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Abstract 

 

A model is developed herein for predicting the onset of thermally induced buckling in the 

horizontal plane for rail structures.  As described below, the model may be considered to be an 

extension of previous efforts spanning most of the twentieth century.  Building on both previous 

analytic and computational solutions, a finite element model is developed for the purpose of 

predicting the thermal buckling temperature as a function of the track and support structure 

material properties, the track and support system geometries, the applied track loading, and the 

initial lateral displacement within the track.  Particular emphasis is placed on nonlinearity and 

history dependence of the lateral track resistance to deformation.  The resulting model is deployed 

herein to solve problems demonstrating usefulness of the model. 

 

Introduction 

 

Rails are known to undergo a variety of failure mechanisms that can cause significant 

property damage and loss of life (FRA 2015).  It is therefore propitious to develop advanced 

models for the purpose of mitigating such mishaps.  Toward this end, a one such model is presented 

herein.   

The literature on this subject is long and deep. Historically, Galileo introduced the problem 

of a beam in bending in 1637 (Galileo 1637).  More than a century later, the first cogent model for 

beam bending was reported by Euler and Bernoulli (Euler 1744).  In the early twentieth century 

this approach was used to model the structural response of rails (Timoshenko 1915, 1927).  Over 

the most recent half century a rigorous beam formulation of the rail thermal buckling problem has 

emerged (Kerr 1974, 1978).  In addition, methods have been reported for solving the problem 

numerically (Tvergaard and Needleman 1981, Lim et al 2003). 

 

Model Development 

Consider a generic rail mounted on a railway, as shown in Fig. 1.  Note that the x coordinate 

is aligned in the direction of travel, and the y and z coordinate axes are aligned with the vertical 

and horizontal directions, respectively. 

 



 
 

Fig. 1 Generic Rail with Coordinate Axes as Shown 

 

When viewed from the bottom, a typical rail with mechanical and thermal loading is shown 

in Fig. 2. 

 
 

Fig. 2 Bottom View of Typical Rail Loaded Mechanically and Thermally 

 



In order to construct a model of the rail, it is first assumed that it may be modeled as a 

beam-column, implying that it is long and slender (Allen and Haisler 1985).  As shown in Fig. 3, 

the centroidal axis of the rail may deform in all three coordinate directions, and the components of 

this displacement are denoted by 0 ( , )u x t , 0 ( , )v x t and 0 0( , )w w x t  , respectively.  Similarly, the 

components of stress are shown on an arbitrary cross-section of the rail in Fig. 4.   

 

 
 

Fig. 3 Bottom View of the Rail Showing Horizontal Tranvserse Displacement 

Component in the Deformed Configuration 

 

 

 



 

Fig. 4 Components of Stress on an Arbitrary Cross-Section of the Rail 

 

A bottom view of a free body diagram of a section of the rail is constructed in Fig. 5, 

wherein the load per unit length applied to the centroidal axis of the rail is composed of 

components ( , )xp x t  and ( , )zp x t  in the x and z coordinate directions, respectively.  In addition, 

the normal component of force per unit length applied to the bottom of the rail due to the normal 

displacement component ( , )w x t  is denoted as ( , )zk w x t , where the negative sign is employed so 

that the base stiffness is non-negative when the resultant is positive due to downward displacement 

of the rail.  Similarly, the axial component of force per unit length applied to the bottom of the rail 

due to the axial component of displacement ( , )u x t  is denoted as ( , )xk u x t . 

 

 
 

Fig. 5 Bottom View of Free Body Diagram of Cut Rail 

 



Note also that the stress distribution on the two vertical cuts within the rail are denoted 

generically by the two infinitesimal stress boxes on these faces.  Finally, note that the differential 

element is depicted in the deformed configuration, so that the axial force affects the transverse 

displacement of the rail.  This necessarily causes the response of the rail to be geometrically 

nonlinear. 

Consistent with Euler-Bernoulli beam theory the force and moment resultants are now 

defined as follows (Allen and Haisler 1985): 

 

( , ) xx

A

P P x t dA            (1) 

( , )z z xz

A

V V x t dA           (2) 

( , )y y xx

A

M M x t zdA           (3) 

 

where A is the cross-sectional area of the rail, and z is the horizontal distance from the 

centroid.  The above resultants may now be utilized to construct the alternate free body diagram 

shown in Fig. 6. 

