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1. SUMMARY

Track intrusion, especially trespassing, which encompasses unauthorized entry and lingering
within the railroad right-of-way, is a significant safety concern. It has been associated with a higher
number of fatalities compared to incidents involving collisions between vehicles and trains. This
stark statistic underscores the urgent need for advanced surveillance and detection systems at rail
crossings to ensure track integrity and enhance overall railway safety. This research aims to
develop a novel YOLO-RCNN that innovatively merges foreground segmentation and object
detection methodologies to form a comprehensive railroad crossing surveillance system, as shown

in Figure 1.
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Figure 1: YOLO-RCNN architecture

The design of the proposed YOLO-RCNN model is strategically tailored to perform multiple
functions simultaneously: foreground detection, segmentation, classification, and tracking of
objects. This multifaceted approach allows for a more precise and efficient monitoring system

adept at identifying and responding to any non-compliant objects or unauthorized activities within
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the railroad area. The integrated system not only detects but also classifies various types of objects,

making it possible to differentiate between harmless elements and potential hazards.

Our evaluation and testing phase highlights the effectiveness of the YOLO -RCNN model.
The findings from these experiments validate the robustness of the network, demonstrating its
superior capability to accurately identify and track unauthorized or non-compliant objects at
railroad crossings. This enhanced detection is critical as it significantly surpasses the performance
of traditional object detection models such as Mask-RCNN. Through a series of comparative
analyses, the YOLO -RCNN consistently outperformed existing models, proving its potential as a

pivotal technology in railway safety systems.

2. BACKGROUND

In recent years, the application of Computer Vision (CV) and Artificial Intelligence (Al) to
enhance railroad safety and track resilience has become increasingly prevalent [1]. CNN-based
models have significantly improved detection efficiency and accuracy, reducing human errors and
aiding auxiliary decision-making. For instance, Zaman et al. [2] utilized Mask R-CNN to detect
intrusion events on railroads. Additionally, Guo et al. [3] developed an automated video analysis,
detection, and tracking system to assess traffic conditions at rail crossings. Among these deep
learning approaches, object detection and foreground detection are critical for video surveillance,

playing an essential role in ensuring safety at railroad crossings.

Object detection involves identifying and locating instances of specific object classes within
images or video frames [4]. This technique, typically powered by neural networks, recognizes and
classifies objects such as cars, pedestrians, and animals while also determining their boundaries or
locations in the scene. Despite its widespread use and advancements across various fields, object
detection still faces two significant challenges in the context of railroad crossing monitoring. First,
conventional object detectors are limited to recognizing objects they have been explicitly trained
on. While open-world object detectors offer more flexibility [5], they still cannot guarantee the
detection of all track intrusions, which are often the cause of accidents. These intrusions could
involve a wide range of objects, from animals and dropped parcels to collapsed catenary lines and
more. Second, railroad crossing areas often contain static objects, such as traffic lights, barriers,
and other infrastructure. These static elements can sometimes be falsely detected as intruding

objects, leading to false-positive errors. Such errors increase the burden on post-processing
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systems, which must differentiate between genuine intrusions and false alarms, ultimately creating
stress and inefficiencies in monitoring systems. On the other hand, foreground detection, also
known as change detection or background subtraction, is a technique designed to differentiate
moving elements, referred to as the foreground, from the static scene, or background [6]. It
analyzes the differences between the current frame and background images to identify regions with
significant changes, which are then classified as foreground objects. This feature is particularly
useful for railroad crossing monitoring, as it can accurately detect both static and moving outliers
within the crossing area without mistakenly classifying background objects as intrusions. However,
while foreground detection is effective at highlighting outliers within a scene as the Region of
Interest (ROI), it falls short in two key areas necessary for a comprehensive railroad crossing
monitoring system. First, its classification ability is limited. While it does not require precise
classification of every object, it must at least distinguish between the train and other objects. This
distinction is crucial to prevent false alarms caused by the train itself being incorrectly flagged as
an intruder. Second, its tracking capability is lacking. It is essential to continuously track each
pedestrian or object across multiple frames and trigger an alarm if anything or anyone remains in

the crossing area for an extended period.

