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1. SUMMARY

The urban infrastructure of Columbia, SC features a dense and interwoven network of railways
and roadways, leading to a high concentration of at-grade railroad crossings. Train movements at
these intersections frequently cause significant congestion, placing considerable strain on the city’s
transportation system, which is particularly critical for first responders, potentially undermining
emergency response effectiveness.

To address this challenge, this study proposes an intelligent routing decision support system, which
is designed to dynamically reconfigure emergency vehicle routes when the planned path is
obstructed by the train at grade crossing. By proactively identifying optimal alternatives, the
system will minimize delays caused by rail-induced traffic disruptions and enhance the overall
efficiency of emergency response operations.

The total delay estimation module employs a Monte Carlo-based joint sampling approach to
predict the probability density distribution of delay time based on the historical GPS data. The
estimated delay is then averaged and forwarded to the rerouting module, which determines whether
rerouting is necessary and provides an optimized alternative path.

The evaluation results verify that the proposed system is both robust and practically effective.
Through diverse simulation scenarios, we validate the seamless integration between delay
estimation and dynamic path planning. Compared to traditional emergency routing strategies, our
method significantly reduces response time, improves route efficiency, and alleviates traffic
congestion. In particular, the system achieves up to 79.27% reduction in response time compared
to wait-and-stop strategies, confirming its operational benefits. These advantages highlight the
strong potential of our system for deployment in intelligent transportation systems and urban

railway safety management.
2. BACKGROUND

The expansion of urban railway systems has led to the proliferation of grade crossings in cities.
While essential for connectivity, these crossings frequently disrupt traffic flow, causing severe
delays during train passages. For first responders, such disruptions can critically hinder emergency

operations, putting lives and property at risk[1]. These challenges underscore the necessity of



intelligent routing systems that can adaptively guide first responders through grade crossings amid

dynamic and uncertain traffic conditions.

The current route decision systems are typically composed of the delay time prediction module
and the decision planning module. The former estimates potential delays caused by train crossings,

while the latter uses this information to determine the optimal route for first responders.

Accurately and comprehensively predicting the total traffic delay experienced by first responders
due to train blockages at grade crossings is fundamental to the effectiveness of the overall decision
planning system. Existing research on train delay prediction can be broadly categorized into three
methodological approaches: analytical methods, simulation-based methods, and data-driven

methods[2].

Analytical methods construct simplified mathematical models, using explicit formulas and logical
reasoning to approximately estimate system behaviors such as train delays or blockage times under
specific assumptions. Frank[3] proposed a model where trains are assumed to travel at constant
speeds, with travel times following a uniform distribution, and estimated blockage times at grade
crossings based on the accumulation of trains when demand exceeds capacity. While this method
provides a preliminary framework for simplified scenarios, it overlooks dynamic speed variations
and the potentially skewed distribution of actual travel times. Peterson[4] extended the model by
incorporating overtaking, speed variability, and priority rules to improve delay estimation accuracy.
Higgins et al.[5] proposed a model to quantify the expected positive delay for individual passenger
trains and track segments in urban rail networks. Although these improvements enhanced
adaptability to basic scheduling rules, they still rely on assumptions of operational regularity.
Consequently, analytical models struggle to capture the complex, dynamic congestion phenomena

inherent in modern railway systems.

Simulation-based methods involve constructing virtual system models to dynamically replicate
real-world train operations within computational environments, thereby enabling the evaluation of
train delay characteristics. Peterson et al.[6] and Dessouky et al.[7] developed fine-grained
simulation approaches that model railway infrastructure and dynamic operational rules to simulate
delay propagation across various scenarios, including single-track and double-track lines,

junctions, and terminals. These methods effectively capture both the dynamic behaviors of



individual trains and the complex interactions among multiple trains. However, simulation models
inherently rely on extensive computational experiments to approximate delay time distributions.
As a result, these systems often entail high computational costs, slow processing speeds, and
significant modeling complexity, while remaining limited to predefined scenarios and lacking the

flexibility to generate diverse blockage time distributions.

Data-driven methods utilize large volumes of historical observational data to extract underlying
patterns through model construction, enabling the prediction of train delays or blockage times.
These methods can be broadly classified into parametric and non-parametric models[8].
Parametric models assume predefined functional forms and focus on estimating model parameters;
examples include linear regression[9], Bayesian networks[10], and time series models[11].
Although structurally simple and computationally efficient, parametric models struggle to capture
complex nonlinear relationships among variables. To overcome this limitation, non-parametric
models, which adapt model structures based on data without assuming fixed functional forms, have
been introduced. Representative approaches such as K-Nearest Neighbors (KNN)[12], Random
Forests, and Recurrent Neural Networks (RNNs) and their variants like Long Short-Term Memory
(LSTM) networks[13] have demonstrated strong capabilities in modeling dynamic and nonlinear
patterns. Nevertheless, traditional data-driven methods remain heavily reliant on historical data
and often fail to generalize to unseen scenarios, due to their limited ability to generate new data,

resulting in reduced adaptability under emerging or extreme conditions.