 



 
 

Fig. 6 Resultant Forces and Moments Applied to a Differential Element of the Rail 

 

Employing the Euler-Bernoulli assumption (Euler 1744), assuming linear elastic behavior, 

and applying Newton’s first law to the forces in the x coordinate direction in Fig. 6 will result in 

the general two dimensional formulation shown in Table 1 for a generic rail subjected to 

mechanical and thermal loading (Kerr 1974, 1978, Allen and Haisler 1985, Grissom and Kerr 

2006). 

  



 

 

 

 

Independent Variables: x,t 

Known Inputs: 

 Loads:   ( , ), ( , ), 0x x z zp p x t p p x t x l     

 Temperature change: ( )T T t known     

 Geometry:  , , , yyl h A I    

 Material Properties: , , ,x zE k k    

Unknowns: , , , , ,xx z yu w P V M      = 6 unknowns 

Field Equations: 

        No. of Equations 

(A1) x x

dP
p k u

dx
         1 

(A2) z
z z

dV
k w p

dx
        1 

(A3) 
y

z

dM dw
V P

dx dx
        1 

(A4) 
( )T

y

xx

yy

MP P
z E T

A I
 


        1 

(A5) 
( )Tu P P

x EA

 



      1 

(A6) 
2

2

y

yy

Mw

x EI


 


       1 

        ________ 

       Total  6 

 

 

Table 1 Model for Predicting the Rail Response 

 

 It should be noted that the problem formulated in Table 1 may be exceedingly 

difficult to solve, depending on the loading conditions and the material properties involved.  In the 

following section this problem will be simplified as much as is practical for the case of thermally 

induced lateral buckling 

 

A. Governing Equations for Lateral Thermal Buckling 



 For the case of thermally induced lateral buckling, the following simplifying 

assumptions are made: 

 The axial component of displacement in the rail structure is negligible 

 The horizontal component of the displacement vector is independent of the vertical 

component of displacement 

 Friction and externally applied loads in the axial direction may be neglected 

Given these assumptions, equations (A1)-(A6) reduce to the following six governing 

equations: 

 

z
z z

dV
k w p

dx
           (4) 

y T

z

dM dw
V P

dx dx
           (5) 

T
y

xx

yy

MP
z E T

A I
             (6) 

TP EA T            (7) 
2

2y yy

d w
M EI

dx
           (8) 

 

where  

 x is the longitudinal dimension of the rail structure 

 z is the horizontal dimension of the rail structure 

 u is the rail structure displacement of the centroidal axis in the x coordinate 

direction 

 w  is the rail structure displacement of the centroidal axis in the z coordinate 

direction 

 TP   is the thermally induced axial force resultant in the x coordinate direction 

 zV  is the lateral force resultant in the z coordinate direction 

 yM  is the resultant moment about the z coordinate axis 

 zp  is the externally applied load per unit length in the z coordinate direction 

 xx  is the normal stress component in the x direction 

 A is the cross-sectional area of the rail structure 

 yyI  is the moment of inertia about the y axis 

 E is Young’s modulus of the rail 

   is the coefficient of thermal expansion of the rail 

 T  is the temperature change from the rail neutral temperature 



In the above formulation x is the independent variable, and the following are assumed to 

be known inputs: 

 

 Loads:   0zp   

 Temperature change: T  

 Geometry:  , , , yyl h A I    

 Material Properties: , , zE k    

 

Therefore, when proper boundary conditions are constructed, the above represents six 

equations in the following six dependent variables: , , , ,T

xx z yw P V M    . 

B. Variational Formulation 

 

 In order to construct a finite element algorithm for solving the above problem it is 

first necessary to construct a variational principle for describing the problem.  In order to do this, 

first reduce the shear term out of the problem by rearranging equation (5) and substituting this 

result into equation (4), thereby resulting in the following equation: 

 

y T

z z

M w
P k w p

x x x

  
   

   
       (9) 

 

A variation form of equations (12) and (15) may now be constructed by integrating these 

two equations against variations in their energy conjugates and adding them together, thereby 

resulting in the following variational principle: 

 

0

0

l
y T

z z

dMd dw
P k w p wdx

dx dx dx


  
     

  
        (10) 

    

where l is an arbitrary longitudinal dimension over which the integration is to be performed, 

and /dw dx   is the rotation about the y axis.  Now, integrating the differentiated terms by parts 

results in the following: 