To extend foreground detection to include classification and tracking, a natural approach is
to use a "classification and tracking by detection" method [7]. After identifying foreground objects
in the current frame, their bounding boxes are cropped from the input image and fed into a
Convolutional Neural Network (CNN) for feature extraction. These features can then be classified
using a conventional classifier or a Contrastive Language-Image Pretraining (CLIP) model [8] and
tracked using algorithms like DeepSORT [7] or its enhanced versions. However, this approach
presents significant challenges. When numerous objects appear in a single frame, the resulting
increase in batch size for the feature extraction CNN imposes a substantial computational burden.
Additionally, the varied input sizes required by the feature extraction CNN introduce model
dynamics, making it less compatible with static model inference frameworks like TensorRT. These
challenges are particularly problematic for deployment on edge-computing devices with limited

processing power.

To address the challenges of railroad crossing monitoring on edge computing platforms, this
study proposes a YOLO-RCNN network that integrates foreground detection, segmentation,

classification, and tracking. Foreground detection and segmentation are achieved through YOLO-
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FG, which is built on YOLOvS8-seg [9], a well-known network recognized for its high detection
speed and accuracy, making it suitable for real-time applications. Inspired by the RolAlign
mechanism, classification and tracking are handled by Region-based Convolutional Neural
Networks (RCNN). Unlike the classical "classification and tracking by detection" approach, in
which each object is processed separately, the RCNN backbone extracts features from the entire
input image, and the RolAlign mechanism directly crops the backbone features for each object.
This ensures that the batch size of the RCNN backbone is fixed at one, significantly reducing
model dynamics and improving computational efficiency, particularly on resource-constrained
edge computing platforms. This design enhances the ability to handle multiple objects without

compromising real-time performance.
3. METHODOLOGY

Figure 1 illustrates the architecture of the proposed YOLO-RCNN network, a hybrid model that
integrates two prominent deep learning frameworks: YOLO [9] and RCNN [4]. This model is
specifically designed to perform foreground detection, segmentation, classification, and tracking
in a unified framework. In this study, the YOLOv8-seg model, referred to as YOLO-FG, is
extended for foreground detection and segmentation. It achieves this by distinguishing objects in
the current frame from those in the background, which is generated using the SUBSENSE
algorithm. Once foreground objects are identified, their bounding boxes are processed by the
RCNN module, which handles classification and tracking to ensure accurate object identification

and trajectory consistency.
3.1 Foreground detection and segmentation using YOLO-FG

As illustrated in Figure 2, YOLO-FG enhances the well-established YOLOV8-seg architecture [9]
by incorporating a specialized input head designed for foreground detection and segmentation.
This modification enables YOLO-FG to process both the current video frame and the background
image simultaneously, facilitating accurate foreground detection. YOLOv8-seg extends YOLOv8
by integrating segmentation capabilities, leveraging the Protonet architecture from YOLACT [10].
This enhancement allows YOLOvV8-seg to perform not only object detection but also precise

instance-level segmentation, making it highly effective for detailed object delineation.
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To maintain modularity and avoid modifying the YOLO backbone, YOLO-FG introduces a
dedicated input head. This input head consists of two distinct branches, each equipped with a single
convolutional layer. The first branch processes the input frame, and the second branch processes
the background image. Each branch transforms its respective input into a 32-channel feature map.
The resulting feature maps are then concatenated, producing a 64-channel fused feature map. This
concatenated representation is subsequently passed through a final convolutional layer,
compressing it into a 3-channel output. As shown in Figure 2, this compressed output preserves
essential information while ensuring compatibility with the input format of YOLOvS8-seg. By
employing this modular input head, YOLO-FG seamlessly integrates with YOLOvS8-seg without

requiring further architectural modifications.
3.2 Foreground classification and tracking using RCNN

As discussed in the introduction section, this study employs RCNN for foreground classification
and tracking, aiming to replace the conventional "classification and tracking by detection"
approach. This modification enhances computational efficiency, particularly in edge devices

where resource constraints are a critical factor.

During the training phase, the RCNN follows standard training procedures without
requiring architectural modifications. In this study, the RCNN architecture from GTR [11], is
adopted. As a Joint Detection and Tracking (JDT) method, GTR introduces a built-in, trainable
tracker head in addition to standard box heads, enabling object association across frames. When

training the track head, both the track head and the RCNN backbone are fine-tuned, ensuring that

10



the features extracted by the backbone are optimized for trackability.

