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Abstract 

 

A model is developed herein for predicting the onset of thermally induced lateral buckling 

in rail structures.  As described below, the model may be considered to be an extension of previous 

efforts spanning most of the twentieth century.  Building on both previous analytic and 

computational solutions, a computational model is developed for the purpose of predicting the 

thermal buckling temperature as a function of the track and support structure material properties, 

the track and support system geometries, the applied track loading, and the initial lateral 

displacement within the track.  Particular emphasis is placed on nonlinearity and history 

dependence of the lateral track resistance to deformation.  The resulting model is deployed within 

a simple Matlab computer program for ease of use by practicing engineers. 

 

Introduction 

 

Rails are known to undergo a variety of failure mechanisms that can cause significant 

property damage and loss of life (FRA 2015).  It is therefore propitious to develop advanced 

models for the purpose of mitigating such mishaps.  Toward this end, a one such model is presented 

herein. 

The literature on this subject is long and deep. Historically, Galileo introduced the problem 

of a beam in bending in 1637 (Galileo 1637).  More than a century later, the first cogent model for 

beam bending was reported by Euler and Bernoulli (Euler 1744).  In the early twentieth century 

this approach was used to model the structural response of rails (Timoshenko 1915, 1927).  Over 

the most recent half century a rigorous beam formulation of the rail thermal buckling problem has 

emerged (Kerr 1974, 1978).  In addition, methods have been reported for solving the problem 

numerically (Tvergaard and Needleman 1981, Lim et al 2003). 

 

Model Development 

 

Consider a generic rail mounted on a railway, as shown in Fig. 1.  Note that the x coordinate 

is aligned in the direction of travel, and the y and z coordinate axes are aligned with the vertical 

and horizontal directions, respectively. 

 



 
 

Fig. 1 Generic Rail with Coordinate Axes as Shown 

 

When viewed from the side, a typical rail with mechanical and thermal loading is shown 

in Fig. 2. 

 
 

Fig. 2 Typical Rail Loaded Mechanically and Thermally 

 

In order to construct a model of the rail, it is first assumed that it may be modeled as a 

beam-column, implying that it is long and slender (Allen and Haisler 1985).  As shown in Fig. 3, 

the centroidal axis of the rail may deform in all three coordinate directions, and the components of 



this displacement are denoted by 0 ( , )u x t , 0 ( , )v x t and 0 0( , )w w x t  , respectively.  Similarly, the 

components of stress are shown on an arbitrary cross-section of the rail in Fig. 4.   

 

 
 

Fig. 3 Depiction of the Rail Showing Displacement Components in the Deformed 

Configuration 

 

 

 
 

Fig. 4 Components of Stress on an Arbitrary Cross-Section of the Rail 

 

A side view of a free body diagram of a section of the rail is constructed in Fig. 5, wherein 

the load per unit length applied to the centroidal axis of the rail is composed of components 

( , ), ( , )x yp x t p x t  and ( , )zp x t  in the x, y, and z coordinate directions, respectively.  In addition, the 



normal component of force per unit length applied to the bottom of the rail due to the normal 

displacement component 0 ( , )v x t  is denoted as 0 ( , )yk v x t , where the negative sign is employed 

so that the base stiffness is non-negative when the resultant is positive due to downward 

displacement of the rail.  Similarly, the axial component of force per unit length applied to the 

bottom of the rail due to the axial component of displacement 0 ( , )u x t  is denoted as 0( , )xk u x t , 

and the out-of-plane component of force per unit length applied to the bottom of the rail due to the 

z-component of displacement 0 ( , )w x t  is denoted as 0( , )zk w x t . 

 

 
 

Fig. 5 Free Body Diagram of Cut Rail 

 

Note also that the stress distribution on the two vertical cuts within the rail are denoted 

generically by the two infinitesimal stress boxes on these faces.  Finally, note that the differential 

element is depicted in the deformed configuration, so that the axial force affects the transverse 

displacement of the rail.  This necessarily causes the response of the rail to be geometrically 

nonlinear. 

Consistent with Euler-Bernoulli beam theory the force and moment resultants are now 

defined as follows (Allen and Haisler 1985): 
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where A is the cross-sectional area of the rail, and y and z are the vertical and horizontal distance 

from the centroid, respectively.  The above resultants may now be utilized to construct the alternate 

free body diagram shown in Fig. 6. 

 

 
 



Fig. 6 Resultant Forces and Moments Applied to a Differential element of the Rail 

 

Applying Newton’s second law to the forces in the x coordinate direction in Fig. 6 will 

result in the following (Allen and Haisler 1985): 
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where, as shown in Fig. 2, l is the length of the rail.  Similarly, applying Newton’s second law to 

the forces in the y and z coordinate directions will result in the following (Allen and Haisler 1985): 
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Also, summing moments about the y- and z-axes and applying Newton’s second law will 

result in the following (Allen and Haisler 1985, Oden and Ripperger 1981): 
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where yyI  is the second area moment about the y centroidal axis 
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and zzI  is the second area moment about the z centroidal axis 
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Also, h is the height of the rail and w is the width of the rail. 



