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1 SUMMARY 

Given the pivotal role of the railroad industry in modern transportation and the potential risks 

associated with track malfunctions, the inspection and maintenance of railroad tracks emerges as 

a critical concern. While existing solutions excel in performing accurate measurements and 

detection, they often rely on large, expensive, and time-consuming platforms for inspections. The 

goal of this project is to study the use of an Unmanned Aerial Vehicle (UAV) to aid the inspection 

operations, aiming in reduced operational times and cost, while maintaining efficient detection and 

traversability assessment capabilities.   

This solution is ideal for large-scale, high-level inspections following major events such as 

floods [1], hurricanes [2] or earthquakes  [3]. The project focuses on developing, implementing, 

and testing a fully functional, vision-based, autonomous track-following system for UAVs, as 

illustrated in Figure 1. The creation (in Phase 1 of this project) of a cutting-edge track detection 

algorithm, TrackNet [4], is used to identify and interpret railroad tracks from the video stream of 

an onboard camera. This system is then seamlessly integrated with a customized DJI Matrice 100 

UAV to detect and follow railroads in real-time. Notably, this system operates independently of 

external sensors such as GPS, thanks to its utilization of advanced computer vision techniques. 

Building off phase 1 of this multi-year project, this report covers recent work in improvement of 

track detection and following capabilities. 

 

 
Figure 1: Aerial drone tracking and following a railroad line 



7 
 

2 BACKGROUND  

The railroad industry plays a pivotal role in the global transportation network, facilitating the 

movement of cargo and passengers, while supporting local economies [1], [2]. Despite their 

significance, railroads can pose substantial risks if not adequately maintained [3]. Maintenance 

must address two types of track deterioration: the gradual wear from continuous usage and major 

obstructions resulting from specific incidents [5], [6], [7]. Current methods of track maintenance 

primarily rely on manual methods or semi-automated track geometry vehicles, where tracks are 

inspected by inspectors walking along the tracks or riding some type of high-rail vehicle [8]. 

Although these methods are very common, they are not completely reliable, are labor-intensive, 

are time-consuming, and subject inspectors to hazardous environments. Additionally, even when 

utilizing high-rail vehicles, the maximum inspection speed is around 1.4 m/s (5 km/h) [8].  

A superior method of track inspection is the utilization of automated track inspection vehicles 

to measure track and rail geometry. These platforms utilize a host of non-destructive evaluation 

(NDE) technologies to identify rail surface and track geometry defects [8]. The primary limitations 

of such techniques, however, are their speed and their cost. The current systems are capable of 

performing inspection at around 4.2 m/s (15 km/h) but also require significant time for deployment 

and cause track shutdowns for inspection. Additionally, the average cost of a single-track 

inspection vehicle is around $8.1 million to purchase or $2.2 million annually for a service contract. 

Although these platforms are effective in detecting small defects caused by long-term wear, they 

are less efficient at addressing the second type of deterioration induced by major destructive events. 

The existing technology, due to its time requirements, unnecessary precision, and reliance on the 

track's viability, is ill-suited to meet the demands of such scenarios. 

To address this challenge, the utilization of Unmanned Aerial Vehicles (UAVs) has been 

proposed in the literature for track inspection [9]. Although current systems are capable of higher 

detail of inspection when compared to UAVs, any reduction in their use would allow for significant 

savings. UAVs can perform many of the same types of inspection at a fraction of the cost and at 

least at the same speed, without the need for track shutdown or lengthy deployment time. UAVs 

offer the capability to traverse sections of track, identifying major obstructions at a reduced cost. 

Moreover, their airborne nature allows for continuous inspections regardless of any obstacles on 

the track. In Phase 1 of this project, we developed an autonomous railroad line detection system 

that can aid UAVs in navigating\following railroad lines [4]. 
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3 OBJECTIVES 

With the foundational work in Phase 1 serving as a proof of concept, the work described here 

focuses on improving the performance and utility of the system. Specifically, the major goals of 

Phase 2 are [10]: 

• Continue development of the TrackNet detection algorithm to provide the ability to track 

a specific rail line, even when there are multiple in frame.  

• Increase the processing speed of the TrackNet algorithm. 

• Improve the flight control system to more accurately follow the selected line. 

