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1. SUMMARY 

 Track intrusion, especially trespassing, which encompasses unauthorized entry and lingering 

within the railroad right-of-way, is a significant safety concern. It has been associated with a higher 

number of fatalities compared to incidents involving collisions between vehicles and trains. This 

stark statistic underscores the urgent need for advanced surveillance and detection systems at rail 

crossings to ensure track integrity and enhance overall railway safety. This research aims to 

develop a novel YOLO-RCNN that innovatively merges foreground segmentation and object 

detection methodologies to form a comprehensive railroad crossing surveillance system, as shown 

in Figure 1. 

 

Figure 1: YOLO-RCNN architecture 

The design of the proposed YOLO-RCNN model is strategically tailored to perform multiple 

functions simultaneously: foreground detection, segmentation, classification, and tracking of 

objects. This multifaceted approach allows for a more precise and efficient monitoring system 

adept at identifying and responding to any non-compliant objects or unauthorized activities within 
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the railroad area. The integrated system not only detects but also classifies various types of objects, 

making it possible to differentiate between harmless elements and potential hazards. 

Our evaluation and testing phase highlights the effectiveness of the YOLO -RCNN model. 

The findings from these experiments validate the robustness of the network, demonstrating its 

superior capability to accurately identify and track unauthorized or non-compliant objects at 

railroad crossings. This enhanced detection is critical as it significantly surpasses the performance 

of traditional object detection models such as Mask-RCNN. Through a series of comparative 

analyses, the YOLO -RCNN consistently outperformed existing models, proving its potential as a 

pivotal technology in railway safety systems. 

2. BACKGROUND 

In recent years, the application of Computer Vision (CV) and Artificial Intelligence (AI) to 

enhance railroad safety and track resilience has become increasingly prevalent [1]. CNN-based 

models have significantly improved detection efficiency and accuracy, reducing human errors and 

aiding auxiliary decision-making. For instance, Zaman et al. [2] utilized Mask R-CNN to detect 

intrusion events on railroads. Additionally, Guo et al. [3] developed an automated video analysis, 

detection, and tracking system to assess traffic conditions at rail crossings. Among these deep 

learning approaches, object detection and foreground detection are critical for video surveillance, 

playing an essential role in ensuring safety at railroad crossings. 

Object detection involves identifying and locating instances of specific object classes within 

images or video frames [4]. This technique, typically powered by neural networks, recognizes and 

classifies objects such as cars, pedestrians, and animals while also determining their boundaries or 

locations in the scene. Despite its widespread use and advancements across various fields, object 

detection still faces two significant challenges in the context of railroad crossing monitoring. First, 

conventional object detectors are limited to recognizing objects they have been explicitly trained 

on. While open-world object detectors offer more flexibility [5], they still cannot guarantee the 

detection of all track intrusions, which are often the cause of accidents. These intrusions could 

involve a wide range of objects, from animals and dropped parcels to collapsed catenary lines and 

more. Second, railroad crossing areas often contain static objects, such as traffic lights, barriers, 

and other infrastructure. These static elements can sometimes be falsely detected as intruding 

objects, leading to false-positive errors. Such errors increase the burden on post-processing 
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systems, which must differentiate between genuine intrusions and false alarms, ultimately creating 

stress and inefficiencies in monitoring systems. On the other hand, foreground detection, also 

known as change detection or background subtraction, is a technique designed to differentiate 

moving elements, referred to as the foreground, from the static scene, or background [6]. It 

analyzes the differences between the current frame and background images to identify regions with 

significant changes, which are then classified as foreground objects. This feature is particularly 

useful for railroad crossing monitoring, as it can accurately detect both static and moving outliers 

within the crossing area without mistakenly classifying background objects as intrusions. However, 

while foreground detection is effective at highlighting outliers within a scene as the Region of 

Interest (ROI), it falls short in two key areas necessary for a comprehensive railroad crossing 

monitoring system. First, its classification ability is limited. While it does not require precise 

classification of every object, it must at least distinguish between the train and other objects. This 

distinction is crucial to prevent false alarms caused by the train itself being incorrectly flagged as 

an intruder. Second, its tracking capability is lacking. It is essential to continuously track each 

pedestrian or object across multiple frames and trigger an alarm if anything or anyone remains in 

the crossing area for an extended period. 

