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1. Introduction 

Railway systems are very complex pieces of cyberinfrastructure, interfacing with a number 

of transportation agents and other pieces of cyberinfrastructure. For instance, a railway crossing 

includes interactions between the railway system and a traffic intersection. Such a rich ecosystem 

of interactions among heterogeneous agents poses fascinating research challenges in modeling 

railway systems with data and conducting data-driven railway crossing safety assessment.  In this 

project we leverage and extend powerful tensor and graph mining methods which can extract 

“needles in the haystack” within the abundance of collected data and produce actionable insights 

to stakeholders in order to better understand emerging accident patterns from historical data, 

identify underlying similarities in such patterns, towards ultimately reducing the number of 

accidents. 

Given different entities such as rail companies or railway crossings and data collected for 

those entities (such as sensor measurements, video recordings, and public USDOT accident 

reports), we seek to identify hidden patterns that emerge from the data which are not visible by 

mere inspection of the vast raw data sources and can be turned into actionable insights that can 

inform policy by understanding emerging patterns of behavior in this complex ecosystem. 

In this report we outline a number of technical advancements that were achieved as part of this 

project with respect to graph mining and tensor methods for railway safety applications. 

2. Graph Mining of Public Accident Reports  

Graphs are very powerful data structures that capture relationships (also called edges) between 

entities (also called vertices or nodes). In addition to lending themselves to intuitive visualizations, 

graphs capture important patterns that may not be visible when looking at the raw data. For 

instance, public USDOT accident reports, as captured in the publicly available dataset “US 

Highway Railroad Crossing Accident” [1] contain a lot of important information that can 

potentially allow us to understand mechanisms that influence different accidents and, thus, inform 

policy on how to improve the safety of railway crossings. 

For the purposes of this project, we conducted a proof-of-concept study which was published 

at the Joint Rail Conference 2024 [2,3] where we demonstrate the power of graph mining in 

extracting actionable insights from public accident reports. In constructing a graph from raw 
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accident reports, we chose to set the railway companies as the entities/nodes of interest and connect 

them with edges in a way that captures the frequency of co-occurrence of accidents that those two 

companies have been involved in, based on the same locality and for a certain period of time.  

By constructing the aforementioned graph, companies who tend to have similar accident 

patterns in similar locations will be connected with each other, and densely connected parts of that 

graph can point to groups of companies who share the same accident behavior. In order to extract 

those groups, we conduct Spectral Clustering, a graph mining technique that is able to group or 

cluster the nodes/entities of the graph into a set of disjoint clusters, where within each cluster nodes 

have high degree of connectivity with each other. 

Our analysis [2] reveals interesting patterns both in terms of the geographic and temporal 

distribution of discovered clusters which can shed light into different factors that may contribute 

to an observed pattern of accidents. We see this work as a stepping-stone towards providing 

valuable insights for policymakers, railway companies, and public safety officials, advocating a 

shift toward data-driven analysis and predictive modeling. 

3. Tensor Mining of Public Accident Reports  

A natural next step in the direction of the exploratory analysis and pattern extraction that we 

developed in Section 1 is Tensor Mining. Tensors are multi-dimensional data structures that can 

represent very high-dimensional and heterogeneous datasets. A graph, such as the one in Sec. 2, 

in fact, can be seen as a 2-mode tensor (or a matrix). Thus, tensors allow us to express more 

complex relations among different entities or variables of interest. For example, we can have a 3-

mode tensor which involves variables such as “Company Name”, “County”, and “Date”, and will 

essentially capture the number of accidents for each rail company within a given county over time. 

Such a tensor can be mined for patterns in a way that companies that have similar spatio-temporal 

accident behavior are clustered together, in our running example. One of the most popular ways in 

which we can do so is through the so-called Canonical Polyadic Decomposition (CPD) [4], which 

expresses a tensor into a sum of simple elements (called rank-one components), each one of which 

corresponding to a co-cluster (i.e., a cluster that involves all dimensions of the data) in the data. In 

our running example, a rank-one component would give us a co-cluster (i.e., a subset) of rail 

companies, counties, and points in time that have high similarity.  
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Given the number of available variables/dimensions in the USDOT public accident report 

data [1], tensor mining can be an extremely valuable tool in identifying needles in the proverbial 

haystack of the vast amounts of reports, and identifying emerging patterns across different 

variables of interest which are not visible by mere inspection or simple correlation analysis. In this 

Section, we describe how tensor mining can be applied in this novel railway safety application. 

In constructing tensor datasets from raw data, the challenge is that even though virtually any 

structured dataset (such as the USDOT accident reports [1]) can be readily and trivially seen as a 

tensor (i.e., a multi-dimensional matrix), we are particularly interested in tensors that can be mined 

for interpretable patterns [5], because tensor methods require data to have certain structure, 

typically so-called low-rank or low-dimensional structure. As a result, a first step here is to provide 

a method for identifying and forming as many well-structured tensors as possible from the raw 

data. 