In contrast, the inference stage of YOLO-RCNN follows a different approach. Here, RCNN
does not retain all network components. Specifically, the Region Proposal Network (RPN), which
generates proposal boxes, is omitted during inference. Instead, only the backbone, box head, and
track head remain operational. The backbone serves as the primary feature extractor, processing
input images to generate feature representations. The box head and track head classify and track
foreground objects by cropping feature maps produced by the backbone. Foreground boxes
predicted by YOLO-FG guide the cropping process, ensuring efficient foreground classification
and tracking. By adopting this streamlined inference strategy, YOLO-RCNN reduces
computational overhead while maintaining high tracking accuracy, making it well-suited for real-

time applications on edge devices.
4. EXPERIMENTS

4.1 Railroad Crossing Dataset
Railroad Crossing Dataset

To evaluate the performance of the YOLO-RCNN model, the Railroad Crossing Dataset (RCD) is
established. As illustrated in Figure 3, data collection sites were strategically selected across
various locations in Columbia, SC to ensure the dataset robustness and generalizability. As shown
in Figure 4, video recordings for sites in Figures 3(a) and 3(b) were captured using webcams,
while data for sites in Figures 3(c), 3(d), and 3(e) were collected using a mini drone. The dataset
comprises 25 video clips, each containing 32 frames. Notably, this dataset was exclusively

reserved for model testing, ensuring an unbiased assessment of the model performance in real-

world settings.

(a). 409 Main ST, (b). 718 Devine ST, (c). 230 Huger ST, (d). 216 Tryon ST, (e). 949 Rosewood Dr,
Columbia, SC, 29201 Columbia, SC, 29201 Columbia, SC, 29201 Columbia, SC, 29201 Columbia, SC, 29201

Figure 3: Data collecting sites of Railroad Crossing Dataset (RCD)
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A s

(a). Webcam (b). Mini drone

Figure 4: Data collecting equipment for Railroad Crossing Dataset

4.2 Network training processes

The training process for the YOLO-RCNN model consists of three stages. In the first stage, the
YOLO-FG component is trained for foreground detection and segmentation. This is followed by
the second and third stages, which focus on training the RCNN module for foreground

classification and tracking.

In the first training stage, the YOLO-FG for foreground detection is trained using the
CDnet 2014 dataset. In the second training stage, the RCNN training process follows the
methodology presented in GTR. During this stage, the RCNN is pretrained exclusively in detection
mode, utilizing a combined dataset of LVISvl and COCO. In the final training stage, the track
head participates in fine-tuning. The combined dataset of LVISv1 and COCO continues to be used

throughout this stage to ensure robust feature learning.

Finally, the trained YOLO-RCNN model is validated using the RCD dataset to ensure its
real-world applicability.

4.3 Evaluation Metrics

For RCD datasets, mAP is used to evaluate the detection quality of YOLO-RCNN. Given predicted

bounding box P and ground-truth bounding box G, calculate their Intersection over Union (IoU):

Area(PNG)

IoU(P,G) = Area(PUG)

(1

A detection is considered a match if JoU greater than a threshold t. Then, True Positives
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(TP) indicates the number of matched detection, and False Positives (FP) counts the predictions
that failed to match any ground-truth boxes. After knowing the TP and FP, Precision (P) and Recall

(R) of the detection results can be calculated as:

TP

= TP+FP (2)
TP
R= TP+FN 3)

Finally, mAP is computed by averaging the precision across recall levels of different

threshold t:

mAP = Z¥¢_; AP(c) “)

AP(c) = [ P(R)dR (5)

where C is the is the number of classes. AP(c) is the average precision for class c. P(R) is the

precision at recall r.

Additionally, Segmentation mAP (Seg mAP) is employed to evaluate its segmentation
performance. The key difference between Seg mAP and mAP lies in the calculation of IoU: Seg

mAP uses segmentation masks, while mAP relies on bounding boxes, as shown in Equation (1).

To assess its tracking performance, tracking mAP@0.5 and HOTA metrics is adopted.
tracking mAP@0.5 is based on standard object detection mAP. And their difference is the tracking
mAP uses the 3D temporal spatial loU to mach the predicted trajectory P and the ground-truth
trajectory G:

ZieTGnTP 10U (P4,Gyt)
TgUTp

IoU(P,G) = (6)

whereT ; and Tp are the time range of G and P. IoU (P, G;) is the standard 2D IoU between the
ground-truth and predicted bounding boxes at frame t. An IoU threshold T = 0.5 is applied to

consider a trajectory as a match.

