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Pedestrian and Bicyclist Safety at Highway-Rail Grade Crossings 

Executive Summary 

 Published literature is relatively sparse on the topic of non-motorist (pedestrians and 

bicyclists) crashes at rail crossings. Such crashes contribute to the overall fatalities and injuries 

reported at rail grade crossings and cause disruptions to both the rail and highway networks. 

These crashes may be associated with several factors, such as risk-prone crossing user behavior, 

underestimation of approaching train speed, distractions caused by electronic devices, 

insufficient visibility due to obstructed sightlines, and inadequate infrastructure and maintenance 

of rail crossings (e.g., malfunctioning warning signals or absence of signage). Estimation of 

crash prediction models provides insights into the nature of safety and its associated factors. 

While such models are simplifications of complex phenomena, they are useful for advancing 

understanding, forecasting future conditions, and for allocation of resources. 

 A staple of crash predication models is crash exposure, which is a measure of activities at a 

location of interest (e.g., motor vehicle, train, and non-motorized traffic at rail crossings). While 

motor vehicle and train traffic information are available for rail crossings, there are no reliable 

estimates of non-motorist traffic at rail crossings readily available. The currently available 

Federal Railroad Administration (FRA) crash frequency and severity models for rail crossings 

cover vehicular exposure, overlooking the dynamic aspects of non-motorized traffic. Similarly, 

other available models of rail crossing safety are motor vehicle centric. Collection of non-

motorized traffic exposure information is needed for developing better crash prediction models. 

However, doing so for the approximately 212,000 rail crossings across the US is not practical.  

 This study developed a non-motorized traffic prediction model for HRGCs based on specific 

rail crossing characteristics. Non-motorist traffic data were collected at urban and suburban rail 

crossings in Nebraska using video recording devices and AI-based object detection techniques. 

In addition to non-motorist traffic, data were gathered on rail crossing characteristics and 

surrounding area features, such as population density, land use, vehicle and train traffic, and 

HRGC proximity to activity centers. Temporal factors, including temperature, windspeed, 

visibility, and precipitation, were also recorded to assess their influence on non-motorist activity. 
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The study aimed to address two key research questions: (a) which crossing characteristics are 

statistically significant predictors of non-motorist traffic at rail crossings? and (b) what is the 

predictive accuracy of the developed non-motorist traffic model based on these characteristics? 

Using this comprehensive dataset, both statistical and AI-driven prediction models were 

estimated for non-motorist traffic volumes at HRGCs. A comparison of model performance 

indicators was conducted to select the final model for non-motorist volume prediction at HRGCs.  

 The selected model indicated that sidewalks, improved visibility, and cloudy weather 

conditions are associated with increased non-motorist traffic volume. Conversely, higher 

motorized traffic levels, adverse weather conditions (rain and snow), industrial zones, and more 

traffic lanes on the crossing road were linked to reduced non-motorist activity.  By understanding 

factors that influence non-motorist traffic at HRGCs, policymakers and planners can develop 

targeted interventions to enhance safety at HRGCs. The output from these models (i.e., 

predictions of non-motorist crash exposure) can then be used as input in HRGC crash prediction 

models focused on non-motorized users. 

1. Introduction 

Safety stands as the cornerstone of any transportation system, and nowhere is this more 

evident than at highway-rail grade crossings (HRGCs). Highway-rail grade crossings are crucial 

intersections where motorists and trains intersect, requiring rigorous caution. These crossings 

have a higher likelihood of potential hazards and crashes if safety measures are compromised. 

The consequences of mishaps at these intersections extend far beyond mere inconvenience, often 

resulting in loss of lives, severe injuries, extensive property damage, and societal unrest. 

Furthermore, crashes at grade crossings have significant financial consequences that include 

paying for litigation, fixing infrastructure, and causing delays in trade and commerce. To ensure 

a safe coexistence between motorists and moving trains, smooth coordination is essential, 

requiring adherence to safety protocols and the establishment of safety infrastructure. Hence, 

ensuring safety at highway rail grade crossings is not merely a regulatory obligation, but a 

cornerstone of sustainable transportation infrastructure. According to preliminary Federal 

Railroad Administration (FRA) statistics, 2,190 highway-rail grade crossing crashes occurred in 
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2023. There were 248 crossing fatalities and 752 crossing injuries in 2023 across the U.S. 

Approximately 84% of all 2023 highway-rail grade crossing collisions occurred in these states 

(FRA, 2024).  

While there has been a lot of emphasis on keeping motorists safe at rail grade crossings, it is 

crucial not to overlook the safety of non-motorists. The safety of non-motorists, essentially 

comprising pedestrians and bicyclists, remains a pressing concern. These vulnerable road users 

navigate these crossings with distinct challenges, facing heightened risks due to their limited 

visibility and slower speeds (Farooq and Khattak, 2023; Khattak et al. 2023; Zhao et al. 2024). 

These crossings frequently present significant obstacles to non-motorists despite being equipped 

with warning devices like lights, gates, and bells; these obstacles could be due to inadequate 

infrastructure, poor signage, uneven or poorly maintained walking or cycling paths leading to the 

crossing, confusing road markings or signage, insufficient lighting, particularly during nighttime 

hours, and insufficient public awareness campaigns. Therefore, the increasing vulnerability of 

bicycles and pedestrians at highway rail grade crossings emphasizes the need for targeted 

interventions and all-encompassing safety measures made to satisfy their needs.  

Furthermore, crashes involving pedestrians and bicyclists at rail crossings can be further 

associated with several factors beyond the obstacles described earlier, such as, underestimation 

of the speed and proximity of approaching trains, distractions caused by electronic devices, 

insufficient visibility due to obstructed sightlines from vegetation or structures, socio-economic 

factors such as risky behavior, or attempts to cross tracks while ignoring safety protocols, and 

inadequate infrastructure and maintenance of rail crossings, including malfunctioning warning 

signals or absence of clear signage. To state briefly, enhancing non-motorists’ safety at highway-

rail grade crossings presents a multifaceted challenge due to diverse settings in which these 

crashes occur, necessitating coordination among various stakeholders. Furthermore, incidents 

involving pedestrians and bicyclists can occur both at rail crossings and at non-rail crossing 

locations, each situation exhibiting a distinct crash dynamic.  
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1.1. Problem Statement 

The Federal Railroad Administration (FRA) compiles data on HRGCs, encompassing various 

physical and dynamic attributes such as location information, warning devices, device 

configurations, pavement markings, number of lanes on the roadway, type of pavement surface, 

track configurations, geometric features, as well as train and vehicular traffic volumes. Through 

the analysis of these datasets, the FRA formulates models to predict the frequency and severity 

of crashes, facilitating the allocation of resources and the management of crash risks at these 

crossings. Regrettably, these datasets are devoid of any information pertaining to pedestrian or 

bicyclist crash exposure. This absence, particularly concerning pedestrian and bicyclist crash 

exposure data, signifies a notable deficiency in non-motorists’ safety at rail crossings. 

The lack of crash exposure data significantly hampers our capacity to investigate the risks 

associated with pedestrian and bicyclist safety at rail crossings. Moreover, the prevailing safety 

models developed for rail crossings predominantly concentrate on motor vehicle crashes, leaving 

a significant gap in safety models, developed specifically to predict crashes involving pedestrians 

and bicyclists. Additionally, the currently established FRA crash frequency and severity models 

for HRGCs only consider the dynamic elements of train and vehicular traffic, overlooking the 

dynamic aspects relevant to non-motorized pedestrians and bicyclists. 

1.2. Background 

In risk analysis “exposure” is a concept describing the opportunity for a random event to 

occur, that is, the number of trials. Consequently, identifying the appropriate measure of 

exposure for a particular risk event is extremely important for analyzing the likelihood of its 

occurrence (Shapiro et al. 1997). For non-motorist safety analysis, this exposure metric should 

take into consideration the degree to which bicyclists and pedestrians put themselves at risk of 

being struck by a train or a motor vehicle at a rail crossing. If these criteria are met, the exposure 

metric can be a reliable explanatory variable for predicting pedestrian and bicyclist crashes at rail 

crossings. 
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Exposure is defined as the rate of contact with a potentially harmful agent or event. Non-

motorist exposure is therefore defined as the rate of non-motorist contact with potentially 

harmful situations involving moving vehicles and trains (e.g., highway rail grade crossings, or a 

highway intersection). In addition, non-motorist risk is defined as the probability that a non-

motorist and vehicle/train crash will occur, based on the rate of exposure. Estimating exposure 

requires precise measurements of pedestrian and bicyclist volumes, yet obtaining these 

measurements poses considerable challenges. Other units of exposure in non-motorist crash 

analysis include person-hours, trip counts, and pedestrian or cyclist population counts (Miah et 

al. 2024; Almasi et al. 2021). The choice of pedestrian exposure measure strongly influences the 

risk analysis results. Keall (1995) examined pedestrian crash data using the exposure measures 

“time spent walking” and “number of roads crossed”.  

Recent research in the field has highlighted the importance of pedestrian and bicyclist 

exposure modeling in urban environments. Studies have explored various factors influencing 

pedestrian behavior, such as land use patterns, built environment characteristics, and 

transportation infrastructure design. Additionally, advancements in data collection techniques, 

including GPS tracking, video surveillance, and crowd-sourced data, have enabled researchers to 

capture detailed information about pedestrian movements and interactions with their 

surroundings. By synthesizing findings from these studies, we can glean valuable methodologies 

and insights applicable to our investigation of pedestrian activity at rail crossings (Miah et al. 

2024; Almasi et al. 2021; Sze et al. 2019). 

Moreover, a growing body of literature has focused on predictive modeling techniques for 

estimating pedestrian volumes in different contexts. Researchers have employed a variety of 

approaches, including statistical modeling, machine learning algorithms, and agent-based 

simulations, to forecast pedestrian flow patterns and identify potential safety hazards (Chen et al. 

2020; Miah et al. 2024; Almasi et al. 2021; Sze et al. 2019).  While many of these studies have 

primarily targeted urban highways and public spaces, the principles and methodologies 

developed can be adapted and extended to study pedestrian and bicyclist behavior and exposure 

specifically at rail crossings. By examining these predictive models, we can discern best 

practices and identify opportunities to tailor them to the unique characteristics of rail crossing 

environments. 
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The FRA-sponsored “Grade- Crossing Research Needs Workshop” (Harrison and DaSilva, 

2019) highlights rail crossing stakeholders’ desire to improve data collection on pedestrians and 

bicyclists at rail crossings. Since no reliable accident exposure measures for pedestrians and 

bicyclists exist for rail crossings, the research is focused on collecting data on pedestrian and 

bicyclist traffic at urban and suburban rail crossings in Nebraska to develop a framework for 

estimating accident exposure at other rail crossings.  

1.3. Objectives  

This research aims to address the following key objectives: 

 

1. Develop a methodology to collect pedestrian and bicyclist crash exposure data at urban 

and suburban highway rail grade crossings using video-based data collection devices. 

2. Develop AI-based computer vision algorithms to detect pedestrian and bicyclist activities 

at highway rail grade crossings. 

3. Analyze the existing characteristics and dynamics of highway rail grade crossings to 

identify crash-risk factors specific to pedestrians and bicyclists. 

4. Develop statistical and AI-based models to forecast non-motorist volumes at highway rail 

grade crossings, enabling accurate prediction of future exposure levels. 

1.4.  Overall Approach  

The research project began with an exhaustive analysis of existing literature on pedestrian 

and bicyclist exposure. Although the literature on non-motorist volume and exposure modeling is 

extensive, we identified a noticeable gap in research specific to highway-rail grade crossings. 

Nevertheless, studies centered on other transportation systems and infrastructure can offer 

valuable insights and establish a foundational understanding for our work. The task also involved 

producing a tabular summary of the reviewed literature and presenting a systematic review of 

key research studies along with their findings. 
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Subsequent steps involved the recording of video data on pedestrian and bicyclist activities at 

Nebraska HRGCs, utilizing Miovision Scout and City of Lincoln Cameras. To ensure a 

representative sample and accessibility to the University of Nebraska, we identified and 

delineated suitable locations for rail crossings, as well as determined optimal times and durations 

for video data collection. Furthermore, spatial and temporal analyses were conducted to identify 

patterns and trends in pedestrian and bicyclist activities on rail crossings. Pertinent research 

questions were investigated, such as: (1) Are there specific times of day, days of the week, or 

months with higher or lower volumes? (2) Are there particular rail crossings with consistently 

high or low activity? 

Data collection efforts were not limited to pedestrian and bicyclist volumes at HRGCs; they 

also extended to gathering information about various volume-associated factors. These factors 

encompassed census related data population density, posted speed limit, crossing facilities, 

presence of safety measures, lane count on intersecting highways, peak hour travel demand, 

land-use characteristics, socio-economic factors, and identification of nearby activity centers. 

Afterwards, we conducted an evaluation of the collected data by selecting suitable metrics to 

measure pedestrian and bicyclist exposure. While common metrics like person-miles traveled, 

person-hours exposed, or trip counts are frequently used, our focus was on assessing pedestrian 

and bicyclist volumes in counts per day and counts per hour. Moreover, exposure analysis was 

integrated with other pertinent data sources such as census data, roadway characteristics, and 

land use data. Additionally, to effectively communicate crash exposure-related aspects, we 

employed data visualization techniques, including the creation of maps, graphs, and 

visualizations.  

Finally, we utilized various statistical and machine learning techniques to estimate models 

for predicting non-motorist volume at HRGCs. We presented research conclusions, offered 

guidance on improving pedestrian and bicyclist safety at HRGCs, and identified areas for future 

investigation. 
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1.5. Research Framework 

The research framework is presented in Figure 1. As depicted in the figure, videos were 

recorded at urban and suburban rail grade crossings in Nebraska using Miovision and City of 

Lincoln cameras. Subsequently, AI-based algorithms were utilized to detect non-motorists' 

volume at rail crossings. Utilizing the count data alongside other rail crossing-associated data, 

we developed volume prediction models for non-motorists at HRGCs. 

 

Figure 1. Research Framework. 

1.6. Organization of the Report  

This report is divided into 6 sections. Section 1 provides an introduction, background 

information, research aims, and overall approach. Section 2 presents a detailed literature review 

on non-motorist exposure measures. In Section 3, we elaborate on data collection, including 

location selection details for video monitoring of highway-rail grade crossings in Nebraska, 
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accompanied by comprehensive descriptions of the video data. Section 4 outlines the 

development of AI-based algorithms for non-motorist detection at rail crossings. Section 5 offers 

insights from case studies to illustrate the study's methodology, along with details on the 

validation of the algorithms employed for non-motorist detection at rail crossings. Section 6 

delves into a detailed discussion on the development of statistical and AI volume prediction 

models for non-motorists at rail crossings and presents the results. The final section provides 

conclusions, discusses limitations, and outlines avenues for future research. 

2. Literature Review 

Non-motorists, that essentially include pedestrian and bicyclist safety and exposure 

assessment are critical components of urban planning and transportation management. 

Understanding pedestrian and bicyclist behavior and predicting pedestrian volumes at various 

locations, including transportation hubs like rail crossings, is essential for designing safe and 

efficient infrastructure. While the literature on non-motorist volume and exposure modeling is 

extensive, there is a noticeable gap in research specific to rail crossings. Nonetheless, drawing 

from studies focused on other transportation systems and infrastructure can provide valuable 

insights and establish a foundational understanding for our work. 

2.1.  Pedestrian Exposure 

Walking is perhaps the most prevalent and widespread form of physical activity. It 

necessitates no particular skills or gear and can seamlessly blend into the daily schedules of 

urban residents across all age groups (Tudor-Locke et al., 2005). Furthermore, walking yields 

several environmental and social advantages, including alleviating congestion and greenhouse 

gas emissions, as well as enhancing social cohesion and the overall livability of urban areas. 

(Yin, 2017).  

Many experts and public health officials are interested in establishing walkable communities 

and promoting walking behavior. Urban land use and transportation planning policies are 

progressively focusing more on promoting walking and reducing reliance on cars (Babb & 
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Curtis, 2015). Encouraging walking lies at the core of urban planning theories, which connect 

higher rates of walking with the overall vibrancy of city life (Southworth, 2005). Jane Jacobs 

emphasized the significance of walking both at district and street levels for urban vitality, 

advocating for streets to remain active throughout the day with diverse activities and people 

(Jacobs, 1961). Her ideas influenced the emergence of new urbanism and smart growth theory. 

Similarly, promoting walking in cities and public spaces aligns with urban theories concerning 

the city's visual appeal, and the quality of public spaces (Whyte, 1980). Thus, monitoring 

walking activities, such as pedestrian volume, can offer valuable insights for researchers and 

planners to encourage walking behavior (Chen et al., 2020).  

However, encouraging safe walking behavior around rail crossings is vital for both urban 

mobility and public safety. We can highlight the importance of integrating pedestrian-friendly 

infrastructure with rail systems to ensure safe passage for walkers. This includes designing 

crossings that are easily accessible, well-lit, and clearly marked to reduce the risk of accidents 

(Irwin, 2003; Lobb et al., 2003; Alshehri et al. 2023). In this section, we have provided an 

overview of the latest research on pedestrian exposure studies conducted globally. These 

tabulated details in Table 1 offer concise insights into the research context, data collection 

methods, and key findings. Additionally, to enhance comprehension, the studies are further 

elaborated upon in the subsequent section following Table 1.  

Table 1. Recent pedestrian exposure/volume prediction studies. 

No Author(s) Year Data  Context  Location Methodology Results/Highlights 
1 Chen at el.  2020 Street View 

images 
(SVIs) from 
Tencent and 
Baidu Maps, 
over 700 
street 
segments, A 
total of 
4,507 
sampling 
points along 
these street 
segments 
were 
analyzed 

Estimating 
pedestrian 
volume using 
Street View 
images: A 
large-scale 
validation test 

Tianjin, 
China 

Retrieval of 
Street View 
images (SVIs), 
pedestrian 
detection using 
the Localized 
Detection and 
Classification 
Framework 
(LDCF) 
algorithm, and 
data 
aggregation. 

Pedestrian volume 
measured using street 
view images and 
machine learning. 
Automated detection 
validated against field 
observation. 
Street connectivity 
and volume influence 
accuracy. 
Image quality, size, 
and collection time 
also impact accuracy. 

2 Qin and 
Ivan 

2001 Exposure 
data on 32 

Estimating 
Pedestrian 

Connectic
ut, USA 

General linear 
modeling and 

Pedestrian exposure is 
associated with 
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sites from 
rural areas in 
(specific 
months in 
1998 and 
1999)  

Exposure 
Prediction 
Model in Rural 
Areas 

Tukey and 
Duncan 
multiple 
comparison of 
means 
methods 

sidewalk availability, 
highway lane count, 
area type (tourist, 
campus, downtown, 
residential), and 
signal presence. 

3  Schneider 
et al.  

2009 Pedestrian 
counts at 50 
intersections 
along 
arterial and 
collector 
roadways 

Pilot Model 
for Estimating 
Pedestrian 
Intersection 
Crossing 
Volumes 

Alameda 
County, 
California, 
USA 

Ordinary least 
squares (OLS) 
regression 

Total pedestrian 
intersection crossing 
per week associated 
with the proximity to 
intersection, total 
employment, number 
of commercial retail 
properties, and 
number of regional 
transit stations  

4 Sze et al.  2019 Travel 
Characteristi
c Survey 
(TCS) data 
in 2011-
2015 

Exposure to 
pedestrian 
crash based on 
household 
survey data: 
Effect of trip 
purpose 

Hong 
Kong  

Random-
parameter 
negative 
binomial 
regression 
modelling  

Total population, 
walking frequency 
and walking time 
were adopted to 
represent the 
pedestrian exposure to 
road crash. 
Walking frequency 
and walking time 
associated with 
AADT, Zonal 
population, proportion 
of population, median 
household income, 
road density, number 
of non-signalized 
intersection,  

5 Jiang et al.  2022 More than 
1400 
features are 
constructed 
from the 
CBD 
Melbourne, 
for 
pedestrian 
estimation, 
covering 
macro 
aspects of 
transportatio
n, 
socioecono
mics, road 
networks, 
time, land 
use and 
place of 
interest. 

Pedestrian 
volume 
prediction with 
high 
spatiotemporal 
granularity in 
urban areas by 
the enhanced 
learning model 

Melbourn
e, 
Victoria, 
Australia 

Optimal 
supervised 
learning model 
of LightGBM 
(Light 
Gradient 
Boosting 
Machine), and 
LightGBM-
based 
enhanced 
learning model 

Pedestrian volume 
associated with bus 
stop, railway station, 
transport terminal, 
bridge parking type, 
parking spaces, total 
employment in block, 
land use, and time of 
day 
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6 Raford 
and 
Ragland  

2004 1997 
economic 
census 
employment 
data, Census 
2000 
population 
density data 

Innovative 
Pedestrian 
Volume 
Modeling Tool 
for Pedestrian 
Safety 

Oakland, 
California 
USA 

Space Syntax 
Modelling that 
utilized layout 
and 
connectivity of 
urban street 
grids to 
generate 
“movement 
potentials” 

The highest 
pedestrian volumes 
were found in the 
downtown  area,  
where  streets  
accounted  for nearly 
5% of total citywide 
pedestrian volume, 
but only 1% of total 
street  area. 