Moreover, most existing intelligent rerouting systems estimate delay time only based on train
blockage duration at grade crossings. This oversimplified assumption overlooks other critical
dynamic factors, often resulting in substantial discrepancies between estimated and actual total
delay times, thereby undermining the accuracy of route selection and the effectiveness of

emergency response strategies.

After delay times are predicted and output, the decision planning module dynamically generates
optimal routing strategies based on the real-time state of the transportation network, aiming to
guide first responders efficiently to emergency sites. To this end, transportation networks are
typically modeled as graphs comprising nodes and edges, with graph search algorithms widely
employed for path planning[14]. This modeling framework has become a fundamental component

in intelligent transportation systems.



Graph-based path planning methods have been extensively developed, encompassing several
classical algorithms. Dijkstra’s algorithm[15], one of the earliest and most effective shortest path
search methods, iteratively expands the node with the smallest tentative distance, guaranteeing the
optimal path in graphs with non-negative edge weights. The A* algorithm[16] builds upon
Dijkstra’s approach by introducing heuristic evaluation functions to estimate the cost to the
destination, thereby accelerating the search process in goal-oriented scenarios. Meanwhile, the
Bellman-Ford algorithm[17] addresses graphs with arbitrary edge weights through iterative
relaxation of edges; however, its computational efficiency is considerably lower compared to

Dijkstra and its variants, particularly in large-scale networks.

In transportation systems, where road segment weights are typically non-negative and networks
are large and highly dynamic, Dijkstra’s algorithm has become one of the most widely adopted
methods due to its high computational efficiency and robust stability. It provides a solid theoretical
and practical foundation for fast and reliable path generation in urban transportation, navigation

systems, and emergency response operations.

Nevertheless, in dynamic environments where train blockages and traffic congestion cause
frequent changes in edge weights, the traditional Dijkstra algorithm has limited ability to adapt
quickly to evolving traffic conditions. The label correcting method[18], an extension and variant
of Dijkstra’s algorithm, addresses this issue by allowing node labels to be updated multiple times
during the search process, thereby enabling more flexible path adjustments under dynamic
conditions. This method not only preserves Dijkstra’s reliability for shortest path computation in
non-negative graphs but also enhances computational efficiency and adaptability through
optimized relaxation strategies, making it particularly suitable for large-scale dynamic

transportation networks.

Overall, the development of an intelligent path decision system specifically designed for first
responders navigating grade crossing scenarios holds significant practical value. At the same time,
substantial opportunities remain for improving the design and performance of each core module

within such systems, which constitutes the primary focus of this research.



3. OBJECTIVES

This work is dedicated to developing a novel intelligent routing system designed to support first
responders in efficiently navigating scenarios involving railway grade crossings. The primary
objective is to accurately predict the total delay time caused by train-induced blockages and to
optimize emergency travel routes, thereby reducing delays in critical response operations. The

specific contributions of this work are as follows:

1. A novel joint sampling framework is developed based on the M/M/1 traffic flow model and
implemented using the Monte Carlo method to estimate the total delay time experienced by
first responders in railway blockage scenarios. This framework integrates three key time
distributions: train blockage time, modeled using a VAE-GMM approach; and vehicle arrival
time and queue clearance time, both modeled with Gamma distributions. By jointly sampling
from and synthesizing these distributions, the system constructs a probability density
distribution of total delay time. Sampling and averaging from this distribution further enables
accurate and robust delay time estimation

2. Based on the estimated total delay time, this study employs the Label Correcting algorithm to
optimize the travel paths of first responders when encountering blocked grade crossings to

effectively reduce response delays in emergency operations.

4. METHODOLOGY

4.1 Train GPS Data Analysis

The historical data set used in this study was provided by CSX Transportation and includes the
latitude and longitude of railroad grade crossings in the Columbia metropolitan area of South
Carolina, along with GPS trajectory data from 37 trains operating in the region between July 13
and July 20, 2020. The GPS data contain detailed information such as timestamps, train and
locomotive identifiers (Train ID and Loco ID), train lengths, speeds, geographic coordinates, and
heading directions of individual cars. The grade crossing coordinates were first imported into
ArcGIS Pro for spatial visualization, enabling an analysis of train trajectory patterns across the

crossings, as illustrated in Figure 1.
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Figure 1 Grade Crossings Data in the CSV Dataset

Subsequently, the longitude and latitude coordinates of train trajectories from the dataset were
imported into ArcGIS Pro for processing. Based on 29,158 GPS records, the primary distribution
patterns of train operations were visualized, as shown in Figure 2. The analysis results indicate
that the train trajectories can be categorized into six typical patterns, with the proportions of each
pattern being: (a) 15.3%, (b) 10.9%, (c) 5.6%, (d) 7.9%, (e) 34.2%, and (f) 18.7%, respectively.

