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1. SUMMARY 

The urban infrastructure of Columbia, SC features a dense and interwoven network of railways 

and roadways, leading to a high concentration of at-grade railroad crossings. Train movements at 

these intersections frequently cause significant congestion, placing considerable strain on the city’s 

transportation system, which is particularly critical for first responders, potentially undermining 

emergency response effectiveness. 

To address this challenge, this study proposes an intelligent routing decision support system, which 

is designed to dynamically reconfigure emergency vehicle routes when the planned path is 

obstructed by the train at grade crossing. By proactively identifying optimal alternatives, the 

system will minimize delays caused by rail-induced traffic disruptions and enhance the overall 

efficiency of emergency response operations. 

The total delay estimation module employs a Monte Carlo-based joint sampling approach to 

predict the probability density distribution of delay time based on the historical GPS data. The 

estimated delay is then averaged and forwarded to the rerouting module, which determines whether 

rerouting is necessary and provides an optimized alternative path. 

The evaluation results verify that the proposed system is both robust and practically effective. 

Through diverse simulation scenarios, we validate the seamless integration between delay 

estimation and dynamic path planning. Compared to traditional emergency routing strategies, our 

method significantly reduces response time, improves route efficiency, and alleviates traffic 

congestion. In particular, the system achieves up to 79.27% reduction in response time compared 

to wait-and-stop strategies, confirming its operational benefits. These advantages highlight the 

strong potential of our system for deployment in intelligent transportation systems and urban 

railway safety management. 

2. BACKGROUND 

The expansion of urban railway systems has led to the proliferation of grade crossings in cities. 

While essential for connectivity, these crossings frequently disrupt traffic flow, causing severe 

delays during train passages. For first responders, such disruptions can critically hinder emergency 

operations, putting lives and property at risk[1]. These challenges underscore the necessity of 
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intelligent routing systems that can adaptively guide first responders through grade crossings amid 

dynamic and uncertain traffic conditions. 

The current route decision systems are typically composed of the delay time prediction module 

and the decision planning module. The former estimates potential delays caused by train crossings, 

while the latter uses this information to determine the optimal route for first responders. 

Accurately and comprehensively predicting the total traffic delay experienced by first responders 

due to train blockages at grade crossings is fundamental to the effectiveness of the overall decision 

planning system. Existing research on train delay prediction can be broadly categorized into three 

methodological approaches: analytical methods, simulation-based methods, and data-driven 

methods[2]. 

Analytical methods construct simplified mathematical models, using explicit formulas and logical 

reasoning to approximately estimate system behaviors such as train delays or blockage times under 

specific assumptions. Frank[3] proposed a model where trains are assumed to travel at constant 

speeds, with travel times following a uniform distribution, and estimated blockage times at grade 

crossings based on the accumulation of trains when demand exceeds capacity. While this method 

provides a preliminary framework for simplified scenarios, it overlooks dynamic speed variations 

and the potentially skewed distribution of actual travel times. Peterson[4] extended the model by 

incorporating overtaking, speed variability, and priority rules to improve delay estimation accuracy. 

Higgins et al.[5] proposed a model to quantify the expected positive delay for individual passenger 

trains and track segments in urban rail networks. Although these improvements enhanced 

adaptability to basic scheduling rules, they still rely on assumptions of operational regularity. 

Consequently, analytical models struggle to capture the complex, dynamic congestion phenomena 

inherent in modern railway systems. 

Simulation-based methods involve constructing virtual system models to dynamically replicate 

real-world train operations within computational environments, thereby enabling the evaluation of 

train delay characteristics. Peterson et al.[6] and Dessouky et al.[7] developed fine-grained 

simulation approaches that model railway infrastructure and dynamic operational rules to simulate 

delay propagation across various scenarios, including single-track and double-track lines, 

junctions, and terminals. These methods effectively capture both the dynamic behaviors of 



 
 

7 
 

individual trains and the complex interactions among multiple trains. However, simulation models 

inherently rely on extensive computational experiments to approximate delay time distributions. 

As a result, these systems often entail high computational costs, slow processing speeds, and 

significant modeling complexity, while remaining limited to predefined scenarios and lacking the 

flexibility to generate diverse blockage time distributions. 

Data-driven methods utilize large volumes of historical observational data to extract underlying 

patterns through model construction, enabling the prediction of train delays or blockage times. 

These methods can be broadly classified into parametric and non-parametric models[8]. 

Parametric models assume predefined functional forms and focus on estimating model parameters; 

examples include linear regression[9], Bayesian networks[10], and time series models[11]. 

Although structurally simple and computationally efficient, parametric models struggle to capture 

complex nonlinear relationships among variables. To overcome this limitation, non-parametric 

models, which adapt model structures based on data without assuming fixed functional forms, have 

been introduced. Representative approaches such as K-Nearest Neighbors (KNN)[12], Random 

Forests, and Recurrent Neural Networks (RNNs) and their variants like Long Short-Term Memory 

(LSTM) networks[13] have demonstrated strong capabilities in modeling dynamic and nonlinear 

patterns. Nevertheless, traditional data-driven methods remain heavily reliant on historical data 

and often fail to generalize to unseen scenarios, due to their limited ability to generate new data, 

resulting in reduced adaptability under emerging or extreme conditions. 

Moreover, most existing intelligent rerouting systems estimate delay time only based on train 

blockage duration at grade crossings. This oversimplified assumption overlooks other critical 

dynamic factors, often resulting in substantial discrepancies between estimated and actual total 

delay times, thereby undermining the accuracy of route selection and the effectiveness of 

emergency response strategies. 