7 Singleton 
et al.  

2021 pedestrian 
data from 
high-
resolution 
traffic signal 
controller 
logs, in 
addition 
over 10,000 
hr of video 
recorded at 
90 
signalized 
intersections 

Pedestrian 
Traffic Signal 
Data 
Accurately 
Estimates 
Pedestrian 
Crossing 
Volumes 

Utah USA Various linear 
and nonlinear 
regression 
models that 
reflect a 
factoring 
approach 
(Piecewise 
linear and 
quadratic 
models) 

Traffic signal data can 
be successfully used 
to estimate pedestrian 
crossing volumes with 
good accuracy 

8 Griswold 
et al.  

2019 Counts 
taken from 
1200 
location on 
the 
California 
State 
Highway 
System 
(SHS) 

A Pedestrian 
Exposure 
Model for the 
California 
State Highway 
System 

California, 
USA  

log-linear 
regression 

Associated factors of 
pedestrian volume are 
employment density, 
population density, 
number of schools, 
number of street 
segments, 
intersections with 
principal arterial and 
minor arterial 
roadways, and four-
way intersections 

9 Li and Wu  2021 Pedestrian 
signal and 
detection 
events are 
collected 
through the 
MaxView 
system  

Real-time 
estimation of 
pedestrian 
volume at 
button-
activated 
midblock 
crosswalks 
using traffic 
controller 
event-based 
data 

Pheonix, 
Arizona 

Maximum 
Likelihood 
Estimation 
(MLE) and 
Poisson Model 
and sensitivity 
analysis  

Lower pedestrian 
volume on weekends 
than on weekdays; 
Accurate volume 
estimation based on 
the poison process 
and MLE 

10 Sobriera 
and 
Hellinga 

2023 Short time 
counts and 
pedestrian 
activity 
(October 
2021 to 
September 
2022) 

Estimating 
Pedestrian 
Volumes at 
Each 
Crosswalk of 
Intersections: 
Comparison of 
Land-Use 

The cities 
of Milton 
and 
Toronto in 
Ontario, 
Canada, 
and Pima 
County, 

Aggregated 
Multinomial 
Logistic 
Regression; 
Optimal land 
use model 

Pedestrian volume 
associated variables 
are Population 
density, 
commercial land use, 
presence of schools, 
presence of transit 
stops, 
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Models and 
Short-Term 
Count 
Methods 

Arizona, 
USA. 

crossing width, 
presence of any type 
of physical median, 
presence of a refuge 
island, 
road classification, 
number of paved 
sidewalks in the 
corners of the 
crosswalk, 
presence of slip lanes 

11 Sobriera 
et al.  

2023 Pedestrian 
count 
datasets 
from 1,018 
signalized 
intersections 

Comparing 
Direct 
Demand 
Models for 
Estimating 
Pedestrian 
Volumes at 
Intersections 
and Their 
Spatial 
Transferability 
to Other 
Jurisdictions 

Milton, 
Canada; 
Pima 
County, 
U.S.; and 
Downtow
n Toronto, 
Canada 

Direct 
Demand (DD) 
modelling 
(Log-linear, 
Poisson, and 
Negative 
Binomial 
structures) 

Key factors associated 
with pedestrian 
volume were level of 
pedestrian activity, 
land use, and 
socioeconomics 

12 Bosina et 
al.  

2017 Pedestrian 
activity data 
collected for 
morning and 
evening 
periods 
(manual 
pedestrian 
tracking) 
during fall 
of 2016 

Pedestrian 
flows on 
railway 
platforms 

Zürich 
Hardbrück
e and 
Zürich 
Stadelhofe
n, 
Germany  

Hypothesis 
testing on 
tendencies to 
minimize 
walking 
distances and 
adapt to 
platform 
layouts, 
allowing for 
validation and 
rejection 

Entrance/exit usage, 
waiting position, 
destination 
distribution, Platform 
side change, 
pedestrian 
distribution, walking 
routes, and boarding 
and alighting 
behaviors are 
variables associated 
with pedestrian 
volume 

13 Chen et al.  2022 Street view 
images 
collected 
from Baidu 
Map, a 
popular 
online 
mapping 
service in 
China 
(covered a 
total length 
of 3,393 
kilometers 
of streets) 

Examining the 
association 
between the 
built 
environment 
and pedestrian 
volume using 
street view 
images 

Shanghai, 
China 

Extraction of 
pedestrian 
volume using 
street view 
imaging, and 
machine 
learning 
techniques 

Key variables: land 
use (residential, 
enterprise, 
commercial, public 
service, and 
entertainment), micro-
scale-built 
environment, and 
street-level 
characteristics 
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In a foundational study conducted by Behnam et al. in 1997, uncomplicated quantitative 

models utilizing land-use data were developed to estimate pedestrian volume on Central 

Business District (CBD) sidewalks. They employed statistical multiple regression techniques to 

create two models for CBD circulation. The first model was based on Noon-hour pedestrian 

volume, while the second model utilized eight land-use variables to estimate average hourly 

pedestrian volume. A statistical assessment of these models was carried out, indicating that the 

equations generated could accurately predict pedestrian volume. These models proved to be 

valuable in the realms of planning, traffic engineering, and the design of pedestrian facilities.  

Qin and Ivan (2001) developed pedestrian exposure prediction models in rural areas and 

investigated the exposure risk of pedestrians to collisions with motor vehicles. They investigated 

the relationship between the weekly pedestrian exposure in rural areas of Connecticut and factors 

such as population density, presence of sidewalks, number of lanes, area type, traffic control 

type, and median household income. General linear modeling and Tukey and Duncan multiple 

comparison of means methods were used to identify the significant factors. Only the number of 

lanes, area type, and sidewalk system significantly explained the variation in the resulting 

pedestrian exposure prediction model. Notably, the study emphasizes the necessity of enhancing 

pedestrian facilities in areas with high exposure, suggesting future efforts to estimate pedestrian 

crash models. 

Chen et al. (2020) explored the potential of using Street View images (SVIs) and 

machine learning to automate the assessment of pedestrian volume, a crucial metric for urban 

walkability. Traditionally, pedestrian volume data collection relied on labor-intensive field 

observations, which limited coverage and efficiency. The study rigorously validated this new 

approach against field observations in Tianjin, China, comparing pedestrian volumes extracted 

from SVIs with manual counts from over 700 street segments. Results suggested that automated 

pedestrian detection using SVIs held promise, achieving reasonable to good levels of accuracy, 

although influenced by various factors such as image quality, size, and collection time. The 

method proved particularly effective in areas with high pedestrian activity and street 

connectivity. Key findings highlighted the importance of image quality and collection time in the 

accuracy of automated pedestrian detection. Higher resolution images and closer alignment with 

field observation periods led to improved results. Additionally, street characteristics, such as 
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pedestrian volume and connectivity, significantly impacted accuracy. The study underscored the 

potential of SVIs and machine learning in assessing pedestrian volumes at scale, offering insights 

for urban planning and research on walking behaviors. However, they suggested that in areas 

with low pedestrian activity, future studies should consider factors such as weather and image 

parameters to improve accuracy and usefulness. 

Schneider et al. have contributed significantly to pedestrian exposure research. For 

instance, Schneider et al. (2009) aimed to address the need for better data on pedestrian volumes 

to enhance pedestrian movement safety, comfort, and convenience. It focused on developing a 

pilot model for estimating pedestrian intersection crossing volumes in Alameda County, 

California. The methodology involved gathering weekly pedestrian volumes at 50 intersections 

with diverse surrounding characteristics. Three alternative model structures were considered, 

with the final recommended model showing a strong fit (adjusted R2 = .897). Significant factors 

in the model included population density, job availability, presence of commercial retail 

properties, and proximity to regional transit stations. The model, developed using ordinary least 

squares regression, provided a simple yet effective tool for practitioners utilizing geographic 

information systems (GIS) and basic spreadsheet programs. In addition, validation of the model 

demonstrated its potential accuracy, with pedestrian volume estimates within 50% of historic 

manual counts at 30 of 46 comparison intersections. However, the study suggested the need for 

further refinement and validation, particularly in other communities and with additional variables 

such as sidewalk coverage, roadway characteristics, and street network density. Despite its 

limitations, the pilot model offered valuable insights for planning, prioritizing pedestrian 

projects, and improving safety analyses. They suggested that future research should focus on 

expanding the model's predictive capability, exploring different statistical approaches, and 

comparing it with existing pedestrian models to enhance pedestrian transportation planning and 

infrastructure development. 

In a recent study by Sze et al. (2019), pedestrian safety was investigated by analyzing 

factors contributing to pedestrian exposure and developing a crash prediction model. Using data 

from the Travel Characteristic Survey (TCS) and crash data from the Transport Information 

System (TIS) of Hong Kong from 2011 to 2015, the study identified walking frequency as the 

most effective measure for predicting crash exposure and crash risk. Findings emphasized the 
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importance of targeted traffic control and management strategies, particularly in densely 

populated urban areas. Recommendations included improving safety awareness among 

vulnerable pedestrian groups and promoting walkability through education, enforcement, and 

traffic control measures. However, the study noted limitations such as the use of aggregated data 

and suggested exploring broader socio-demographic and environmental factors in future 

research.  

In another recent study by Jiang et al. (2022), which focused on enhancing pedestrian 

volume prediction in urban areas in Australia, particularly Melbourne. They highlighted that 

existing model often suffered from limited samples due to costly field sampling. To address this, 

the study proposed an enhanced learning model for pedestrian volume prediction with high 

spatiotemporal granularity. Using Melbourne's CBD as a case study, over 1400 features were 

constructed covering various aspects like transportation, socioeconomics, and land use. The 

model, based on LightGBM, significantly improved prediction performance compared to 

traditional supervised learning, reducing root-mean-square error (RMSE) by 41.75% and 

improving R-squared (R2) by 27.75%. Spatial resolution and combination parameters were 

found to significantly affect model performance. The study conducted spatiotemporal analysis 

using GIS maps, offering insights to optimize urban mobility and enhance city management. The 

research introduced a novel approach to generate unlabeled samples and develop semi-

supervised regression models, enhancing pedestrian estimation performance. The proposed 

model could be extended to other urban mobility-related problems with limited samples. 

Moreover, it identified important areas for government attention in Melbourne, suggesting sensor 

installation and safety measures. However, limitations included uneven distribution of sensor 

stations and the model's applicability limited to Melbourne's CBD.  

Raford and Ragland (2004) presented an innovative pedestrian modeling technique called 

Space Syntax, which was employed to estimate pedestrian volumes and exposure rates for 

Oakland, California. The aim was to address the lack of detailed pedestrian-exposure data crucial 

for pedestrian safety planning. By calculating pedestrian volumes and relative risk indices, the 

study highlighted the importance of accurate data in making informed decisions regarding 

pedestrian safety measures. Using Space Syntax modeling, the research mapped pedestrian 

volumes and identified high-risk intersections, revealing that while downtown areas had high 
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pedestrian volumes, the most dangerous intersections were clustered in less densely populated 

regions, indicating a complex relationship between pedestrian volume and risk. Despite 

limitations in data accuracy, the study underscored the utility of Space Syntax in providing 

reasonably accurate estimations of pedestrian volume, emphasizing its potential for enhancing 

pedestrian safety planning. For future studies, they offered recommendations suggesting 

integrating automobile volumes and speeds into risk-modeling approaches to further enhance 

pedestrian safety assessments. They also proposed refining the Space Syntax model by 

incorporating more specific land-use characteristics to improve accuracy. Moreover, the study 

advocated additional analysis exploring the relationship between pedestrian volume and various 

factors such as criminal activity and retail behavior. Ultimately, the research emphasized the 

importance of better pedestrian data for informing urban planning decisions and prioritizing 

pedestrian safety initiatives, highlighting the potential of enhanced data in raising awareness, 

increasing advocacy, and ultimately creating safer urban environments. 

Lam et al. (2014) took advantage of time geography and travel activity data to propose a 

new pedestrian exposure metric. Making use of the concept of potential path tree (PPT), they 

developed an individual-based and network constrained pedestrian exposure measure. Using 

negative binomial regressions to examine crash frequency with exposure, roadway and 

environmental variables, the proposed metric was compared with other existing pedestrian 

exposure methods to examine its applicability and potential in road safety analysis.  Vanparijs et 

al. (2015) provided a comprehensive overview of prior research that employed various methods 

to assess bicyclists' exposure to road crashes. Several noteworthy approaches included evaluating 

bicyclists' exposure through questionnaires, utilizing data from automated traffic counts, 

conducting telephone surveys regarding travel behavior, analyzing data from the national travel 

survey, employing online travel diaries, utilizing video cameras attached to participants' bicycle 

helmets, and considering travel exposure data (person-trips).  

In a recent study by Singleton et al. (2021), pedestrian data sourced from traffic signal 

controller logs was validated as a reliable method for estimating pedestrian crossing volumes. 

This validation was achieved through a detailed comparison between pedestrian signal data and 

observed pedestrian counts gathered from extensive video footage across 90 signalized 

intersections in Utah. The study involved meticulous data collection efforts, including the 
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recording of approximately 10,900 hours of video footage and manual counting of pedestrians by 

trained undergraduate students, resulting in a dataset encompassing roughly 175,000 pedestrian 

crossings. The collected pedestrian signal data, derived from the Utah Department of 

Transportation's ATSPM system, underwent thorough processing and merging with pedestrian 

crossing event data from the videos. Regression models were then developed to gauge pedestrian 

crossing volumes utilizing pedestrian signal activity metrics. The results unveiled robust 

correlations between estimated and observed pedestrian volumes, with mean absolute errors 

reaching as low as 3.0. Consequently, the study concluded that pedestrian signal data stands as a 

reliable tool for estimating pedestrian crossing volumes, thereby furnishing valuable insights 

crucial for transportation planning, safety analyses, and health impact assessments. However, the 

study acknowledged limitations such as potential equipment malfunctions and the necessity of 

pedestrian push buttons at signalized intersections for data collection.  

In addition, three similar studies were performed by Day et al. 2016, Blanc et al. 2015, 

and Kothuri et al. 2017, that investigated the use of pedestrian data from traffic signal controller 

logs to estimate walking activities. For example, Day et al. (2016) conducted a study examining 

the frequency of pedestrian phase activations at a single signalized intersection in Indiana over 

an 18-month period. They investigated several factors influencing pedestrian signal activity, 

including time of day, day of the week, weather conditions, seasonal variations, special events, 

and modifications to the pedestrian phase setup. The authors also highlighted the practicality of 

continuously recording pedestrian activations over an extended duration with minimal expense. 

However, they did not conduct a direct comparison between pedestrian activations and observed 

pedestrian counts. 

In addition, Blanc et al. (2015) conducted a 24-hour pilot investigation into pedestrian 

activity at a signalized intersection in Oregon, equipped with actuated pedestrian crossings on all 

four sides. Through video analysis, they manually tallied 596 pedestrians, cross-referencing this 

data with 482 pedestrian phases recorded in traffic signal controller logs. They developed 

adjustment metrics for individual phases and the intersection as a whole, revealing correlations 

of 0.83 or higher between pedestrian counts and actuations, indicating the potential of traffic 

signal data to accurately approximate pedestrian crossing volumes. Moreover, they showcased 

the applicability of their adjustment metrics to estimate daily and annual average pedestrian 
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counts. Subsequently, Kothuri et al. (2017) revisited the same intersection two years later to 

replicate the earlier study. Over nearly three days, they manually counted 818 pedestrians using 

video footage and recorded 723 pedestrian phases from signal controller logs. Despite minor 

variations, the adjustment factors remained consistent, and correlations, though slightly lower in 

some instances, were still substantial (around 0.80, with one crossing at approximately 0.67). 

These studies indicate that it's possible to use pedestrian signal data to estimate how many 

pedestrians are crossing, though the research is limited to just a few intersections and a small 

amount of observation time. 

After further examining recent relevant literature, an important study by Griswold et al. 

(2019) developed a statewide pedestrian exposure model for intersections on the California State 

Highway System (SHS). For understanding, we have provided a sketch in Figure 2, that presents 

their methodology.  They utilized log-linear regression to estimate annual pedestrian crossing 

volumes, leveraging a database of over 1,200 count locations, which constituted one of the 

largest datasets for pedestrian volume modeling. Seventy-five explanatory variables were 

assessed, with key factors such as land-use variables (employment density, population density, 

number of schools), roadway network variables, and American Community Survey journey-to-

work walk mode share identified. These variables were selected based on their availability and 

ease of integration into geographic information system analysis. The resulting model estimated 

pedestrian volumes at over 12,000 intersections, marking it as one of the initial statewide 

pedestrian volume models, potentially influencing safety studies conducted by Caltrans and local 

agencies.  

Data collection comprised a three-step process, combining short-term crossing counts 

with long-term count data to develop expansion factors for annual volume estimates. Short-term 

count data were gathered from 583 locations using video-based methods, supplemented by 

pedestrian count datasets from local agencies. Long-term counts, collected from automated 

counters, aided in developing expansion factors, offering insights into pedestrian activity patterns 

over extended periods. The study's limitations included the use of a convenience sample for 

short-term count data, which could potentially bias predictions, and inherent errors in applying 

expansion factors to short-term counts. However, efforts were undertaken to address these 

limitations through the careful consideration of land-use-based factor groups and the selection of 
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model structure based on predictive accuracy. Despite these challenges, the developed model 

represented a significant advancement in pedestrian exposure modeling, providing insights into 

pedestrian risk on the state highway system and establishing a foundation for future research and 

safety studies by transportation agencies. 

 

 

 

 

 

 

 

 

 

Figure 2.  Research methodology by Griswold et al. (2019). 

Li and Wu (2021) recently presented a new approach to estimate pedestrian volume at 

midblock crosswalks, which is vital for enhancing pedestrian signals and safety evaluations. 

Traditional methods were either time-consuming or costly due to the need for on-site data or 

expensive sensors. Their method, using button-pushing and signal timing events to model 

pedestrian arrivals as a Poisson process, provided a cost-effective and scalable solution. They 

developed two sub-methods tailored for one-stage and two-stage button-activated midblock 

crosswalks, addressing challenges like missing signal cycles at two-stage button-activated 

midblock crosswalks (BAMCs). Evaluation using on-site pedestrian volume data from two 

crosswalks showed promising accuracy, with low mean absolute errors of 2.27 and 1.78 ped/hour 

for one-stage and two-stage BAMCs, respectively. Sensitivity analysis recommended a one-hour 

interval for estimation to minimize errors. 

The study selected two midblock crosswalks with different crossing strategies for data 

collection, utilizing event-based data collected through the MaxView system, capturing signal 

and pedestrian events. Pedestrian signal and button-pushing events were recorded to estimate 

pedestrian volume. The method addressed challenges such as stochastic button-pushing behavior 
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and missed pedestrian arrivals during signal phases by modeling pedestrian arrival as a Poisson 

process and utilizing maximum likelihood estimation (MLE). It offered benefits such as real-

time pedestrian volume estimation for signal optimization and safety analyses, leveraging 

existing infrastructure and reducing the need for additional sensors and ground-truth data 

collection. However, potential underestimation of pedestrian volume in case of a significant 

number of pedestrians crossing against signals was noted, suggesting avenues for future research 

to improve accuracy, including consideration of traffic volume and clustered arrivals, and further 

validation against other sensors and complex signalized intersections. 

Another recent study by Sobreira and Hellinga (2023) highlighted the effectiveness of 

direct demand (DD) modelling in estimating pedestrian volumes at intersections. The research 

aimed to qualitatively evaluate existing DD models and investigate their performance across 

different jurisdictions. Six DD models from various regions were selected and applied to three 

distinct jurisdictions: Milton, Canada; Pima County, U.S.; and Downtown Toronto, Canada. The 

models were scrutinized based on their capacity to estimate annual average daily pedestrian 

traffic (AADPT) at signalized intersections, with observed pedestrian volumes collected for sites 

in each jurisdiction. The evaluation of DD models unveiled significant disparities in model 

calibration data size, complexity, and pedestrian activity levels in the original jurisdiction. While 

some models utilized extensive calibration data, others relied on more limited datasets. Spatial 

transferability analysis yielded mixed results, with models performing adequately in jurisdictions 

resembling their original calibration settings, such as Milton. However, accuracy notably 

declined when applied to jurisdictions like Pima County and Downtown Toronto, characterized 

by diverse pedestrian activity levels and land use features. Consequently, the study underscores 

the necessity of aligning model calibration data with the target jurisdiction's characteristics to 

mitigate substantial estimation errors. The findings suggested that blindly applying DD models 

to jurisdictions with distinct land use and socioeconomic features can lead to significant 

inaccuracies.  