To extend foreground detection to include classification and tracking, a natural approach is 

to use a "classification and tracking by detection" method [7]. After identifying foreground objects 

in the current frame, their bounding boxes are cropped from the input image and fed into a 

Convolutional Neural Network (CNN) for feature extraction. These features can then be classified 

using a conventional classifier or a Contrastive Language-Image Pretraining (CLIP) model [8] and 

tracked using algorithms like DeepSORT [7] or its enhanced versions. However, this approach 

presents significant challenges. When numerous objects appear in a single frame, the resulting 

increase in batch size for the feature extraction CNN imposes a substantial computational burden. 

Additionally, the varied input sizes required by the feature extraction CNN introduce model 

dynamics, making it less compatible with static model inference frameworks like TensorRT. These 

challenges are particularly problematic for deployment on edge-computing devices with limited 

processing power.  

To address the challenges of railroad crossing monitoring on edge computing platforms, this 

study proposes a YOLO-RCNN network that integrates foreground detection, segmentation, 

classification, and tracking. Foreground detection and segmentation are achieved through YOLO-
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FG, which is built on YOLOv8-seg [9], a well-known network recognized for its high detection 

speed and accuracy, making it suitable for real-time applications. Inspired by the RoIAlign 

mechanism, classification and tracking are handled by Region-based Convolutional Neural 

Networks (RCNN). Unlike the classical "classification and tracking by detection" approach, in 

which each object is processed separately, the RCNN backbone extracts features from the entire 

input image, and the RoIAlign mechanism directly crops the backbone features for each object. 

This ensures that the batch size of the RCNN backbone is fixed at one, significantly reducing 

model dynamics and improving computational efficiency, particularly on resource-constrained 

edge computing platforms. This design enhances the ability to handle multiple objects without 

compromising real-time performance. 

3. METHODOLOGY 

Figure 1 illustrates the architecture of the proposed YOLO-RCNN network, a hybrid model that 

integrates two prominent deep learning frameworks: YOLO [9] and RCNN [4]. This model is 

specifically designed to perform foreground detection, segmentation, classification, and tracking 

in a unified framework. In this study, the YOLOv8-seg model, referred to as YOLO-FG, is 

extended for foreground detection and segmentation. It achieves this by distinguishing objects in 

the current frame from those in the background, which is generated using the SuBSENSE 

algorithm. Once foreground objects are identified, their bounding boxes are processed by the 

RCNN module, which handles classification and tracking to ensure accurate object identification 

and trajectory consistency. 

3.1 Foreground detection and segmentation using YOLO-FG 

As illustrated in Figure 2, YOLO-FG enhances the well-established YOLOv8-seg architecture [9] 

by incorporating a specialized input head designed for foreground detection and segmentation. 

This modification enables YOLO-FG to process both the current video frame and the background 

image simultaneously, facilitating accurate foreground detection. YOLOv8-seg extends YOLOv8 

by integrating segmentation capabilities, leveraging the Protonet architecture from YOLACT [10]. 

This enhancement allows YOLOv8-seg to perform not only object detection but also precise 

instance-level segmentation, making it highly effective for detailed object delineation. 
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Figure 2: YOLO-FG architecture 

 
To maintain modularity and avoid modifying the YOLO backbone, YOLO-FG introduces a 

dedicated input head. This input head consists of two distinct branches, each equipped with a single 

convolutional layer. The first branch processes the input frame, and the second branch processes 

the background image. Each branch transforms its respective input into a 32-channel feature map. 