After delay times are predicted and output, the decision planning module dynamically generates 

optimal routing strategies based on the real-time state of the transportation network, aiming to 

guide first responders efficiently to emergency sites. To this end, transportation networks are 

typically modeled as graphs comprising nodes and edges, with graph search algorithms widely 

employed for path planning[14]. This modeling framework has become a fundamental component 

in intelligent transportation systems. 
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Graph-based path planning methods have been extensively developed, encompassing several 

classical algorithms. Dijkstra’s algorithm[15], one of the earliest and most effective shortest path 

search methods, iteratively expands the node with the smallest tentative distance, guaranteeing the 

optimal path in graphs with non-negative edge weights. The A* algorithm[16] builds upon 

Dijkstra’s approach by introducing heuristic evaluation functions to estimate the cost to the 

destination, thereby accelerating the search process in goal-oriented scenarios. Meanwhile, the 

Bellman-Ford algorithm[17] addresses graphs with arbitrary edge weights through iterative 

relaxation of edges; however, its computational efficiency is considerably lower compared to 

Dijkstra and its variants, particularly in large-scale networks. 

In transportation systems, where road segment weights are typically non-negative and networks 

are large and highly dynamic, Dijkstra’s algorithm has become one of the most widely adopted 

methods due to its high computational efficiency and robust stability. It provides a solid theoretical 

and practical foundation for fast and reliable path generation in urban transportation, navigation 

systems, and emergency response operations. 

Nevertheless, in dynamic environments where train blockages and traffic congestion cause 

frequent changes in edge weights, the traditional Dijkstra algorithm has limited ability to adapt 

quickly to evolving traffic conditions. The label correcting method[18], an extension and variant 

of Dijkstra’s algorithm, addresses this issue by allowing node labels to be updated multiple times 

during the search process, thereby enabling more flexible path adjustments under dynamic 

conditions. This method not only preserves Dijkstra’s reliability for shortest path computation in 

non-negative graphs but also enhances computational efficiency and adaptability through 

optimized relaxation strategies, making it particularly suitable for large-scale dynamic 

transportation networks. 

Overall, the development of an intelligent path decision system specifically designed for first 

responders navigating grade crossing scenarios holds significant practical value. At the same time, 

substantial opportunities remain for improving the design and performance of each core module 

within such systems, which constitutes the primary focus of this research. 
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3. OBJECTIVES 

This work is dedicated to developing a novel intelligent routing system designed to support first 

responders in efficiently navigating scenarios involving railway grade crossings. The primary 

objective is to accurately predict the total delay time caused by train-induced blockages and to 

optimize emergency travel routes, thereby reducing delays in critical response operations. The 

specific contributions of this work are as follows: 

1. A novel joint sampling framework is developed based on the M/M/1 traffic flow model and 

implemented using the Monte Carlo method to estimate the total delay time experienced by 

first responders in railway blockage scenarios. This framework integrates three key time 

distributions: train blockage time, modeled using a VAE-GMM approach; and vehicle arrival 

time and queue clearance time, both modeled with Gamma distributions. By jointly sampling 

from and synthesizing these distributions, the system constructs a probability density 

distribution of total delay time. Sampling and averaging from this distribution further enables 

accurate and robust delay time estimation 

2. Based on the estimated total delay time, this study employs the Label Correcting algorithm to 

optimize the travel paths of first responders when encountering blocked grade crossings to 

effectively reduce response delays in emergency operations. 

4. METHODOLOGY 

4.1  Train GPS Data Analysis 

The historical data set used in this study was provided by CSX Transportation and includes the 

latitude and longitude of railroad grade crossings in the Columbia metropolitan area of South 

Carolina, along with GPS trajectory data from 37 trains operating in the region between July 13 

and July 20, 2020. The GPS data contain detailed information such as timestamps, train and 

locomotive identifiers (Train ID and Loco ID), train lengths, speeds, geographic coordinates, and 

heading directions of individual cars. The grade crossing coordinates were first imported into 

ArcGIS Pro for spatial visualization, enabling an analysis of train trajectory patterns across the 

crossings, as illustrated in Figure 1. 
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Figure 1  Grade Crossings Data in the CSV Dataset 

Subsequently, the longitude and latitude coordinates of train trajectories from the dataset were 

imported into ArcGIS Pro for processing. Based on 29,158 GPS records, the primary distribution 

patterns of train operations were visualized, as shown in Figure 2. The analysis results indicate 

that the train trajectories can be categorized into six typical patterns, with the proportions of each 

pattern being: (a) 15.3%, (b) 10.9%, (c) 5.6%, (d) 7.9%, (e) 34.2%, and (f) 18.7%, respectively. 

(Note: For security reasons, specific train identifiers and their corresponding travel routes are not 

disclosed in this study.) 

   
Northwest–South Southeast Southwest–Northeast 
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Northwest Northwest–Southeast South 

Figure 2  Train Trajectories in the CSX Dataset 
The original dataset includes train length information for 37 different trains. Figure 3 presents a 

scatter plot of these lengths, with red points highlighting the maximum length observed for each 

train.  

 
Figure 3  Scatter Plot of Train Length 

Table 1 summarizes the statistical characteristics of the train lengths, which range from 40 feet  to 

17,028 feet. The average train length is 5,719 feet, with a standard deviation of 3,773 feet. 