Furthermore, Sobreira and Hellinga (2024) also conducted a similar study focused on the 

estimation of pedestrian exposure at intersections.  They assessed methods for estimating 

pedestrian volume at crosswalks when only short-term counts (STCs) or no data were available. 

To achieve this, they developed a land-use (LU) model and an STC method to estimate 
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pedestrian volume shares per crosswalk. These methodologies were evaluated using continuous 

count data from various jurisdictions, with a naive equal-share assumption serving as a 

benchmark. Their findings indicated that the LU model notably enhanced allocation accuracy by 

11.4%, while the STC method, particularly when utilizing multiple days of data, outperformed 

the naive method by up to 54.9%. Pedestrian counts were gathered through camera-based 

counting systems with image processing capabilities deployed at intersections. Initially collected 

as disaggregate raw counts, the data were aggregated into 24-hour counts for analysis. 

Additionally, 8-hour counts were considered as potential short-term counts for the analysis. 

Recommendations included utilizing STCs from up to three days for optimal accuracy, while 

acknowledging the need for further research on spatial model transferability and quantification of 

STC age impact on accuracy.  

As mentioned earlier, in the literature, we did not find any pedestrian exposure-related 

study specifically for rail crossings. However, the study by Bosina et al. (2017) has some degree 

of relevance, as they investigated pedestrian volumes for railway platforms. They focused on 

understanding pedestrian trajectories on railway platforms, analyzing origins, destinations, and 

routes, aiming to address the challenge of designing platforms to accommodate diverse 

pedestrian movements. Utilizing two railway stations in Zurich, Zürich Hardbrücke and Zürich 

Stadelhofen, the research collected data on passenger behaviors and preferences during peak 

hours on working days. The study examined elements such as train doors, platform accesses, 

waiting positions, and service facilities to determine their impact on pedestrian trajectories. Data 

collection involved manual tracking of passenger movements, revealing patterns indicating a 

tendency to minimize walking distances and adapt behaviors based on station layouts and 

pedestrian density. Findings suggested that passengers optimize their walking routes on railway 

platforms, emphasizing the significance of station layout in influencing pedestrian flows.  

The characteristics of the built environment, such as infrastructure layout, accessibility, 

and design elements, strongly influence pedestrian volume. Well-designed environments with 

clear pathways, efficient connectivity, and amenities tend to attract higher pedestrian traffic. 

Conversely, poorly designed, or inaccessible areas may deter pedestrians. A notable study by 

Chen et al. (2022) investigated the link between built environment characteristics and pedestrian 

volume at a population level, an area of research relatively overlooked compared to individual 
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walking behaviors. They employed a novel approach utilizing street view images and machine 

learning to extract citywide pedestrian volume. Focused on Shanghai's Middle Ring Road area, 

the study analyzed data from 127,921 sampling points along 28,397 street segments, covering 

3,393 km. Pedestrian volume estimation, achieved by counting pedestrians in street view images 

using AI's machine learning interface, demonstrated high accuracy. The findings indicated 

positive associations between micro-scale environment features such as greenery, open sky, and 

sidewalk width, and pedestrian volume. Additionally, macro-scale characteristics including 

density, diversity, design, destination accessibility, and proximity to transit were correlated with 

pedestrian volume. Statistical analyses, including ordinary least square (OLS) regression and 

spatial lag model (SLM), underscored significant associations between various built environment 

factors and pedestrian volume, highlighting the independent influences of both micro- and 

macro-scale variables in promoting walking behaviors. 

In conclusion, our thorough review of pedestrian exposure measures highlights the 

complexity of this crucial research area for pedestrian safety. Examining diverse methodologies 

and challenges reveals gaps in understanding, notably regarding pedestrian exposures at highway 

rail grade crossings. Further investigation and refinement of measurement techniques are 

warranted. In addition to the review presented above, Table 2 presents key explanatory factors 

that were studied and found to be associated with pedestrian exposure measures. 

Table 2.  Factors investigated in relation to pedestrian exposure measures.  

Variables Studied Past Research  
Land Use Variable  
Nearby population density 
 

 Sobriera and Hellinga, 2023; Singleton and Runa, 2021 
Munira et al. 2020; Griswold et al., 2019; Sze et al., 2019;  
Munira et al., 2017; Wier et al., 2009; Thakuriah, 2010;  
Schneider et al., 2009; Siddiqui et al., 2012; Lee et al., 2015; 
Wang et al., 2016; Lam et al., 2014; Ewing and Cervero, 2001; 
Handy, 2005, Krizek, 2003 

Nearby housing unit density Ewing and Cervero 2001; Handy, 2005 
Nearby employment density Handy, 2005; Shriver, 1997; Ewing and Cervero, 2001 
Nearby land use mix; Proximity 
to mixed-use buildings; 
Proximity to multistory 
buildings; Proximity to 
commercial buildings; Proximity 
to activity destinations 
Proximity to vacant lots 

Handy, 2005; Qin and Ivan, 2001 Ewing and Cervero, 2001; 
Shriver, 1997 
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Nearby building setback 
distances; Proximity to parks 

Dynamic Variables   
Average Annual Daily Traffic 
(AADT1) 

Sze et al. 2019; Fagnant and Kockelman, 2016 

Average Annual Daily 
Pedestrian Traffic (AADPT)  

Singleton et al. 2021; Hankey et al. 2012 

Transportation System 
Variables  

 

Four-way Intersection 
Sidewalk presence on nearby 
streets 
Nearby sidewalk connectivity 
Access to multiuse trails 
Nearby multiuse trail 
connectivity 
Access to transit 
Nearby street network 
connectivity 
Nearby intersection density 
Nearby four-way intersections 
Buffer between sidewalk and 
street on nearby streets 
Presence of street trees on nearby 
streets 
Presence of street lighting on 
nearby streets 
Nearby street block length 
Number of arterial roadways 
nearby 
Automobile speeds on nearby 
residential streets 
Automobile parking spaces in the 
nearby area 
Difficulty of crossing nearby 
streets 
Residential address 
Commercial places 
Intersection density 
4-way intersections 
Schools 
Worship places 
Transit stops 
Park acreage 
The intersection is on a major 
road 
Trail length 

Singleton and Runa, 2021; Griswold et al. 2019 
Handy 2005; Ewing and Cervero 2001  
Ewing and Cervero 2001; Shriver, 1997  
Sobriera and Hellinga, 2023; Handy 2005 
Shriver, 1997  
Shriver, 1997  
Griswold et al. 2019; Handy, 2005; Shriver, 1997  
Krizek, 2003; Ewing and Cervero, 2001  
Ewing and Cervero, 2001 
Ewing and Cervero, 2001  
Ewing and Cervero, 2001  
Handy, 2005; Ewing and Cervero, 2001  
Krizek, 2003; Ewing and Cervero, 2001 
Handy, 2005; Ewing and Cervero, 2001  
Ewing and Cervero, 2001 
Ewing and Cervero, 2001 
Singleton and Runa, 2021 
Singleton and Runa, 2021 
Singleton and Runa, 2021 
Singleton and Runa, 2021 
Singleton and Runa, 2021 
Singleton and Runa, 2021 
Singleton and Runa, 2021 
Singleton and Runa, 2021 
Singleton and Runa, 2021 
Singleton and Runa, 2021 
Singleton and Runa, 2021; Ewing and Cervero, 2001  
Singleton and Runa, 2021 
Munira et al. 2021; Handy, 2005; Shriver, 1997 
Singleton and Runa, 2021 
Singleton and Runa, 2021 
Singleton and Runa, 2021 
Singleton and Runa, 2021 
Singleton and Runa, 2021 
Singleton and Runa, 2021 
Singleton and Runa, 2021 
Muniar et al. 2020 
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Demographic/Socioeconomic 
Factors 

 

Student status; Larger household 
of unrelated individuals; 
Household automobile 
availability; Household income; 
Age 
Number of employees; Vehicle 
ownership 

Miah et al. 2023; Griswold et al. 2019; Singleton et al. 2021; Munira et 
al. 2021; Handy, 2005; Shriver, 1997 
 
 

2.2.  Bicyclist Exposure 

According to Statista, in 2022, there were approximately 54.7 million bike riders in the 

United States, marking a slight uptick from 2021's figure of 51.4 million. The National Bicycle 

and Pedestrian Documentation Project (NBPD), a collaborative initiative between Alta Planning 

and Design and the Institute of Transportation Engineers (ITE), strives to establish a 

standardized approach for bike counts and create a national repository for this data. Additionally, 

over 22 million bicycles were sold in the European Union in 2021. The global market for bikes 

and cycling accessories is significant, with the Netherlands boasting over 3,000 bike shops in 

2021. Although the industry faced challenges due to the COVID-19 pandemic, sales have largely 

rebounded, with approximately 3.25 million bikes sold in Great Britain in 2021—a rise of more 

than 11 percent compared to the previous year. Promoting cyclist safety contributes to creating 

more inclusive and sustainable communities by encouraging alternative modes of transportation 

that reduce congestion and emissions. 

 Like pedestrians, railway crossings also pose significant safety concerns for cyclists due to 

the potential risks of crashes with trains or other vehicles. Despite the increasing emphasis on 

cyclist safety in transportation research, there remains a noticeable gap in the literature regarding 

the specific exposure of cyclists to crashes at rail crossings. The existing literature on cyclist 

exposure predominantly focuses on overall travel patterns, route preferences, and factors 

influencing modal choice. While these studies provide valuable insights into general cycling 

behavior, they often lack the specificity required to address safety concerns at rail crossings.  

Understanding cyclists’ exposure at railway crossings is crucial for developing targeted 

safety measures and infrastructure improvements. Although direct studies on this specific aspect 
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may be scarce, insights from similar transportation infrastructure can offer valuable perspectives. 

By reviewing existing studies on cyclist exposure in similar contexts, such as intersections, 

roadways, and shared pathways, we can extrapolate insights applicable to railway crossings. In 

this section, we have provided an overview of the latest research on cyclist exposure studies 

conducted globally. These tabulated details in Table 3 offer concise insights into the research 

context, data collection methods, and key findings. Additionally, to enhance comprehension, the 

studies are further elaborated upon in the subsequent section following Table 3. 

Table 3.  Recent bicyclist exposure/volume prediction studies.  

No Author(s) Year Data  Context  Location Methodology Results/Highlights 
1 Ding et 

al. 
2021 Bicycle 

trip-related 
data 
utilized 
from 
London 
public 
bicycle 
rental 
system, 
Santander 
bikes (270 
Lower 
Super 
Output 
Areas were 
selected) 

Role of 
exposure in 
bicycle 
safety 
analysis: 
Effect of 
cycle path 
choice 

London, 
United 
Kingdom 

Bicycle path 
analysis; 
simple 
shortest path 
model, and 
weighted 
shortest path 
model 

Bicycle distance 
traveled, 
bicycle trips, bicycle 
time traveled, 
path distance, 
perceived safety 
level,  
land use, 
population 
characteristics, 
traffic flow, road 
infrastructure, 
environmental 
conditions, 
injury severity, 
location 

2 Fournier 
et al. 

2017 Two main 
data 
sources: 
continuous 
bicycle 
counters 
and bike-
share 
systems 

A sinusoidal 
model for 
seasonal 
bicycle 
demand 
estimation 

six cities: 
Portland, 
Oregon; 
Arlington, 
Virginia; 
Seattle, 
Washingto
n; Ottawa, 
Ontario; 
Vancouver, 
British 
Columbia; 
and 
Cambridge
, 
Massachus
etts. 

Stepwise 
Linear 
Regression, 
and 
Sinusoidal 
function 
modeling 

Bicycle demand was 
associated with 
seasonal variation, 
temperature 
differences, bike 
share usage, and 
monthly average daily 
bicycle count 
(MADB), and 
average annual daily 
bicycle count 
(AADB) 



 
 

33 
 

3 Dadashov
a and 
Griffin 

2020 Data 
collected 
from 350 
locations 
across 12 
cities in 
Texas 
Texas. 
Data 
sources 
were: 
Bicycle 
and 
Pedestrian 
Count 
Exchange 
Program, 
Strava, 
Texas DOT 
roadway 
inventory 
data, 
American 
Communit
y Survey, 
and 
National 
Oceanic 
and 
Atmospher
ic 
Administra
tion 

Random 
parameter 
models for 
estimating 
statewide 
daily bicycle 
counts using 
crowdsource
d data 

Austin, 
Dallas, and 
Houston 

Mixed effects 
models, 
Random 
parameter or 
mixed-effects 
models with 
autocorrelated 
errors, and 
Fixed effects 
models 

Spatial factors (non-
motorized facility 
type, roadway 
functional class, 
openstreet map class), 
temporal factors, 
daily strava user 
counts, weather 
conditions, 
socioeconomic 
factors, and roadway 
design and 
characteristics  

4 Miah et 
al.  

2023 Data from 
2017 to 
2019 
included 
6746 daily 
bicycle 
volumes 
from 178 
permanent 
and short-
term count 
locations 

Estimation 
of daily 
bicycle 
traffic using 
machine and 
deep 
learning 
techniques 

Portland, 
Oregon, 
USA 

Eight 
modeling 
techniques 
ranging from 
advanced 
techniques, 
such as 
Convolution 
Neural 
Network 
(CNN), Deep 
Neural 
Network 
(DNN), 
Shallow 
Neural 
Network 
(SNN), 

Key variables: 
anonymous bicycle 
user activities, built 
environments, 
motorized traffic, and 
sociodemographic 
characteristics. Strava 
counts, bike share 
data, weather data, 
and spatial variables  
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Random 
Forest (RF), 
XGBoost, to 
conventional 
and simpler 
approaches, 
such as 
Decision Tree 
(DT), 
Negative 
Binomial 
(NB), and 
Multiple 
Linear 
Regression 

5 Esawey 2014 Bike 
activity 
data 
utilized 
from 12 
permanent 
count 
stations in 
Vancouver 
during 
2009-2011 

Estimation 
of annual 
average 
daily bicycle 
traffic with 
adjustment 
factors. 

Vancouver, 
Canada 

Regression 
analysis and 
error analysis 
used to 
estimate 
annual 
average daily 
bicycle 
(AADB) 
traffic 
volumes. 
Adjustment 
factors (DFs 
and MFs) 
derived from 
observed 
bicycle 
volume data 
were applied 
to adjust raw 
data collected 
from count 
stations 

Key variables: bicycle 
volume data, Daily 
Adjustment Factors 
(DFs), Monthly 
Adjustment Factors 
(MFs), Actual and 
Estimated AADB 
Volumes and Error 
Metrics 

6 Esawey 2017 Dataset 
comprising 
more than 
14,000 
daily 
bicycle 
volumes 
collected 
between 
2009 and 
2011 

Estimation 
of Daily 
Bicycle 
Traffic 
Volumes 
Using 
Spatiotempo
ral 
Relationship
s 

Vancouver, 
Canada 

Parametric 
linear 
regression, 
implemented 
using the 
ordinary least 
squares (OLS) 
method 

Key variables: daily 
cycling volumes, 
temporal correlation, 
spatial correlation, 
and weather 
conditions  
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7 Fagnant 
and 
Kockelma
n 

2016 Cyclist-
count data 
from 251 
locations in 
the Seattle 
metropolita
n area. 
conducted 
by the 
Puget 
Sound 
Regional 
Council in 
October 
2010, with 
over 340 
three-hour 
counts 
collected 
during that 
month. 
Tuesdays 
through 
Thursdays, 
6 am to 9 
am, or 3 
pm to 6 
pm. 

A direct-
demand 
model for 
bicycle 
counts: the 
impacts of 
level of 
service and 
other factors 

Seattle 
metropolita
n area 

Poisson 
regression 
count model, 
and two 
negative 
binomial 
models 

Key variables: cyclist 
count, population 
density, employment 
density, bicycle trail-
access, bridge, 
AADT, temperature, 
number of lanes, 
speed limit, presence 
of parking, and 
residential area 
indicator 

8 Griswold 
et al.  

2011 Bicycle 
counts 
collected at 
81 
intersection
s along 
arterial and 
collector 
streets 
(2008-
2009) 

Pilot models 
for 
estimating 
bicycle 
intersection 
volumes 

Alameda 
County, 
California 

Log-linear 
regression 
modeling 

Key explanatory 
variables for 
modelling were: 
intersection 
characteristics, land 
use, transportation 
system, socio 
economic 
characteristics, terrain 
characteristics, and 
roadway network 
characteristics  

9 Hochmair 
et al.  

2019 Strava 
tracking 
data, which 
provides 
GPS 
informatio
n on 
cycling 
activities, 
and 
sociodemo

Estimating 
bicycle trip 
volume from 
Strava 
tracking data 

Miami-
Dade 
County, 
Florida 

Linear 
Regression 
Modelling, 
and 
Eigenvector 
Spatial 
Filtering 
(ESF) 

Key variables: Strava 
Bicycle Kilometers 
Traveled (Strava 
BKT), length of road 
Segments, Functional 
classes, types of 
bicycle facilities, 
total length of 
walkways suitable for 
Cycling, number of 
controlled and 
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graphic 
data were 
obtained 
from the 5-
year 
(2009–
2014) 
summary 
of the 
American 
Communit
y Survey 
(ACS) 

uncontrolled 
intersections 
land use traits, 
population density, 
and household 
income   

10 McDaniel 
et al.  

2014 Manual 
counts 
conducted 
by citizen-
volunteers 
standing on 
assigned 
street 
corners for 
a 2-hour 
period in 
the 
morning 
and 
evening 
(Data split: 
90% for 
calibration 
and 10% 
for 
validation) 

Using 
origin–
destination 
centrality to 
estimate 
directional 
bicycle 
volumes 

Moscow, 
Idaho 

O-D centrality 
approach, and 
development 
of O-D 
centrality 
metric; spatial 
interpolation 
and 
visualization 

Key variables: 
distance between 
origin and 
destination, origin 
and destination 
multipliers, preferred 
bicycle paths, link 
impedance, and node 
impedance  

11 Munira et 
al.  

2021 Bicyclist 
activity 
data 
encompassi
ng over 
400 
variables 
across 
three buffer 
zones (161 
m, 804 m, 
and 1,609 
m) within 
the city of 
Autsin 

Estimating 
Bicycle 
Demand: 
Role of a 
Bikeability 
Index 

Austin, 
Texas  

multiple 
linear 
regression 
model 

Key variables were 
demographics, 
socioeconomics, 
infrastructure, transit 
facilities, major 
generators, and land 
use. 
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Fournier et al. (2017) addressed the challenge of estimating seasonal bicycle demand by 

devising a sinusoidal model that required minimal calibration data. They utilized data from bike-

share systems in multiple cities and 47 permanent bicycle counters to develop this model. By 

employing sinusoidal functions, they established calibration factors with just two short-term 

counts, rendering the model applicable even in locales with scant demand data. Successfully 

estimating both monthly average daily bicycle counts and average annual daily bicycle counts, 

the model emerged as a valuable asset for transportation planning and infrastructure 

enhancements. 

In a recent study, Dadashova and Griffice (2020) developed a direct-demand model 

aimed at estimating daily bicycle counts using crowdsourced data alongside socioeconomic and 

weather indicators, addressing the persistent lack of non-motorized traffic counts that hinder 

evidence-based decisions in transportation planning and safety. Data were gathered from diverse 

sources, including the Texas Bicycle and Pedestrian Count Exchange Program, Strava, Texas 

DOT roadway inventory data, American Community Survey, and National Oceanic and 

Atmospheric Administration. Approximately 350 locations were utilized across 12 Texas cities, 

including Austin, Dallas, and Houston; the data collection incorporated both permanent and 

temporary count stations, reflecting weekly and monthly variations. Fixed and random effects 

models were developed to identify influential factors, utilizing mixed-effects modeling with 

autocorrelated errors to predict daily bicycle counts, with cross-validation conducted on 80% of 

locations for model building and 20% for prediction. Results demonstrated that the mixed-effects 

model achieved a Mean Absolute Percentage Error (MAPE) of 29%, surpassing simple scaling 

methods, highlighting the importance of combining information from counts and Strava data 

rather than relying solely on scaling. Despite recognizing limitations such as the need for further 

research to enhance model generalizability, reduce estimation error, and simplify model 

application for practitioners, the study contributes to understanding the utilization of emerging 

data sources for estimating bicyclist traffic, emphasizing the significance of accounting for 

external factors in direct-demand modeling. 

Miah et al. 2023 addressed the gap in utilizing machine learning (ML) techniques for 

estimating non-motorized bicycle traffic, an area that has traditionally relied on simple 

econometric models due to data limitations. Recent advancements in smartphone-based location 
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data collection offer the potential to apply ML techniques to estimate daily bicycle traffic 

volumes. Data for the study was gathered from Portland, Oregon, spanning 2017 to 2019. It 

included 6746 daily bicycle volumes from 178 permanent and short-term count locations. Key 

variables included anonymous bicycle user activities, built environments, motorized traffic, and 

sociodemographic characteristics. Various data sources such as Strava counts, bike share data, 

weather data, and spatial variables were incorporated.  