The resulting feature maps are then concatenated, producing a 64-channel fused feature map. This 

concatenated representation is subsequently passed through a final convolutional layer, 

compressing it into a 3-channel output. As shown in Figure 2, this compressed output preserves 

essential information while ensuring compatibility with the input format of YOLOv8-seg. By 

employing this modular input head, YOLO-FG seamlessly integrates with YOLOv8-seg without 

requiring further architectural modifications.  

3.2 Foreground classification and tracking using RCNN 

As discussed in the introduction section, this study employs RCNN for foreground classification 

and tracking, aiming to replace the conventional "classification and tracking by detection" 

approach. This modification enhances computational efficiency, particularly in edge devices 

where resource constraints are a critical factor.  

During the training phase, the RCNN follows standard training procedures without 

requiring architectural modifications. In this study, the RCNN architecture from GTR [11], is 

adopted. As a Joint Detection and Tracking (JDT) method, GTR introduces a built-in, trainable 

tracker head in addition to standard box heads, enabling object association across frames. When 

training the track head, both the track head and the RCNN backbone are fine-tuned, ensuring that 
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the features extracted by the backbone are optimized for trackability.  

In contrast, the inference stage of YOLO-RCNN follows a different approach. Here, RCNN 

does not retain all network components. Specifically, the Region Proposal Network (RPN), which 

generates proposal boxes, is omitted during inference. Instead, only the backbone, box head, and 

track head remain operational. The backbone serves as the primary feature extractor, processing 

input images to generate feature representations. The box head and track head classify and track 

foreground objects by cropping feature maps produced by the backbone. Foreground boxes 

predicted by YOLO-FG guide the cropping process, ensuring efficient foreground classification 

and tracking. By adopting this streamlined inference strategy, YOLO-RCNN reduces 

computational overhead while maintaining high tracking accuracy, making it well-suited for real-

time applications on edge devices. 

4. EXPERIMENTS 

4.1 Railroad Crossing Dataset 

Railroad Crossing Dataset 

To evaluate the performance of the YOLO-RCNN model, the Railroad Crossing Dataset (RCD) is 

established. As illustrated in Figure 3, data collection sites were strategically selected across 

various locations in Columbia, SC to ensure the dataset robustness and generalizability. As shown 

in Figure 4, video recordings for sites in Figures 3(a) and 3(b) were captured using webcams, 

while data for sites in Figures 3(c), 3(d), and 3(e) were collected using a mini drone. The dataset 

comprises 25 video clips, each containing 32 frames. Notably, this dataset was exclusively 

reserved for model testing, ensuring an unbiased assessment of the model performance in real-

world settings. 

 

Figure 3: Data collecting sites of Railroad Crossing Dataset (RCD) 
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Figure 4: Data collecting equipment for Railroad Crossing Dataset 

4.2 Network training processes 

The training process for the YOLO-RCNN model consists of three stages. In the first stage, the 

YOLO-FG component is trained for foreground detection and segmentation. This is followed by 

the second and third stages, which focus on training the RCNN module for foreground 

classification and tracking. 

In the first training stage, the YOLO-FG for foreground detection is trained using the 

CDnet 2014 dataset. In the second training stage, the RCNN training process follows the 

methodology presented in GTR. During this stage, the RCNN is pretrained exclusively in detection 

mode, utilizing a combined dataset of LVISv1 and COCO. In the final training stage, the track 

head participates in fine-tuning. The combined dataset of LVISv1 and COCO continues to be used 

throughout this stage to ensure robust feature learning. 

Finally, the trained YOLO-RCNN model is validated using the RCD dataset to ensure its 

real-world applicability. 