 

Table 1 Descriptive Statistics of Train Length 

Index Value(m) 
Mean 1743.22 

Standard Deviation 1150.06 
Min 12.19 

25 % Quantiles 914.40 
Median 1660.55 

75 % Quantiles 2749.91 
Max 5190.13 

Figures 4 and 5 respectively present the scatter plot and histogram of instantaneous speeds based 

on the 29,158 GPS records, illustrating the variations across different time points and train cars.  
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Figure 4  Scatter Plot of Instantaneous Speed 

In the scatter plot of instantaneous train speeds, the red line indicates the overall average speed 

across all recorded data points, calculated to be approximately 13.83 meters per second.  

 

Figure 5  Histogram of Train Instantaneous Speed Distribution 

As shown in Figure 5, instantaneous train speeds range from 0 to 73 meters per second. The 

distribution exhibits a right-skewed pattern, with most speeds concentrated between 0 and 30 

meters per second, and a pronounced peak around 5 meters per second. Several secondary peaks 

appear between 10 and 20 meters per second, suggesting that trains generally operate at lower 

speeds within the Columbia metropolitan area. Additionally, a smaller cluster of speeds is observed 

between 45 and 55 meters per second, potentially corresponding to specific trains maintaining 

higher velocities along certain urban segments. 
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4.2  Blockage Time Estimation 

To accurately estimate blockage windows at railway crossings, the initial step is identifying the 

critical GPS data point on the train trajectory near the crossing location. To achieve this, each 

train’s trajectory data is first imported into ArcGIS software for spatial visualization, enabling 

precise determination of the relative positions between trajectory points and the railway crossing. 

Specifically, given the railway crossing coordinates as ( )C CC x , y  a spatial search region is defined 

as a circle with an initial radius a. The mathematical formulation of this search region Ω is 

expressed as: 

 ( ) ( ) ( ){ }2 2
c cx, y  | x x y y aΩ = − + − ≤  (1) 

Within the defined region Ω, it is necessary to verify the positional relationship between the GPS 

trajectory data points and the railway crossing, specifically determining whether each data point 

lies along the train's movement direction towards the crossing. To accomplish this, pairs of 

consecutive trajectory points, denoted as ( )i i iP x , y  and ( )1 1 1i i iP x , y+ + + , are analyzed sequentially. From 

these points, we define the train’s traveling direction vector iV


: 

 ( )1 1i i i i iV x x , y y+ += − −


 (2) 

Simultaneously, the position vector from trajectory point iP  to the crossing location ( )C CC x , y  is 

formulated as vector iU


: 

 ( )i C i C iU x x , y y= − −


 (3) 

The positional relationship of each trajectory point relative to the crossing is then assessed by 

calculating the dot product of these two vectors. The decision criterion is defined as: 

If 0i iV U⋅ >
 

, then trajectory point iP  is approaching the railway crossing along the travel direction.  

Among all the trajectory points within region Ω satisfying the above criterion, the closest point to 

the railway crossing is selected as the critical GPS point and labeled as AP . 
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If no suitable trajectory point can be found within the initial search radius r, the radius is 

dynamically adjusted by incrementally enlarging its size until at least one eligible trajectory data 

point is located. This dynamic radius adjustment mechanism can be mathematically defined as 

follows: 

 1 0 1 2k kr r r ,  k , , , + = + ∆ =   (4) 

Here, 0r  denotes the initial radius, and the incremental value r∆  is typically set at 10 m. The above 

iterative process continues until a suitable GPS data point is found. Once the critical GPS data 

point AP  is identified, further blockage time estimation procedures at railway crossings can be 

subsequently conducted based on this established reference point. 

After determining the critical GPS point AP  on the train trajectory approaching the railway 

crossing, the subsequent step is to identify the GPS point closest to the train's position when it has 

fully traversed the crossing. To achieve this, we initiate the calculation from the railway crossing 

( )C CC x , y , with the initial reference point set at AP , the closest GPS trajectory point approaching 

the crossing. 

The initial distance between the railway crossing C and the trajectory point AP  , denoted as 0d is 

calculated using the Haversine formula: 

 ( ) ( )2 2
0 2

2 2
A C A C

A Cd R arcsin sin cos cos sinϕ ϕ λ λϕ ϕ
 − −   = +    

    
 (5) 

Where R is earth’s radius and (𝜑𝜑𝐴𝐴, 𝜆𝜆𝐴𝐴) and (𝜑𝜑𝐶𝐶 , 𝜆𝜆𝐶𝐶) represent latitude and longitude of points 𝑃𝑃𝐴𝐴 

and C, respectively, converted into radians. 

Then, starting from point 𝑃𝑃𝐴𝐴 and along the train’s traveling direction, we continuously accumulate 

distances between consecutive GPS data points: 

 ( )

1

0 1

n

cum j , j
j A

D d d
−

+
=

= +∑  (6) 

Here, the distance between consecutive points 𝑃𝑃𝑗𝑗 and 𝑃𝑃𝑗𝑗+1 is similarly calculated using the 

Haversine formula. 
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The accumulation continues until the cumulative distance 𝐷𝐷𝑐𝑐𝑐𝑐𝑐𝑐 approximates the train’s total 

length 𝑙𝑙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡: 

 cum trainD l≈  (7) 

Upon satisfying this condition, we record the GPS data point 𝑃𝑃𝐵𝐵 and its timestamp 𝑡𝑡𝐵𝐵. The 

timestamp of the initial critical GPS point 𝑃𝑃𝐴𝐴 is denoted as 𝑡𝑡𝐴𝐴. 