Eight modeling techniques were developed, ranging from advanced ML methods like 

Convolution Neural Network (CNN), Deep Neural Network (DNN), Shallow Neural Network 

(SNN), to conventional approaches like Decision Tree (DT), and Multiple Linear Regression. 

Two variable dimension reduction techniques, Principal Component Analysis (PCA) and random 

forest variable importance analysis, were employed to prevent over-generalization. K-fold cross-

validation was used for model evaluation, and hyperparameter tuning was conducted using grid 

search and brute force techniques. The study found that SNN and DNN ML techniques yielded 

higher accuracies in estimating daily bicycle volumes compared to conventional methods. The 

DNN model without variable reduction outperformed other models with a mean absolute 

percentage error (MAPE) of 22% and an R-squared (R2) value of 0.86. In addition, strava count, 

weekends, bike share crossing, average temperature, and several network features were 

highlighted to be significant predictors of bicyclist volume.  

Esawey (2014) delved into the accuracy of estimating annual average daily bicycle 

(AADB) traffic volumes through adjustment factors, specifically daily and monthly factors (DFs 

and MFs). He used data gathered from 12 permanent count stations in Vancouver during 2010 

and compared the efficacy of using MFs versus seasonal factors, highlighting MFs as the 

superior choice. The study revealed that combining both DFs and MFs results in an overall error 

rate of approximately 23%. Additionally, it explored the transferability of MFs across different 

years, finding that employing factors from the same year yielded higher accuracy. Furthermore, 

the analysis attributed about 15% of the error to DFs and 11% to MFs, shedding light on the 

factors influencing estimation accuracy. The findings of this study provided valuable insights 

into the optimization of estimation methodologies for AADB volumes, particularly in the context 

of bicycle traffic. Furthermore, the study explored temporal transferability that underscores the 

importance of considering data from the same year for optimal accuracy in estimating AADB 
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volumes. Overall, the study contributed to enhancing the reliability of estimation techniques and 

informed the design of effective data collection programs for bicycle traffic management. 

In another study conducted by Esawey (2017), the challenge of missing cycling traffic 

volume data due to sensor malfunctions was investigated, with a focus on count stations 

frequently experiencing issues. The study utilized a dataset spanning from 2009 to 2011, 

containing over 14,000 daily bicycle volumes from 22 count stations in Vancouver, Canada. 

Correlation analyses revealed significant correlations among most count stations, with cross-

correlation analysis confirming strong relationships, particularly when occurring concurrently. 

Consequently, statistical models were developed to relate daily cycling volumes among 

neighboring stations, showcasing mean absolute percentage errors generally below 20%, which 

improved with higher correlation thresholds. The results suggested the efficacy of this approach 

in estimating missing cycling volumes, potentially aiding monitoring programs and data 

clearinghouses in addressing sporadic data gaps. Furthermore, Lewin (2011) provided the first 

comprehensive analysis of five years of detector data for two permanent bicycle count stations 

(representing four locations) on multi-use paths in Boulder, CO. First, temporal patterns of daily 

bicycle counts were explored. A strong linear correlation between high temperatures and daily 

counts was noted with a slight decrease in counts at temperatures greater than 90º F. Counts also 

decreased on days with rain or snow, although this effect was not linear. In addition, the numbers 

decreased on weekends at most locations. From this information seasonal factors for bicycle 

counts were also estimated.  

Transportation planning in the US has traditionally prioritized automotive traffic, but 

there's been a shift towards a multimodal approach to accommodate all users, especially cyclists, 

who face significant risks on the road. Unfortunately, comprehensive bicycle counts are rare in 

most municipalities. Fagnant and Kockelman (2016) focused on developing a direct-demand 

model for estimating peak-period cyclist counts in the Seattle metropolitan area based on various 

factors, including roadway conditions and trip-generation/attraction factors. The data collection 

process involved obtaining cyclist-count data from 251 locations in the Seattle area, collected by 

the Puget Sound Regional Council in 2010. The methodology included developing suitability 

attributes for major roadway approaches at intersections based on Highway Capacity Manual 

procedures and employing Poisson and Negative Binomial models for cyclist count estimation. 
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Results indicated that wider bike lanes and curb lanes, along with lower traffic volumes, created 

favorable conditions for higher cyclist counts. The negative binomial model showed consistent 

results with the Highway Capacity Manual's bicycle level of service index, highlighting the 

impact of roadway features on cyclist counts. 

Bicycle volume data are crucial for understanding various aspects such as safety, travel 

behavior, and development impacts. To address this need, several simple models of bicycle 

intersection volumes were developed in a study by Grisworld et al. (2011) for Alameda County, 

California. The county encompasses diverse areas in terms of population density, employment 

density, and socioeconomic characteristics. The study conducted 2-hour bicycle counts at 81 

intersections during the spring of 2008 and 2009, representing arterial and collector roadways. 

The chosen intersections ensured a wide representation of different built environment 

characteristics, including proximity to commercial properties, major universities, and variations 

in terrain and roadway connectivity. Log-linear regression was employed to model bicycle 

intersection volumes. This approach was chosen for its simplicity and ease of application using 

geographic information systems and spreadsheet software. The models considered various 

explanatory variables such as land use, transportation systems, and socioeconomic 

characteristics. Notably, the modeling process revealed significant associations between bicycle 

volumes and factors such as proximity to commercial properties, major universities, presence of 

bicycle facilities, terrain flatness, and roadway network connectivity. Differences in bicycle 

volumes between weekdays and weekends were also observed, highlighting the importance of 

temporal considerations in modeling. The results indicated that the developed models offer 

valuable insights into the factors influencing bicycle volumes at intersections. However, further 

refinement and testing are necessary to improve the accuracy and applicability of the models, 

particularly in other communities. While the preliminary models provide a useful starting point 

for estimating bicycle intersection volumes, they are tailored specifically to Alameda County and 

may require adaptation for other regions. 

Sports and fitness apps on GPS-enabled cell phones and smartwatches have provided rich 

GPS tracking data for nonmotorized traffic activities like walking, running, and cycling. 

Leveraging Strava tracking data from Miami-Dade County, Hochmair et al. (2019) examined the 

factors associated with variations in bicycle ridership across different areas. The study area 
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included the Urbanized Area of Miami-Dade County, extending into agricultural land and the 

built environment towards Everglades National Park. The data collection process involved 

obtaining Strava Metro roll-ups, shapefiles, and sociodemographic data from various sources 

including the Florida Department of Transportation and the American Community Survey. 

Linear regression models were estimated to predict non-commute and commute bicycle 

kilometers traveled per block group, as well as bicycle kilometers traveled on weekends and 

weekdays. Eigenvector spatial filtering was applied to account for spatial autocorrelation and 

avoid parameter estimation bias. Explanatory variables included network characteristics, built 

environment features, and sociodemographic factors.  

The study analyzed eight models, combining nonspatial and spatially filtered linear 

regression, to explore the relationship between bicycle ridership and predictor variables. Results 

indicated that Strava data, despite potential biases towards male and younger users, offers 

extensive coverage and detailed insights into cycling behavior. The study found significant 

associations between network characteristics, built environment features, sociodemographic 

factors, and bicycle ridership. For instance, bicycle facilities on local and collector roads were 

associated with increased ridership, while those on arterial roads showed no significant effect. 

The presence of bay bridges and central road segments had a stronger positive effect on weekday 

cycling volume compared to weekends. The study provided guidelines for the practical design of 

bicycle infrastructure improvements, suggesting that innovative approaches may be needed for 

high-traffic roads to attract more cyclists.  

The research conducted by McDaniel et al. (2014), showcased a case study in Moscow, 

Idaho, a city with high bicycle ridership due to its proximity to the University of Idaho. A new 

method for estimating directional bicycle volumes across a street network was introduced in their 

research. This method, termed O-D centrality, was based on a modified version of centrality 

from graph theory, aiming to quantify the relative importance of links and nodes within a 

network.  Data for calibration and validation were randomly split into two subsamples, with 

various regression techniques explored for direct demand modeling. The study utilized counts 

collected manually, and the O-D centrality metric was developed by modifying stress centrality 

in three keyways: defining preferred bicycle paths, considering a specific subset of origin-

destination pairs reachable by bicycle, and incorporating origin and destination multipliers to 
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represent trip potential. The study compared the performance of O-D centrality against 

conventional stress centrality in predicting bicycle volumes. O-D centrality exhibited strong 

explanatory and predictive power, with significantly better model fit compared to stress 

centrality. The research demonstrated the utility of O-D centrality in estimating and spatially 

interpolating bicycle volumes across the community, offering advantages over traditional 

multistep demand models and direct demand models.  

In a recent study, Munira et al. (2021) addressed a gap in understanding bicycle traffic 

demand by introducing a composite measure called the bikeability index (BI). This index aimed 

to enhance direct demand models for bicycle traffic, particularly in situations where data on 

bicycle demand was limited. The study explored additional variables, such as the presence of 

bike-sharing stations, bike signals, and bike-accessible bridges around intersections, to gauge 

their impact on bicycle volume. Raw datasets from various sources, processed to achieve 

homogeneous spatial scales, yielded over 400 variables across three buffer zones (161 m, 804 m, 

and 1,609 m), categorized into seven groups. The study focused on the city of Austin, Texas, 

developing a bikeability index combining attributes like bicycle route length, comfort, 

connectivity, destination density, and transit coverage. This index significantly influenced 

bicycle volume around intersections, alongside sociodemographic variables like African 

American population, income, and age groups. Regression analysis underscored the importance 

of built environment features in determining bike traffic behavior. Findings highlighted the 

significant influence of the bikeability index on bicycle volume, emphasizing built environment 

features' importance in promoting cycling. Lower-income and older populations showed higher 

bicycling propensity, and infrastructure variables like bike signals and bicycle-accessible bridges 

positively impacted bicycle volume.  

Ding et al. (2021) aimed to enhance exposure estimation in bicycle safety analysis by 

utilizing detailed trip data from the London public bicycle rental system. Two modeling 

approaches, the shortest path method (SPM) and weighted shortest path method (WSPM), were 

employed to estimate bicycle path choice and distance traveled. Bicycle crash frequency models 

incorporating these estimates were developed and compared. The Poisson regression method, 

supplemented by negative binomial (NB) regression to address over-dispersion, was used for 

bicycle crash analysis, incorporating bicyclist daily traffic (BDT) estimates from SPM and 
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WSPM. Results showed that WSPM-based models provided a better fit than SPM-based ones, 

with WSPM exhibiting the best performance. Bicycle crash frequency models incorporating 

BDT as exposure outperformed those using trip counts or time travel. Factors such as land use, 

population characteristics, and traffic conditions significantly influenced crash frequency.  

2.3. Combined Pedestrian and Bicyclist Volume/Exposure Studies  

In the literature review conducted in the preceding sections, we examined individual studies 

concerning pedestrian and cyclist exposure. However, given that non-motorists encompass both 

groups, we also looked into research focusing on their exposure across various transportation 

infrastructures. Table 4 offers a brief overview of combined non-motorized exposure prediction 

studies. Moreover, in subsequent sections, we discuss these studies in detail. Notably, we 

observed a gap in the current literature regarding non-motorized exposure predictions specific to 

rail crossings. Nonetheless, utilizing methodologies from similar studies can be instrumental in 

advancing our research in this domain. 

Table 4. Combined pedestrian and bicyclist volume/exposure studies. 

SN. Author(s) Year Data  Context  Location Methodology Results/Highlights 
1 Ermagun 

et al.  
2018 data 

collected 
between 
January 1, 
2014, and 
February 
16, 2016 

Bicycle, 
Pedestrian, 
and Mixed-
Mode Trail 
Traffic: A 
Performance 
Assessment 
of Demand 
Models 

seven major 
climatic 
regions in 
the 
continental 
U.S. 

Trail demand 
modeling by 
utilizing 
generalized 
linear models 

Key variables: 
density, diversity, 
design, distance to 
transit, and 
destination 
accessibility, 
average daily 
bicyclists, average 
daily pedestrians, 
average daily 
mixed-mode 
traffic, annual 
average daily 
bicyclists, annual 
average daily 
pedestrians, annual 
average daily 
mixed-mode traffic 

2 Johnstone 
et al. 

2018 continuous 
bicycle and 
pedestrian 
counts 

Annual 
Average 
Nonmotorized 
Traffic 

six U.S. 
cities, 
namely 
Arlington, 

Grouping 
Sites and 
Traffic 

Key variables: time 
periods, days of 
week, hourly 
commute, bicycle 
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(2002 to 
2016) 

Estimates 
from Manual 
Counts: 
Quantifying 
Error 

Boulder, 
Mount 
Vernon, 
Portland, 
San Diego, 
and Seattle 

Distribution 
Index (AMI) 

and pedestrian 
counts  

4 Hankey 
and 
Lindsey 

2016 peak period 
counts of 
pedestrian 
and bicycle 
traffic 
collected 
(954 
separate 
observations 
collected at 
471 
locations) 

Facility-
Demand 
Models of 
Peak Period 
Pedestrian 
and Bicycle 
Traffic: 
Comparison 
of Fully 
Specified and 
Reduced-
Form Models 

 
 
Minneapoli, 
Minnesota 

Statistically 
optimal 
models, 
reduced-form 
core models, 
and reduced-
form time-
averaged 
models 

Population density, 
employment 
density, industrial 
area, retail area, 
open space, 
presence of bicycle 
facilities, transit 
stops, proximity to 
principal arterials, 
proximity to 
freeways 

5 Hankey et 
al.  

2012 counts of 
cyclists and 
pedestrians 
between 
2007 and 
2010 at 259 
locations  

Estimating 
Use of Non-
Motorized 
Infrastructure: 
Models of 
Bicycle and 
Pedestrian 
Traffic  

Minneapolis, 
MN 

Negative 
binomial 
models 

weather, 
neighborhood 
socio-
demographics, 
built environment 
characteristics, and 
road (including 
presence of bus 
line) or bicycle 
facility type 

7 Lu et al.  2018 Count data 
from a non-
motorized 
traffic 
monitoring 
campaign at 
173 
locations 

Adding 
Temporal 
Information 
to Direct-
Demand 
Models: 
Hourly 
Estimation of 
Bicycle and 
Pedestrian 
Traffic  

Blacksburg, 
VA 

Hourly 
direct-
demand 
models of 
bicycle and 
pedestrian 
traffic 
(stepwise 
linear 
regression 
approach) 

land use features, 
transportation 
network 
characteristics, 
time of day (as a 
temporal variable), 
buffer sizes of 
independent 
variables (for 
stepwise 
regression), choice 
of time periods (for 
sensitivity 
analysis), choice of 
day of week (for 
sensitivity 
analysis) 
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In response to the need for enhanced data on pedestrian and cyclist movement, 

policymakers and scholars collaborated to innovate new methodologies for estimating their 

traffic volumes. This involved exploring the potential of crowdsourced mobile data, which 

offered broader spatial and temporal coverage at a lower cost compared to conventional methods. 

Despite inherent limitations and biases, utilizing such data refined our understanding of 

pedestrian and cyclist traffic patterns. The recent detailed literature review by Tao et al. (2024) 

systematically cataloged the utilization of crowdsourced mobile data in estimating pedestrian and 

cyclist traffic volumes. Based on the earlier studies, it highlighted a predominant reliance on a 

particular source of commercial fitness app data, notably Strava, over other crowd-sourced 

sources. Notably, the focus was primarily on estimating cyclist volumes, with relatively fewer 

studies addressing pedestrian volumes. The prevalent approach involved employing 

crowdsourced counts as independent variables in direct demand models. These models aimed to 

predict traffic volumes based on various influencing factors, with crowdsourced data playing a 

significant role. Studies presented in their review paper demonstrated a strong correlation 

between variables derived from crowdsourced mobile data and observed counts in statistical 

models. Moreover, machine learning models revealed the relative importance of crowdsourced 

data over other factors in predicting traffic volumes. Incorporating crowdsourced mobile data 

into estimation models consistently enhanced performance, indicating its potential to refine 

traffic volume estimates.  

Ermagun et al. (2018) conducted a study aimed at developing trail demand models across 

32 locations in the U.S., representing seven major climatic regions. Their research focused on 

predicting average daily pedestrians (ADP), average daily bicyclists (ADB), and average daily 

mixed-mode traffic (ADM) using built environment variables and socio-economic 

characteristics. Integrated sensors were utilized for data collection, with manual validation 

counts ensuring data accuracy. Negative binomial regression models were employed for 

estimating traffic demand, and cross-validation techniques, including leave-one-out cross-

validation, were used to assess model performance. The study found differences in correlation 

between pedestrian and bicycle traffic volumes, moderate accuracy of the models for general 

planning purposes, and no significant improvement in predicting total demand using separate 

sensors for bicycles and pedestrians. However, post-validation techniques showed promise in 
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enhancing prediction accuracy, underscoring the study's contribution to understanding and 

predicting trail traffic demand for planning and management purposes. 

Johnstone et al. (2018) investigated optimal times for conducting manual counts to 

accurately estimate annual average daily nonmotorized traffic (AADNT) across six U.S. cities. 

The study aimed to guide manual count programs, commonly used due to limited funding, to 

enhance data quality and resource utilization. Continuous bicycle and pedestrian counts from 

these cities were analyzed to estimate AADNT and evaluate estimation errors for various short-

duration count scenarios. Results indicated that employing two permanent counters per factor 

group significantly reduced error, with afternoon counts, particularly from 2:00 to 6:00 p.m., 

exhibiting the lowest error rates. Additionally, Sunday counts often showed lower error rates 

compared to Saturdays, contrary to prior findings. The study emphasized the importance of 

reliable traffic count data for planning bicycle and pedestrian infrastructure, offering 

recommendations for optimizing manual count programs to enhance data quality and minimize 

error. 

Hankey and Lindsey (2016) undertook a study aimed at developing facility-demand 

models for pedestrian and bicycle traffic in Minneapolis. Their research, based on peak period 

counts of pedestrian and bicycle traffic, involved exploring fully specified models as well as 

reduced-form models. The dataset comprised 954 observations from 471 locations, providing 

ample spatial density for constructing spatially resolved models. Utilizing stepwise linear 

regression, they estimated three sets of models: statistically optimal models, core models aligned 

with theoretical consistency, and time-averaged models. The primary objective was to compare 

the performance of these models in explaining traffic variations. Independent variables, such as 

land use and transportation network characteristics, were selected at different spatial scales using 

a stepwise approach. The models aimed to produce block-level traffic estimates for improved 

spatial understanding. Results indicated that both reduced-form models and statistically optimal 

models performed similarly in explaining traffic variations. However, reduced-form models were 

favored for their simplicity and ease of interpretation, rendering them more practical for 

application. They suggested designing future sampling campaigns for estimating long-term 

averages and selecting count locations specifically for spatial modeling to enhance model 
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performance. On non-motorist volume prediction modelling, other similar studies were also 

conducted by Hankey et al. in 2011, Lindsey in 2011, and Jones et al. in 2010 

Hankey et al. 2012 conducted a study aimed at addressing the notable gap in data and 

tools for estimating non-motorized traffic on various transportation facilities such as sidewalks, 

trails, and bike lanes, which according to them, hindered evidence-based decision-making for 

transportation infrastructure investments. Their comprehensive analysis, focused on 

Minneapolis, MN, involved gathering cyclist and pedestrian counts from 2007 to 2010 across 

different locations. They developed scaling factors to extrapolate daily counts from hourly data 

and constructed regression models considering factors like weather, socio-demographics, and 

street characteristics to estimate non-motorized traffic. The study revealed that pedestrian traffic 

exceeded bicycle traffic by 35%, with weather conditions, neighborhood characteristics, and the 

presence of bicycle facilities being significant correlates. Bicycle traffic displayed an increasing 

trend over time, particularly on streets with bicycle lanes or off-street facilities, emphasizing the 

importance of investing in bicycle infrastructure.  

The developed models predicted non-motorized traffic for cases where direct counts were 

unavailable and for assessing the impact of changes in the built environment, such as adding 

bicycle lanes or altering land use. Additionally, the study identified peak-hour traffic patterns, 

with the peak occurring between 5:00 pm and 6:00 pm for both cyclists and pedestrians, although 

mid-day hours contributed more significantly to pedestrian traffic. Furthermore, regression 

models indicated better fitting for bicycle traffic, suggesting significant influences from 

neighborhood design features and bicycle facilities. Pedestrian traffic, however, was associated 

with road classification, proximity to amenities, and neighborhood socio-demographics, showing 

no evident increase over time. Some aspects similar to this research are also discussed in Lindsey 

(2011).  