(Note: For security reasons, specific train identifiers and their corresponding travel routes are not

disclosed in this study.)
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Figure 2 Train Trajectories in the CSX Dataset

The original dataset includes train length information for 37 different trains. Figure 3 presents a

scatter plot of these lengths, with red points highlighting the maximum length observed for each

train.
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Figure 3 Scatter Plot of Train Length

Table 1 summarizes the statistical characteristics of the train lengths, which range from 40 feet to

17,028 feet. The average train length is 5,719 feet, with a standard deviation of 3,773 feet.

978 997 2061 2730 3150 3170 3204 W0 095 296 B4 363 NE 08K

Table 1 Descriptive Statistics of Train Length

407

323

Index Value(m)
Mean 1743.22
Standard Deviation 1150.06

Min 12.19

25 % Quantiles 914.40
Median 1660.55
75 % Quantiles 2749.91
Max 5190.13

Figures 4 and 5 respectively present the scatter plot and histogram of instantaneous speeds based

on the 29,158 GPS records, illustrating the variations across different time points and train cars.
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Scatter Plot of Instantaneous Speeds
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Figure 4 Scatter Plot of Instantaneous Speed
In the scatter plot of instantaneous train speeds, the red line indicates the overall average speed

across all recorded data points, calculated to be approximately 13.83 meters per second.
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Figure 5 Histogram of Train Instantaneous Speed Distribution

As shown in Figure 5, instantaneous train speeds range from 0 to 73 meters per second. The
distribution exhibits a right-skewed pattern, with most speeds concentrated between 0 and 30
meters per second, and a pronounced peak around 5 meters per second. Several secondary peaks
appear between 10 and 20 meters per second, suggesting that trains generally operate at lower
speeds within the Columbia metropolitan area. Additionally, a smaller cluster of speeds is observed
between 45 and 55 meters per second, potentially corresponding to specific trains maintaining

higher velocities along certain urban segments.
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4.2 Blockage Time Estimation

To accurately estimate blockage windows at railway crossings, the initial step is identifying the
critical GPS data point on the train trajectory near the crossing location. To achieve this, each
train’s trajectory data is first imported into ArcGIS software for spatial visualization, enabling

precise determination of the relative positions between trajectory points and the railway crossing.

Specifically, given the railway crossing coordinates as C (xc, yc) a spatial search region is defined

as a circle with an initial radius a. The mathematical formulation of this search region Q is

expressed as:

Q={(x,y) (=5 ) +(r-2.) Sa} (1)

Within the defined region €, it is necessary to verify the positional relationship between the GPS
trajectory data points and the railway crossing, specifically determining whether each data point

lies along the train's movement direction towards the crossing. To accomplish this, pairs of

consecutive trajectory points, denoted as P, (xl.,y,.) and P, (Xl- 0 Vi ) , are analyzed sequentially. From

these points, we define the train’s traveling direction vector V’ :

—

Vi:(xi+l_xi’yi+l_yi) (2)

Simultaneously, the position vector from trajectory point B to the crossing location C (xc,yc) is

formulated as vector U :

Ui:(xC_xi’yC_yi) (3)

The positional relationship of each trajectory point relative to the crossing is then assessed by

calculating the dot product of these two vectors. The decision criterion is defined as:

If Vl U . >0, then trajectory point B is approaching the railway crossing along the travel direction.

Among all the trajectory points within region Q satisfying the above criterion, the closest point to

the railway crossing is selected as the critical GPS point and labeled as P, .

13



If no suitable trajectory point can be found within the initial search radius 7, the radius is
dynamically adjusted by incrementally enlarging its size until at least one eligible trajectory data
point is located. This dynamic radius adjustment mechanism can be mathematically defined as

follows:

ra=r+Ar, k=012, ... (4)

Here, 7}, denotes the initial radius, and the incremental value Ar is typically set at 10 m. The above
iterative process continues until a suitable GPS data point is found. Once the critical GPS data
point P, is identified, further blockage time estimation procedures at railway crossings can be

subsequently conducted based on this established reference point.

After determining the critical GPS point P, on the train trajectory approaching the railway

crossing, the subsequent step is to identify the GPS point closest to the train's position when it has

fully traversed the crossing. To achieve this, we initiate the calculation from the railway crossing
C (xc,yc) , with the initial reference point set at P,, the closest GPS trajectory point approaching

the crossing.

The initial distance between the railway crossing C and the trajectory point P, , denoted as do is

calculated using the Haversine formula:

d,=2R arcsin( sin’ (@) +cos (@, )cos (@, )sin® (/1" ;ﬁc )j (5)

Where R is earth’s radius and (¢4, 44) and (@, A¢) represent latitude and longitude of points P,

and C, respectively, converted into radians.

Then, starting from point P, and along the train’s traveling direction, we continuously accumulate

distances between consecutive GPS data points:
n—1
D, =d,+ Z; d; (6)
=

Here, the distance between consecutive points P and P44 is similarly calculated using the

Haversine formula.