Next, we calculate the time interval Δt between timestamps 𝑡𝑡𝐴𝐴 and 𝑡𝑡𝐵𝐵: 

 B At t t∆ = −  (8) 

Then, based on cumulative distance 𝐷𝐷𝑐𝑐𝑐𝑐𝑐𝑐 and time interval Δt, we determine the average speed  

𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎 during the train's crossing: 

 cum
avg

Dv
t

=
∆

 (9) 

Finally, using train length 𝑙𝑙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and calculated average speed 𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎, the precise blockage time 

𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 for the railway crossing can be estimated as: 

 train
blockage

avg

lT
v

=  (10) 

4.3  Blockage Time Result 

Based on the GPS trajectory data and the proposed methodology, a total of 1,125 valid blockage 

time instances were identified. The 24-hour day was divided into hourly intervals, and blockage 

times were statistically analyzed within each interval. To capture the temporal variations in 

blockage durations, Gaussian Kernel Density Estimation (KDE) was applied to smoothly fit the 

blockage time distributions for each hour. The resulting density curves are shown in figure 6. 
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(a) Blockage Time Density  

(Hour 00:00–04:00) 
(b) Blockage Time Density  

(Hour 04:00–08:00) 
(c) Blockage Time Density  

(Hour 08:00–12:00) 

   
(d) Blockage Time Density  

(Hour 12:00–16:00) 
(e) Blockage Time Density  

(Hour 16:00–20:00) 
(f) Blockage Time Density  

(Hour 20:00–24:00) 
 

Figure 6  Blockage Time Density Distribution 

4.4  Joint Sampling Module 

4.4.1 Blockage Time Distribution 

Blockage times at railway crossings often exhibit complex, multimodal distributions. However, 

due to practical limitations in data collection, historical blockage time data frequently contain 

sparsely populated or missing regions. Traditional single-distribution models, such as the normal 

distribution, are inadequate for capturing such intricacies. While non-parametric methods like 

Kernel Density Estimation (KDE) can fit observed data directly, they are susceptible to substantial 

bias in data-sparse regions, limiting their generalizability. 

To address these challenges, this study adopts a generative modeling approach that combines 

Variational Autoencoders (VAE) with Gaussian Mixture Models (GMM), referred to as VAE-

GMM. This framework is designed to capture multimodal characteristics and mitigate sampling 

bias inherent in sparse datasets. The VAE is a probabilistic generative model rooted in machine 

learning that teaches a latent variable distribution to effectively encode and reconstruct input data. 

Specifically, the encoder maps input data x to a continuous latent space to obtain representations 
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z, which are then decoded back into the original space. The objective of the VAE is to maximize 

the Evidence Lower Bound (ELBO), defined as follows: 

𝓛𝓛𝑉𝑉𝑉𝑉𝑉𝑉(𝜙𝜙, 𝜃𝜃 ) = 𝔼𝔼𝑞𝑞𝜙𝜙(𝒛𝒛 ∣ 𝒙𝒙)[𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝𝜃𝜃(x | z)] − KL (𝑞𝑞𝜙𝜙(z ∣ x) ||  p(z)) (11) 

where 𝜙𝜙 and 𝜃𝜃 represent parameters of the encoder and decoder networks, respectively, 𝑞𝑞𝜙𝜙(z ∣ x) 

is the approximate posterior distribution, 𝑝𝑝𝜃𝜃(x | z) is the likelihood function defined by the decoder, 

and KL denotes the Kullback–Leibler divergence. Optimizing this function enables VAE to learn 

the underlying distribution and generate new samples. 

The Gaussian Mixture Model (GMM) is a powerful probabilistic approach capable of precisely 

modeling multimodal distributions through a linear combination of multiple weighted Gaussian 

distributions: 

p(x) = ∑ 𝜋𝜋𝑘𝑘
𝐾𝐾
𝑘𝑘=1 𝓝𝓝 (x | µ𝑘𝑘,∑ 𝑘𝑘), where ∑ 𝜋𝜋𝑘𝑘

𝐾𝐾
𝑘𝑘=1  = 1 (12) 

In this formulation, K denotes the number of Gaussian components, and 𝜋𝜋𝑘𝑘, µ𝑘𝑘, and ∑ 𝑘𝑘 represent 

the weights, means, and covariance matrices of the k-th component, respectively. 

By integrating GMM with VAE, specifically setting GMM as a prior distribution for latent 

variables allows VAE to effectively capture complex nonlinear data structures and explicitly 

model multiple peaks in blockage time distributions.  

4.4.2 VAE-GMM Sampling Result 

In this experiment, the blockage time data computed in Section 4.2 were used as the input for 

training the VAE-GMM model.  

  
(a) Sampled Data Distribution 

(0:00-12:00) 
(b) Sampled Data Distribution 

(12:00-0:00) 

Figure 7  VAE-GMM Sampled Data Distribution 
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The dataset was split into 70% for training and 30% for validation. For experimental design, the 

24-hour day was divided into two time periods: 00:00–12:00 and 12:00–24:00. The blockage time 

data within each period were modeled and analyzed separately. 

Figures 7 (a) and (b) illustrate the original blockage time distributions for two different time 

periods. In each figure, the blue histogram represents the distribution of the original dataset, while 

the red histogram shows the corresponding samples generated by the VAE-GMM model. As 

shown in the figures, the original data exhibits typical multimodal structures and long-tail 

characteristics. In particular, the early hours contain dense clusters of blockage events, while the 

later periods feature sparse and more oscillatory patterns. 