  Lu et al. (2018) focused on developing direct-demand models to estimate bicycle and 

pedestrian traffic volumes in Blacksburg, VA; their study was based on hourly traffic data, 

aiming to overcome the limitations of traditional models that often lack the ability to estimate 

hazard exposure by time of day. The study introduced Annual Average Hourly Traffic (AAHT) 

estimates for bicycles and pedestrians, integrating spatial and temporal factors into hour-specific 
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models and a spatiotemporal model, which demonstrated reasonable goodness-of-fit results. The 

research elucidated how temporal variability influences spatial traffic patterns, identifying 

correlations between major land use and transportation variables with non-motorized traffic 

throughout the day. By emphasizing the significance of considering time of day alongside spatial 

variables in predicting traffic volumes, the study's spatiotemporal models provided a practical 

approach for estimating traffic volumes for various time periods. 

When modeling pedestrian and bicyclist exposure in transportation research, several units 

and measures have been used in past research, some of them were also reviewed in the earlier 

sections. Table 5 outlines some commonly utilized metrics that may be utilized for non-motorist 

exposure analyses at rail crossings.  

Table 5. Summary of non-motorist exposure measures from the literature review. 

Exposure Measure Description 
Person-Miles This measures the exposure of pedestrians or bicyclists in terms of the total 

distance traveled by each individual, summed across all individuals. It provides 
a measure of the total exposure to risk. 

Trip Counts This measures exposure in terms of the number of trips made by pedestrians or 
bicyclists within a certain period. It helps in understanding the frequency of 
exposure events. 

Time Spent Exposure can also be measured in terms of the time spent by pedestrians or 
bicyclists at rail crossings/other transportation infrastructures. This includes 
waiting time at crossings, crossing time, and any other time spent in the 
vicinity of the rail crossing. 

Crossing Events This measure focuses specifically on the number of times pedestrians or 
bicyclists cross the intersection. For a rail crossing scenario, it may provide 
insight into the frequency of interactions between non-motorists and trains. 

Number of non-
motorists 

Simply counting the number of pedestrians and bicyclists passing through or 
near rail crossings/other transportation infrastructures may provide a basic 
measure of exposure. 

Density Metrics Metrics such as pedestrian or bicyclist density in the vicinity of rail crossings 
can also be used to quantify exposure. This considers both the number of non-
motorists and the area they occupy. 

Risk Index A risk index may be developed that combines various exposure measures with 
crash data to assess the relative risk faced by pedestrians and bicyclists at rail 
crossings. 

Non-motorist 
Volume 

Counting the number of pedestrians and bicyclists passing through or near a 
highway intersection/rail crossings over a specified period may provide a basic 
measure of pedestrian exposure 

Non-motorist 
Activity Index 

This index combines pedestrian and bicyclist volume with other factors such as 
land use characteristics, infrastructure features, and environmental conditions 
to quantify pedestrian exposure more comprehensively. 
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Non-motorist 
Proximity 

Measuring the distance between pedestrian and bicyclist pathways and 
intersections/rail crossings may help assess exposure based on spatial 
relationships. 

3. Data Collection 

Prior to the collection of non-motorist volume data, a planning phase was conducted. Emphasis was 

placed on video recording proximity to the University of Nebraska Lincoln campus in Lincoln, Nebraska, 

and surrounding suburban towns including Hickman, and Roca. The selection of rail grade crossings in 

these locations aimed to ensure accessibility, prioritize the safety of student and staff workers, and 

optimize available resources. Non-motorist activities at suburban rail crossings were specifically 

examined, distinct from urban counterparts, which typically exhibit lower traffic volumes and are situated 

in less densely populated areas, resulting in fewer pedestrian and vehicular crossings. These locations 

often feature enhanced warning systems, such as extended gate lengths, additional flashing lights, and 

louder audible signals, attributed to higher train speeds. A total of 21 sites were utilized for data 

collection, of which 7 were monitored using City of Lincoln cameras, while the remainder utilized 

Miovision Scout for recording non-motorist volumes over multiple 24-hour periods. Miovision Scout is a 

portable, camera-based system designed for collecting traffic data, particularly for traffic volume studies. 

It is equipped with high-definition video capabilities, allowing it to record vehicles, pedestrians, and 

cyclists as they pass through intersections or road segments. This data are then processed using 

Miovision's analytics software, which extracts valuable information such as traffic counts, vehicle 

classifications, and non-motorist volumes. Miovision Scout is commonly used for assessing traffic loads 

and patterns over specific time periods, which is essential for transportation planning, road safety 

evaluations, and infrastructure design (Figure 3). Locations of the selected sites can be seen in Figure 4.  

 A total of 77 24-hour video recordings were captured across different months of the year to ensure 

that seasonal variations are randomly accounted for in the exposure analysis of rail crossings. Rail grade 

crossings can be affected by various environmental and weather conditions such as rain, snow, fog, ice, 

and extreme temperatures. Rain can reduce visibility and make tracks slippery, increasing the stopping 

distance for trains and the risk of vehicles skidding. Snow and ice can obscure rail signals and signs, and 

cause difficulties for both trains and vehicles in maintaining traction. Fog significantly reduces visibility, 

making it harder for non-motorists as well as motorists to see oncoming trains or crossing signals in time. 

Extreme temperatures can affect the integrity of the rail tracks, causing them to expand or contract, and 

can also impact the functioning of crossing warning systems. It is crucial to consider these environmental 
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and weather conditions because they directly affect the safety and behavior of non-motorists at the 

HRGCs.  

 

Poor visibility and slippery surfaces increase the risk of crashes. Non-motorists are particularly 

vulnerable as they do not have the protection of a vehicle and may be less aware of the dangers posed by 

crossing tracks in adverse conditions. Ensuring proper signage, warnings, and safety measures can help 

mitigate these risks and protect all users of rail crossings. Other important environmental and weather-

related data were also recorded during the video sessions including, average 24-hour visibility in miles, 

average 24-hour maximum wind speed in mph, average 24-hour total precipitation in inches, rail-crossing 

surface conditions, intersecting road surface conditions, and lighting conditions at the crossings during 

nighttime. Moreover, various factors specific to crossing infrastructure and the surrounding environment 

were examined. These factors include the presence of sidewalks, the number of highway lanes, and the 

types of non-motorist activity areas adjacent to the HRGCs, such as residential, commercial, and 

downtown zones. Additionally, the presence and clarity of signage and signals were considered as well-

maintained and prominent signs help alert non-motorists of an approaching train. 

Figure 3. Photographic image of scout hardware (Miovison.com). 
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Figure 4. Locations of urban and suburban HRGCs with recorded non-motorist activity. 

 

A critical aspect of the analysis was observing the presence of sidewalks at rail crossings. Sidewalks 

are essential for providing safe pathways for pedestrians and cyclists, offering a designated space away 

from vehicular traffic. The number of highway lanes was also evaluated, as crossings with more lanes 

may present greater risks for non-motorists due to increased traffic volume and complexity in navigating 

the crossing. The characteristics of zones often influence transportation behaviors; by considering the type 

of area—whether residential, commercial, or mixed-use—varying levels of pedestrian and cyclist activity 

that typically occur in different settings were accounted for. The availability of parking infrastructure 

within a 0.5-mile radius of the crossings was also investigated. The presence of parking lots or structures 

can influence the flow of pedestrian traffic, as individuals may park their vehicles and then walk to nearby 

destinations, increasing the likelihood of non-motorist activity at the crossings. Additionally, the type of 

intersection near the crossings was an important factor, as complex intersections with multiple roads 

converging can create additional hazards for non-motorists, which can affect non-motorist crash exposure 

at HRGCs. The proximity of schools within a 0.5-mile radius of the rail crossings was another significant 

element in the data collection. Schools generate substantial non-motorist traffic, including children 

walking or biking to and from school. Industrial areas generally experience higher vehicular traffic, with 
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limited pedestrian infrastructure and fewer amenities such as parks or retail centers that typically attract 

non-motorists. Consequently, non-motorist activity, including walking or cycling, tends to be lower in 

these zones. Therefore, industrial areas within a 0.5-mile radius of HRGC locations were also considered 

in this study to assess their impact on non-motorist traffic.  Figure 5 identifies the proximity to local 

amenities within a 0.5-mile radius of HRGCs.  

While analyzing the recorded videos, train traffic was also monitored during the day and nighttime to 

understand the activity of the trains. Initially, the recorded videos were identified and incorporated in the 

database based on the names of streets/highways they were intersecting, and later, their actual location 

was matched with U.S. DOT crossing IDs to get the correct Latitude and Longitudes of each crossing. For 

volume counts, data was both manually counted and then Algorithms were used for non-motorist counts 

of pedestrian and bicyclist. For identification purposes, each video was given a batch number. A total of 3 

Batches of videos were recorded and distributed among team members. Batch I videos were captured via 

city of Lincoln cameras, while Batch II and Batch III videos were recorded using Miovision Scout. Each 

data point in the database, representing a 24-hour recording period, includes the start and end dates of the 

video capture. 

Additionally, the start time and end time of each video were recorded in 24-hour format. For each 

recorded period, counts of pedestrians and cyclists were documented separately, along with a combined 

count of non-motorists. The team ensured the accurate inclusion of key physical attributes of rail 

crossings in the data, cross-referencing with the FRA’s inventory dataset for HRGCs and verifying on-site 

observations. Photos were taken for recordkeeping purposes to document these aspects comprehensively. 

These important physical attributes verified on the site include the number of crossbuck assemblies, stop 

and yield signs, posted speed limits on highways and streets intersecting rail crossings, number of main 

tracks, siding tracks, yard tracks, transit tracks, track signalization, advance warning signs, low ground 

clearance signs, pavement markings, channelization devices, exempt signs, ENS signs, count of crossing 

gate arms, gate configuration, type and number of flashing lights, number of warning bells, highway 

traffic signal interconnection, highway traffic signal preemption, presence of a paved highway, crossing 

surface description, smallest crossing angles, and road at crossing type.  
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Figure 5. Proximity to local amenities within a 0.5-mile radius of HRGCs. 

 

The practical constraints involved in data collection, including resource limitations and logistical 

challenges, guided the selection of 21 crossings. These crossings were chosen to provide a representative 

sample that captures the variability in environmental and situational factors affecting non-motorist 

volumes. Despite the limited number of locations, each of the 21 selected grade crossings underwent 

video monitoring for extended hours, with a minimum of 100 hours of video footage per location. This 

approach included recording various environmental and situational factors known to influence non-

motorist volumes. These factors included day and night variations, diverse weather scenarios, seasonal 

changes, as well as daily and weekly activity patterns. Moreover, the study accounted for temporal 

fluctuations associated with holidays, school schedules, and commuting patterns. Additionally, the 
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analysis considered event-driven impacts such as festivals, sporting events, and community gatherings, 

along with disruptions caused by construction or maintenance activities affecting pedestrian and cyclist 

routes. Furthermore, economic factors, such as local shopping hours and market days, were also evaluated 

for their influence on commuting and recreational activities. 

 

 

Figure 6. Population density buffer zones (1 mile) of HRGCs. 

 

Figure 6 indicates buffer zone of 0.5-mile radius for population density estimation around selected 

HRGCs. First, the locations of the HRGCs were plotted using geographic coordinates in ArcGIS Pro. 

Next, the buffer tool was applied to generate a 0.5-mile radius around each HRGC, creating circular 

zones. The most recent available census data, in shapefile format, were then imported and overlaid onto 

the map. Using the spatial join or intersect tool, the population data within each buffer zone was 

extracted, allowing for the calculation of total population within these areas.  

 

 



 
 

55 
 

 

 

Figure 7. Batch II video recording data collection overview: crossing 
ID 083519T. 
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Figure 7 provides detailed insights into the on-site data collection process for crossing ID 083519T. In 

part (a), the image shows how the location was chosen based on various factors such as ease of access and 

suitability for data collection. Part (b) highlights the evaluation of the road surface condition at the 

crossing. In part (c), an image captures the installation of the Miovision Scout, which is securely strapped 

to a pole facing the HRGCs to ensure optimal data capture. Part (d) showcases the assessment of the 

HRGC warning devices, including gates, lights, and other safety features. Lastly, part (e) presents a 

screenshot from the video footage recorded by the Scout, offering a visual excerpt from the on-site data 

collection. 

Table 6. Locations of HRGCs from Batch I of Video Data Collection  

Intersection/Proximity/Street 
Location Name (Miovision 
Scout) 

Crossing 
ID 

Details Location Details  

14th and NE Pkwy (Near 
NDOT Office) 

083884M Primary Operations: BNSF Railway 
Company (BNSF) 
County or City: LANCASTER 
In or Near: In City 
City: LINCOLN 
Street or Intersection: US HIGHWAY 
RR Mile post: 59.539 
Nearest RR: HILL ST JCT 
Crossing Type: Public 
Crossing P: Highway 

Latitude: 40.77153 
Longitude: -96.701536 

17th and Antelope Valley 
(Near UNL Passport Office on 
Y Street) 

598814X Primary Operations: Omaha, Lincoln 
& Beatrice Railway Company (OLB) 
County or City: LANCASTER 
In or Near: In City 
City: LINCOLN 
Street or Intersection: "Y" STREET 
RR Mile post: 0 
Nearest RR: 553900 
Crossing Type: Public 
Crossing P: Highway 

Latitude: 40.824485 
Longitude: -96.695099 

27th and NE Pkwy  083886B Crossing Number: 083886B 
Primary Operations: BNSF Railway 
Company (BNSF) 
County or City: LANCASTER 
In or Near: In City 
City: LINCOLN 
Street or Intersection: S 27TH 
STREET 
RR Mile post: 58.55 
Nearest RR: LANCASTER 
Crossing Type: Public 
Crossing P: Highway 

Latitude: 40.768124 
Longitude: -96.682724 
 

35th and Cornhusker Hwy  064129E Crossing Number: 064129E 
Primary Operations: BNSF Railway 
Company (BNSF) 
County or City: LANCASTER 
In or Near: In City 

Latitude: 40.84264 
Longitude: -96.669739 
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City: LINCOLN 
Street or Intersection: ADAMS ST 
RR Mile post: 56.61 
Nearest RR: HAVELOCK 
Crossing Type: Public 
Crossing P: Highway 

40th and NE Pkwy  083890R Crossing Number: 083890R 
Primary Operations: BNSF Railway 
Company (BNSF) 
County or City: LANCASTER 
In or Near: In City 
City: LINCOLN 
Street or Intersection: S 40TH 
STREET 
RR Mile post: 57.379 
Nearest RR: HILL ST JCT 
Crossing Type: Public 
Crossing P: Highway 

Latitude: 40.762074 
Longitude: -96.663078 

48th and NE Pkwy 083891X Crossing Number: 083891X 
Primary Operations: BNSF Railway 
Company (BNSF) 
County or City: LANCASTER 
In or Near: In City 
City: LINCOLN 
Street or Intersection: S 48TH 
STREET 
RR Mile post: 56.81 
Nearest RR: HILL ST JCT 
Crossing Type: Public 
Crossing P: Highway 

Latitude: 40.758927 
Longitude: -96.65361 

56th and Old Chenny 083895A Crossing Number: 083895A 
Primary Operations: Union Pacific 
Railroad Company (UP) 
County or City: LANCASTER 
In or Near: In City 
City: LINCOLN 
Street or Intersection: SOUTH 56TH 
STREET 
RR Mile post: 56.23 
Nearest RR: LANCASTER 
Crossing Type: Public 
Crossing P: Highway 

Latitude: 40.754636 
Longitude: -96.644355 

NW 12th and Cornhusker 815572E Crossing Number: 815572E 
Primary Operations: Union Pacific 
Railroad Company (UP) 
County or City: LANCASTER 
In or Near: In City 
City: LINCOLN 
Street or Intersection: NW12TH 
STREET 
RR Mile post: 54.97 
Nearest RR: 
Crossing Type: Public 
Crossing P: Highway 

Latitude: 40.838539 
Longitude: -96.738899 
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Table 6-8 provides details on the locations and proximity of the HRGCs selected for the study, including 

their crossing IDs, primary operations, city and county information, street addresses, milepost details, 

crossing access type, and latitude and longitude coordinates for each crossing. 

Table 7. Locations of HRCs from Batch II of Video Data Collection 

Intersection/Proximity/Street 
Location Name (Miovision 
Scout) 

Crossing 
ID 

Details Location Details  

Grant Street and Roy Street 083519T Primary Operations: BNSF Railway 
Company (BNSF) County or City: 
LANCASTER In or Near: Near City 
City: GRANT Street or Intersection: 
ROY ST RR Mile post: 196.589 
Nearest RR: HICKMAN Crossing 
Type: Public Crossing   

Latitude: 40.77153 
Longitude: -96.701536 

Hill Street and Old Cheney 
Road 

074406N Primary Operations: BNSF Railway 
Company (BNSF) County or City: 
LANCASTER In or Near: Near City 
City: LINCOLN Street or 
Intersection: OLD CHENEY RD RR 
Mile post: 203.99 Nearest RR: HILL 
ST JCT Crossing Type: Public 
Crossing P: Highway Crossing  

Latitude: 40.7556 
Longitude: -96.71278 

Pinelake Road and S 66th 
Street  

083897N Primary Operations: Union Pacific 
Railroad Company (UP) County or 
City: LANCASTER In or Near: Near 
City City: LINCOLN Street or 
Intersection: PINE LAKE ROAD RR 
Mile post: 55.12 Nearest RR: 
COLLEGEVIEW Crossing Type: 
Public Crossing P: Highway Crossing  

Latitude: 40.74082 
Longitude: -96.633079 

West Pioneer Blvd and 
Jamaica North Trail  

924642S Primary Operations: BNSF Railway 
Company (BNSF) 
County or City: LANCASTER 
In or Near: In City 
City: LINCOLN 
Street or Intersection: W PIONEER 
BLVD 
RR Mile post: 205.019 
Nearest RR: LINCOLN TERMINAL 
Crossing Type: Public 
Crossing P: Highway 

Latitude: 40.77017 
Longitude: -96.7136 

Custer Street and N 70th Street 074929T Primary Operations: BNSF Railway 
Company (BNSF) 
County or City: LANCASTER 
In or Near: In City 
City: LINCOLN 
Street or Intersection: N 70TH ST 
RR Mile post: 53.72 
Nearest RR: HAVELOCK 
Crossing Type: Public 
Crossing P: Highway 

Latitude: 40.866286 
Longitude: -96.624685 
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44th ST and Cornhusker Hwy 074860A Primary Operations: BNSF Railway 
Company (BNSF) 
County or City: LANCASTER 
In or Near: In City 
City: LINCOLN 
Street or Intersection: 44TH ST 
RR Mile post: 55.919 
Nearest RR: HAVELOCK 
Crossing Type: Public 
Crossing P: Highway 

Latitude: 40.848341 
Longitude: -96.658883 

 

Table 8. Locations of HRCs from Batch II of Video Data Collection 

Intersection/Proximity/Street 
Location Name (Miovision 
Scout)  

Crossing ID Details Location Details  

Saltillo Road and South 27th 
Street 

083516X Primary Operations: BNSF Railway 
Company (BNSF) 
County or City: LANCASTER 
In or Near: Near City 
City: LINCOLN 
Street or Intersection: SALTILLO RD 
RR Mile post: 199.6 
Nearest RR: HILL ST JCT 
Crossing Type: Public 
Crossing P: Highway 

Latitude: 40.697374 
Longitude: -96.681406 

Yankee Hill Road and South 
14th Street  

083512V Primary Operations: BNSF Railway 
Company (BNSF) 
County or City: LANCASTER 
In or Near: Near City 
City: LINCOLN 
Street or Intersection: S 14TH STREET 
RR Mile post: 201.929 
Nearest RR: HILL ST JCT 
Crossing Type: Public 
Crossing P: Highway 

Latitude: 40.727573 
Longitude: -96.701518 

W 2nd Street  083524P Primary Operations: BNSF Railway 
Company (BNSF) 
County or City: LANCASTER 
In or Near: In City 
City: HICKMAN 
Street or Intersection: 2ND STREET 
RR Mile post: 193.63 
Nearest RR: HICKMAN 
Crossing Type: Public 
Crossing P: Highway 

Latitude: 40.619626 
Longitude: -96.634196 

Calvert and 10th  064365J Primary Operations: BNSF Railway 
Company (BNSF) 
County or City: LANCASTER 
In or Near: In City 
City: LINCOLN 
Street or Intersection: CALVERT & 
10TH 
RR Mile post: 60.612 

Latitude: 40.777375 
Longitude: -96.706812 
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Nearest RR: HILL ST JCT 
Crossing Type: Public 
Crossing P: Highway 

F street and South 1st Street 064344R Primary Operations: BNSF Railway 
Company (BNSF) 
County or City: LANCASTER 
In or Near: In City 
City: LINCOLN 
Street or Intersection: 1ST F ST 
RR Mile post: 60.51 
Nearest RR: LINCOLN TERMINAL 
Crossing Type: Public 
Crossing P: Highway 

Latitude: 40.804798 
Longitude: -96.719906 

C street and South 5th Street 064355D Primary Operations: BNSF Railway 
Company (BNSF) 
County or City: LANCASTER 
In or Near: In City 
City: LINCOLN 
Street or Intersection: 5TH & C ST 
RR Mile post: 60.661 
Nearest RR: LINCOLN TERMINAL 
Crossing Type: Public 
Crossing P: Highway 

Latitude: 40.80143 
Longitude: -96.7144 

4. Artificial Intelligence for Non-motorist Detection  

In the early stages of non-motorist detection, traditional image processing techniques formed the 

backbone of the methodologies used. These methods, being foundational studies, primarily relied 

on manually extracted features from images and utilized classical machine learning algorithms 

for the detection of pedestrians and cyclists. Edge detection was one of the pioneering techniques 

in image processing, used to identify the boundaries within images. Early works, such as those 

by Marr and Hildreth (1980), introduced the concept of edge detection by detecting zero-

crossings in the second derivative of the image intensity, laying the groundwork for subsequent 

methods. 