14



The accumulation continues until the cumulative distance D.,,, approximates the train’s total

length ltrgin:

D cum ~ ltrain (7)

Upon satistying this condition, we record the GPS data point Pg and its timestamp tz. The

timestamp of the initial critical GPS point Py is denoted as ¢t,.

Next, we calculate the time interval At between timestamps t4 and tz:
At=ty—t, (8)

Then, based on cumulative distance D.,,,,, and time interval Az, we determine the average speed

Vayg during the train's crossing:

D
—— )
av& At

Finally, using train length l;.;, and calculated average speed vg,4, the precise blockage time

Thiockage Tor the railway crossing can be estimated as:

i
e (10)
y

avg

Elockage

4.3 Blockage Time Result

Based on the GPS trajectory data and the proposed methodology, a total of 1,125 valid blockage
time instances were identified. The 24-hour day was divided into hourly intervals, and blockage
times were statistically analyzed within each interval. To capture the temporal variations in
blockage durations, Gaussian Kernel Density Estimation (KDE) was applied to smoothly fit the

blockage time distributions for each hour. The resulting density curves are shown in figure 6.
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Figure 6 Blockage Time Density Distribution
4.4 Joint Sampling Module

4.4.1 Blockage Time Distribution

Blockage times at railway crossings often exhibit complex, multimodal distributions. However,
due to practical limitations in data collection, historical blockage time data frequently contain
sparsely populated or missing regions. Traditional single-distribution models, such as the normal
distribution, are inadequate for capturing such intricacies. While non-parametric methods like
Kernel Density Estimation (KDE) can fit observed data directly, they are susceptible to substantial

bias in data-sparse regions, limiting their generalizability.

To address these challenges, this study adopts a generative modeling approach that combines
Variational Autoencoders (VAE) with Gaussian Mixture Models (GMM), referred to as VAE-
GMM. This framework is designed to capture multimodal characteristics and mitigate sampling
bias inherent in sparse datasets. The VAE is a probabilistic generative model rooted in machine
learning that teaches a latent variable distribution to effectively encode and reconstruct input data.

Specifically, the encoder maps input data x to a continuous latent space to obtain representations

16



z, which are then decoded back into the original space. The objective of the VAE is to maximize

the Evidence Lower Bound (ELBO), defined as follows:
Lyag($,0) =Eq,z1x[l0gp,(x|2)] —KL (q¢(z | x) || p(2)) (11)

where ¢ and 6 represent parameters of the encoder and decoder networks, respectively, q4(z | x)
is the approximate posterior distribution, pg(x | z) is the likelihood function defined by the decoder,
and KL denotes the Kullback—Leibler divergence. Optimizing this function enables VAE to learn

the underlying distribution and generate new samples.

The Gaussian Mixture Model (GMM) is a powerful probabilistic approach capable of precisely
modeling multimodal distributions through a linear combination of multiple weighted Gaussian
distributions:

P) = Tk TV (x| Wy, ), where T = 1 (12)
In this formulation, K denotes the number of Gaussian components, and 1y, W, and ), k represent

the weights, means, and covariance matrices of the k-th component, respectively.

By integrating GMM with VAE, specifically setting GMM as a prior distribution for latent
variables allows VAE to effectively capture complex nonlinear data structures and explicitly
model multiple peaks in blockage time distributions.

4.4.2 VAE-GMM Sampling Result

In this experiment, the blockage time data computed in Section 4.2 were used as the input for

training the VAE-GMM model.

Blockage Time Distri {O:00-12:00) Blockage Time Distribution (12:00-0:00)

W Original Data

pmy 5 2
nnnn i B sampled Data

nnnnnn

200 ani 2
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Hlockage lims (5]
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Blockage 1ime (s)

(a) Sampled Data Distribution (b) Sampled Data Distribution
(0:00-12:00) (12:00-0:00)

Figure 7 VAE-GMM Sampled Data Distribution

17



The dataset was split into 70% for training and 30% for validation. For experimental design, the
24-hour day was divided into two time periods: 00:00—12:00 and 12:00-24:00. The blockage time

data within each period were modeled and analyzed separately.

Figures 7 (a) and (b) illustrate the original blockage time distributions for two different time
periods. In each figure, the blue histogram represents the distribution of the original dataset, while
the red histogram shows the corresponding samples generated by the VAE-GMM model. As
shown in the figures, the original data exhibits typical multimodal structures and long-tail
characteristics. In particular, the early hours contain dense clusters of blockage events, while the

later periods feature sparse and more oscillatory patterns.

The VAE-GMM model successfully captures the peak density characteristics in both time periods
and demonstrates strong generalization in the tail regions. More importantly, the model not only
preserves the statistical properties of the original data but also generates statistically reasonable
new samples that do not exist in the original dataset. This enables the model to effectively fill in

gaps in the data space, particularly in low-frequency regions.