The VAE-GMM model successfully captures the peak density characteristics in both time periods 

and demonstrates strong generalization in the tail regions. More importantly, the model not only 

preserves the statistical properties of the original data but also generates statistically reasonable 

new samples that do not exist in the original dataset. This enables the model to effectively fill in 

gaps in the data space, particularly in low-frequency regions. 

4.4.3 Arrival Time Distribution 

In most existing studies on delay estimation, researchers tend to consider only the delay caused by 

train blockages at railway crossings, assuming that first responders are always affected for the full 

duration of the blockage. However, this approach is often incomplete and may lead to 

overestimation of the actual impact on emergency response times. In real-world scenarios, a queue 

of vehicles typically forms upstream of the crossing once it is blocked by a train. This means that 

if a first responder arrives at the crossing sufficiently after the blockage has begun, they may not 

need to wait for the entire blockage duration. Consequently, this introduces variability into the 

rerouting process. 

To address this limitation, the present study incorporates vehicle arrival time into the estimation 

of total delay time, enabling a more comprehensive and accurate modeling of delays experienced 

by first responders. 

In the field of traffic flow modeling, the M/M/1 queuing model is widely used to characterize the 

statistical properties of vehicle arrival and queuing behavior. The first "M" denotes that vehicle 

arrivals follow a Markovian Poisson process, meaning the number of vehicle arrivals in any given 

time interval follows a Poisson distribution, and the inter-arrival times follow an exponential 
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distribution. The second "M" indicates that the service time, such as the time required for a vehicle 

to pass through a control point like a toll booth or a grade crossing, also follows an exponential 

distribution. The "1" signifies that there is a single service channel in the system. 

This model effectively captures the sequential arrival pattern of vehicles ahead of a first responder 

when a railway crossing is blocked by a passing train. 

 ( ) λλ −= ≥,   0t
Tf t e t   (13) 

In the equation, λ represents the average vehicle arrival rate, and its reciprocal 1 / λ denotes the 

mean inter-arrival time. 

Given that the inter-arrival times between consecutive vehicles follow an exponential distribution, 

our interest lies in the total time required for the arrival of the n-th vehicle. This total time, denoted 

as 𝑆𝑆𝑛𝑛 = ∑ 𝑇𝑇𝑖𝑖
𝑛𝑛
𝑖𝑖=1 , represents the sum of independent exponentially distributed intervals starting from 

the first vehicle. According to properties in probability theory, the sum 𝑆𝑆𝑛𝑛  follows a Gamma 

distribution with shape parameter n and rate parameter λ. Its probability density function is given 

by: 
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   (14) 

Based on this probability density function, we can model the arrival time of any individual vehicle 

within the waiting queue when a train blocks the railway crossing. 

4.4.4 Arrival Time Distribution Results 

When constructing the Gamma distribution to model cumulative vehicle arrival times, one of the 

key parameters is the average vehicle arrival rate λ. In this study, a data-driven approach is adopted 

to estimate this parameter. Specifically, field data collected at the Catawba Street railway crossing 

are used to analyze the relationship between blockage duration and the corresponding queue length. 

The number of vehicle arrivals associated with various blockage durations in the dataset is 

illustrated in figure 8. 
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Figure 8  Average Number of Waiting of Vehicles During Blockage Time 

In this study, we focus on the global average arrival rate λ, which represents the average number 

of vehicles arriving per unit time across all blockage events. Specifically, let 𝑁𝑁𝑖𝑖 denote the number 

of vehicles observed during the i-th blockage event, and 𝑇𝑇𝑖𝑖 the corresponding blockage duration. 

The global average arrival rate can then be defined as: 

 λ =

=

=
∑

∑
1

1

n

i
i

n

i
i

N

T
 (15) 

By computing the global average arrival rate, we avoid the local fluctuations introduced by 

modeling each blockage event individually, allowing for a more consistent representation of the 

overall vehicle arrival intensity within the system. Once the global average arrival rate λ is obtained, 

it is incorporated into the Gamma distribution to model the probability density of arrival times for 

different vehicles within a blockage queue. To demonstrate the applicability and expressiveness 

of this modeling approach, we plotted the Gamma probability density curves corresponding to 

different vehicle counts under varying blockage durations. 
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(a) Arrival Time Gamma Distributions (Blockage Time = 1406.23 s,  k= 1∼55) 

 
(b) Arrival Time Gamma Distributions (Blockage Time = 145.91 s, k = 1∼17) 

Figure 9  Arrival Time Distributions 

Figure 9 (a) and (b) illustrate the cumulative vehicle arrival time distributions constructed using 

Gamma distributions under two different blockage durations. Each curve represents the arrival 

time distribution of the k-th vehicle within the queue during the blockage period. The maximum 

number of vehicles that can be modeled depends on the product of the blockage duration and the 

average arrival rate. 

For longer blockage durations, for example, 1,406.23 seconds in the figure 4.9(a), the system can 

model arrival distributions for up to k = 55 vehicles. In contrast, for shorter blockage durations 

such as 145.91 seconds in figure 4.9(b), the model can only capture the arrival patterns for the first 
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k = 17 vehicles. Vehicles beyond this threshold are assumed to arrive after the blockage window 

has ended and, therefore, are not subject to delay caused by the train. 