4.3 Evaluation Metrics 

For RCD datasets, mAP is used to evaluate the detection quality of YOLO-RCNN. Given predicted 

bounding box P and ground-truth bounding box G, calculate their Intersection over Union (IoU): 

𝑰𝑰𝑰𝑰𝑰𝑰(𝑷𝑷,𝑮𝑮) = 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨(𝑷𝑷∩𝑮𝑮)
𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨(𝑷𝑷∪𝑮𝑮)

                                                            (1) 

A detection is considered a match if 𝑰𝑰𝑰𝑰𝑰𝑰 greater than a threshold τ. Then, True Positives 
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(TP) indicates the number of matched detection, and False Positives (FP) counts the predictions 

that failed to match any ground-truth boxes. After knowing the TP and FP, Precision (P) and Recall 

(R) of the detection results can be calculated as: 

𝑷𝑷 = 𝑻𝑻𝑻𝑻
𝑻𝑻𝑻𝑻+𝑭𝑭𝑭𝑭

                                                                 (2) 

𝑹𝑹 = 𝑻𝑻𝑻𝑻
𝑻𝑻𝑻𝑻+𝑭𝑭𝑭𝑭

                                                                 (3) 

Finally, mAP is computed by averaging the precision across recall levels of different 

threshold τ: 

𝒎𝒎𝒎𝒎𝒎𝒎 = 𝟏𝟏
𝑪𝑪
∑ 𝑨𝑨𝑨𝑨(𝒄𝒄)𝑪𝑪
𝑪𝑪=𝟏𝟏                                                             (4) 

𝑨𝑨𝑨𝑨(𝒄𝒄) = ∫ 𝑷𝑷(𝑹𝑹)𝒅𝒅𝒅𝒅𝟏𝟏
𝟎𝟎                                                                  (5) 

where 𝑪𝑪 is the is the number of classes. 𝑨𝑨𝑨𝑨(𝒄𝒄) is the average precision for class 𝒄𝒄. 𝑷𝑷(𝑹𝑹) is the 

precision at recall 𝒓𝒓.  

Additionally, Segmentation mAP (Seg mAP) is employed to evaluate its segmentation 

performance. The key difference between Seg mAP and mAP lies in the calculation of IoU: Seg 

mAP uses segmentation masks, while mAP relies on bounding boxes, as shown in Equation (1). 

 

To assess its tracking performance, tracking mAP@0.5 and HOTA metrics is adopted. 

tracking mAP@0.5 is based on standard object detection mAP. And their difference is the tracking 

mAP uses the 3D temporal spatial IoU to mach the predicted trajectory P and the ground-truth 

trajectory G:  

𝑰𝑰𝑰𝑰𝑰𝑰(𝑷𝑷,𝑮𝑮) =
∑ 𝑰𝑰𝑰𝑰𝑰𝑰(𝑷𝑷𝒕𝒕,𝑮𝑮𝒕𝒕)𝒕𝒕
𝒕𝒕∈𝑻𝑻𝑮𝑮∩𝑻𝑻𝑷𝑷

𝑻𝑻𝑮𝑮∪𝑻𝑻𝑷𝑷
                                                            (6) 

where𝑻𝑻𝑮𝑮 and 𝑻𝑻𝑷𝑷 are the time range of G and P. 𝑰𝑰𝑰𝑰𝑰𝑰(𝑷𝑷𝒕𝒕,𝑮𝑮𝒕𝒕) is the standard 2D IoU between the 

ground-truth and predicted bounding boxes at frame t. An IoU threshold τ = 0.5 is applied to 

consider a trajectory as a match.  

HOTA is defined as the geometric mean of detection accuracy (DetA) and association 

accuracy (AssA): 

mailto:mAP@0.5
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𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯 = √𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃 × 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀                                                                 (7) 

DetA and AssA defined in [12]. 

4.4 Performance on the Rail Crossing Dataset 

To evaluate the efficiency of YOLO-RCNN compared to YOLO-CLIP-DeepSORT, a 

comprehensive analysis is performed. While both methods utilize YOLO-FG for foreground 

detection, their approaches to foreground classification and tracking differ. YOLO-RCNN 

employs the RCNN architecture, whereas YOLO-CLIP-DeepSORT leverages CLIP [8] for 

classification and DeepSORT [13] for tracking. To further validate YOLO-RCNN in railroad 

crossing monitoring, it was compared against GTR, a detection-based tracking network. The GTR 

model retained its original configuration and was trained on the TAO dataset. It is also important 

to note that GTR does not support segmentation natively, which affects its performance in this 

application. 