4.4.3 Arrival Time Distribution

In most existing studies on delay estimation, researchers tend to consider only the delay caused by
train blockages at railway crossings, assuming that first responders are always affected for the full
duration of the blockage. However, this approach is often incomplete and may lead to
overestimation of the actual impact on emergency response times. In real-world scenarios, a queue
of vehicles typically forms upstream of the crossing once it is blocked by a train. This means that
if a first responder arrives at the crossing sufficiently after the blockage has begun, they may not
need to wait for the entire blockage duration. Consequently, this introduces variability into the

rerouting process.

To address this limitation, the present study incorporates vehicle arrival time into the estimation
of total delay time, enabling a more comprehensive and accurate modeling of delays experienced

by first responders.

In the field of traffic flow modeling, the M/M/1 queuing model is widely used to characterize the
statistical properties of vehicle arrival and queuing behavior. The first "M" denotes that vehicle
arrivals follow a Markovian Poisson process, meaning the number of vehicle arrivals in any given

time interval follows a Poisson distribution, and the inter-arrival times follow an exponential
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distribution. The second "M" indicates that the service time, such as the time required for a vehicle
to pass through a control point like a toll booth or a grade crossing, also follows an exponential

distribution. The "1" signifies that there is a single service channel in the system.

This model effectively captures the sequential arrival pattern of vehicles ahead of a first responder

when a railway crossing is blocked by a passing train.
f(t)=2e", t>0 (13)

In the equation, 4 represents the average vehicle arrival rate, and its reciprocal 1 / 4 denotes the

mean inter-arrival time.

Given that the inter-arrival times between consecutive vehicles follow an exponential distribution,
our interest lies in the total time required for the arrival of the n-th vehicle. This total time, denoted
as S, = 21, T;, represents the sum of independent exponentially distributed intervals starting from
the first vehicle. According to properties in probability theory, the sum S,, follows a Gamma
distribution with shape parameter n and rate parameter A. Its probability density function is given
by:

tn 1efit

(t)= t>0 14
£ 0= (14)
Based on this probability density function, we can model the arrival time of any individual vehicle

within the waiting queue when a train blocks the railway crossing.

4.4.4 Arrival Time Distribution Results

When constructing the Gamma distribution to model cumulative vehicle arrival times, one of the
key parameters is the average vehicle arrival rate A. In this study, a data-driven approach is adopted
to estimate this parameter. Specifically, field data collected at the Catawba Street railway crossing
are used to analyze the relationship between blockage duration and the corresponding queue length.
The number of vehicle arrivals associated with various blockage durations in the dataset is

illustrated in figure 8.
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In this study, we focus on the global average arrival rate A, which represents the average number

of vehicles arriving per unit time across all blockage events. Specifically, let N; denote the number

of vehicles observed during the i-th blockage event, and T; the corresponding blockage duration.

The global average arrival rate can then be defined as:

(15)

By computing the global average arrival rate, we avoid the local fluctuations introduced by

modeling each blockage event individually, allowing for a more consistent representation of the

overall vehicle arrival intensity within the system. Once the global average arrival rate A is obtained

it is incorporated into the Gamma distribution to model the probability density of arrival times for

different vehicles within a blockage queue. To demonstrate the applicability and expressiveness

of this modeling approach, we plotted the Gamma probability density curves corresponding to

different vehicle counts under varying blockage durations.
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Figure 9 Arrival Time Distributions
Figure 9 (a) and (b) illustrate the cumulative vehicle arrival time distributions constructed using
Gamma distributions under two different blockage durations. Each curve represents the arrival
time distribution of the k-th vehicle within the queue during the blockage period. The maximum

number of vehicles that can be modeled depends on the product of the blockage duration and the

average arrival rate.

For longer blockage durations, for example, 1,406.23 seconds in the figure 4.9(a), the system can
model arrival distributions for up to £ = 55 vehicles. In contrast, for shorter blockage durations

such as 145.91 seconds in figure 4.9(b), the model can only capture the arrival patterns for the first
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k = 17 vehicles. Vehicles beyond this threshold are assumed to arrive after the blockage window

has ended and, therefore, are not subject to delay caused by the train.

4.4.5 Clearance Time Distribution

In railway grade crossing scenarios, the passage of a train marks the end of the physical obstruction,
but not the full recovery of the traffic system. The queue of vehicles formed during the blockage
requires additional time to dissipate after the crossing reopens, as traffic flow gradually returns to
normal. This recovery process, beginning with the movement of the first vehicle at the front of the

queue and ending with the last vehicle clearing the crossing, is referred to as clearance time.

Omitting clearance time from total delay modeling leads to systematic underestimation of actual
delays, which can misguide routing decisions and result in suboptimal path choices for first

responders.

