.2% 

2 10 0.10 45.5% 

3 20 0.11 38.9% 

4 20 0.07 29.9% 

5 30 0.06 24.2% 

6 30 0.05 23.9% 

7 40 0.07 26.2% 

8 40 0.06 25.3% 

9 50 0.06 22.6% 

10 50 0.06 22.0% 

 

5.2 Approximate Stringer Midspan Deflection 

 The neural networks are trained to produce a single average deflection plot for each 

chord.  However, there are four stringers in each chord, and they all have different values 

throughout the time history.  This can be remedied by comparing the deflection values of the 

stringers at a specific time.  These deflections can be plotted with the distance from the first 

stringer as the horizontal axis.  The plot for the test deflections are given in Error! Reference 

source not found. and shows the stringers deflecting in a nearly linear manner.   
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Figure 5-3: Span 7 Test 9 Total Midspan Deflection Values at Time = 0.178s 

 

 A similar method can be used to determine the approximate stringer deflections based on 

the average chord midspan deflection.  The array of artificial neural networks give the average 

deflections for the east and west chords as the output.  These two plots can be used to determine 

a linear relationship based on the stringer location.  A plot showing the average chord midspan 

deflection values for the east and west chords at a time equal to 0.33 seconds is shown in Error! 

Reference source not found..  This corresponds approximately to the time at which the 

maximum deflection from the work train occurred.  The figure shows a linear deflection 

relationship can be determined from the two values located on the plot.   
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Figure 5-4: Average Chord Midspan Deflection Values at Time = 0.33 s 

 

 Since the distance between each stringer is known, the linear relationship can be used to 

approximate the values of the stringers based on the average chord deflections.  The average 

chord deflections are assumed to be located in between the second and third ply in each chord.  

The calculated stringer deflections are provided in Error! Reference source not found..   

 

 

Figure 5-5: Approximate Stringer Deflection at Time = 0.33 s 
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 The previous figures show the process for calculating the approximate stringer 

deflections for a specific time.  The assumption of a linear cross sectional stringer displacement 

can be applied throughout the entire time history.  Error! Reference source not found. shows a 

comparison between the experimentally measured and predicted stringer deflections.  This 

allows for a direct comparison between the values measured in the field to those obtained from 

the artificial neural network analysis.   

 

 

 

Figure 5-6: Span 7 Test 9 Stringer Time History Comparison: Experimental (Top), Predicted (Bottom) 
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 CHAPTER 6  

CONCLUSIONS 

 

6.1 Summary 

 This research developed a preliminary technology to autonomously detect structural 

deflections in timber railroad bridges using data gathered from a rail vehicle crossing the bridges.  

Developing and testing this technology required experimental tests, finite element analyses, and 

artificial neural networks.   

 An open deck timber trestle bridge in service was dynamically tested with a work train 

comprising two train locomotives followed by two loaded railcars.  Ten crossings were made in 

the southbound directions with the speed of the vehicle ranging from 10 mph to 50 mph.  The 

behavior of span 7 and span 8 of the bridge were recorded with string potentiometers positioned 

at the midspan and near the supports of each stringer.  Additionally, accelerometers on each side 

of four axles captured the wheel motion of the east and west sides of the train.  Lastly, wheel 

path position devices located above the first wheel path of the rail vehicle and on posts mounted 

above the bents tracked the progress of the trucks along the tracks, provided the train speed, and 

synchronized the data signals from the two data acquisition devices.   

 A finite element analysis using LS-Dyna computer software modeled the test bridge and 

imposed various deflection scenarios to provide theoretical acceleration and deflection data.  The 

mesh included the rails, cross ties, and stringers modelled as beam elements and connected by 

rigid links.  Discrete beam elements with various stiffnesses approximated the bents.  These 

elements were fixed at one end and attached to the stringer elements at the other.  Ramping the 

magnitude of nodal masses up and down along the rails at the wheel locations simulated the load 
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from the train crossing the bridge.  Multiple simulations modeled loading from the train speeds 

used during the experimental test.  Impairment conditions ranged from no deflection to excessive 

deflection in one chord and little deflection in the other.  Deflections from the center span of the 

mesh provided the total and net midspan deflections.  The acceleration on the east and west 

chords of the bridge at the wheel locations provided the wheel path accelerations of the four 

axles.   