 

0

0
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l
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l l
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z z

dM dw dw
P dx

dx dx dx
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
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   
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 
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
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     (11) 

 

Substituting equations (5) and (8) into equation (11) now results in the following: 



 

2

2
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0
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0

l l

T
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l
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 

 

      (12) 

 

Now, integrating the higher order term in equation (12) by parts one more time results in 

the following variation principle: 

 

2 2

2 2

0 0 0

0 0

0

l l l

T

yy z

l

l l
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d w d w dw dw
EI dx P dx k w wdx
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p wdx V w M
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  

 
  
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  



     (13) 

 

The above is the final form of the variational principle to be implemented within the finite 

element method. 

 

C. Finite Element Formulation 

  

Equation (13) may now be discretized for a generic frame element.  To do this, it is assumed 

that, within a generic element of length, el , the displacement field may be approximated by the 

following (Reddy 1984, Allen and Haisler 1985): 

 
2 3

3 4 5 6

ew c c x c x c x            (14) 

 

Satisfying boundary conditions at the end points of the local element will result in the 

following from of equation (14) (Reddy 1984): 

 

1 1 2 1 3 2 4 2

e e e e e e e e ew w w                 (15) 

 

where 
1

ew  and 
2

ew  are the lateral displacement components at the left and right ends of 

element e, and 1

e  and 2

e  are the rotation components about the y-axis at the left and right ends 

of element e.  The shape functions are given by: 
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   

         (16) 

 

 The assumed displacement field within a generic element represented by equations 

(13) and (15) may now be substituted into variational principle (13), thereby resulting in algebraic 

equations of the following form for a generic element (Reddy 1984, Allen and Haisler 1985): 

 
6 6 6

1 1 1

1,...,6e e e e e e e

ij j ij j ij j i

j j j

K q B q N q F i
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            (17) 

 

where the second term above accounts for the second term in equation (13), and the third 

term above accounts for the third term in equation (13).  In addition, 

 

 

1

1

1

2

2

2

e

e

e

e

e

e

e

u

w

q
u

w





 
 
 
  

  
 
 
 
  

           (18) 

 

and 
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Furthermore, for a linearly varying distributed lateral load given by 
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Note that the boundary terms are not included because they will cancel one another when 

the global equations are assembled. 

When the second and third terms may be neglected in equation (17), the standard finite 

element formulation for a linear thermoelastic beam undergoing small displacements is recovered.  

However, in the current case it remains to account for the second and third terms in equation (17).   

Consider first the second term in equation (17). This term is given by  
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Now consider the third term in equation (17).  In the case wherein it is sufficiently accurate 

to assume that the coefficient of friction, zk , is constant in each element, these are as follows: 

 

2 2

2 3 2 3

2 2

2 3 2 3

0 0 0 0 0 0

13 11( ) 9 78( )
0 0

35 210 70 2520

11( ) ( ) 13( ) 13( )
0 0

210 105 420 140

0 0 0 0 0 0

9 13( ) 13 11( )
0 0

70 420 35 210

78( ) 13( ) 11( ) ( )
0 0

2520 140 210 105

e e e e

e e e e

e

z

e e e e

e e e e

l l l l

l l l l

N k

l l l l

l l l l

 
 

 
 
 
 
 

     
 
 


  


 







    (23) 

 

The above element equations may be assembled into a global finite element formulation 

using the standard assembly technique, and this has been accomplished by the authors.  This then 

completes the finite element formulation for the case wherein the friction coefficient, zk , is 

temporally constant.  The following section will present several example problems for the purpose 

of validating the linear finite element algorithm developed herein. 

 

D. Validation Problems for the Linear Case 

 

The finite element algorithm is now validated for the linear case ( 0

z zk k   constant) with 

the following example problems. 

Example Problem #1 

 



Given: A double-cantilevered beam is subjected to an evenly distributed loading 
0 410 /z zp p N m  .  In addition, E=2.06x1011 N/m2, Iyy=8.99x10-6 m4, and l=12 m. 