In the M/M/1 queuing model, clearance time corresponds to the service phase. During the train’s
occupation of the crossing, traffic flow is interrupted, and vehicles continue to arrive, forming a
queue. Once the crossing reopens, vehicles begin to pass through the bottleneck at a certain rate,

initiating the service phase as the queue gradually dissipates.

In this phase, it is assumed that the time intervals between the departures of consecutive vehicles
follow an exponential distribution. By summing these exponential intervals, a Gamma distribution
is obtained, representing the probability density of the clearance time for the first n vehicles. In
this context, the rate parameter A of the Gamma distribution corresponds to the service rate,

indicating the number of vehicles passing through the crossing per unit time.

4.4.6 Clearance Time Distribution Results

To compute the global average service rate A, we rely on field data collected at the Catawba Street
railway crossing. This dataset not only records the number of vehicles queued during each
blockage event, but also captures the time required for all queued vehicles to clear the crossing

from the moment the crossing gate is raised to the passage of the last vehicle.
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Figure 10 Relationship Between the Number of Waiting Vehicles and Clearance Time
In figure 10, the orange triangle markers in the figure represent the observed discrete relationship
between the number of queued vehicles and the corresponding clearance time during historical
blockage events. To quantify this relationship, a linear regression model constrained to pass
through the origin was applied to all observed data points. The resulting best-fit line is y = 1.8430x,
where x denotes the number of vehicles waiting and y the corresponding clearance time. The

coefficient of determination R? = 0.8884 indicates that the linear model effectively captures the

overall trend between vehicle count and clearance time.

The slope parameter a = 1.843 can be interpreted as the average clearance time per vehicle. Its
reciprocal yields the service rate, 4 = 0.5426 vehicles per second. By incorporating this service rate
into the Gamma distribution, we derive the probability density curves of clearance time for

individual vehicles at different queue positions &, as shown in figure 11.
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Figure 11 Clearance Time Gamma Distributions (k = 1~10)
To illustrate the modeling performance, the figure presents the clearance time probability density
curves for a queue of 10 vehicles, covering vehicles from position 1 to 10. It is important to note,
however, that this modeling approach is highly scalable. Regardless of the actual queue length, the
corresponding clearance time distributions can be generated using the global service rate A,
enabling fine-grained temporal estimates for congestion dissipation under varying traffic

conditions.

4.4.7 Joint Sampling Model Results

Based on the distributions described above, we first sample blockage times at railway crossings
using the trained Variational Autoencoder—Gaussian Mixture Model (VAE-GMM), conditioned
on the train's traversal time. To ensure the validity of the sampled data, only those samples falling

within the 95% confidence interval of the learned blockage time distribution are retained.

For each sampled blockage time, Gamma distribution models are then constructed to represent the
arrival time and clearance time of vehicles, depending on their position within the queue. Using
Monte Carlo simulation, sets of samples are drawn from these distributions. Based on these

samples, the total delay time is computed using the following formulation:

Total Delay Time = Blockage Time — Arrival Time + Clearance Time (16)

A large set of total delay time samples is generated and fitted using Gaussian Kernel Density

Estimation (GKDE) to obtain a smooth probability distribution. To mitigate the impact of
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individual sample variability, samples are drawn from the fitted curve and average, improving the

robustness and reliability of the delay estimation.

In the first case, we assume that the train arrives at the railway crossing between 12:00 a.m. and
12:00 p.m. The sampled blockage time in this case is 343.2495 seconds. We then set the number
of Monte Carlo samples for both the arrival time and clearance time distributions to 1000. The first
responder is assumed to be positioned within the queue at £ = 1 to 10. The resulting total delay

time distribution is shown as follows:

Total Delay Time Distributions Total Delay Time Distributions
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(a) Total Delay Time Distributions (k = 1~5) (b) Total Delay Time Distributions (k = 6~10)

Figure 12 Total Delay Time Distributions

As shown in Figure 12(a), vehicles positioned at the front of the queue exhibit peak total delay
times concentrated between 280 and 320 seconds, with £ = 5 showing the most pronounced peak.
This indicates that these vehicles were stopped early during the blockage, resulting in longer and
more concentrated delays. In contrast, vehicles in positions £ = 6 to 10 experienced significantly
shorter delays, with peaks generally between 180 and 270 seconds and flatter distributions. Overall,

the closer a vehicle arrives to the end of the blockage period, the less delay it tends to experience.

In the second case, we assume that the train arrives at the railway crossing between 1:00 p.m. and
midnight. The sampled blockage time in this case is 878.8104 seconds. As in the previous scenario,
we draw 1000 samples from the arrival time and clearance time distributions. The first responder
is assumed to be positioned within the queue at £ = 11 to 20. The resulting total delay time

distribution is shown as follows:
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Figure 13 Total Delay Time Distributions
Figure 13(a) and (b) illustrate the total delay time distributions for vehicles positioned at k=11 to
20 when the blockage duration extends to 878.81 seconds. Compared to the previous case, where
the blockage lasted 343.25 seconds, the distribution peaks have noticeably shifted to the right,
mostly falling between 540 and 700 seconds. This shift reflects the overall increase in waiting time

caused by the longer blockage duration.