A major challenge in judging the quality of the structure in a given tensor dataset is that, since 

we are conducting exploratory and completely unsupervised analysis, there is no ground truth or 

golden standard baseline that we can use to evaluate our findings. However, not all hope is lost, 

since we can rely on so-called intrinsic measures of structure goodness, i.e., measures of structure 

goodness that capture numerically whether the structure within the data adheres to various 

reasonable definitions of “good structure”. In our case, goodness of structure is measured by how 

well the data adhere to the CPD tensor model, as well as how “clusterable” are the data within the 

tensor. Thus, we are going to evaluate different automatically generated tensor datasets from the 

raw report data using a number of intrinsic measures of structure quality and then identify datasets 

which score high-enough on all measures.  

The steps of our proposed method are: 

1. Start with an initial set of variables of interest. Here we can include all dimensions, 

however, this can generate an explosive number of candidates, so it is best to judiciously 

identify a reasonable subset of variables, such as railroad company name, county, date, and 

variables relating to road conditions or maintenance, in order to narrow down the search. 

2. Given the above variables of interest, generate in a brute force manner all possible tensors 

that can involve a subset of those variables. For simplicity we can also constrain here the 

number of modes/dimensions in the tensor to a fixed number, e.g., three. This will generate 

all possible subsets of size three from the initial set. 
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3. For each tensor generated in step #2, we need to measure a number of structure quality 

scores. In particular, we measure: 

a. Fit: For a user-defined range of number of components, measure how well a CPD 

decomposition approximates the data.  This can be a number [0,1], with 1 being 

perfect fit. We choose the maximum fit along that range. 

b. Core Consistency [5]: This is a score that measures how well the data adhere to a 

CPD model by using concepts behind the definition of the model. A very negative 

number here indicates poor modeling, so we eliminate negative entries, and produce 

a number between [0,100], where 100 is perfect structure, and values in the range 

of 50-80 indicate noisy but acceptable structure. We calculate this over a range of 

components and keep the maximum attained. 

c. Silhouette [7]: This score judges how well a CPD decomposition clusters an entity 

(e.g., rail company) when forced to produce hard clustering assignments by 

choosing the maximizing component per instance of that entity [8]. This number is 

in the range of [-1,1] with -1 indicating poor clustering and 1 indicating perfect 

clustering. We also calculate this over a range of components and keep the 

maximum. 

4. Given a triplet of scores for each automatically generated tensor dataset, we filter out 

datasets that do not match certain thresholds per dimension. The datasets which match the 

criteria (e.g., Fit > 0.8, Core Consistency > 50, and Silhouette > 0.2) are output as 

candidates for tensor mining, since they are more likely to have high-quality structure 

within. 

Figure 1 shows an example from the USDOT accident report data where we identify a subset 

of the automatically generated tensors with high quality structure. This result is quite encouraging 

because it indicates that there is a good number of high-quality datasets that can be automatically 

generated from the raw accident reports, which can be used to derive actionable insights. In future 

work we will consider scalability of our proposed method, since currently in order to score each 

tensor dataset we have to explicitly compute the CPD decomposition multiple times. In recent 

work [6], we have shown that we can build self-supervised machine learning models in order to 

learn similar values of interest for tensor data, and we would like to build upon that work in order 

to accelerate our current proposed method. 
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Figure 1: Scoring automatically generated tensor datasets with respect to various quality of 

structure measures. The circled portion scores reasonably high in all three measures. 

 

Next, we will demonstrate some indicative results from tensor analysis. For this particular 

tensor, we chose 10 variables of interest:  

{'RailroadName', 

'ReportYear','CountyName','StateName','HighwayUser','HighwayUserPosition','EquipmentType', 

'Visibility','WeatherCondition', 'HighwayUserAction'} 

resulting a 10-mode tensor. We should point out here that in the literature of tensor mining, one 

rarely encounters tensors with more than 4-5 modes, and as the number of modes (or order) of the 

tensor grows, computational complexity increases as well and some models and computations 

become prohibitive. Thankfully, the CPD decomposition scales well with the number of modes, 

and we are able to mine patterns from such high-order tensors using this model. 

In this particular tensor we formed, we are expecting to extract co-clusters that relate all 10 

dimensions with each other, giving us very fine-grained information about rail companies and their 

spatio-temporal behavior (over counties and time) as well as different parameters of a given 

accident. Given the exploratory nature of the proposed analysis, it is unfortunately very hard to 



 
 

11 
 

assign quantitative measures of success, since success is measured by the ability of the proposed 

method to uncover hidden patterns. To that end, we provide a qualitative assessment of the 

proposed method by observing whether it is able to extract coherent patterns, aiming for a rather 

objective evaluation of the patterns extracted and avoiding highly-subjective notions of 

interestingness and importance, which can vary depending on the stakeholder who is consuming 

the provided patterns. 