Required:  a) Solve for 0( , , , )z yyw w x p E I  analytically 

  b) Obtain a solution for 0( , , , )z yyw w x p E I numerically and compare the 

two solutions 

Solution: a) For this case ( 0zT k   ) equation (15) simplifies to the following: 
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2 2yy z

d d w
EI p

dx dx

 
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         (E1.1) 

 

Now integrate equation (E1.1) to obtain: 
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where 1c  is a constant of integration.  Integrating a second time gives: 
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0

1 22 2
yy z
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where 2c  is a constant of integration.  Integrating a third time gives: 
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where 3c  is a constant of integration.  Integrating a fourth time gives: 
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Next apply the following boundary condition: 

 

 4( 0) 0 0w x c            (E1.6) 

 

Next apply the following boundary condition: 

 



 3( 0) 0 0
dw

x c
dx

            (E1.7) 

 

Substituting equations (E1.6) and (E1.7) into equation (E1.5) results in the following: 
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Next apply the following boundary condition: 
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z
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Now apply the final boundary condition: 
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6 2

z
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Equations (E1.9) and (E1.10) are two equations in the two unknown coefficients 1c  and 2c

. Solving for these two unknowns results in the following: 
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Substituting (E1.11) into (E1.8) therefore results in the following exact solution: 
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In addition, substituting (E6) and (E10) into (E3) results in: 
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b) The finite element algorithm is now deployed using 6 elements of equal length.  

Comparative results are shown in Fig. 7. 

 



 
Fig. 7 Comparison of Computational Result to Exact Solution for Example Problem 

#1 

 

Example Problem #2 

 

Given: A cantilevered beam is subjected to the triangular distributed loading shown below 

with 0 410 /z zp p N m  .  In addition, E=2.06x1011 N/m2, Iyy=8.99x10-6 m4, and l=12 m. 

 

 
Fig. 8 Depiction of a Prismatic Cantilever Beam Subjected to Triangular Loading 

 

Required:  a) Solve for 
0( , , , )z yyw w x p E I  analytically 



  b) Obtain a solution for 0( , , , )z yyw w x p E I numerically and compare the 

two solutions 

 

a) To obtain the analytic solution to this problem, first note that  

 ( ) l

z z

x
p x p

l
           (E2.1) 

Now recall that the beam shear, ( )zV x , is given by the following: 

 z
z

dV
p

dx
            (E2.2) 

Therefore, substituting (1) into (2) and integrating results in the following: 
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Now consider the following boundary condition: 

 ( ) 0zV x l            (E2.4) 

Substituting (4) into (3) gives the following: 
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1 ( )
2 2

l l

z z
z

p l p
c V x x l

l
            (E2.5) 

Now recall the beam moment, ( )yM x , is given by the following: 

 
y

z

dM
V

dx
           (E2.6) 

Therefore, substituting (5) into (6) results in the following: 

  2 2

2

l
y z

dM p
x l

dx l
             (E2.7) 

Integrating equation (7) therefore gives the following: 

 
3

2

2( )
2 3

l

z
y

p x
M x l x c

l

 
    

 
        (E2.8) 

Now consider the following boundary condition: 

 ( ) 0yM x l           (E2.9) 

Substituting (9) into (8) gives the following: 

 
2 3 3

2

2

2
( )

3 2 3 3

l l

z z
y

p l p x l
c M x l x

l

 
      

 
              (E2.10) 

Now consider the following equation: 

 
2

2

y

yy

Md w

dx EI
                    (E2.11) 

Substituting (10) into (11) thus results in: 



 
2 3 3

2

2

2

2 3 3

l

z

yy

pd w x l
l x

dx lEI

 
   

 
               (E2.12) 

Integrating the above thus gives: 

 
4 2 2 3

3

2
( )

2 12 2 3

l

z
y

yy

pdw x l x l x
x c

dx lEI


 
     

 
             (E2.13) 

Now consider the following boundary condition: 

 ( 0) 0y x                    (E2.14) 

Substituting (14) into (13) gives the following: 

 
4 2 2 3

3

2
0 ( )

2 12 2 3

l

z
y

yy

p x l x l x
c x

lEI


 
     

 
             (E2.15) 

It follows that 

 
31

( )
8

l

z
y

yy

p l
x l

EI
                    (E2.16) 

Integrating equation (15) gives the following: 

 
5 2 3 3 2

4( )
2 60 6 3

l

z

yy

p x l x l x
w x c

lEI

 
    

 
             (E2.17) 

Now consider the following boundary condition: 

 ( 0) 0w x                    (E2.18) 

Substituting (18) into (17) results in the following: 

 
5 2 3 3 2

4 0 ( )
2 60 6 3

l

z

yy

p x l x l x
c w x

lEI

 
     

 
             (E2.19) 

It follows that 

 
411

( 0)
120

l

z

yy

p l
w x

EI
                 (E2.20) 

b) The finite element solution is obtained using 6 elements of equal length. Comparative 

results are shown in Fig. 9. 