4.5 Route Planning for First Responder at Grade Crossing

In emergency response systems, the path planning algorithm plays a central role. By receiving the
total delay time estimated from the joint sampling module, it identifies the shortest path within the
road network from the responder’s current location to the emergency site, aiming to minimize

response time and enhance rescue efficiency.

The presence of railway blockages introduces inherently unpredictable delays, posing significant
challenges for conventional shortest path algorithms that assume static edge weights. These
traditional methods often lack the adaptability required to respond to dynamic traffic disruptions,
thereby limiting their effectiveness in time-sensitive emergency response scenarios. In contrast,
the Label Correcting algorithm, grounded in dynamic programming theory, exhibits strong
flexibility in accommodating time-varying and context-dependent edge costs. As such, it is
particularly well-suited for routing problems under uncertainty, such as those induced by stochastic

train-induced obstructions at grade crossings.

We begin by considering a directed graph G = (V, A), where } denotes the set of nodes and 4 € '
x V represents the set of directed edges. For any edge (i, j) € 4 (i, j), if the corresponding road

segment intersects a railway grade crossing, the joint sampling model is employed to estimate the
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total delay time experienced by vehicles traversing that segment. This process yields a set of delay

4D 4@ 4®

(n)
DdP.dP, a0

samples { j

To mitigate the influence of outliers and stochastic fluctuations in single samples, the mean of
these delay samples 151:/. is computed and used as the predicted delay cost for edge (7, j). This

averaging process improves the stability and reliability of path cost estimation under uncertainty.

Accordingly, the total travel cost of a path segment can be redefined as:

ti; is the baseline travel time from node i to node j; lA),.j is the estimated railway-induced delay on

edge (i, j), obtained from the output of the joint sampling model.

The algorithm begins by initializing the path cost label d(v) for all nodes v € V' to infinity, except
for the source node , which is assigned a label of zero. A candidate node queue Q is then initialized,

containing only the source node.

During the path search process, the algorithm repeatedly extracts the current node u from the queue
and examines all its adjacent edges (u, v). If the cost of reaching node v via node u, computed as
d(u)+ Cyy, 1s less than the currently recorded label d(v), then d(v) is updated accordingly. Node v

is then added to the queue if it is not already present.

This iterative process continues until no further updates occur and the queue becomes empty.
Through this label updating mechanism, the algorithm progressively converges to the shortest path
solution while allowing for flexible adjustments to path costs in environments with dynamically

changing edge weights.

To further formalize the path search as an optimization problem, we introduce a binary decision

variable xl-rjs €{0, 1}, which indicates whether edge (i, /) is included in the path from source node r

to destination node s. The objective is to minimize the total path cost, defined as:

min Y. G- =min ., (4,+D,)x) (18)

x  (i,j)ed x  (i,j)ed
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where C;; represents the composite travel cost on edge (i, j), incorporating both baseline travel

time and estimated railway-induced delay.

To ensure both path connectivity and uniqueness, the following flow balance constraints must be

satisfied:

L ifi=r
Z x; = z xXp=y-1 if i=s (19)

jiged — ij)ed 0, otherwise

This constraint guarantees that there is a single directed path from the source node r to the

destination node s, with continuous flow through intermediate nodes.

Additionally, the decision variable is defined as:

» |1 if edge (i, /) lies on the path from r o s (20)
v 0, otherwise

In summary, by integrating the enhanced Label Correcting path planning module with the total
delay time estimation module, an optimized routing system is established. This system enables
first responders to identify the most efficient path to their destination while accounting for delays

caused by train-induced blockages at railway grade crossings.

4.6 Route Optimization at Grade Crossing Results

In this section, we present the results of our intelligent route optimization system for emergency
response in downtown Columbia, South Carolina. Specifically, we examine how the system
dynamically replans optimal paths when railway level crossings along the initially planned route
are blocked by passing trains, comparing scenarios where emergency calls occur in the morning

versus the afternoon.

For instance, consider an emergency call occurring at 10:02 AM, during which a train has already
departed from the southeastern area and is making a turn through the triangular railway network
in downtown Columbia, heading southwest. In this scenario, the emergency occurs near a
residential building on Catawba Street, while the nearest available police unit is located on
Heyward Street. Our system first generates an initial shortest-time path for the responder to reach

the caller. The planned route is illustrated in the figure below.
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Figure 14 Initial Route Planning for Scenario 1

In the figure 14, the dark green trajectory represents the planned route of the train, while the yellow
dot indicates the current location of the police officer, and the red dot marks the location of the
emergency call. Green points represent intersections along the initially planned route, and red
triangles denote level crossings that the train is expected to pass through. The black line

corresponds to the initially generated route, with an estimated travel time of 2.46 minutes.