Figure 2 demonstrates the above point. In particular, we show a 2-dimensional projection of 

the rail company representation learned by the CPD decomposition using t-SNE. Furthermore, we 

have colored company cluster assignments with respect to CPD maximum component membership 

(left subfigure) and by using k-means clustering on that space. (right subfigure) It is clear that our 

proposed CPD maximum component membership clustering identifies nearly perfectly all 

coherent structure, whereas traditional clustering fails to do so. 

 

Figure 2: Left: Clustering rail companies using our proposed tensor method. Same color 

indicates same cluster membership. We observe that even though the clusters are not 

necessarily linear, our proposed method groups coherent regions of the space successfully. 

Right: Clustering of companies using traditional K-means clustering, which fails in 

capturing the non-linear patterns in the space. 
 

We are planning to submit this work for publication to a relevant conference or workshop 

during Fall 2024. 
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4. Neural Tensor Decomposition  

As we have demonstrated in Sec. 2, tensor decomposition, and particularly the CPD model, 

are very powerful and expressive in terms of identifying hidden patterns/co-clusters in the data. 

However, recent advances in tensor methods have brought about the concept of neural tensor 

decompositions, tensor decompositions that leverage neural networks in order to express highly 

complex and non-linear patterns in the data which classical methods such as CPD may not be able 

to. State-of-the-art neural tensor methods have been shown to successfully do so, however, the 

price to pay is that they forfeit the notion of pattern interpretability that classical models like CPD 

enjoy, where each component of the decomposition corresponds to a single interpretable 

pattern/co-cluster in the data. 

We have developed NeAT [9], a neural tensor model that starts from first principles and 

judiciously extends the classical CPD model by introducing independent neural networks for each 

extracted component. By doing so, each component still stands for an important pattern in the data, 

while the neural network that is assigned to it allows it to express non-linear patterns.  Figure 3 

shows pictorially how NeAT readily extends CPD, and thus, inheriting some of its interpretability 

properties, and how this contrasts to existing neural tensor methods. 

 
Figure 3: The proposed NeAT method judiciously extends CPD by introducing separate 

neural networks per component. 

 

This work [9] will appear at the 33rd ACM International Conference on Information and 

Knowledge Management (CIKM) 2024, a top-tier data science conference. 
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5. Developing a Tensor-based Framework for Extracting Insights from Rail Crossing 

Videos 

Going beyond public accident reports, in collaboration with PI Khattak from University of 

Nebraska-Lincoln, we set out to investigate how we can derive actionable insights from video 

recordings of rail crossings. Video is a very rich modality and essentially captures behavioral 

patterns of that particular crossing over the course of time. Even though it is possible for an analyst 

to go over the video and understand different risk factors or other patterns of interest for a single 

intersection, it becomes a humanly-impossible task when the goal is to understand how different 

crossings may “behave” similarly over different periods of time, especially when that behavior is 

time-varying (e.g., two crossings may be very similar during rush hour but may exhibit drastically 

different risk factors during night time).  

In this work we propose to develop a tensor-based framework that can do exactly that: given 

video recordings of rail crossings in given locale over time, identify groups of crossings that exhibit 

similar visual behavior (thus potentially exhibit similar risk factors) over a certain period of time. 

In order to determine similarity of behavior, we are going to rely on 3D Convolutional Neural 

Networks which are used to process and classify video data in order to compute vector 

representations of video segments per crossing. We, thus, assume that similarity in that video 

embedding space correlates with visual similarity, and we are going to restrict the time windows 

over which that similarity is computed in order to make sure that we eliminate non-stationarity 

issues. 

 

Figure 4: Overview of our proposed framework for mining rail crossing video 
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Figure 4 shows an outline of our framework: Given a railway video dataset, we consider each 

crossing as a node in a graph and segment video data into intervals (1 min, 30 min, 1 hr) to create 

different temporal resolutions. For each segment, we compute vector embeddings using a pre-

trained video model. We then calculate the similarity between these embeddings for each time 

interval, resulting in a temporal tensor graph (crossing, crossing, time). We apply nonnegative 

symmetric CPD to this tensor graph to identify crossings with similar behaviors. 

Currently, we have developed an end-to-end system and we are in close collaboration with 

UTCRS partners in order to apply our framework to real data and identify meaningful behaviors. 

We are planning to submit a paper detailing the framework and indicative results to a relevant 

conference or workshop in the Fall. 
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