 



 
Fig. 9 Comparison of Computational Result to Exact Solution for Example Problem 

#2 

 

Example Problem #3 

Given: A simply beam is subjected to a temperature change of 50T C   .  Properties are 

E=2.06x1011 N/m2, Iyy=8.99x10-6 m4, 5 210 /zk N m  A=0.0145 m2, l=8.0 m and 

51.05 10 /x C   . 

Required: a) Obtain an analytic for 0( , , , )z yyw w x p E I . 

b) obtain a solution using finite elements and compare the two 

Solution: a) The solution solves the following differential equation: 

 

 
4 2

4 2

T

yy z

d w d w
EI P p

dx dx
         (E3.1) 

 

In order to obtain an analytic solution, assume that the solution is of the form: 

 

 2 3 4

0 1 2 3 4( )w x a a x a x a x a x            (E3.2) 

 

Next, consider the boundary conditions: 

 

 at x=0, l: 
2

2
0, 0

d w
w

dx
          (E3.3) 



 

in order for (E3.2) to be a correct assumption, it must satisfy both (E3.1) and (E3.3).  First, 

satisfy (E(3.3) as follows: 

 

  
2

2 3 4 2

0 1 2 3 4 2 3 42 2
2 6 12

d w d
a a x a x a x a x a a x a x

dx dx
           (E3.4) 

 

Satisfying (E3.3) with (E3.4) results in the following: 

 

 3
2 40,

2

a
a a

l
            (E3.5) 

 

Substituting (E3.5) into (E3.2) gives the following: 

 

 
3 43

0 1 3( )
2

a
w x a a x a x x

l
            (E3.6) 

 

Satisfying (E3.3) gives the following for (E3.6) 

 

 
2

3
0 10,

2

a l
a a            (E3.7) 

 

Substituting (E3.7) into (E3.6) gives: 

 

 
2 4

3

3( )
2 2

l x x
w x a x

l

 
    

 
        (E3.8) 

 

Substituting (E3.8) into (E3.2) results in the following: 

 

 

4 2 4 2 2 4
3 3

3 34 2

2
3

3

2 2 2 2

12
6 6

T

yy z

yy T

z

d l x x d l x x
EI a x P a x p

dx l dx l

a EI x
p P a x

l l

      
              
      

 
     

 

  (E3.9) 

 

Thus, the distributed loading given by (E3.9) provides the exact solution given by (E3.8). 

 



b) The finite element solution for several different numbers of elements is compared to the 

exact solution in Fig. 10, wherein it can be seen that convergence is obtained with twelve 

elements of equal length. 

 

 
Fig. 10 Comparison of Computational Result to Exact Solution for Example 

Problem #3 

 

Example Problem #4 

Given: A double-cantilevered beam is subjected to a distributed loading, where 

E=2.06x1011 N/m2, Iyy=8.99x10-6 m4, 0 5 210 /z zk k N m   A=0.0145 m2 and l=8.0 m.  In addition, 

51.05 10 /x C    and 50T C   . 

Required: a) Obtain an analytic solution for 0( , , , )z yyw w x p E I . 

b) obtain a solution using finite elements and compare the two 

Solution: a) The solution solves the following differential equation: 

 
4 2

4 2yy z z

w w
EI P k w p

x x

 
  

 
        (E4.1) 

 

Suppose that we choose the following: 

 
3 4

2

1 2

2
( ) 0

x x
w x C x x l

l l

 
     

 
       (E4.2) 

 



where l is the length of the beam and 1C  is a loading constant.  It can be seen that the above 

assumed solution satisfies the following boundary conditions: 

 
( 0, ) 0

( 0, ) 0

w x l

dw
x l

dx

 

 
         (E4.3) 

 

In order to obtain the forcing function, zp , equation (E4.2) is now substituted into equation 

(E4.1) and it is solved, thereby resulting in the following: 

 

 

4 3 4 2 3 4 3 4
2 2 0 2

1 1 14 2 2 2 2

2 3 4
1 0 2

1 12 2 2

2 2 2
( )

24 12 12 2
2

z yy z

yy

z

d x x d x x x x
p x C EI x C P x C k x

dx l l dx l l l l

C EI x x x x
C P C k x

l l l l l

     
             

     

   
         

   

  

            (E4.4) 

 

Equation (E4.2) is then the solution for a double cantilever beam with constant coefficient 

of friction and constant temperature change given by equation (2) subjected to forcing function 

given by equation (E4.4) and with boundary conditions (E4.3).   