HOTA is defined as the geometric mean of detection accuracy (DetA) and association

accuracy (AssA):
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HOTA = VDetA X AssA (7)
DetA and AssA defined in [12].
4.4 Performance on the Rail Crossing Dataset

To evaluate the efficiency of YOLO-RCNN compared to YOLO-CLIP-DeepSORT, a
comprehensive analysis is performed. While both methods utilize YOLO-FG for foreground
detection, their approaches to foreground classification and tracking differ. YOLO-RCNN
employs the RCNN architecture, whereas YOLO-CLIP-DeepSORT leverages CLIP [8] for
classification and DeepSORT [13] for tracking. To further validate YOLO-RCNN in railroad
crossing monitoring, it was compared against GTR, a detection-based tracking network. The GTR
model retained its original configuration and was trained on the TAO dataset. It is also important
to note that GTR does not support segmentation natively, which affects its performance in this

application.

Table 1 presents a performance comparison of YOLO-RCNN, YOLO-CLIP-DeepSORT,
and GTR on the Railroad Crossing Dataset, with their example detection results illustrated in
Figure 7. YOLO-RCNN achieves an mAP of 54.86%, a Seg mAP of 48.35%, a Track mAP of
56.31%, and a HOTA score of 63.44%.

Table 1. The comparison of YOLO-RCNN, YOLO-CLIP-DeepSORT and GTR on RCD dataset

Models mAP(%)  Seg mAP(%) Track mAP (%) HOTA (%)
YOLO-RCNN 54.86 48.35 56.31 63.44
YOLO-CLIP-DeepSORT 53.12 47.71 53.62 60.30
GTR 45.46 49.86 52.76

When compared to YOLO-CLIP-DeepSORT, YOLO-RCNN demonstrates slight
improvements, outperforming it by 1.74% in mAP, 0.64% in Seg mAP, 2.69% in Track mAP, and
3.14% in HOTA. Since both methods rely on the same YOLO-FG model for foreground detection
but differ in their classification approaches, their mAP and Seg mAP scores remain relatively close.
The moderate differences in tracking metrics, such as Track mAP and HOTA, can be attributed to

the fixed-camera setup in this application, which reduces tracking complexity.
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" .
(e). 949 Rosewood Dr, Columbia, SC, 29201

Figure 5: Example detection results on the railroad crossing dataset (For each subfigure, from top
to bottom: YOLO-RCNN, YOLO-CLIP-DeepSORT and GTR)
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Both YOLO-RCNN and YOLO-CLIP-DeepSORT outperform GTR. As an object
detection-based method, GTR suffers from false-positive errors caused by detecting numerous
background objects, such as road signs, traffic lights, and stationary vehicles. Additionally, despite
being trained on 1,203 classes from the LVIS dataset, GTR struggles to detect unusual objects,
such as the cloth and cube shown in Figure 7(d). Accordingly, YOLO-RCNN surpasses GTR by
9.40% in mAP, 6.45% in Track mAP, and 10.68% in HOTA, further demonstrating its superior

performance in railroad crossing monitoring.

Although YOLO-RCNN and YOLO-CLIP-DeepSORT demonstrate comparable
performance on the RCD dataset, YOLO-RCNN achieves significantly higher efficiency, as
illustrated in Table 2. As outlined in the Introduction, YOLO-RCNN was designed to overcome
the efficiency limitations inherent in "classification and tracking by detection" methods, such as
YOLO-CLIP-DeepSORT. Specifically, the latency of using the RCNN architecture for foreground
classification and tracking is 25.64 ms, which is 37.53 ms faster than the combined latency of
using CLIP and DeepSORT for the same tasks. As a background generation model, SUBSENSE
plays a critical role in both YOLO-RCNN and YOLO-CLIP-DeepSORT. However, SuBSENSE
introduces significant latency, measured at 158.41 ms, which substantially impacts the inference
speed of both systems. Consequently, YOLO-RCNN accumulates a total latency of 196.94 ms,
making it 133.83 ms higher than that of the GTR model. To address this limitation, the next section
focuses on optimizing and deploying the YOLO-RCNN model.