4.4.5 Clearance Time Distribution 

In railway grade crossing scenarios, the passage of a train marks the end of the physical obstruction, 

but not the full recovery of the traffic system. The queue of vehicles formed during the blockage 

requires additional time to dissipate after the crossing reopens, as traffic flow gradually returns to 

normal. This recovery process, beginning with the movement of the first vehicle at the front of the 

queue and ending with the last vehicle clearing the crossing, is referred to as clearance time. 

Omitting clearance time from total delay modeling leads to systematic underestimation of actual 

delays, which can misguide routing decisions and result in suboptimal path choices for first 

responders. 

In the M/M/1 queuing model, clearance time corresponds to the service phase. During the train’s 

occupation of the crossing, traffic flow is interrupted, and vehicles continue to arrive, forming a 

queue. Once the crossing reopens, vehicles begin to pass through the bottleneck at a certain rate, 

initiating the service phase as the queue gradually dissipates. 

In this phase, it is assumed that the time intervals between the departures of consecutive vehicles 

follow an exponential distribution. By summing these exponential intervals, a Gamma distribution 

is obtained, representing the probability density of the clearance time for the first n vehicles. In 

this context, the rate parameter λ of the Gamma distribution corresponds to the service rate, 

indicating the number of vehicles passing through the crossing per unit time. 

4.4.6 Clearance Time Distribution Results 

To compute the global average service rate λ, we rely on field data collected at the Catawba Street 

railway crossing. This dataset not only records the number of vehicles queued during each 

blockage event, but also captures the time required for all queued vehicles to clear the crossing 

from the moment the crossing gate is raised to the passage of the last vehicle. 
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y = 1.8430x

 
Figure 10  Relationship Between the Number of Waiting Vehicles and Clearance Time 

In figure 10, the orange triangle markers in the figure represent the observed discrete relationship 

between the number of queued vehicles and the corresponding clearance time during historical 

blockage events. To quantify this relationship, a linear regression model constrained to pass 

through the origin was applied to all observed data points. The resulting best-fit line is y = 1.8430x, 

where x denotes the number of vehicles waiting and y the corresponding clearance time. The 

coefficient of determination 𝑅𝑅2 = 0.8884 indicates that the linear model effectively captures the 

overall trend between vehicle count and clearance time. 

The slope parameter a = 1.843 can be interpreted as the average clearance time per vehicle. Its 

reciprocal yields the service rate, λ ≈ 0.5426 vehicles per second. By incorporating this service rate 

into the Gamma distribution, we derive the probability density curves of clearance time for 

individual vehicles at different queue positions k, as shown in figure 11. 



 
 

24 
 

 
Figure 11  Clearance Time Gamma Distributions (k = 1∼10) 

To illustrate the modeling performance, the figure presents the clearance time probability density 

curves for a queue of 10 vehicles, covering vehicles from position 1 to 10. It is important to note, 

however, that this modeling approach is highly scalable. Regardless of the actual queue length, the 

corresponding clearance time distributions can be generated using the global service rate λ, 

enabling fine-grained temporal estimates for congestion dissipation under varying traffic 

conditions. 

4.4.7 Joint Sampling Model Results 

Based on the distributions described above, we first sample blockage times at railway crossings 

using the trained Variational Autoencoder–Gaussian Mixture Model (VAE-GMM), conditioned 

on the train's traversal time. To ensure the validity of the sampled data, only those samples falling 

within the 95% confidence interval of the learned blockage time distribution are retained. 

For each sampled blockage time, Gamma distribution models are then constructed to represent the 

arrival time and clearance time of vehicles, depending on their position within the queue. Using 

Monte Carlo simulation, sets of samples are drawn from these distributions. Based on these 

samples, the total delay time is computed using the following formulation: 

= − +ot      T al Delay Time Blockage Time Arrival Time Clearance Time  (16) 

A large set of total delay time samples is generated and fitted using Gaussian Kernel Density 

Estimation (GKDE) to obtain a smooth probability distribution. To mitigate the impact of 



 
 

25 
 

individual sample variability, samples are drawn from the fitted curve and average, improving the 

robustness and reliability of the delay estimation. 

In the first case, we assume that the train arrives at the railway crossing between 12:00 a.m. and 

12:00 p.m. The sampled blockage time in this case is 343.2495 seconds. We then set the number 

of Monte Carlo samples for both the arrival time and clearance time distributions to 1000. The first 

responder is assumed to be positioned within the queue at k = 1 to 10. The resulting total delay 

time distribution is shown as follows: 

  
(a) Total Delay Time Distributions (k = 1~5) (b) Total Delay Time Distributions (k = 6~10) 

Figure 12  Total Delay Time Distributions 

As shown in Figure 12(a), vehicles positioned at the front of the queue exhibit peak total delay 

times concentrated between 280 and 320 seconds, with k = 5 showing the most pronounced peak. 

This indicates that these vehicles were stopped early during the blockage, resulting in longer and 

more concentrated delays. In contrast, vehicles in positions k = 6 to 10 experienced significantly 

shorter delays, with peaks generally between 180 and 270 seconds and flatter distributions. Overall, 

the closer a vehicle arrives to the end of the blockage period, the less delay it tends to experience. 