For Motion analysis, another critical approach involved identifying moving objects based 

on changes in pixel intensity over time. Pioneering studies by researchers like Aggarwal and Cai 

(1997) provided comprehensive surveys on human motion analysis, highlighting the importance 

of understanding motion patterns for detecting and tracking non-motorists. These methods 

typically used frame differencing and optical flow to track the motion of objects, but they often 

struggled with occlusions and varying lighting conditions. Traditional non-motorist detection 
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techniques often relied on manually extracted features, such as shape, texture, and color (Wang 

and Adelson,1993). Wren et al. (1997) proposed the Pfinder system, which used statistical 

models of color and shape to detect and track people in real-time. Although effective to some 

degree, these methods were constrained by their reliance on predefined features and often 

struggled to accommodate the variability in pedestrian appearances and the complexity of 

backgrounds.  

 

Figure 8. Key Studies for Non-motorist Object Detection. 

 

Classical machine learning algorithms, including Support Vector Machines (SVMs) and 

decision trees, were employed to classify detected features as non-motorists or background 

elements. Early applications of SVMs in pedestrian detection by Papageorgiou and Poggio 
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(2000) demonstrated the potential of machine learning for this purpose. These approaches, 

however, were constrained by their reliance on handcrafted features and the computational 

complexity involved in training the models. Despite their innovative nature, early non-motorist 

detection methods faced significant limitations. Complex backgrounds and varying lighting 

conditions posed substantial challenges, as these methods lacked robustness and adaptability. As 

noted by Gavrila (1999) in a comprehensive review of pedestrian detection methodologies, these 

traditional approaches struggled to achieve high detection accuracy and real-time performance in 

dynamic environments. 

In recent years, several methods have been developed and refined to enhance the 

precision and efficacy of pedestrian detection systems. Traditional feature-based algorithms, like 

Histogram of Oriented Gradients (HOG), are one popular technique. Using gradient orientation 

histograms extracted from photos, pedestrian shapes and silhouettes are recognized using HOG. 

This technique can be difficult to use in situations with complex backdrops and occlusions, but it 

works well in structured contexts. The Region-based Convolutional Neural Network (R-CNN) 

and its variations, including Fast R-CNN and Faster R-CNN, represent another cutting-edge 

method (Kim et al. (2018), (Wang & Zhou (2019)). In order to detect pedestrians, these two-

stage object detection algorithms first create region recommendations, which are subsequently 

classified. Specifically, faster R-CNN improves speed and accuracy by directly integrating the 

region proposal network (RPN) into the detection network, leading to a notable improvement in 

pedestrian detection jobs performance. Figure 8 shows some recent studies on object detection.  

The Single Shot MultiBox Detector (SSD) is an additional notable method (Chang et al. 

(2019), Kumar et al. (2020)). SSD is a single-stage detector that, in contrast to R-CNN 

variations, can predict bounding boxes and class scores during a single network forward pass. 

Since this method drastically cuts down on detection time, it can be used in real-time 

applications. In order to recognize things at many scales and reliably identify pedestrians of 

different sizes, SSD employs a sequence of convolutional layers. 

Since its conception, the YOLO (You Only Look Once) family of models has 

experienced substantial advances, with each iteration improving its capabilities and performance 

for object detection tasks (Vijayakumar & Vairavasundaram (2024)). By redefining object 

recognition as a single regression issue and enabling the network to predict bounding boxes and 
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class probabilities straight from entire photos in a single pass, the original YOLO model, which 

debuted in 2016, revolutionized object detection and made real-time detection possible. 

Subsequent versions of YOLO, such as YOLOv2 (YOLO9000) and YOLOv3, introduced 

further enhancements. YOLOv2 brought improvements like batch normalization, high-resolution 

classifiers, and the use of anchor boxes, significantly boosting performance and detection 

accuracy. YOLOv2, sometimes called YOLO9000, brought in many improvements, such as 

batch normalization, high-resolution classifiers, and the application of anchor boxes to boost 

performance and detection accuracy. Over 9000 object categories could be detected by YOLOv2, 

a considerable improvement over the initial model. Darknet-53, a more powerful and in-depth 

feature extractor, was introduced by YOLOv3 to further improve the architecture. Additionally, 

multi-scale predictions were used, which greatly enhanced the ability to detect small objects. 

Furthermore, logistic regression was added to YOLOv3 for class prediction, which improved its 

capacity to manage overlapping objects and class imbalance problems. 

Building on these developments, YOLOv4 and YOLOv5 continued to advance the state-

of-the-art in object detection. By using cutting-edge methods like the Path Aggregation Network 

(PANet), Mish activation function, and Cross-Stage Partial connections (CSPDarknet53), 

YOLOv4 significantly increased speed and accuracy. To further improve performance, it also 

used cutting-edge data augmentation techniques like Self-Adversarial Training (SAT) and 

Mosaic. 

This pattern of improvement is maintained in YOLOv5, the subsequent iteration. The 

streamlined and lightweight architecture of YOLOv5 is well renowned for improving accuracy 

and speed (Zhao et al. 2023; Chen et al. 2023; Li et al. 2023). Advanced features like integrated 

hyperparameter evolution, auto-learning bounding box anchors, and the use of new modules like 

the Focus layer for improved feature extraction are also included. Thanks to these improvements, 

YOLOv5 is now extremely effective for real-time applications, especially in settings where 

quick and precise object identification is required. 

Following the developments of YOLOv5, the YOLO family continues to evolve with the 

introduction of YOLOv6 and YOLOv7, both of which brought more performance and efficiency 

improvements (Vijayakumar & Vairavasundaram (2024)). YOLOv6 was created, particularly for 
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industrial applications, to maximize the trade-off between detection accuracy and inference 

speed (Li et al. (2022)). It incorporates cutting-edge parts like EfficientRep, a RepVGG block 

variation that streamlines the architecture without sacrificing performance. Global Attention 

Mechanism (GAM) approaches are also used by YOLOv6 to enhance feature extraction and 

reaction to changing object sizes and occlusions. It improves the overall efficiency and accuracy 

of the model by utilizing the CSPNet backbone for improved gradient flow and feature reuse. 

YOLOv6 is especially well-suited for real-time object detection jobs in intricate situations due to 

these enhancements. 

With emphasis on higher detection accuracy and speed, YOLOv7 is a significant 

advancement in YOLO models' development. A more effective feature pyramid network (FPN) 

and the addition of a Path Aggregation Network (PAN) for improved multi-scale feature fusion 

are two of the novel architectural enhancements brought forth by YOLOv7. Also, to handle 

objects of various scales and enhance localization accuracy, YOLOv7 integrates sophisticated 

techniques such as Spatial Pyramid Pooling (SPP). In order to further improve bounding box 

predictions, it also makes use of a novel dynamic anchor box allocation technique. Thanks to its 

improvements, YOLOv7 is now among the fastest and most accurate models out there, making it 

ideal for a variety of uses, including surveillance and autonomous driving. 

The most recent model in Ultralytics' "You Only Look Once" (YOLO) series of object 

identification models is called YOLOv8 (Vijayakumar & Vairavasundaram (2024)). Figure 9 

represents the overall framework of YOLOv8. Its goal is to preserve efficiency and convenience 

of use while offering high-performance object identification and tracking capabilities. Building 

on the innovations of its predecessors, YOLOv8 integrates cutting-edge technologies to improve 

speed and accuracy in real-time applications. 

The capacity of YOLOv8 to strike a balance between performance and resource 

efficiency is one of the key factors making it a strong option for object recognition and tracking. 

The model is ideal for a range of applications, from autonomous driving to security monitoring, 

because it is tailored for both high accuracy and low latency. YOLOv8's enhanced detection 

skills over earlier iterations and other models in the field are a result of its utilization of cutting-

edge approaches including mosaic data augmentation and an anchor-free detection head. 
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Because of the extensive documentation and user-friendly tools provided by Ultralytics, 

using YOLOv8 is a simple procedure. You must install the required dependencies and configure 

your environment before you can use YOLOv8. Python is usually used for these tasks. Once 

established, you can use your own datasets to fine-tune or load pre-trained YOLOv8 models. By 

providing pictures or video streams to the model and receiving detection outputs in a simple way, 

built-in functions streamline the inference process. 

The Federal Railroad Administration (FRA) sponsored a research team from Rutgers 

University to develop a proof-of-concept Trespassing Database using AI technology to process 

large volumes of video data. The Rutgers AI algorithm analyzed over 27,000 hours of live video 

Figure 9. Yolov8 overall framework (Sheng et al. 2020). 



 
 

66 
 

and 1,176 hours of recorded video from 11 locations across six states, collecting data on traffic, 

rail signal activations, train events, and trespass incidents. The AI detected over 29,000 trespass 

events, with detailed information on each event, such as date, time, type, weather, path, and 

video clips. Manual validation ensures data accuracy. The study also included two in-depth, 

year-long case studies at a New Jersey grade crossing and a North Carolina right-of-way, 

providing temporal and spatial analyses and discussing AI-informed mitigation strategies 

(Zaman et al. 2024). 

Comprehensive Workflow for Detecting Non-Motorists in Miovision Videos 

Using YOLOv8 

The YOLOv8 model requires a multi-step technical method to detect non-motorists in videos 

recorded with Miovision, such as bicyclists and pedestrians. Installing the prerequisites tools and 

libraries required to execute the YOLOv8 model and handle video data is the first step in setting 

up the required software environment. This basic configuration guarantees that the system is 

prepared to handle video inputs and effectively identify objects. 

Preparing the YOLOv8 model is the next step after the environment is configured. Either a pre-

trained model that has previously been tuned for object identification can be loaded, or a new 

model can be trained using bespoke datasets that contain pedestrians and bicyclists particularly. 

The decision is based on the training data's accessibility and the particular needs of the detection 

task. We used a pre-trained model of YOLOv8 for non-motorists’ detection and counting. 

As soon as the model is prepared, the video input is handled. Miovision videos are processed 

frame by frame so that the YOLOv8 model may examine every frame separately. Effective 

capture and management of the video streams in this step necessitate the use of video processing 

libraries. The YOLOv8 model identifies and categorizes the objects included within. Making the 

inference based on the YOLOv8 model is an important step in the procedure and used to locate 

and identify non-motorists in every video frame. The types and positions of the objects spotted 

within each frame are among the detection findings that the model outputs. The detected 

pedestrians and bicyclists are then highlighted in the video frames using these results. 
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The findings of the detection are finally displayed. By doing this, the process of detecting 

bicyclists and pedestrians is simplified by projecting the detection outputs into the video frames. 

These frames with annotations can be saved for further examination or shown in real time. 

Understanding can be greatly improved by including figures and images at important stages of 

this process. Screenshots of the video frames containing items that the model has detected 

demonstrate the model's performance, for example, displaying the command line interface during 

installation aids in visualizing the setup. 

The entire process of using YOLOv8 for object detection in Miovision videos is covered in this 

thorough description, which also emphasizes the significance of each stage and its technological 

complexities in order to achieve accurate and efficient non-motorist detection. A step-by-step 

process is given below. 

A. Setting Up the Environment 

The first step is to install all the dependencies 

• Make sure Python is installed.  
• Install any essential packages, Ultralytics YOLO, OpenCV, and other libraries. 

 

 

B. Getting the Model Ready 
 
Second step is to download the pre-trained model YOLOv8 model file “yolov8n.pt” and save it in 
your project directory where your main.py file is saved. Then we load the model using the 
following command. 

 

 

 

 

pip install ultralytics opencv-python 

from ultralytics import YOLO 

# Load pre-trained YOLOv8 model 

model = YOLO('yolov8n.pt') 
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C.  Processing Video Input 

To load and open a video as input, OpenCV is used which captures frames from the Miovison 
videos. 

 

 

D. Executing Inference 

Run each frame through the YOLOv8 model to identify bicycles and pedestrians. 

 

E. Displaying Outcomes 

In this step we render the detection results on each frame, with the option to store the video 
 output. 

 

import cv2 

video_path = 'path_to_video.mp4' 

cap = cv2.VideoCapture(video_path) 

while cap.isOpened(): 

    ret, frame = cap.read() 

    if not ret: 

        break 

    # Process each frame with YOLOv8 

    results = model(frame) 

    

       

      

          

         

 

 

results = model(frame) 

for result in results: 

    # result.render() modifies the frame in-place 

    frame = result.render() 

     # Show the frame with detection boxes 

    cv2.imshow('YOLOv8 Detection', frame) 
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Figure 10. Flowchart of object detection process. 

 

Figure 10 represents the flowchart for the object detection process. 
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5. Case Studies  

The videos recorded through Miovision Scout were analyzed using YOLOv8 for object detection. 

While YOLOv8 generally performed well in identifying non-motorists, some instances revealed 

limitations in its accuracy. Factors such as lower video quality, adverse weather conditions (e.g., rain, 

higher wind speeds), and suboptimal camera angles occasionally led to detection errors. YOLOv8's 

performance can be affected by several factors. For example, lower video resolution can reduce the 

model’s ability to discern finer details, while poor weather conditions like rain can obscure visibility, 

complicating object identification. Additionally, camera angles and motion blur caused by wind or 

camera shake can contribute to inaccuracies in detection. To enhance the prediction model’s accuracy, 

adjustments were made to account for these detection errors. In cases where YOLOv8's object detection 

was not 100% accurate due to uncontrollable factors, such as rain or blurred video, manual corrections 

were applied. This involved using manual counts to adjust the total non-motorist counts and removing 

instances where poles, or channelization devices were incorrectly labeled as people due to lighting and 

shadows, as illustrated in Figure 11 and 12. These corrections ensured that the final count for analysis was 

more accurate and reflective of actual non-motorist volumes. 

 

Figure 11. Object detection case I. 
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It is also noted as the person moves further away from the camera and then come back, the tracking 

of the person(s) is lost for a short time but significant enough for the algorithm that it assigns the 

person(s) a new ID and counts it as a new person. This scenario is captured in the following two 

screenshots in Figure 13 and Figure 14, case III.  

 

 

Figure 12. Object detection case II. 

Figure 13. Object Detection Case III. 
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Two people were seen crossing the intersection at 40th Street and NE Parkway in the scenario shown 

in Figure 15, case IV (Crossing ID 083890R). This image, which was obtained from a video that was 

captured on May 14, 2024, at around 4:43 PM, shows how well the identification algorithm performed in 

real-time in detecting pedestrians who were not vehicles at the crossing. 

At first, the system misclassified one of the people as a cyclist. This happened because the person 

was not riding the bicycle; instead, they were walking along it. The person was automatically classified as 

a cyclist by the algorithm when it saw that they were riding a bicycle. Nevertheless, a change was made to 

the algorithm's recognition, correctly recognizing the person as a pedestrian rather than a cyclist, 

following additional examination of the movement patterns. 

This situation emphasizes how crucial it is to continuously improve detection algorithms in order to 

distinguish between minute differences in human behavior, such strolling alongside a bicycle and riding 

one. The system's accuracy depends on its capacity to rectify these misclassifications, guaranteeing that 

non-motorists are accurately recognized and categorized in real-time. This degree of specificity is 

essential for boosting the overall efficacy of monitoring systems intended to track and safeguard non-

motorist activities, as well as for strengthening safety protocols at rail crossings and intersections. 

 

Figure 14. Object Detection Case III. 
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A safety concern was noticed at Crossing 074406N, Figure 16, when someone started to flee as the 

rail crossing gates were closing because of an approaching train. Given that the person attempted to cross 

the tracks as the barriers were lowering, indicating that the train would soon arrive, this situation poses a 

serious risk to public safety. It is quite risky to run to beat the closing gates because there is a greater 

chance of getting hit by a train or becoming stuck on the tracks. Such acts are extremely dangerous 

because of the short time interval between the train passing and the gates closing. The person's choice to 

cross the crossing as it was shutting in this case emphasizes the necessity of increased safety precautions 

and awareness to avoid mishaps. Such actions put the person in danger and may have serious 

repercussions, such as crashes into the train or near-miss accidents. This highlights the significance of 

strictly adhering to barriers and crossing signals, as well as the potential usefulness of automated 

detection systems that might notify authorities or trigger further warnings in circumstances where non-

motorists take dangerous actions, such as trying to cross when a gate is closed. 

Figure 15. Object Detection Case IV. 
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Another scenario is shown in the following screenshot in Figure 17 where the bicyclist is detected 

and labeled as a person due to the angle of the bicycle. The algorithm cannot detect the bicycle from the 

front or rear view as the side view is not clear for it to detect. The algorithm cannot detect the bicycle due 

to low resolution of the video. 

The scenario in Figure 18 illustrates a case of low visibility brought on by the camera's focus 

settings. This problem occurs when there is a hazy or unclear image due to either misalignment or 

obstruction of the camera's focus. This leads to the loss of crucial visual information, which adversely 

Figure 16. Object Detection Case V. 

Figure 17. Object Detection Case VI. 
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affects the algorithm's capacity to recognize crucial components, including non-motorists or items at the 

crossing. 

This particular incident happened at Crossing ID 064355D, where the lower definition of the video 

made it difficult for the algorithm to identify individuals or objects in the area. These kinds of low 

visibility situations can make the algorithm overlook important detections that it would have otherwise 

picked up with standard camera settings. This constraint emphasizes how critical it is to set up and focus 

the cameras optimally in order to ensure the accuracy of the detection system, especially in situations 

where having excellent visuals is essential for spotting possible risks or keeping an eye on non-motorist 

activities at crossings.  

 

 

Figure 16 (a) and (b) demonstrate the output of the detection algorithm in operation, emphasizing in 

particular the recognition of non-motorists like cyclists and pedestrians. These pictures demonstrate how 

the algorithm interprets visual information from crossings and successfully determines whether people are 

present in the scene. The algorithm's capacity to follow movement and improve safety monitoring at 

crossings is demonstrated when it uses computer vision techniques to identify and classify non-motorists 

in the clip. 

A crucial part of the detection system are the screenshots, which provide a visual representation of 

the algorithm's performance under real-time conditions. Bounding boxes or labels are usually used to 

indicate the precise locations of the non-motorists within the frame for each detection. In order to evaluate 

the detection system's accuracy and dependability and make sure that non-motorist behavior is reliably 

observed and recorded, especially at high-risk or high-traffic crossings—visual feedback is essential. 

Figure 18. Object Detection Case VII. 
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These pictures give a clear picture of the algorithm's functionality and show how, under different 

circumstances, it reliably detects and tracks non-motorists, improving safety. 