 

c) The finite element solution gives the results shown in Fig. 11. 

 

 
Fig. 11 Comparison of Computational Result to Exact Solution for Example 

Problem #4 

 



It can be seen from the above example problems that the finite element model reproduces 

the exact solution for the linear case, with convergence obtained with 20 elements of equal length. 

E. Modeling the Rail Response for the Nonlinear Case 

 

Now consider the third term in equation (17) once again.  This term will necessarily be 

nonlinear whenever the coefficient of friction, zk , is not constant, and this circumstance is the 

main purpose of the current study.  The nonlinearity enters via the dependence of the friction 

coefficient, zk , on the lateral displacement, w.  As shown in Fig. 12, single tie push tests (STPT) 

confirm this nonlinearity.   

 

 
Fig. 12 Typical Lateral Load vs. Displacement from STPT Tests (Read et al 2011) 

 

For a given rail structure configuration, the above response is typically modeled with a 

power law of the following form (Tvergaard and Needleman 1981, Allen et al. 2016): 

 

0 1

0

( )

n

z z z

w
k w k k

w

 
   

 
         (24) 

 

As shown in Fig. 13, this type of curve fit does an adequate job of predicting the observed 

nonlinearity in the coefficient of lateral friction. 

 



 
Fig. 13 Comparison of Predicted Coefficient of Lateral Friction to Experimental 

Data Using Equation (24) 

 

As can be seen from Fig. 13, the coefficient of lateral friction can be highly nonlinear.  

Accordingly, failing to account for this nonlinearity in the model can lead to significant predictive 

error in the model.  Therefore, it is essential to include the ability to predict this nonlinearity in the 

model.  Toward this end, a standard time marching scheme is adopted herein, in which the 

externally applied mechanical load is gradually increased in a series of time steps, with Newton 

iteration deployed to capture the nonlinearity on each time step (Little et al. 2016).   

 Briefly, this is accomplished by first obtaining an approximate solution in which it is 

assumed that in the term zk  the displacement from the previous time step is used, thereby resulting 

in the following first approximation for the global form of equation (17).   

 

 
6 6 6

0 0 0

1 1 1

e e e e

ij j ij j ij j i

j j j

K q B q N q F
  

              (25) 

 

This erroneous value of ( )mw x  can be utilized to reduce the error by employing Newton’s method 

as follows: 

 

 1

1

( ), 1,...,
n

m

ij j i

j

a q f t t i n



            (26) 

 

where n is the number of spaces, and the coefficients ija  are obtained by differentiating equation 

(25) with respect to the incremental nodal displacements, jq , as follows [Ketter and Prawel 1969, 

Little et al. 2016]: 



 

 
6 6 6

0 0 0

1 1 1

e e e

ij ij j ij j ij j

j j jj

a K q B q N q
q   

 
      
  

        (27) 

 

In addition, the global force matrix on each iteration is given by the following (Little et al. 2016): 

 

 ( ) , 1,...,i i if t t F R i n              (28) 

 

where iF  is the increment in the global force matrix on the current step, and iR  is the increment in 

the global reaction matrix on the previous iteration.  As the estimate of the displacement increment 

matrix on each load step is observed to decrease on each iteration, the matrix  if  will be 

seen to tend toward a null matrix. 

The initial approximate solution, 0q , is substituted into equation (27) to obtain an 

improved estimate of the exact solution, and this process is repeated recursively until the error is 

deemed to be acceptably small, i.e., 

 

 0

1

m
m i

i

w w w


             (29) 

 

where m is the iteration number. 

 From equation (26) it should be clear that when the correct values for the nodal 

displacement increments, m

iq  , are substituted into equation (26), then ( ) 0m

if q  .  On the other 

hand, when this is not the case, then equation (26) results in a nonzero value of ( )m

if q .   