Table 2. The main components latencies (ms) of YOLO-RCNN, YOLO-CLIP-DeepSORT and GTR
on A6000 GPU.

Components YOLO-RCNN YOLO-CLIP  GTR
-DeepSORT

SuBSENSE 158.41 158.41

YOLO-FG (n) 12.89 12.89

RCNN backbone 15.07 T 4177
RCNN RPN \\ 10.17
RCNN box head 0.61 3.76
RCNN track head (features extraction) 1.21 \ 1.21

RCNN track head (features association)  8.75 10.57
CLIP T—— 3849

DeepSORT T—— 2468 T

Total (except pre- and post-processing) 196.94 234.47 63.11
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4.5 Inference pipeline deployment and optimization

This section details tests conducted on both a desktop platform and the Jetson AGX Orin, an edge-
computing device. The desktop platform is equipped with an Intel 19-10920X CPU and dual
NVIDIA RTX A6000 GPUs, though only one GPU is utilized for inference. The A6000 GPU,
with 10,752 CUDA cores and 336 Tensor cores, provides substantial computational power,
enabling efficient execution of complex tasks. In contrast, the Jetson AGX Orin features a 12-core
ARM CPU, 2,048 CUDA cores, and 64 Tensor cores. Its normal and peak power consumption is
30W and 60W, respectively, making it well-suited for model deployment in resource-constrained

environments.

As illustrated in Tables 3 and 4, the YOLO-RCNN inference pipeline was optimized and
deployed using C++, TensorRT, and oneTBB. The entire pipeline was converted from Python to
C++ to reduce inference time, as C++ provides finer control over hardware and system resources,

improving overall performance and efficiency compared to Python.

On desktop systems, the model inference latency was reduced from 38.53 ms to 16.24 ms.
On the Jetson AGX Orin, the latency decreased from 105.29 ms to 32.31 ms, demonstrating

significant improvements in efficiency and deployment feasibility.

Table 3. Latency (ms) comparison of pipelines within desktop environment

Node PyTorch + Python TensorRT + oneTBB + C++
Pre-processing 9.53 17.93

SuBSENSE 158.41 129.22

Model inference 38.53 16.24

Pos-processing 6.86 6.38

Overall 213.33 (4.69 FPS) 18.25 (54.79 FPS)

Table 4. Latency (ms) comparison of pipelines within Jetson AGX Orin

Node PyTorch + Python TensorRT + oneTBB + C++
Pre-processing 11.93 10.51

SuBSENSE 167.58 130.48

Model inference 105.29 32.31

Pos-processing 9.86 5.34

Overall 294.66 (3.39 FPS) 34.26 (29.19 FPS)
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5. CONCLUSIONS

This study presents a novel YOLO-RCNN model for railroad crossing monitoring. The proposed
approach integrates YOLO-FG, a component designed to detect and segment all objects in a scene,
a capability that traditional object detectors lack. Additionally, the model leverages RCNN with
the RolAlign mechanism, effectively addressing the limitations of conventional "classification and
tracking by detection" methods while significantly reducing computational overhead. By
achieving high-accuracy detection, classification, and tracking with enhanced computational
efficiency, YOLO-RCNN is well-suited for real-time applications on resource-constrained edge

computing devices.

The results from experiments demonstrated the proposed YOLO-RCNN presenting
superior performance in foreground detection and tracking tasks. On the custom RCD dataset,
YOLO-RCNN demonstrated strong performance across multiple evaluation metrics, achieving an
mAP of 54.86%, a Seg mAP of 48.35%, a Track mAP of 56.31%, and a HOTA score of 63.44%.
These results underscore its superiority over YOLO-CLIP-DeepSORT and GTR in classification,

segmentation, and tracking tasks.

The efficiency of YOLO-RCNN was further validated through deployment and
optimization. Transitioning from Python to C++ and leveraging TensorRT and oneTBB
significantly improved the model’s inference speed, achieving a remarkable increase from 4.69
FPS to 54.79 FPS on desktop systems and from 3.39 FPS to 29.19 FPS on the Jetson AGX Orin.
These optimizations demonstrate the practical feasibility of YOLO-RCNN for real-time

monitoring in real-world applications.

The proposed YOLO-RCNN model has been successfully deployed to an edge-computing
device and validated its real-time inference capability. The developed model is ready to be

integrated into a UAV or other portable platform for field-monitoring.
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