 

(a) 

 

(b) 

Figure 19 (a) Snapshot of the output showing detection of a person while video is being processed by 
YOLOv8 model. (b). Snapshot of the output at the end of the video processing by YOLOv8 model.  
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6. Exposure Prediction Modelling  

6.1. Statistical Modelling  

Non-motorist traffic volumes are count data, making the Poisson family of models suitable for 

representing the relationship between total daily non-motorist traffic count at HRGCs per 24-hour period 

and the explanatory variables. The variance of recorded daily non-motorist traffic counts across all 

HRGCs was significantly larger than the respective means, necessitating the use of a Negative Binomial 

(NB) Model in place of a Poisson model (Greene, 2008; Mukherjee and Mitra, 2020; Farooq, 2023). The 

probability mass function of the NB model is typically defined as follows: 

 

          𝑃𝑃(𝑌𝑌 = 𝑦𝑦) = Γ(𝑦𝑦+𝑟𝑟)
Γ(𝑦𝑦+1)Γ(𝑟𝑟)
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                                                        Eq (i) 

Where, 𝑌𝑌 is the count of non-motorists, 𝜇𝜇 is the mean count, 𝜃𝜃 is the dispersion parameter, and 𝑟𝑟 = 𝜇𝜇2

𝜃𝜃
 is a 

parameter related to the variance. In addition, the mean of the distribution is given by 𝜇𝜇, and the variance 

is given by 𝜇𝜇 + 𝜇𝜇2

𝜃𝜃
, which accounts for over-dispersion. In practice, the model is often expressed in a log-

linear form (Greene, 2008), where the log of the expected count is modeled as a linear function of 

predictors: 

 

log (𝜇𝜇𝑖𝑖) = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋𝑖𝑖1 + 𝛽𝛽2𝑋𝑋𝑖𝑖2 + ⋯+ 𝛽𝛽𝑘𝑘𝑋𝑋𝑖𝑖𝑖𝑖                                               Eq (ii) 

Where 𝜇𝜇𝑖𝑖 is the expected count for the 𝑖𝑖-th observation, 𝑋𝑋𝑖𝑖1,𝑋𝑋𝑖𝑖2, … ,𝑋𝑋𝑖𝑖𝑖𝑖 are the predictor variables, and 𝛽𝛽0, 

𝛽𝛽1, 𝛽𝛽𝑘𝑘  are the respective coefficients.  The NB model's flexibility in handling varying dispersion levels 

makes it suitable for diverse applications by modeling the mean count as a function of predictors while 

allowing its variance to differ. This approach enhances predictive accuracy by capturing the underlying 

data distribution. Random parameter models, which extend traditional NB models, account for unobserved 

heterogeneity by allowing certain parameters to vary across observations. However, difficulties in obtaining 

significant random parameters during model estimation in this study suggested that the variability might be 

insufficient to justify their inclusion, indicating that the fixed parameter NB model may adequately capture 

the variability in non-motorist volume. Average Marginal Effects (AMEs) are valuable in count models as 

they provide an intuitive measure of how predictor variables affect the expected count of the response 

variable. Unlike raw coefficients, AMEs show the average change in the predicted count for a one-unit 

change in each predictor, making them easier to interpret. This is crucial for applications like traffic safety 
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and urban planning, where understanding the impact of factors such as traffic volume and visibility can 

enhance decision-making (Farooq and Khattak, 2023). The 'margins' package in R calculates AMEs for 

various regression models, including Negative Binomial models, by applying the 'margins' function to a 

fitted model from 'glm.nb'. (Leeper, 2017; Walker et al. 2024; Zhao et al. 2024). The output includes estimates, 

standard errors, z-values, and p-values, for each predictor, facilitating interpretation. 

In addition to the Negative Binomial (NB) model, we considered the use of Random Effects Negative 

Binomial (RENB) models to address the panel nature of our data. Panel data, characterized by multiple 

observations over time for the same entities, often contain repeated measures where certain attributes 

remain constant. In our dataset, many location-based attributes, such as the presence of sidewalks, 

proximity to parks, educational institutions, transit stops, parking facilities, residential areas, and industrial 

areas within 0.5 miles of crossings, were unchanged across observations for the same crossing locations. 

Given these repeated measures, a random effects model is particularly useful as it accounts for the within-

group correlation by allowing for random variations across the entities (in this case, the crossing locations). 

This approach assumes that unobserved heterogeneity is uncorrelated with the observed variables and 

captures the influence of these stable, location-based characteristics on non-motorist volumes. By 

incorporating random effects, we can more accurately model the variability across different crossings and 

account for the unobserved factors that might influence non-motorist counts. Whether using a Poisson 

model or a negative binomial (NB) model, both assume that non-motorist counts at rail crossings for any 

given year are independent. However, due to the presence of location-specific effects and possible serial 

correlation in the data, it is more appropriate to handle it as a time-series cross-sectional panel with M 

locations over T periods. Failing to account for this structure may lead to underestimation of the standard 

errors, as each observation provides less information than initially assumed. This, in turn, inflates the t-

statistics and leads to flawed statistical inferences. 

If spatial effects exist in the data, the RENB model can be adopted by introducing a random location-

specific effects term into the relationship between the expected numbers of accidents (𝜇̃𝜇𝑖𝑖𝑖𝑖) and the 

covariates, 𝑿𝑿𝑖𝑖𝑖𝑖, of an observation unit 𝑖𝑖 in a given time period 𝑡𝑡, i.e. 

𝜇̃𝜇𝑖𝑖𝑖𝑖 = 𝜇𝜇𝑖𝑖𝑖𝑖𝛿𝛿𝑖𝑖                                                                                   Eq (iii) 

where 𝛿𝛿𝑖𝑖 is a random location-specific effect. To ensure a positive value, the term 𝜇̃𝜇𝑖𝑖𝑖𝑖 can be rewritten as 

𝜇̃𝜇𝑖𝑖𝑖𝑖 = 𝜇𝜇𝑖𝑖𝑖𝑖𝛿𝛿𝑖𝑖 = exp (𝑿𝑿𝑖𝑖𝑖𝑖𝜷𝜷 + 𝜇𝜇𝑖𝑖)                                                                   Eq (iv) 
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where 𝜷𝜷 is the coefficient vector to be estimated, 𝜇𝜇𝑖𝑖 the random effects across location and exp (𝜇𝜇𝑖𝑖) is 

gamma distributed with mean 1 and variance 𝑘𝑘, where 𝑘𝑘 is also the overdispersion parameter in the NB 

model. The number of accidents at an intersection 𝑖𝑖 for a given year 𝑡𝑡, i.e. 𝑛𝑛𝑖𝑖𝑖𝑖 is independently and 

identically NB distributed with parameters 𝛿𝛿𝑖𝑖𝜇𝜇𝑖𝑖𝑖𝑖 and 𝜙𝜙𝑖𝑖, where 𝜇𝜇𝑖𝑖𝑖𝑖 = exp (𝑿𝑿𝑖𝑖𝑖𝑖𝜷𝜷). Hence 𝑛𝑛𝑖𝑖𝑖𝑖 has mean 

𝛿𝛿𝑖𝑖𝜇𝜇𝑖𝑖𝑖𝑖/𝜙𝜙𝑖𝑖 and the variance (𝛿𝛿𝑖𝑖𝜇𝜇𝑖𝑖𝑖𝑖/𝜙𝜙𝑖𝑖)/𝑧𝑧, where 𝑧𝑧 = 1/(1 + 𝛿𝛿𝑖𝑖/𝜙𝜙𝑖𝑖). Additionally, in order to account for 

the variation of location over time, 𝑧𝑧 is assumed to be a beta-distributed random variable with 

distributional parameters (𝑎𝑎, 𝑏𝑏). Using the results from the derivation of Hausman et al. (1984), the 

probability density function of the RENB model for the 𝑖𝑖 th intersection will be 

𝑃𝑃(𝑛𝑛𝑖𝑖1, … ,𝑛𝑛𝑖𝑖𝑖𝑖 ∣ 𝑿𝑿𝑖𝑖1, … ,𝑿𝑿𝑖𝑖𝑖𝑖)    = √𝑎𝑎+𝑏𝑏�𝑎𝑎+∑  𝑇𝑇  𝜇𝜇𝑖𝑖𝑖𝑖�𝑏𝑏+∑  𝑇𝑇  𝑛𝑛𝑖𝑖𝑖𝑖
√𝑎𝑎√𝑏𝑏�𝑎𝑎+𝑏𝑏+∑  𝑇𝑇  𝜇𝜇𝑖𝑖𝑖𝑖+∑  𝑇𝑇  𝑛𝑛𝑖𝑖𝑖𝑖

∏  𝑇𝑇  
�𝜇𝜇𝑖𝑖𝑖𝑖+𝑛𝑛𝑖𝑖𝑖𝑖

�𝜇𝜇𝑖𝑖𝑖𝑖�𝑛𝑛𝑖𝑖𝑖𝑖+1
                                Eq (v) 

Table 9. Summary statistics of candidate variables for NB and RENB modelling.   

Variable 
Symbol Variable Description (Coding) 

Mean S.D. Min. Max. 

Csng_Lgtng   
Crossing lightning (1 if crossing is illuminated at 
night, 0 otherwise) 

0.8831 0.3233 0 1 

Weekday_S 
Weekday indicator (1 if the recorded day was a 
weekday, 0 otherwise) 

0.7012 0.4606 0 1 

Avg_Temp Average daily temperature (°F) 67.019 11.6465 24.63 77.94 

Precptn Average daily precipitation (inches) 0.1237 0.3749 0 1.5 

Visbility Average visibility (miles)  9.8312 8.3354 4 10 

Max_W_Spd Maximum daily wind speed (mph) 18.467 6.8394 7 33 

Clear_Cndtn1 
clear conditions indicator (1 if the weather is clear, 0 
otherwise) 

0.6363 0.4842 0 1 

Rain_II Rain indicator (1 if rain is recorded, 0 otherwise) 0.1428 0.3522 0 1 

Cloudy_I 
cloudy indicator (1 if cloudy weather is recorded, 0 
otherwise) 

0.1168 0.3233 0 1 

Snow_III 
Snow indicator (if snowy weather is recorded, 0 
otherwise) 

0.0129 0.11322 0 1 

Rd_Dry 
Dry road condition indicator (1 if road surface is dry, 
0 otherwise) 

0.7272 0.4453 0 1 

Rd_Wet 
Dry road condition indicator (1 if road surface is dry, 
0 otherwise) 

0.2337 0.42323 0 1 

Rd_Wet_II 

Wet road with dry conditions before/after indicator (1 
if the road surface is wet although it is dry during the 
24 hours period, 0 otherwise) 

0.7273 0.4454 0 1 

TtlPed_Cnt_24 Total pedestrian count in 24-hr period  19.3377 25.4674 0 135 

TtlByc_Cnt_24 Total bicyclist count in 24-hr period 15.5455 22.4173 0 144 

Total_NM Total non-motorist count in 24-hr period 34.8831 41.5983 0 242 

Ttl_Train_Trf Total train traffic  4.98701 8.69317 0 43 

Day_Trn Total daily trains 3.48640 5.46157 0 26 

Ngt_Trn Total night-time trains 1.58667 3.9702 0 21 

Pop_Dnsty 
Population density (within 1-mile radius of the 
HRGCs location) 

525.052 282.32 112 1174 
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Pop_L_150 
Population density is less than 150 indicator (1 if yes, 
0 otherwise) 

0.12988 0.33617 0 1 

Som_Actv 

Some activity around HRGCs indicator (1 if there is 
some activity observed withing 0.5-mile of HRGCs 
such as a concert, event, celebration) 

0.38961 0.48766 0 1 

Sidewalk 
Sidewalk indicator (1 if there is a sidewalk at HRGCs, 
0 otherwise) 

0.58442 0.4928 0 1 

Ped_XingSgnl 
Pedestrian signal indicator (1 if there is a pedestrian 
signal, 0 otherwise) 

0.57143 0.49487 0 1 

Well_Mntn_Crs
Pth 

Well-maintained crossing path indicator (1 if there is 
wwell-maintained crossing infrastructure at crossings, 
0 otherwise) 

0.58442 0.49282 0 1 

Clearly Marked 
Crossings 

Clearly marked crossings indicator (1 if yes, 0 
otherwise) 

0.58442 0.49282 0 1 

Trnst_Stop 
Transit stop within 0.5-mile of HRGCs indicator (1 if 
yes, 0 otherwise) 

0.51948 0.49962 0 1 

School 
School within 0.5-mile of HRGCs indicator (1 if yes, 
0 otherwise) 

0.36364 0.48105 0 1 

College 
College within 0.5-mile of HRGCs indicator (1 if yes, 
0 otherwise) 

0.05195 0.22192 0 1 

University 
University within 0.5-mile of HRGCs indicator (1 if 
yes, 0 otherwise) 

0.02597 0.15906 0 1 

SO_GvnmtOfc 
Other government office within 0.5-mile of HRGCs 
indicator (1 if yes, 0 otherwise) 

0.6363 0.48105 0 1 

Bsns_Cntr 
Business center within 0.5-mile of HRGCs indicator 
(1 if yes, 0 otherwise) 

0.24765 0.43112 0 1 

Tourst_Atcn 
Tourist attraction within 0.5-mile of HRGCs indicator 
(1 if yes, 0 otherwise) 

0.12987 0.33616 0 1 

Prkg_Spc 
Public/commercial parking spaces within 0.5-mile of 
HRGC indicator (1 if yes, 0 otherwise) 

0.33766 0.47291 0 1 

Resd_Area 
Residential area within 0.5-mile of HRGCs indicator 
(1 if yes, 0 otherwise) 

0.94804 0.22192 0 1 

Bycl_Trail 
Bike trail within 0.5-mile of HRGCs indicator (1 if 
yes, 0 otherwise) 

0.32468 0.46821 0 1 

Parks 
Parks within 0.5-mile of HRGCs indicator (1 if yes, 0 
otherwise) 

0.48052 0.49962 0 1 

IndustrialA 
Non-residential/industrial area within 0.5 mile of 
HRGCs indicator (1 if yes, 0 otherwise) 

0.0389 0.1935 0 1 

Urban_SubU   
Urban crossing indicator (1 if the crossing is in urban 
area, 0 if the crossing is in sub-urban area) 

0.87013 0.33616 0 1 

AT5K 
AADT between 1 and 5,000 indicator (1 if yes, 0 
otherwise) 

0.2987 0.45769 0 1 

A5KT10K 
AADT between 5,000 and 10,000 indicator (1 if yes, 0 
otherwise) 

0.038 0.1935 0 1 

A10KT26K 
AADT between 10,000 and 26,000 indicators (1 if 
yes, 0 otherwise) 

0.3766 0.48485 0 1 

Mx_T_Spd Maximum timetable speed    25.793 22.2269 10 79 

Crbk_Asb1 
one crossbuck assembly indicator (if crossing has one 
Crossbuck assembly, 0 if otherwise) 

0.0389 0.1935 0 1 

Crbk_Asb2 
two crossbuck assembly indicator (if crossing has two 
Crossbuck assembly, 0 if otherwise) 

0.3897 0.48766 0 1 

Traffic_Lanes Number of traffic lanes 2.7922 1.1435 2 5 

HighwayPaved Highway paved indicator (1 if yes, 0 otherwise) 0.9611 0.1935 0 1 

Nbr_Main_Trk Total number of main tracks  0.83117 0.67232 0 2 

GateArms_Prs 
gate arms indicator (1 if there are gate arms on 
crossing, 0 otherwise) 

0.87013 0.33616 0 1 
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Table 9 presents descriptive statistics on key candidate variables for NB modelling. Table 10 

presents the results of three negative binomial models on daily pedestrian traffic volume, bicyclist traffic 

volume, and combined pedestrian and bicyclist traffic volume (total non-motorist traffic volume). The 

rationale behind estimating separate models for pedestrians and bicyclists was to understand if the factors 

affecting daily pedestrian volume differ from those influencing bicyclist traffic at HRGCs. For NB 

modeling, variables significant at the 90% confidence level were considered. Model performance metrics, 

such as Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Root Mean Square 

Error (RMSE), null and residual deviances, and the degree of overdispersion (𝜃𝜃), are also presented. The 

combined non-motorist model indicates that daily non-motorist traffic volume increases with greater 

visibility, the presence of sidewalks at HRGCs, and during cloudy conditions.  

Table 10. Estimated NB and RENB for Predicting Total Non-Motorist Volume (24-Hr) at HRGCs 

 
Variables Symbol  

Total Non-Motorist Volume (24-
Hr) Negative Binomial Model  

Total Non-Motorist Volume (24-Hr) 
Random Effects Negative Binomial 
Model 

Estimate Z value P value  Estimate Z value P value  
Intercept -4.03501     —     — -1.7543  —     — 
Road_Wet_II -0.56371    -2.652 0.007999 -0.1735      -2.066 0.03885 
Sidewalk 0.82362    2.880 0.003979 0.9037      2.332    0.0197 
IndustrialA    -1.8025      -3.353 0.000799 -1.9033      -2.392    0.0168 
Traffic_Lanes_5   -1.2576      -4.095 0.000001 -1.3884      -1.982    0.0475 
Cloudy_I 0.8065 2.880 0.003971 0.2315      2.009   0.04454 
Visbility 0.7543      3.394 0.000689 0.4976      2.327    0.0200 
A5KT10K -1.8461      -3.708  0.000209 -1.6330      -2.572    0.0101 
A10KT26K -0.1346      — — -0.2130  — — 
Model Performance Metrics     
Null Deviance  177.322   176.524   
Residual Deviance  86.967   84.214   
Degrees of Freedom 76   77   

Theta 1.888   1.9124   
2* log-likelihood  -640.455   -632.624   
AIC 660.45   654.60   
BIC 683.8926   680.41   
RMSE 36.14914   35.874   
Area Under the curve (AUC) 0.9221   0.9337   
Percentage of Correct Prediction 94.805%   92.22%   

Note: See Table 5 for the variable’s coding details.  

Conversely, higher average annual daily traffic and wet road conditions are associated with 

reduced non-motorist traffic volume. A relationship was observed between maximum train timetable 

speed and non-motorist volume. Average marginal effects (AMEs) for these results are provided in Table 

11.  
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In evaluating the two models (Table 10), it is evident that both models perform well in identifying 

significant predictors. However, the RENB model provides a precise representation of the data, making it 

a better choice for the final statistical model in this analysis. The estimates from both models highlight 

similar trends regarding the impact of various factors on non-motorist volume. For instance, road wetness 

(Road_Wet_II) negatively affects non-motorist volumes in both models, though the impact is slightly 

weaker in the RENB model, where the estimate is -0.1735 compared to -0.56371 in the NB model. This 

difference suggests that while wet roads reduce non-motorist traffic on HRGCs, accounting for location-

specific variability (through random effects) diminishes the strength of this association, reflecting more 

realistic outcomes.  

Sidewalk availability plays a crucial role in increasing non-motorist volumes at HRGCs, with 

both models showing a significant positive effect. The RENB model's estimate of 0.9037 slightly exceeds 

the NB model's estimate of 0.82362, indicating that the positive influence of sidewalks is better captured 

when random effects are considered. This suggests that, across different crossings, the presence of 

sidewalks consistently promotes higher non-motorist activity, and the RENB model better captures this 

generalized trend by controlling for unobserved heterogeneity. Other variables, such as industrial areas 

(IndustrialA) and traffic lanes (Traffic_Lanes_5), show negative impacts on HRGCs’ non-motorist 

volumes, with both models providing closed estimates. However, the RENB model adjusts these effects 

slightly, which aligns with the understanding that certain site-specific characteristics (e.g., industrial 

activities and road configurations) may vary across locations, affecting non-motorist behavior differently. 

The inclusion of random effects allows for these variations to be better accounted for, resulting in more 

precise estimates of their impact.  

The variable Cloudy_I, representing cloudy weather conditions, also shows a positive relationship 

with non-motorist volumes. While the effect is stronger in the NB model (estimate = 0.8065), it is 

reduced to 0.2315 in the RENB model, suggesting that the initial NB model may have overestimated the 

influence of cloudy weather. The random effects adjustment in the RENB model provides a more 

moderated and likely more precise estimate, reflecting the fact that weather conditions may influence 

crossings differently depending on other local factors. From a statistical standpoint, the overall 

performance of the RENB model surpasses that of the NB model. Despite having a slightly lower 

percentage of correct predictions (92.22% for RENB vs. 94.805% for NB), the RENB model compensates 

for this with improvements in other areas. For instance, the RENB model demonstrates a lower residual 

deviance (84.214 vs. 86.967 for the NB model) and improved log-likelihood (-632.624 vs. -640.455), 

which indicates a better fit to the data. Additionally, the lower AIC (654.60 for RENB vs. 660.45 for NB) 
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and BIC (680.41 for RENB vs. 683.8926 for NB) further confirm that the RENB model is more efficient, 

balancing model complexity and goodness-of-fit better than the NB model.  

 

  

Importantly, the slightly lower RMSE in the RENB model (35.874 vs. 36.14914 for the NB 

model) reflects its superior predictive accuracy. The consideration of random effects in the RENB model 

is key to its stronger performance.  The diagnostic plots in Figure 20 provide critical insights into the 

Figure 20. Diagnostic Plots for Final Selected Random Effects Negative Binomial Model 
(RENB). 
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performance of the RENB model for HRGCs’ non-motorist volume prediction. The ROC curve, which 

measures the model's ability to distinguish between different outcomes, shows an area under the curve 

(AUC) close to 1(ROC curve close to top-left corner), indicating a high level of predictive accuracy for 

the RENB model. This supports the conclusion that the RENB model effectively captures the relationship 

between predictors and non-motorist volume at HRGCs. Furthermore, the normal QQ plot assesses the 

normality of the residuals, with points falling along the diagonal line suggesting that the residuals are 

approximately normally distributed (Figure 20). The RENB model shows a reasonable adherence to 

normality, which indicates that the assumption of normally distributed random effects is not violated. 

This further strengthens the model's reliability for prediction. The histogram of residuals provides a visual 

check of residual distribution and looks into any deviation from normality; a bell-shaped histogram for 

RENB model suggests that the residuals are normally distributed. Furthermore, the residuals are centered 

around zero and show a symmetric spread, indicating that the model is well-calibrated, with no significant 

over- or underestimation across the range of predicted values. The residuals vs. fitted values plot reveals 

how well the RENB model fits the data. The absence of any clear pattern or trend in this plot suggests that 

the residuals are randomly distributed, implying that the model adequately explains the variability in non-

motorist volume. This indicates that no significant systematic biases remain in the fitted values, 

highlighting the robustness of the RENB model. 