Table 1 presents a performance comparison of YOLO-RCNN, YOLO-CLIP-DeepSORT, 

and GTR on the Railroad Crossing Dataset, with their example detection results illustrated in 

Figure 7. YOLO-RCNN achieves an mAP of 54.86%, a Seg mAP of 48.35%, a Track mAP of 

56.31%, and a HOTA score of 63.44%. 

Table 1. The comparison of YOLO-RCNN, YOLO-CLIP-DeepSORT and GTR on RCD dataset 

Models mAP(%) Seg mAP(%) Track mAP (%) HOTA (%) 
YOLO-RCNN 54.86 48.35 56.31 63.44 
YOLO-CLIP-DeepSORT 53.12 47.71 53.62 60.30 
GTR 45.46  49.86 52.76 

 

When compared to YOLO-CLIP-DeepSORT, YOLO-RCNN demonstrates slight 

improvements, outperforming it by 1.74% in mAP, 0.64% in Seg mAP, 2.69% in Track mAP, and 

3.14% in HOTA. Since both methods rely on the same YOLO-FG model for foreground detection 

but differ in their classification approaches, their mAP and Seg mAP scores remain relatively close. 

The moderate differences in tracking metrics, such as Track mAP and HOTA, can be attributed to 

the fixed-camera setup in this application, which reduces tracking complexity. 
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Figure 5: Example detection results on the railroad crossing dataset (For each subfigure, from top 
to bottom: YOLO-RCNN, YOLO-CLIP-DeepSORT and GTR) 
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Both YOLO-RCNN and YOLO-CLIP-DeepSORT outperform GTR. As an object 

detection-based method, GTR suffers from false-positive errors caused by detecting numerous 

background objects, such as road signs, traffic lights, and stationary vehicles. Additionally, despite 

being trained on 1,203 classes from the LVIS dataset, GTR struggles to detect unusual objects, 

such as the cloth and cube shown in Figure 7(d). Accordingly, YOLO-RCNN surpasses GTR by 

9.40% in mAP, 6.45% in Track mAP, and 10.68% in HOTA, further demonstrating its superior 

performance in railroad crossing monitoring. 

Although YOLO-RCNN and YOLO-CLIP-DeepSORT demonstrate comparable 

performance on the RCD dataset, YOLO-RCNN achieves significantly higher efficiency, as 

illustrated in Table 2. As outlined in the Introduction, YOLO-RCNN was designed to overcome 

the efficiency limitations inherent in "classification and tracking by detection" methods, such as 

YOLO-CLIP-DeepSORT. Specifically, the latency of using the RCNN architecture for foreground 

classification and tracking is 25.64 ms, which is 37.53 ms faster than the combined latency of 

using CLIP and DeepSORT for the same tasks. As a background generation model, SuBSENSE 

plays a critical role in both YOLO-RCNN and YOLO-CLIP-DeepSORT. However, SuBSENSE 

introduces significant latency, measured at 158.41 ms, which substantially impacts the inference 

speed of both systems. Consequently, YOLO-RCNN accumulates a total latency of 196.94 ms, 

making it 133.83 ms higher than that of the GTR model. To address this limitation, the next section 

focuses on optimizing and deploying the YOLO-RCNN model. 

 
Table 2. The main components latencies (ms) of YOLO-RCNN, YOLO-CLIP-DeepSORT and GTR 
on A6000 GPU. 