Notably, as the police officer proceeds along Whaley Street, it becomes evident that the route
intersects with a level crossing at risk of being blocked by the oncoming train. This potential
conflict necessitates dynamic path replanning to avoid unnecessary delays and ensure timely

arrival at the emergency site.

We assume that as the officer proceeds along Whaley Street, they observe the train already passing
through the level crossing, with 13 vehicles queuing ahead, indicating that the train did not just
begin crossing but is already well into the blockage period. At this point, our decision-support
system activates the Total Delay Time Estimation module, which models the potential delay
introduced by the train as a probabilistic distribution. By performing Monte Carlo sampling and
averaging the results, the system estimates the expected delay at this crossing to be approximately

8.93 minutes.
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Consequently, if the officer were to continue along the originally planned route, the estimated
arrival time would increase from 2.46 minutes to a total of 11.39 minutes, which is clearly
unacceptable for an emergency response scenario. Therefore, the system initiates a real-time route
replanning process to avoid the obstructed crossing. The newly optimized path is illustrated in the
figure below.

Wales Garden
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Emergency Point

T

total delay™ 8.93 mn

Granby Ml oart Point

Figure 15 Route Replanning for Scenario 1

In figure 15, the bold purple line represents the replanned route. This new path directs the police
vehicle to make a left turn at the intersection and proceed along Catawba Street. Although this
alternative route also involves crossing a level crossing, the train has not yet arrived at that location,
allowing uninterrupted passage. The total estimated travel time for the newly optimized route is
2.36 minutes. Compared to the 11.39 minutes required if the officer were to remain stationary and
wait at the already-blocked Whaley Street crossing, the replanned route achieves a time saving of

approximately 79.27%.

In the second scenario, we consider an emergency call occurring at 9:14 PM. At this moment, the
police officer is patrolling a residential area near Gist Street, while the emergency is reported at
the intersection of Richland Street and Assembly Street in downtown Columbia. The officer must
immediately proceed to the incident location. Simultaneously, a train is traveling from the

northwest corner of the city toward the southern direction.
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Figure 16 Initial Route Planning for Scenario 2
We assume that the officer makes a right turn from Gist Street onto Laurel Street, where the train
is observed to be passing through a level crossing. Due to the late evening hours, traffic is relatively
light, with only two vehicles queued ahead. At this point, our route optimization system is activated.
The Total Delay Time Estimation module, based on the joint sampling model, estimates the
expected delay caused by the train to be approximately 2.56 minutes. This information is then
passed to the route replanning module, which compares the projected delay of continuing along

the current route with the travel time of potential alternative paths.

As illustrated in figure 17, the total delay time in this scenario is relatively short. This is likely
because, by the time the officer observed the blocked level crossing on Laurel Street, the train was
already nearing the end of its passage, thereby minimizing the duration of the blockage.
Additionally, the light evening traffic, with only two vehicles ahead, resulted in a relatively short
clearance time. The bold dark purple line represents the newly replanned route. Notably, the route
planner did not choose the initially shorter path via the level crossing on Taylor Street, which may
have also been blocked by the same train. Instead, the system selected a more distant alternative

via Hampton Street.
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Figure 17 Route Replanning for Scenario 2
Although this detour results in a slightly longer travel time of 3.76 minutes, it still offers a time
saving of 1.94 minutes compared to waiting at the blocked crossing. A comparison of the two

routing options is summarized in table 2.

Table 2 Summary of Comparison of Path Choosing Strategies

Initial Path Time  Estimated Total = Stop-and-Wait Strategy =~ Reroute Path Strategy

Cost(min) Delay Time(min) Time Cost(min) Time Cost(min)
Scenario 1 2.46 8.93 11.39 2.36
Scenario 2 3.14 2.56 5.7 3.76

S CONCLUSIONS

This study develops an intelligent path optimization system tailored for emergency response
scenarios at railway level crossings. By integrating a joint probabilistic delay estimation model
with a dynamic label correcting path search algorithm, the system effectively addresses the
uncertainty caused by train-induced blockages. Unlike conventional models that consider only
train occupancy time, this system further incorporates vehicle arrival and clearance time modeling,
enabling a more realistic estimation of the total delay time, which is then used as the cost function

in path planning.
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In a case study set in Columbia, South Carolina, the system demonstrates its ability to dynamically
detect blocked paths and replan routes in real time, significantly improving emergency response
efficiency. In two representative emergency scenarios, the system reduces response time by up to
79.27% compared to the traditional "stop-and-wait" strategy, showcasing its strong delay-

awareness and path optimization capability.

Despite its promising application potential, the current system assumes an ideal traffic
environment, without accounting for more complex dynamic factors such as traffic signals or road
closures. Future research could incorporate real-time traffic data and multi-source environmental
constraints to enhance the practical adaptability of the route planning results. Overall, this study
provides both a theoretical foundation and a technical pathway for developing more efficient and

reliable urban emergency response support systems.
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