The iterative process is terminated when the following condition is satisfied: 

 

 

1m

ALm

w
e

w





          (30) 

 

where the double vertical lines signify the Euclidean norm, and ALe  is a preset value of allowable 

error.  The total displacement field is subsequently evaluated as follows: 

 

     1( ) ( ) ( )mw x t t w x t w x           (31) 

 

The above procedure is now validated by using it to solve certain example problems. 

 

F. Validation Problems for the Nonlinear Case 

 

Example Problem #5 

Given: A double-cantilevered beam is subjected to a distributed loading, where 

E=2.06x1011 N/m2, Iyy=8.99x10-6 m4, A=0.0145 m2, l=12.0 m,
51.05 10 /x C    and 50T C   .  



In addition, the lateral coefficient of friction parameters used to fit the date in Fig. 13 are 
0 6 21.16 10 /zk x N m , 1 5 26.5 10 /zk x N m , 0 0.005w m  and n=0.05.  

Required: a) Obtain an analytic solution for 0( , , , )z yyw w x p E I . 

b) obtain a solution using finite elements and compare the two 

Solution: a) The solution solves the following differential equation: 

 
4 2

4 2yy z z

w w
EI P k w p

x x

 
  

 
        (E5.1) 

 

Suppose that we choose the following: 

 
3 4

2

1 2

2
( ) 0

x x
w x C x x l

l l

 
     

 
       (E5.2) 

 

where l is the length of the beam and 1C  is a loading constant.  It can be seen that the above 

assumed solution satisfies the following boundary conditions: 

 
( 0, ) 0

( 0, ) 0

w x l

dw
x l

dx

 

 
         (E5.3) 

 

In order to obtain the forcing function, zp , equation (E5.2) is now substituted into equation 

(E5.1) and it is solved, thereby resulting in the following: 

 

 

3 4
2

1 24 3 4 2 3 4 3 4
2 2 0 1 2

1 1 14 2 2 2 2

0

3 4
2

1 22
1 0 1

1 12 2

2

2 2 2
( )

2

24 12 12
2

n

z yy z z

yy

z z

x x
C x

l ld x x d x x x x
p x C EI x C P x C k k x

dx l l dx l l w l l

x x
C x

C EI l lx x
C P C k k

l l l

   
    

                               
   


 

        
 

3 4
2

2

0

2

n

x x
x

w l l

  
  

            
   

 

           (E5.4) 

 

The above forcing function will produce the displacement field given in equation (E5.2).   

The next step is to compare the computational results obtained with the finite element 

algorithm to the exact solution represented by equations (E5.2) and (E5.4).  Toward this end, an 



allowable error of 65.0 10ALe X   has been utilized.  Fig. 14 shows the predicted vs. exact results 

for three different finite element meshes.  On the basis of these results it is concluded that a 20 

element mesh is accurate to five significant digits for the purpose of approximating the 

displacement field within a rail structure modeled by equations (4)-(8).  Furthermore, Fig. 15 

shows the finite element predictions using the 20 element mesh on each iteration.  On the basis of 

this, it is concluded that only a few iterations are necessary to accurately predict the effects of 

nonlinearity in the friction between the ballast-crosstie interface.   

 

 
 

Fig. 14 Comparison of Finite Element Approximations for Three Different Meshes 

to Exact Solution for Example  

Problem #5 

 



 
 

Fig. 15 Comparison of Finite Element Approximations for Each Iteration (20 

element mesh) to Exact Solution for Example Problem #5 

 

Conclusion 

 

Herein a formulation has been presented for the purpose of modeling mechanical and 

thermal load induced buckling in rail structures resting on ballast with nonlinear coefficients of 

friction, and this formulation has been caste into a nonlinear finite element formulation.   The 

formulation has been validated against both linear and nonlinear example problems with closed-

form solutions, and it has been shown that the formulation presented herein is both efficient and 

accurate when compared to exact solutions. 

Unfortunately, exact solutions do not exist for the vast majority of realistic circumstances 

involving rail structures, and this comprises the primary reason for producing he computational 

model developed herein.   It is envisioned that this model may be utilized in future by railway 

engineers to assess the necessity for interventions or replacement of sections of track structure for 

the purpose of avoiding costly and sometimes life-threatening track buckles.  The implementation 

of such a tool will be the purpose of a future paper. 
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