4 METHODS 

4.1 UAV Implementation 

The UAV used for this project is the DJI Matrice 100, a medium size platform designed to be 

customized for developmental work. An Intel NUC mini-PC provides onboard processing power 

to the drone. This is used to perform computer vision tasks, determine control inputs, and 

communicate with a ground station. The drone is fitted with an Intel T265 camera for identifying 

railroad tracks and any obstructions along them. The camera also comes with built in Simultaneous 

Localization and Mapping (SLAM). This capability provides a GPS-independent estimate of the 

drone’s position and orientation without adding any computational load to the computer. Finally, 

the DJI Guidance module provides additional sensing capability. It has a combination of optical 

flow and ultrasonic sensors that assist in GPS-denied flight and obstacle avoidance.  The hardware 

setup is tied together using a custom Robot Operating System (ROS) software package. The open 

source Acados library is used to run the MPC and generate command inputs [11] . Commands and 

sensor data are communicated between the NUC and Matrice using DJI’s Onboard Software 

Development Kit (OSDK). An image of the complete Matrice 100 setup is provided in Figure 2. 
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Figure 2: DJI Matrice 100 

4.2 Track Detection 

 The main limitations encountered with the track detection algorithm in Phase 1 were the 

inability to handle multiple tracks in the image and a slow processing speed that reduced the 

drone’s real time capabilities. To deal with multiple visible lines, the new version of the algorithm 

now records each individual instance of track region detected by the segmentation network. 

Having each rail be classified individually provides flexibility when deciding which line the drone 

should follow. The current rule is to search for the closest rail to the image center and focus on it. 

However, this can be easily modified to change mid-flight, be manually selected by the user, or 

other rules to fit a desired mission.  Tracking the rail is done by comparing the coordinates of the 

identified lines between each frame [10]. If the coordinates do not move more than a few pixels 

between adjacent frames, then the identified rail is considered to be the same as the previous frame. 

 The segmentation network also got an improvement in computational efficiency. The 

original Unet model works well to identify rail but is not optimized for our CPU hardware. Intel’s 

OpenVINO toolkit provides optimization tools and is designed to take advantage of Intel 

computing devices.  By optimizing the model, the processing speed saw a nearly 3 times increase 

in processing speed (10 fps vs 3.5 fps in phase 1) while using fewer CPU cores [10, 11]. Faster 

processing means smoother flight as the UAV will not deviate as far from the flight path between 

control loop iterations.  
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 Finally, a rework was done to the way the rail line is determined inside of the segmented 

region. Instead of a combination of edge detection, line detection, and a line chaining step, the 

direction of the rail is now represented by the centroid of the segmented region at each pixel row. 

The original process faced issues with detection of the lines at farther distances and given the 

reliance on an accurate vanishing point to follow, this led to inconsistent flight behavior. An 

example of the new centerline detection is shown below in Figure 2 with the red centerline 

representing the line being tracked by the UAV. 

 
Figure 3: Multiple lines detected with the main line highlighted in red 

4.3 Track Following 

The track following flight controller has been entirely reworked from the previous PID based 

design. The new version uses a model predictive controller (MPC) that controls the drone's position 

using a velocity control service. This type of control uses a prediction of the system’s dynamics to 

find an optimal control input. The benefits of this approach include explicit handling of 

multivariable dynamics, constraints, and predictive capability that can be used in obstacle 

avoidance tasks. This section describes the design of the flight control and navigation system. 
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4.3.1 System Model 

The dynamic modelling for this system is made simple thanks to the platform’s built-in control 

features. The state of the system is described as its 3-D position and its heading angle in an East-

North-Up (ENU) inertial frame. The command inputs used are the UAV’s velocity along its 3 main 

axes and yaw velocity in a Front-Left-Up (FLU) body frame. Accounting for the transformation 

between frames, the dynamic model is as follows: 

�

𝑥̇𝑥
𝑦̇𝑦
𝑧̇𝑧
𝜃̇𝜃

̇

� = �

𝑣𝑣𝑥𝑥 ∗ cos(𝜃𝜃) − 𝑣𝑣𝑦𝑦 ∗ sin (𝜃𝜃)
𝑣𝑣𝑥𝑥 ∗ sin(𝜃𝜃) +  𝑣𝑣𝑦𝑦 ∗ cos (𝜃𝜃)

𝑣𝑣𝑧𝑧
𝜔𝜔

�    (1) 

 This model conveniently allows the MPC to guide the drone towards points along the 

railroad track by controlling its velocity. No low-level control is needed as the drone’s flight 

controller handles this in the background. 

4.3.2 MPC Formulation 

The MPC framework is based on optimizing a series of future inputs across a small window 

in time called the prediction horizon. This is done by minimizing a cost function that penalizes 

both deviation from the desired state and excessively large control inputs. Ideally, the lowest cost 

solution represents the desired behavior. The cost function used here is a standard least squares 

function and is shown below: 

         (2) 

The matrices Q, R, and P are weighing matrices that influence how much the different cost 

terms contribute to the overall cost. Q scales the weight of state deviations throughout most of the 

prediction horizon. P also scales state deviations, but only for the last time step in the prediction 

horizon. Finally, R scales the deviation of the input from its reference. Based on the dynamic model 

shown in (1) and the flight mission, the values inside the weight matrices were chosen. For this 

navigation problem, the desired state is determined by the x and y coordinates found with the track 

detection algorithm along with a preset altitude and a heading that points towards those coordinates. 
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The UAV is ideally flying forward, so the reference input is a preset forward velocity with no 

lateral, vertical, or yaw motion. Although the specific values do not mean much on their own, the 

relative weights used in this formulation are shown below in Tables I and II. 