Table 11. Estimated average marginal effects (AMEs) for NB and RENB model 

 
Variables 
Symbol  

Total Non-Motorist Volume (24-Hr) 
Negative Binomial Model 

Total Non-Motorist Volume (24-Hr) 
Random Effects Negative Binomial 
Model 

Estimate Z value P value  Estimate Z value P value  
Road_Wet_II -20.1572   -2.426 0.0153 -5.7953 -2.8148 0.0078 
Sidewalk 29.4524   2.5871 0.0097 30.1655 1.9789 0.0479 
IndustrialA    -64.4544   -3.0923 0.0020 -63.779 -2.0784 0.0377 
Traffic_Lanes_5   -44.9713   -3.547 0.0004 -46.602 -1.9214 0.0454 
Cloudy_I 28.8394  2.5341 0.0113 7.7628 1.9945 0.0401 
Visbility 26.9716   3.1534 0.0016 16.6618 2.0653 0.0389 
A5KT10K -66.0145 -3.2421 0.0012 -54.7043  -2.1248 0.0336 
A10KT26K -4.8155    —   — -7.0101     —   — 

Note: See Table 9 for the variable’s coding details.  

The Average Marginal Effects (AMEs) in Table 11 provide valuable insights into the influence of 

various factors on the total non-motorist volume at HRGCs. Both the Negative Binomial (NB) and 

Random Effects Negative Binomial (RENB) models indicate similar trends, but the RENB model offers a 

more detailed view by accounting for location-specific variability. Wet road conditions (Road_Wet_II) 

significantly reduce non-motorist volumes in both models, with a decrease of 20 in the NB model and 

about 6 in the RENB model. The smaller effect in the RENB model suggests that accounting for random 
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effects produces a more moderated, realistic estimate. Sidewalks have a strong positive impact on non-

motorist traffic, with AMEs of 29 in the NB model and 30 in the RENB model, highlighting the 

importance of sidewalks in promoting non-motorist activity at HRGCs. Industrial areas are associated 

with a significant decrease in non-motorist volume, with both models showing a reduction of around 64 

non-motorists, implying that these areas are less favorable for pedestrian and cyclist traffic. Traffic lanes 

(Traffic_Lanes_5) also reduce non-motorist activity, with AMEs of around 45 in both models, indicating 

that wider roads act as barriers. Cloudy weather increases non-motorist counts, with a larger effect in the 

NB model (29) than the RENB model (8), suggesting that the NB model may overestimate this impact. 

Higher visibility consistently leads to more non-motorist traffic, with AMEs of 27 in the NB model and 

17 in the RENB model, reflecting that better visibility encourages non-motorist activity. Lastly, higher 

motorized traffic (A5KT10K) significantly reduces non-motorist volumes, with a reduction of 66 in the 

NB model and 55 in the RENB model. This consistent negative effect shows that higher traffic volumes 

create less favorable conditions for non-motorists at HRGCs. 

6.2. Non-Motorist AI Modelling  

Overview of Stochastic Gradient Descent (SGD) Model 

To determine the most important aspects, AI modeling was used in this research to forecast the 
non-motorist count based on a variety of features. Numerous models were put to the test, such as neural 
networks, random forests, and elastic nets. SGD regression eventually produced the most dependable and 
understandable findings, despite the fact that each of these models—Elastic Net balancing regularization, 
Random Forest handling non-linear relationships, and Neural Networks collecting complicated patterns—
has advantages of its own. The SGD model was the best option for our dataset because of its great 
predictive performance, simplicity, and efficiency. 

The Stochastic Gradient Descent algorithm is used by the Stochastic Gradient Descent regression 
model, a linear regression model, to minimize the cost function, which is often the mean squared error for 
regression jobs. The primary principle underlying SGD is to iteratively alter the model parameters by 
taking small steps proportionate to the negative gradient of the cost function with respect to the 
parameters, which are then evaluated on a randomly selected subset (or just one) of the training data. 

The linear regression model in SGD takes the following mathematical form: 

𝑦𝑦� =  𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏                                                                         Eq (vii) 

Where: 

𝑦𝑦� is the predicted value. 

• 𝑤𝑤 is the vector of model weights. 

• 𝑥𝑥 is the input feature vector. 
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• 𝑏𝑏 is the bias term (intercept). 

• The goal of SGD is to minimize the cost function, which in the case of linear regression 
is usually the Mean Squared Error (MSE): 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
∑ (𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)𝑛𝑛
𝑖𝑖=1

2                                                           Eq (viii) 
 
Where: 

• 𝑛𝑛 is the number of training examples. 
• 𝑦𝑦�𝑖𝑖 is the predicted value for the 𝑖𝑖𝑡𝑡ℎ training example. 
• 𝑦𝑦𝑖𝑖 is the true value for the 𝑖𝑖𝑡𝑡ℎ training example. 

 

Gradient Descent Update Rule 

The SGD algorithm updates the model parameters 𝑤𝑤 and 𝑏𝑏 using the following rules: 

 𝑤𝑤 ≔ 𝑤𝑤 − 𝜂𝜂 ∙ ∇𝑤𝑤𝐽𝐽(𝑤𝑤, 𝑏𝑏)    Eq (ix) 

𝑏𝑏 ≔ 𝑏𝑏 − 𝜂𝜂∇𝑏𝑏𝐽𝐽(𝑤𝑤, 𝑏𝑏)    Eq (x) 

where: 

• 𝜂𝜂 is the learning rate, a hyperparameter that controls the size of the steps taken during the update. 
• 𝐽𝐽(𝑤𝑤, 𝑏𝑏) is the cost function (MSE in this case). 
• ∇𝑤𝑤𝐽𝐽(𝑤𝑤, 𝑏𝑏) is the gradient of the cost function with respect to w\mathbf{w}w. 
• ∇𝑏𝑏𝐽𝐽(𝑤𝑤, 𝑏𝑏) is the gradient of the cost function with respect to bbb. 

For a single training example (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) the gradients are computed as follows:  

      ∇𝑤𝑤𝐽𝐽(𝑤𝑤, 𝑏𝑏) =  −2(𝑥𝑥𝑖𝑖)(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)     Eq (xi) 

∇𝑏𝑏𝐽𝐽(𝑤𝑤, 𝑏𝑏) = −2(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)   Eq (xii) 
 

Feature Selection 

The initial selected characteristics for the model are Pop_Dnsty, Pop_L_150, Csng_Lgtng, 
Weekday_S, Avg_Temp, Precptn, Visbility, Max_W_Spd, Clear_Cndtn1, Rain_II, Snow_III, Cloudy_I, 
Rd_Dry_I, Rd_Wet, Rd_Wet_II, Well_Mntn_CrsPth, Bycl_Trail, Sidewlks, A5KT10K, Total_NM, 
MT20K, and Mx_T_Spd. Figure 21 shows the correlation matrix and matching heat map between these 
traits and the dependent variable, Total Nonmotorist. 

These features—Rd_Wet_II, Rd_Wet, Well_Mntn_CrsPth, Pop_L_150, Rd_Dry_I, A5KT10K, 
and Total_NM—were chosen based on this matrix to be eliminated because their correlation with the 
dependent variable, Total Nonmotorist, was weak or negative, indicating that they had little effect on the 
predictive capacity of the model. The final features used in the SGD model are: Population Density 
(Pop_Dnsty), Crossing Lighting (Csng_Lgtng), Weekday Indicator (Weekday_S), Average Temperature 
(Avg_Temp), Precipitation (Precptn), Visibility (Visbility), Maximum Wind Speed (Max_W_Spd), Clear 
Conditions (Clear_Cndtn1), Rain Indicator (Rain_II), Snow Indicator (Snow_III), Cloudy Weather 
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Indicator (Cloudy_I), Presence of Bicycle Trail (Bycl_Trail), Sidewalk Indicator (Sidewlks), Maximum 
Timetable Speed of Trains (MT20K), and Maximum Train Speed (Mx_T_Spd). 

 

 

Figure 21. Correlation matrix of features. 

Key Model Parameters and Representation 

Parameters required to represent the model.  

1. Coefficients for the input characteristics are represented by 𝑤𝑤 (Weights Vector). 
Weights (coefficients): [ 2.117927   2.0422475 -2.4856343  1.6880354 -1.2662231  4.788772 
  4.230943   4.7556744 -5.0440063  2.6243181  4.422939  -3.6651185 
  7.3166375 27.027609  15.793775 ] 

2.  Bias Term, 𝑏𝑏: The model's intercept. 
Bias (intercept): [37.18875431] 

3. The learning rate, or 𝜂𝜂t, regulates the step size for each weight update. 
𝜂𝜂𝑡𝑡 = 𝜂𝜂0

(1+𝑡𝑡)𝑝𝑝𝑝𝑝    Eq (xiii) 

Where: 
• 𝜂𝜂0 is the initial learning rate and is set to 0.01. 
• 𝑡𝑡 is the iteration number. 
• 𝑝𝑝𝑝𝑝 is set to 0.25, which controls how quickly the learning rate decreases. 
 

4. Function of Cost, 𝐽𝐽(𝑤𝑤, 𝑏𝑏): 
For regression tasks, this is frequently the mean squared error (MSE). We use MSE. 
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5. Number of Iterations (Epochs): The total number of times the training dataset is run through the 
algorithm. We use 1000 epochs. 
 

6. Mini-batch Size: The quantity of training examples utilized in a single SGD update iteration 
(optional, since SGD typically uses one sample each update). In our model we used mini-batch 
size=1, (Stochastic gradient descent). 

Model Performance Metrics 

Accuracy: 

To assess the accuracy of our model, we set a 9-unit threshold. This cutoff was established using 
our dataset's nonmotorist count standard deviation, which came out to be 41.6. We rounded the threshold 
value to nine units, which is equal to one-fifth of the standard deviation. We were able to establish a 
useful and empirically based criterion for evaluating the model's performance thanks to this method. 

Procedure for Computing SGD Regressor's AIC and BIC: 
Do the Residual Sum of Squares (RSS) calculation: The total of the squared discrepancies between the 
observed and predicted values is used to achieve this. 
 
Count the number of parameters. This is the number of weights (coefficients) plus the intercept for an 
SGDRegressor. 
 
Utilizing the following formulas, calculate AIC and BIC: 

 AIC = 𝑛𝑛 ∙ ln �𝑅𝑅𝑅𝑅𝑅𝑅
𝑛𝑛
� + 2𝑘𝑘                                          Eq (xiv) 

BIC = 𝑛𝑛 ∙ ln �𝑅𝑅𝑅𝑅𝑅𝑅
𝑛𝑛
� + 𝑘𝑘 ∙ ln (𝑛𝑛)                                            Eq (xv) 

where: 

• 𝑛𝑛 is the number of data points (samples). 
• 𝑘𝑘 is the number of parameters (coefficients + intercept). 
• 𝑅𝑅𝑅𝑅𝑅𝑅 is the residual sum of squares. 

The trained SGD model's accuracy was assessed using several performance indicators. The 
average squared difference between the expected and actual values is 28.3687, which is the Mean 
Squared Error (MSE) for the test set. With a R-squared (R²) value of 0.8438, the model appears to be a 
strong fit, explaining 84.38% of the variation in the dependent variable (Total Nonmotorist). Furthermore, 
the model's custom accuracy, which measures the percentage of predictions that fall within ten units of 
the actual values, was 91.67% within a 10-unit threshold. AIC and BIC, which penalize model complexity 
and aid in model selection by balancing fit and simplicity, were used to further evaluate the model's 
goodness-of-fit. The model's respective AIC and BIC values were 72.14 and 79.90. The model works 
well, capturing a considerable portion of the variability in the data while keeping an error rate that is 
comparatively low, according to these measures taken together. 

Interpretation of Feature Coefficients 



 
 

89 
 

 

Figure 22. Coefficient value of the features used in SGD Regressor model. 

 

Figure 23. Partial Dependence Plots (PDP) for Each Selected Feature in the SGD Model. 

 

Figure 22 shows the coefficient value of the features used in SGD Regressor model. The Partial 
Dependence Plots (PDP) for every feature chosen in the Stochastic Gradient Descent (SGD) regression 
model are displayed in Figure 23. Keeping other parameters constant, each subplot shows the relationship 
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between a particular feature and the expected outcome (Total Nonmotorist). Plots aid in the visualization 
of the effects of individual feature modifications on the model's predictions, offering insights into the 
behavior of the model and the influence of features. 

The model's chosen characteristics offer insightful information about the variables influencing 
non-motorist counts. Greater population density (Pop_Dnsty) implies more traffic from pedestrians and 
cyclists, which increases non-motorist activity. Comparably, non-motorist counts are positively impacted 
by Crossing Lighting (Csng_Lgtng). Well-lit crossings make walking and bicycling safer, especially at 
night, which encourages more people to use non-motorized transportation. 

In contrast, Weekday Indicator (Weekday_S) has a negative effect, meaning non-motorist counts 
are lower during weekdays compared to weekends. This could be because on weekdays, people are more 
likely to commute by motorized transportation for work or school, while weekends may see more 
recreational pedestrian and cyclist activity. Average Temperature (Avg_Temp) shows a positive 
correlation with non-motorist counts, as warmer temperatures generally encourage outdoor activities like 
walking or cycling. 

Although it seems contradictory, there could be a positive association between the maximum 
wind speed and the number of nonmotorists due to particular behavioral, infrastructural, and geographical 
factors. This unexpectedly finding can be explained by a number of factors, including urban wind tunnels, 
weather coincidences, the presence of bike aficionados, and protective infrastructure in high-traffic 
regions. 

The Clear Conditions Indicator (Clear_Cndtn1), which measures clear weather, has a favorable 
impact on non-motorist activity since it creates the perfect environment for cycling and strolling outside. 
Since cloudy weather frequently brings cooler temperatures and nice weather for outdoor activities 
without the hassle of rain or snow, it has a favorable impact on the number of non-motorists and does not 
considerably decrease their numbers.Non-motorist counts are negatively impacted by snow (Snow_III). 
Walking and cycling become hazardous in snowy circumstances, which decreases non-motorist activity. 
On the other hand, having sidewalks encourage more people to walk and increase the number of non-
motorists by providing safe, designated areas for them. 

The model demonstrates that, in contrast to predictions, the existence of bicycle trails is linked to 
a drop in the total population of nonmotorists, which includes both pedestrians and cyclists. This negative 
coefficient might be the result of bike lanes that are specifically designed to discourage foot traffic. If 
pedestrians perceive that bike trails are solely for bicycles, they may choose to use other routes or forms 
of transportation instead. Furthermore, places with bike routes might have better public transportation, 
which would encourage non-motorists to convert to more effective modes of transportation and lessen the 
need for walking or riding. Bicyccle pathways may occasionally be constructed for recreational purposes, 
drawing riders who don't substantially increase daily nonmotorist counts, which would account for part of 
the negative correlation. 

Lastly, the Maximum Timetable Speed of Trains (MT20K) exhibits a positive correlation with the 
number of non-motorists. This is probably due to the fact that regions with greater train speeds frequently 
have better developed infrastructure, which increases the volume of pedestrian traffic near stations and 
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crossings. Higher train speeds may be used in these well-infrastructured, high-activity locations to reduce 
disruptions and make sure that frequent train crossings don't impede non-motorist activities. 

Comparison and Final Selection of Nonmotorist Exposure Model  

In selecting the most suitable model for predicting non-motorist traffic at HRGCS, both AI and 
statistical models were evaluated in this study. While AI models, such as the Stochastic Gradient Descent 
(SGD) regression, offers powerful predictive capabilities, their application in this study revealed some 
limitations. The SGD model, for instance, delivered impressive performance, with an R-square value of 
0.8438 and a custom accuracy of 91.67%. However, its complexity and the relatively small dataset size 
suggested that a more interpretable model might yield better insights into the relationships between 
various factors affecting non-motorist volume. Moreover, AI models generally focus on optimizing 
predictive accuracy but can lack transparency in interpreting the underlying effects of individual 
variables, which is crucial for transportation research. On the other hand, statistical models such as the 
Negative Binomial (NB) model and the Random Effects Negative Binomial (RENB) model offer both 
strong predictive performance and greater interpretability. The NB model provided a slightly higher 
accuracy, with a 94.805% correct prediction rate and an Area Under the Curve (AUC) of 0.9221. Despite 
this, the RENB model proved to be a better fit for explaining the variability in non-motorist traffic at 
different HRGC locations. The RENB model accounted for unobserved heterogeneity through random 
effects, which adjusted for site-specific characteristics that might not have been captured in the simpler 
NB model. As a result, the RENB model achieved a residual deviance of 84.214 (lower than the NB 
model’s 86.967), a better log-likelihood (-632.624 compared to -640.455), and improved model efficiency 
metrics such as the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). While 
the NB model demonstrated higher overall accuracy, the RENB model provided a better overall 
understanding of the data. For instance, variables like road wetness (Road_Wet_II) and cloudy weather 
(Cloudy_I) exhibited weaker associations with non-motorist volume in the RENB model than in the NB 
model. This reflects the importance of adjusting for location-specific variability, as the RENB model 
captures more realistic effects by accounting for unobserved factors inherent to each HRGC. The positive 
effect of sidewalks (Sidewlks) on non-motorist volume was slightly stronger in the RENB model, 
indicating its ability to generalize across locations more effectively than the NB model. Moreover, factors 
such as industrial areas (IndustrialA) and traffic lanes (Traffic_Lanes_5) were better represented in the 
RENB model, where random effects captured how site-specific characteristics might affect non-motorist 
behavior differently across crossings. Ultimately, the RENB model was selected as the final model for 
this study. Despite the NB model’s higher predictive accuracy, the RENB model offered a more 
comprehensive and reliable framework for explaining the impact of various factors on non-motorist 
volume across different HRGCs. By capturing the variability inherent in location-based fixed variables 
through random effects, the RENB model presents a more precise representation of the underlying data 
patterns, making it the preferred choice for non-motorist traffic prediction at HRGCs. 

7. Conclusion and Recommendations 

The study underscores the critical need for comprehensive non-motorist data collection and 
analysis at HRGCs to improve safety measures and crash prediction models. Video-based data collection 
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and AI-based computer vision algorithms were utilized to capture and analyze non-motorist activity at 
HRGCs. The use of AI-based object detection algorithms, specifically the YOLOv8 model, demonstrated 
effective identification and measurement of pedestrian and bicyclist volumes. While the model performed 
well overall, some discrepancies were noted, particularly in distinguishing between pedestrians and 
cyclists under certain conditions. These errors highlight the need for further refinement and validation of 
the model to ensure accurate data collection.  

The study's predictive models using NB regression and AI models provide valuable insights for 
planning and safety of HRGC operations. The findings reveal that the presence of sidewalks and better 
visibility conditions are associated with higher volumes of both pedestrians and bicyclists. Conversely, 
higher traffic levels, and higher traffic lanes are linked to reduced non-motorist activity, suggesting that 
non-motorists are deterred by these factors due to perceived or actual safety risks. Similarly, the positive 
association between observed activities near rail crossings and non-motorist volume indicates that events 
or amenities can attract more bicyclists, likely due to increased interest or necessity to travel in those 
areas.  By understanding the factors that influence non-motorist volumes, policymakers and planners can 
develop targeted interventions to enhance safety at HRGCs. For example, improving infrastructure such 
as sidewalks, and considering the impact of traffic and weather conditions to reduce the risk of crashes 
involving non-motorists. It is important to acknowledge that this study utilized a sample size of 77 data 
points, each representing a 24-hour recording period (totaling 1,848 hours of recorded data). The limited 
data points were primarily due to the time-intensive nature of Miovision installation, data processing, 
algorithm execution, and manual verification of counts. Consequently, fixed parameter Negative 
Binomial (NB) models were estimated. While larger sample sizes generally enhance the reliability of 
random parameter estimates and increase the ability to detect variability, our study still provides valuable 
insights. Despite the modest sample size, the collected data represent diverse conditions and scenarios 
encountered at HRGCs. The use of the fixed parameter NB model is a strategic choice that ensures robust 
parameter estimation without the instability that random parameters might introduce in smaller datasets. 
This modeling approach effectively balances model complexity and data constraints.  

 In conclusion, this research offers a foundational framework for integrating non-motorist data 
into HRGC safety analyses and crash prediction models. By addressing the previously overlooked non-
motorist exposure, this study contributes to a detailed understanding of HRGC safety and highlights the 
need for continued efforts to protect vulnerable road users. Future research should focus on refining data 
collection methods and extending case studies, improving AI-based detection algorithms, and exploring 
additional factors that may influence non-motorist behavior and safety at HRGCs. 
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Appendix A  

U. S. DOT Crossing Inventory Form 71 
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Historical Weather Report by Weather Underground  
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