 The finite element analysis provided training data for an array of artificial neural 

networks.  Artificial neural networks are a pattern recognition technology capable of correlating 

sets of input and output data.  The neural networks were trained using the finite element results 

with a method called back propagation.  Back propagation modifies the synaptic weights of the 

system to determine patterns and trends relating the input data, i.e. wheel path accelerations, and 

output data, i.e. average chord midspan deflections.  After determining the synaptic weights, the 

network was tested by supplying it with the vertical wheel path accelerations from the field test 

and comparing its results to the measured test deflections.  The networks were not provided the 

test deflections during the training nor testing process.   

 

6.2 Conclusions 

 Asymmetric deflection occurs when there is more significant deflection in one chord than 

the other.  The test bridge deflected roughly twice as much on the east side as the west 

side due to split stringer observed in the east chord but not the west.   

 The total and net deflection ratio results increase for faster train speed.  However, the 

maximum deflection between the fastest and slowest speed differs by less than 0.05 
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inches for the total deflection and 0.03 inches for the net deflection, a modest difference 

compared to the effects of impairment and vehicle load.   

 A 100 point moving average filter applied to the wheel path accelerations is able to 

reduce the effects of high frequency vibrations and provide the motion of an axle over the 

bridge for neural network training.   

 Vehicle speed and bridge deflections influence the magnitude of the wheel path 

accelerations.  The accelerations increase by approximately 475% from the 10 mph to the 

50 mph.  The accelerations over the eastern chord, the chord with split stringers, were on 

average 31% larger than the west chord.   

 Computer simulations can represent the behavior of a timber bridge under train loading.  

A simulated impairment condition with a 75% reduction in the flexural rigidity in the 

eastern stringers and no deflection in the western stringers produced results comparable 

to the field measurements.   

 The use of a competitive array of neural networks improves the efficiency of the 

detection method compared to using an individual artificial neural network.  Training the 

system with a multiple networks of various architectures produced more accurate results 

than a single network.  

 Training artificial neural networks with wheel path acceleration signals from a finite 

element model with large noise filtered with a moving average improves the accuracy of 

the system.     

 Neural networks can analyze bridges with asymmetric deflections.  The test bridge is 

unique in that it had greater deflection in the east chord than the west.  The neural 
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network array was able to predict larger deflection in the east chord than the west for a 

majority of the tests and spans.   

 Neural networks can approximate both the net and total deflections.  With 1/10 of an inch 

used as an acceptable error, the networks correctly estimated 29 out of 40 (72.5%) of the 

total deflection tests, and 31 out of 40 (77.5%) of the net deflection tests.   

 The accuracy of the system improved at faster speeds.  However, 30 mph was the optimal 

speed for this analysis as 100% of its estimated deflection values were within 0.1 inches 

of the experimental measurements.   

 

6.3 Potential Future Work 

 Testing showed that experimental results, finite element analysis, and artificial neural 

networks can be used together to create a system capable of predicting the behavior of a timber 

railway bridge based on the motion of a railcar crossing the bridge.  Additional research should 

be conducted to further validate the proposed technology.  Future work can also improve the 

accuracy and efficiency of this technology, or extend it to new applications.   

 Testing different bridges with various span lengths and deflection levels will validate the 

neural network output against multiple bridge inputs.  Additionally, since this research 

investigated only four spans of the test bridge, testing multiple spans with a vehicle traveling at a 

predetermined speed will further justify the use of this technique in practice.  Since this research 

indicated that the accuracy improved with speed, the maximum safe operating speed could be 

used for future tests.   

 A 100 point moving average filter smoothed the accelerometer data.  Determining the 

window size involved adjusting the value and recording the effect on the resulting acceleration 
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plot.  A moving average produces the same results as a low pass finite impulse response filter 

with a rectangular window of the same size.  Various filters can be investigated to determine the 

best choice for this application.   

 This research employed a variable capacitance accelerometer because their ability to 

measure the motion of objects subjected to vibration.  However, the vibrations from moving 

parts measured during the test proved to be lower than expected, allowing for a more sensitive 

accelerometer for future work.  

 Constructing the neural network architectures is one of the most crucial steps to ensure 

accurate and efficient results.  Future work should focus on evaluating each type of network and 

establishing criteria for the neural network architecture.  This includes analyzing the number of 

hidden layers, the amount of neurons in each layer, and stopping criteria.     

 The neural network output produced the average chord midspan deflections.  The average 

deflection was chosen because it could be used for bridges with various configurations and 

stringer locations.  However, there may be a need for the deflection of each stringer to be 

determined from the neural network output.  In this case, future research could focus on refining 

the training method to produce the deflections of each stringer as an output.  This method would 

need to be evaluated to ensure it would produce accurate results for a number of timber bridge 

configurations.   
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