Equations (6) through (10) can be used, together with boundary and initial conditions, to 

predict the five unknowns: ( , ), ( , ),y yP P x t V V x t    ( , ),z zV V x t  ( , )y yM M x t  and 

( , )z zM M x t  when the rail is statically determinate.  In the general case, however, the problem 

is much more complex since the displacement components 0 0( , ),u u x t  0 0( , )v v x t and 

0 0( , )w w x t  are also unknowns. 

To deal with this issue, the Euler-Bernoulli kinematic assumption is employed, which 

assumes that planar sections remain planar and normal to the neutral axis of the rail during 

deformation as shown in Fig. 7 (Allen and Haisler 1985, Allen 2015), thereby resulting in the 

following assumed form of the axial displacement component: 

 

0( , , ) ( , ) ( , ) ( , )z yu x y t u x t x t y x t z          (13) 

 

where ( , )y y x t   is the angle of rotation of the vertical plane about the y axis ( , )z z x t   is the 

angle of rotation of the vertical plane about the z axis. 

 

 
 

Fig. 7 Kinematics of Deformation of the Euler-Bernoulli Beam 

 



In order to utilize equation (13) to complete the problem description, it is now necessary 

to introduce the definition of the axial strain, given by: 
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Substituting equation (13) into equation (14) therefore results in the following: 
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It is now assumed that  

 

,yy zz xx            (16) 

 

Accordingly, assuming that the rail is linear elastic and isotropic, the constitutive equation 

for the axial component of the stress, xx  , may be related to the axial strain component, xx  , via 

the following constitutive equation (Allen and Haisler 1985): 

 

( )xx xxE T              (17) 

 

where E is Young’s modulus,   is the coefficient of thermal expansion, and T  is the change in 

temperature (Allen 2013). 

Substituting equation (15) into equation (17) and this result into equations (1), (4) and (5) 

will result in the following: 
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and 
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where y  and z  are the y and z components of the centroid, given by 
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and TP , T

yM   and T

zM  are the thermally induced axial force and bending moment, respectively, 

given by (Allen and Haisler 1985): 

 
T

A

P E TdA           (22) 

 

 T

y

A

M E TzdA           (23a) 

 

and 
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Since the selection of the coordinate axes is arbitrary, we choose to use the centroidal axes, 

so that 0y   and 0z  , thereby simplifying equations (18) through (20) to the following: 
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and 
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Treating the axial force, P, and the bending moments, yM  and zM , as well as the thermal 

terms, as if they were known for the time being, equations (24) through (26) can be inverted to the 

following forms: 

 



0 ( )Tu P P

x EA

 



         (27) 

 

( )T

y y y

yy

M M

x EI

 



         (28) 

 

and 

 

( )T

z z z

zz

M M

x EI

 



         (29) 

 

Substituting the above three equations into equation (15) results in the following: 
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Substituting equation (30) into equation (17) results in the following: 
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Now recall from calculus that (Allen and Haisler 1985) 
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And 
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Equating (28) and (32) now results in the following: 
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Similarly, equating (29) and (33) results in the following: 
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It can now be seen that equations (6) through (10), (27), (31), (34) and (35) constitute nine 

equations in the following nine primary unknowns: 
0 0 0, , , , , , ,xx y z y zu v w M M V V       and P.  These 

equations are reproduced for clarity in Table 1.  Together with initial and boundary conditions, the 

model described in Table 1 can be utilized to predict the nine primary variables. 

  



 

 

Independent Variables: x,t 
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Table 1 Model for Predicting the Rail Response 

 



The procedure utilized to solve this problem will depend on the initial and boundary 

conditions, as well as certain simplifying approximations deployed for the purpose of solving the 

problem.  The case of thermal buckling will be considered in the following section. 

 

Thermal Buckling 

 

A common cause of rail misalignment is thermal buckling, as shown in Fig. 8.  Note from 

the photograph that buckling normally occurs laterally.  This is due to the fact that the moment of 

inertia of the rail about the vertical axis is significantly lower than that about the horizontal axis.   

 

 
 

Fig. 8 Photograph Showing Thermally Induced Buckling of a Railway 

 

Thermal buckling can be rather complicated depending on the temperature distribution 

within the rails and the structural configuration of the underlying railway base.  However, a 

fairly simple first approximation can be made, and it will be described in this section.  The 

following assumptions are made to obtain this simplified solution: 

 

1) the only axial load occurs due to temperature; 

2) the temperature is spatially homogeneous but increases linearly in time; 

3) dynamic effects can be neglected; 

4) prior to buckling the rail is constrained against motion in the x coordinate direction; 

5) there is no distributed load applied to the rail in the z coordinate direction; and 

6) there is no bending about the z axis. 