 

Table I. State Deviation Weights 

X High to encourage accurate waypoint 
following 

Y High to encourage accurate waypoint 
following 

Z 
Low since the altitude setpoint is 
relatively constant and UAV will settle 
easily 

θ Moderate to ensure the UAV orients itself 
along the flight path  

 

Table II. Input Deviation Weights 

Vx High to encourage precise forward 
velocity control 

Vy Low to allow for some lateral correction 
while following curves 

Vz High to discourage use of vertical velocity 
unless to correct larger altitude deviations 

ω Moderate to allow for heading corrections 
without high yaw rates that might interfere 
with track detection 

 

4.3.3 Reference Generation  

Operating under the assumption that railroad tracks are relatively flat, the pixels identified as 

showing the rail centerline can be translated into 3 dimensional coordinates for the UAV to follow. 

This technique is a form of inverse projection mapping whereby knowing information about the 

camera’s intrinsic properties (field of view, distortion, resolution, etc.), each pixel can be mapped 

to a ray in the UAV’s 3-dimensional coordinate system. The rays corresponding to track centerline 

pixels will intersect the ground plane, and these intersection points are reference points that can be 

fed into the controller. Multiple points can be set as references across the prediction horizon to 

ensure smooth tracking. Using a downward facing ultrasonic sensor, the UAV’s above ground 

level (AGL) altitude is known. This can be used to ensure the ground plane is always appropriately 

represented in the UAV’s local coordinate frame, even if there is a gradual increase or decrease in 

the ground’s mean sea level (MSL) altitude. 
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5 EXPERIMENTS 

This section discusses the process of experimentally testing the updated system to evaluate its 

performance. Initial experiments were conducted inside the Unmanned System and Robotics 

laboratory at the University of South Carolina. Using images of real tracks and simulated position 

information allowed for hardware-in-the-loop (HIL) testing of track detection and flight control 

algorithms. These tests confirmed that the UAV could identify and interpret railroad tracks in a 

simulated environment. Additionally, the MPC was flight tested independently using a motion 

capture system to look for efficient controller response and verify correct implementation using 

OSDK. 

 
 

 

Subsequently, these systems were tested outdoors on a real track to validate their efficacy. 

These experiments took place along a couple of sections of railroad situated at the South Carolina 

Railroad Museum in Winnsboro, SC. An image of these sections of track, taken from Google Maps 

can be seen in Figure 4. This site provides plenty of different environments with which to test the 

Figure 4: Satellite images of straight section of track (top) and curved section (bottom) 
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UAV. In these tests, we mostly utilized a straight section of track with parallel lines that merge. 

This setup enabled a good baseline of flight control performance as well as the UAV’s ability to 

focus on only one line at a time. More limited testing was done at another section that contains 

curves, providing a more complex flight path for the control system to handle. Flight testing was 

mainly done at an altitude of 4 meters above the ground and a velocity of 2 meters per second. 

Other tests at higher velocities were conducted, but to a lesser extent. 

6 RESULTS 

 
Figure 5: Flight path of the UAV along railroad tracks 

In this section we summarize the results obtained in the SC Railroad Museum experiments, after 

the system was tested in different scenarios to analyze track following performance. Figure 5 

shows the flight path the UAV follows in comparison to the coordinates of the track during one 

such test. After starting with an initial position and orientation offset from the track centerline, the 

drone quickly begins correcting itself. Using positioning data from both the GPS (for evaluation 

purposes only) and camera, the average distance error during the flight was 0.44 meters, which 

decreases further to 0.28 meters when looking only at the steady-state portion of the flight. This is 

an improvement over the previous average of approximately 2 meters [4] [10]. The change in 

controller design as well as the increased fps of the system means the control of the UAV is both 

more accurate and responsive to changes in real time. 
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7 CONCLUSIONS 

Phase 2 work on this project has significantly improved on the track detection and following 

capabilities developed during Phase 1. The UAV is now able to distinguish between multiple tracks 

and focus on a single track. This prevents confusion in more complex environments and gives the 

user the ability to inspect lines as needed. Increased efficiency of the detection model also 

improves detection speed and frees up computational resources that can be used for later stages of 

the project. Finally, a reworked flight control design enables significantly more accurate line 

following. 

8 FUTURE WORK 

The experiments show that the drone can very accurately follow rails and distinguish between 

multiple lines in the image. While this work represents significant progress, there are still more 

areas to develop. Future work will include developing two major features: collision avoidance and 

the ability to detect obstructions on the railroad track. These features will improve the system's 

safety and give the system inspection capability respectively. Implementing collision avoidance 

means the UAV can safely fly through more congested areas without requiring pilot intervention, 

maintaining autonomy. Likewise, the ability to identify obstructions to the railroad track is critical 

to making this system a viable inspection platform. Additionally, we plan to do more testing of the 

system to more thoroughly analyze its performance. 
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