In the second case, we assume that the train arrives at the railway crossing between 1:00 p.m. and 

midnight. The sampled blockage time in this case is 878.8104 seconds. As in the previous scenario, 

we draw 1000 samples from the arrival time and clearance time distributions. The first responder 

is assumed to be positioned within the queue at k = 11 to 20. The resulting total delay time 

distribution is shown as follows: 
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(a) Total Delay Time Distributions (k = 11~15) (b) Total Delay Time Distributions (k = 16~20) 

Figure 13  Total Delay Time Distributions 

Figure 13(a) and (b) illustrate the total delay time distributions for vehicles positioned at k = 11 to 

20 when the blockage duration extends to 878.81 seconds. Compared to the previous case, where 

the blockage lasted 343.25 seconds, the distribution peaks have noticeably shifted to the right, 

mostly falling between 540 and 700 seconds. This shift reflects the overall increase in waiting time 

caused by the longer blockage duration. 

4.5  Route Planning for First Responder at Grade Crossing 

In emergency response systems, the path planning algorithm plays a central role. By receiving the 

total delay time estimated from the joint sampling module, it identifies the shortest path within the 

road network from the responder’s current location to the emergency site, aiming to minimize 

response time and enhance rescue efficiency. 

The presence of railway blockages introduces inherently unpredictable delays, posing significant 

challenges for conventional shortest path algorithms that assume static edge weights. These 

traditional methods often lack the adaptability required to respond to dynamic traffic disruptions, 

thereby limiting their effectiveness in time-sensitive emergency response scenarios. In contrast, 

the Label Correcting algorithm, grounded in dynamic programming theory, exhibits strong 

flexibility in accommodating time-varying and context-dependent edge costs. As such, it is 

particularly well-suited for routing problems under uncertainty, such as those induced by stochastic 

train-induced obstructions at grade crossings. 

We begin by considering a directed graph G = (V, A), where V denotes the set of nodes and A ⊆ V 

× V represents the set of directed edges. For any edge (i, j) ∈ A (i, j), if the corresponding road 

segment intersects a railway grade crossing, the joint sampling model is employed to estimate the 
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total delay time experienced by vehicles traversing that segment. This process yields a set of delay 

samples {𝑑𝑑𝑖𝑖𝑖𝑖
(1), 𝑑𝑑𝑖𝑖𝑖𝑖

(2), 𝑑𝑑𝑖𝑖𝑖𝑖
(3), …, 𝑑𝑑𝑖𝑖𝑖𝑖

(𝑛𝑛)}. 

To mitigate the influence of outliers and stochastic fluctuations in single samples, the mean of 

these delay samples ˆ
ijD is computed and used as the predicted delay cost for edge (i, j). This 

averaging process improves the stability and reliability of path cost estimation under uncertainty. 

Accordingly, the total travel cost of a path segment can be redefined as: 

𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑡𝑡𝑖𝑖𝑖𝑖 + ˆ
ijD  (17) 

𝑡𝑡𝑖𝑖𝑖𝑖 is the baseline travel time from node i to node j; ˆ
ijD is the estimated railway-induced delay on 

edge (i, j), obtained from the output of the joint sampling model. 

The algorithm begins by initializing the path cost label d(v) for all nodes v ∈ V to infinity, except 

for the source node r, which is assigned a label of zero. A candidate node queue Q is then initialized, 

containing only the source node. 

During the path search process, the algorithm repeatedly extracts the current node u from the queue 

and examines all its adjacent edges (u, v). If the cost of reaching node v via node u, computed as 

d(u)+ 𝐶𝐶𝑢𝑢𝑢𝑢, is less than the currently recorded label d(v), then d(v) is updated accordingly. Node v 

is then added to the queue if it is not already present. 

This iterative process continues until no further updates occur and the queue becomes empty. 

Through this label updating mechanism, the algorithm progressively converges to the shortest path 

solution while allowing for flexible adjustments to path costs in environments with dynamically 

changing edge weights.  

To further formalize the path search as an optimization problem, we introduce a binary decision 

variable 𝑥𝑥𝑖𝑖𝑖𝑖
𝑟𝑟𝑟𝑟∈{0, 1}, which indicates whether edge (i, j) is included in the path from source node r 

to destination node s. The objective is to minimize the total path cost, defined as: 
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where 𝐶𝐶𝑖𝑖𝑖𝑖 represents the composite travel cost on edge (i, j), incorporating both baseline travel 

time and estimated railway-induced delay. 

To ensure both path connectivity and uniqueness, the following flow balance constraints must be 

satisfied: 
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This constraint guarantees that there is a single directed path from the source node r to the 

destination node s, with continuous flow through intermediate nodes. 

Additionally, the decision variable is defined as: 
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x
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

  (20) 

In summary, by integrating the enhanced Label Correcting path planning module with the total 

delay time estimation module, an optimized routing system is established. This system enables 

first responders to identify the most efficient path to their destination while accounting for delays 

caused by train-induced blockages at railway grade crossings. 

4.6   Route Optimization at Grade Crossing Results 

In this section, we present the results of our intelligent route optimization system for emergency 

response in downtown Columbia, South Carolina. Specifically, we examine how the system 

dynamically replans optimal paths when railway level crossings along the initially planned route 

are blocked by passing trains, comparing scenarios where emergency calls occur in the morning 

versus the afternoon. 