Components YOLO-RCNN YOLO-CLIP 
-DeepSORT 

GTR 

SuBSENSE       158.41 158.41  
YOLO-FG (n) 12.89 12.89  
RCNN backbone 15.07  41.77 
RCNN RPN   10.17 
RCNN box head 0.61  3.76 
RCNN track head (features extraction) 1.21  1.21 
RCNN track head (features association) 8.75  10.57 
CLIP  38.49  
DeepSORT  24.68  
Total (except pre- and post-processing) 196.94 234.47 63.11 
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4.5 Inference pipeline deployment and optimization 

This section details tests conducted on both a desktop platform and the Jetson AGX Orin, an edge-

computing device. The desktop platform is equipped with an Intel i9-10920X CPU and dual 

NVIDIA RTX A6000 GPUs, though only one GPU is utilized for inference. The A6000 GPU, 

with 10,752 CUDA cores and 336 Tensor cores, provides substantial computational power, 

enabling efficient execution of complex tasks. In contrast, the Jetson AGX Orin features a 12-core 

ARM CPU, 2,048 CUDA cores, and 64 Tensor cores. Its normal and peak power consumption is 

30W and 60W, respectively, making it well-suited for model deployment in resource-constrained 

environments. 

As illustrated in Tables 3 and 4, the YOLO-RCNN inference pipeline was optimized and 

deployed using C++, TensorRT, and oneTBB. The entire pipeline was converted from Python to 

C++ to reduce inference time, as C++ provides finer control over hardware and system resources, 

improving overall performance and efficiency compared to Python. 

On desktop systems, the model inference latency was reduced from 38.53 ms to 16.24 ms. 

On the Jetson AGX Orin, the latency decreased from 105.29 ms to 32.31 ms, demonstrating 

significant improvements in efficiency and deployment feasibility. 

 

Table 3. Latency (ms) comparison of pipelines within desktop environment 

Node PyTorch + Python TensorRT + oneTBB + C++ 
Pre-processing 9.53 17.93 
SuBSENSE 158.41 129.22 
Model inference 38.53 16.24 
Pos-processing 6.86 6.38 
Overall 213.33 (4.69 FPS) 18.25 (54.79 FPS) 

 
Table 4. Latency (ms) comparison of pipelines within Jetson AGX Orin 

Node PyTorch + Python TensorRT + oneTBB + C++ 
Pre-processing 11.93  10.51 
SuBSENSE 167.58 130.48 
Model inference 105.29 32.31 
Pos-processing 9.86 5.34 
Overall 294.66 (3.39 FPS) 34.26 (29.19 FPS) 
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5. CONCLUSIONS 

This study presents a novel YOLO-RCNN model for railroad crossing monitoring. The proposed 

approach integrates YOLO-FG, a component designed to detect and segment all objects in a scene, 

a capability that traditional object detectors lack. Additionally, the model leverages RCNN with 

the RoIAlign mechanism, effectively addressing the limitations of conventional "classification and 

tracking by detection" methods while significantly reducing computational overhead. By 

achieving high-accuracy detection, classification, and tracking with enhanced computational 

efficiency, YOLO-RCNN is well-suited for real-time applications on resource-constrained edge 

computing devices. 

The results from experiments demonstrated the proposed YOLO-RCNN presenting 

superior performance in foreground detection and tracking tasks. On the custom RCD dataset, 

YOLO-RCNN demonstrated strong performance across multiple evaluation metrics, achieving an 

mAP of 54.86%, a Seg mAP of 48.35%, a Track mAP of 56.31%, and a HOTA score of 63.44%. 

These results underscore its superiority over YOLO-CLIP-DeepSORT and GTR in classification, 

segmentation, and tracking tasks. 

The efficiency of YOLO-RCNN was further validated through deployment and 

optimization. Transitioning from Python to C++ and leveraging TensorRT and oneTBB 

significantly improved the model’s inference speed, achieving a remarkable increase from 4.69 

FPS to 54.79 FPS on desktop systems and from 3.39 FPS to 29.19 FPS on the Jetson AGX Orin. 

These optimizations demonstrate the practical feasibility of YOLO-RCNN for real-time 

monitoring in real-world applications.  

The proposed YOLO-RCNN model has been successfully deployed to an edge-computing 

device and validated its real-time inference capability. The developed model is ready to be 

integrated into a UAV or other portable platform for field-monitoring.   
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