 

Under the above assumptions the problem simplifies to that shown in Table 2. 

  



 

 

 

Independent Variables: x,t 

Known Inputs: 

 Loads:   0zp   

 Temperature change: T  

 Geometry:  , , , ,yy zzl h A I I     
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Table 2 Simplified Model for Predicting Thermally Induced Rail Buckling 

 

It can be seen from equations (22) and (27), as well as assumption 4) that 
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thereby providing one of the unknowns.  The physically important unknowns are 0 ( , )w x t  and 

( , )xx x t .  In order to predict these unknowns with the model it is necessary to apply initial and 

boundary conditions.  These are assumed to be as follows: 

 



 I.C.: 0( , 0) 0 0,w x t x l           (38a) 
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where Bl  is the length of the buckle in the rail. 

Because the boundary conditions are all of displacement type it is possible to reduce the 

governing equations to a single primary equation in terms of the transverse displacement 

component, 0 ( , )w x t .  To do this, first rearrange equation (T2.3) and substitute this result into 

equation (T2.2) to obtain the following: 
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Next rearrange equation (T2.5) and substitute into the above, thereby resulting in the 

following equation: 
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Note that the above equation reduces to the equation for simple beams if 0T

zP k  .   

The exact solution to the homogeneous part of equation (40) is given by the following: 
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Substituting equation (41) into the homogeneous part of equation (40) results in the following: 

 

Substituting (38b) and (38c) into equation (41) results in the following: 
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In order to determine the unknown coefficient A0 it is necessary to substitute equation (43) into 

equation (40), thereby resulting in the following constraint on the exact solution: 
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Since equation (43) results in a homogeneous governing equation, it follows that: 
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where T

crP  is the critical thermally induced axial load that will cause rail buckling.  Also, the first 

term on the right hand side shows the effect of lateral friction against buckling, and the second 

term is the classical column buckling term.   

To obtain the critical temperature at which rail buckling is predicted, substitute equation 

(22) into equation (45) and solve for the critical temperature change, crT : 
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Note that the critical temperature is independent of the laterally applied load per unit length, 

zp .  As in classical buckling theory, the critical buckling temperature depends only on the rail 

geometry and material properties.  However, in this case it also depends on one additional material 

property, the coefficient of friction between the rail and ballast in the z coordinate direction, zk .  

For purposes of demonstration, the above equation is analyzed using the material properties shown 

in Table 1.   

 

Property Value Units 

E 2.06x105 MPa 

α 1.05x10-5 1/°C 

A 1.45x10-2 m2 

Iyy 8.99x10-6 m4 

 

Table 1 Properties Utilized to Perform Analyses Shown in Figs. 9 and 10 (Kerr 1978, 

Tvergaard and Needleman 1981) 

 

As shown in Fig. 9, the predicted critical temperature is significantly affected by the length 

of the rail buckle.  Note that in geographic areas wherein in temperature changes in excess of 60°C 

are possible the track friction coefficient is essential to the resistance to buckling. In fact, it is 



apparent that buckle lengths of 6 m or more in length are possible when lateral friction is negligible.  

Furthermore, the critical temperature for buckling actually increases with increasing lateral 

friction.  For example for track friction coefficients in excess of 1.0 MPA, temperature changes of 

at least 80°C are necessary to produce track buckling (of approximately 7 m in length). 

 

 
 

Fig. 9 Predicted Critical Temperature Change for Rail Buckling as a Function of 

Buckle Length for Three Different Friction Coefficients 

 

Perhaps more importantly, the critical temperature is also strongly affected by the lateral 

coefficient of friction, zk , as shown in Fig. 10.  Whereas longer buckle lengths are possible at 

lower values of temperature change when track friction is negligible, this trend reverses when there 

is significant track friction.  Thus, providing lateral friction between the rail and ballast may 

significantly reduce rail buckling due to temperature change. 
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Fig. 10 Predicted Critical Temperature Change for Rail buckling as a Function of 

Friction Coefficient for Three Different Buckle Lengths 

 

Conclusion 

 

These results suggest the following two ways of mitigating thermal buckling of rails: 

 

1) provide lateral structural support to rails at intervals predetermined by local 

temperature extremes as a means of obviating thermally induced buckling; and/or 

2) imbedding friction enhancement devices within the ballast coarse as a means of 

increasing lateral friction within the railway. 

 

Unfortunately, it is noteworthy that while the model developed herein suggests some 

possibilities for mitigating thermally induced rail buckling, it does not result in an situ means of 

anticipating rail buckling based on the observation of rail deformations due to the fact that indeed 

no deformations are predicted by the model prior to buckling.  Rather, the model developed here 

in suggests that a more appropriate variable to be monitored as a predictor of rail buckling is the 

rail temperature. 
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