For instance, consider an emergency call occurring at 10:02 AM, during which a train has already 

departed from the southeastern area and is making a turn through the triangular railway network 

in downtown Columbia, heading southwest. In this scenario, the emergency occurs near a 

residential building on Catawba Street, while the nearest available police unit is located on 

Heyward Street. Our system first generates an initial shortest-time path for the responder to reach 

the caller. The planned route is illustrated in the figure below. 
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Figure 14  Initial Route Planning for Scenario 1 

In the figure 14, the dark green trajectory represents the planned route of the train, while the yellow 

dot indicates the current location of the police officer, and the red dot marks the location of the 

emergency call. Green points represent intersections along the initially planned route, and red 

triangles denote level crossings that the train is expected to pass through. The black line 

corresponds to the initially generated route, with an estimated travel time of 2.46 minutes. 

Notably, as the police officer proceeds along Whaley Street, it becomes evident that the route 

intersects with a level crossing at risk of being blocked by the oncoming train. This potential 

conflict necessitates dynamic path replanning to avoid unnecessary delays and ensure timely 

arrival at the emergency site. 

We assume that as the officer proceeds along Whaley Street, they observe the train already passing 

through the level crossing, with 13 vehicles queuing ahead, indicating that the train did not just 

begin crossing but is already well into the blockage period. At this point, our decision-support 

system activates the Total Delay Time Estimation module, which models the potential delay 

introduced by the train as a probabilistic distribution. By performing Monte Carlo sampling and 

averaging the results, the system estimates the expected delay at this crossing to be approximately 

8.93 minutes. 
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Consequently, if the officer were to continue along the originally planned route, the estimated 

arrival time would increase from 2.46 minutes to a total of 11.39 minutes, which is clearly 

unacceptable for an emergency response scenario. Therefore, the system initiates a real-time route 

replanning process to avoid the obstructed crossing. The newly optimized path is illustrated in the 

figure below. 

 
Figure 15  Route Replanning for Scenario 1 

In figure 15, the bold purple line represents the replanned route. This new path directs the police 

vehicle to make a left turn at the intersection and proceed along Catawba Street. Although this 

alternative route also involves crossing a level crossing, the train has not yet arrived at that location, 

allowing uninterrupted passage. The total estimated travel time for the newly optimized route is 

2.36 minutes. Compared to the 11.39 minutes required if the officer were to remain stationary and 

wait at the already-blocked Whaley Street crossing, the replanned route achieves a time saving of 

approximately 79.27%. 

In the second scenario, we consider an emergency call occurring at 9:14 PM. At this moment, the 

police officer is patrolling a residential area near Gist Street, while the emergency is reported at 

the intersection of Richland Street and Assembly Street in downtown Columbia. The officer must 

immediately proceed to the incident location. Simultaneously, a train is traveling from the 

northwest corner of the city toward the southern direction. 
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Figure 16  Initial Route Planning for Scenario 2 

We assume that the officer makes a right turn from Gist Street onto Laurel Street, where the train 

is observed to be passing through a level crossing. Due to the late evening hours, traffic is relatively 

light, with only two vehicles queued ahead. At this point, our route optimization system is activated. 

The Total Delay Time Estimation module, based on the joint sampling model, estimates the 

expected delay caused by the train to be approximately 2.56 minutes. This information is then 

passed to the route replanning module, which compares the projected delay of continuing along 

the current route with the travel time of potential alternative paths. 

As illustrated in figure 17, the total delay time in this scenario is relatively short. This is likely 

because, by the time the officer observed the blocked level crossing on Laurel Street, the train was 

already nearing the end of its passage, thereby minimizing the duration of the blockage. 

Additionally, the light evening traffic, with only two vehicles ahead, resulted in a relatively short 

clearance time. The bold dark purple line represents the newly replanned route. Notably, the route 

planner did not choose the initially shorter path via the level crossing on Taylor Street, which may 

have also been blocked by the same train. Instead, the system selected a more distant alternative 

via Hampton Street. 
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Figure 17  Route Replanning for Scenario 2 

Although this detour results in a slightly longer travel time of 3.76 minutes, it still offers a time 

saving of 1.94 minutes compared to waiting at the blocked crossing. A comparison of the two 

routing options is summarized in table 2. 

Table 2 Summary of Comparison of Path Choosing Strategies 

 Initial Path Time 
Cost(min) 

Estimated Total 
Delay Time(min) 

Stop-and-Wait Strategy 
Time Cost(min) 

Reroute Path Strategy 
Time Cost(min) 

Scenario 1 2.46 8.93 11.39 2.36 
Scenario 2 3.14 2.56 5.7 3.76 

 

5 CONCLUSIONS 

This study develops an intelligent path optimization system tailored for emergency response 

scenarios at railway level crossings. By integrating a joint probabilistic delay estimation model 

with a dynamic label correcting path search algorithm, the system effectively addresses the 

uncertainty caused by train-induced blockages. Unlike conventional models that consider only 

train occupancy time, this system further incorporates vehicle arrival and clearance time modeling, 

enabling a more realistic estimation of the total delay time, which is then used as the cost function 

in path planning. 
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In a case study set in Columbia, South Carolina, the system demonstrates its ability to dynamically 

detect blocked paths and replan routes in real time, significantly improving emergency response 

efficiency. In two representative emergency scenarios, the system reduces response time by up to 

79.27% compared to the traditional "stop-and-wait" strategy, showcasing its strong delay-

awareness and path optimization capability. 

Despite its promising application potential, the current system assumes an ideal traffic 

environment, without accounting for more complex dynamic factors such as traffic signals or road 

closures. Future research could incorporate real-time traffic data and multi-source environmental 

constraints to enhance the practical adaptability of the route planning results. Overall, this study 

provides both a theoretical foundation and a technical pathway for developing more efficient and 

reliable urban emergency response support systems. 
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