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1. SUMMARY 

The Autonomous Rail Surface Defect Detection project aims to improve railway safety by 

employing unmanned aerial vehicles (UAVs) to detect rail surface defects, as illustrated in Figure 

1. Utilizing a customized dataset, the RSD_UAV dataset, the project developed an enhanced 

DeepLabv3-plus model integrated with advanced image processing techniques and machine 

learning algorithms, including a lightweight ResNet-18 backbone and a Convolutional Block 

Attention Module (CBAM). This model enabled efficient and accurate rail surface defect detection, 

achieving a mean Intersection over Union (mIOU) of 84.97% and a mean accuracy (mAccuracy) 

of 92.60%. 

Figure 1: Rail surface defects 
 

Data for this study was collected over several rail sections in Columbia, SC, encompassing a 

variety of typical rail defects. This dataset, comprising 13,053 images, was rigorously processed 

and augmented to train the model under different conditions. The robustness of the developed 

system was evaluated across multiple UAV flight patterns, demonstrating reliable rail surface 

defect detection in all tested scenarios, though with varying degrees of defect detection efficacy 

based on the UAV's height and lateral distance from the rails. Further empirical evaluations 

demonstrated that the model effectively detects rail surface defects (RSDs) when the UAV is 

operated between 3 ft and 9 ft above the rail surface. However, as the UAV's altitude increases to 
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12 ft or more, the detection accuracy decreases, indicating only partial detection of RSDs. 

Additionally, when the UAV is positioned 5 ft laterally from the rail surface, the detection of RSD 

is significantly compromised at a height of 3 ft; however, elevating the UAV slightly improves 

this detection.  

Throughout various experimental setups, the rail surface was consistently detectable under 

all tested conditions. The creation and utilization of the RSD_UAV dataset, combined with the 

demonstrated performance of the detection system, represent pioneering contributions to the field 

of railway inspection and maintenance. This research highlights the potential of UAV-imagery 

combined with advanced deep learning models for improving the safety and maintenance 

planning of railway track. 

 

2. BACKGROUND 

As the speed and load capacities of trains have increased significantly, the safety demands of 

railway operations have increased accordingly. Influenced by factors such as temperature, 

moisture, and load, the track surface may gradually develop defects of varying degrees. If not 

promptly addressed, these defects can deepen, significantly elevating the risk associated with train 

operations. Conventionally, railway inspections have relied on manual checks. However, such 

inspections are subjective, inefficient, time-consuming, costly, and susceptible to adverse 

conditions. Thus, the automation of rail surface defect detection holds considerable practical value 

and is of significant academic interest. 

Traditional image-processing-based defect detection algorithms typically commence by 

extracting features of the target, followed by defect identification based on these features. Common 

feature extraction methods include wavelet filtering [1], Fourier transforms [2], and local binary 

patterns [3]. Once the features of the defect area are extracted, defect identification is performed 

using techniques such as Bayesian networks [4], k-nearest neighbors [5], and Support Vector 

Machines (SVM) [6]. Nonetheless, the effectiveness of these methodologies is considerably 

constrained by the subjective nature of feature design and extraction, and their performance is 

susceptible to environmental variables like lighting and noise. 
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With the advent of deep learning and convolutional neural networks in the realm of image 

processing [7], various target detection algorithms [8] have been adapted for use in defect detection 

tasks. For instance, Zheng et al. [9] introduced a deep learning algorithm that incorporates a 

squeeze-and-expand mechanism, designed for rapid defect detection on copper-clad boards. 

Similarly, Badmos et al. [10] employed a pre-trained VGG19 network for lithium-ion battery 

electrode defect detection. However, while these methodologies are capable of classifying defect 

images, they fall short in locating the exact locations, thereby limiting their applicability for tasks 

requiring precise defect localization. In general, the inspection of rail surface defects presents 

several challenges: 

1. The developed model needs to adapt to the random noise inherent in complex field 

conditions, such as reflections from other track components. 

2. The model must effectively manage imbalanced instances due to the small ratio of defect 

area to the overall rail surface area, which can complicate model training. 

3. State-of-the-art (SOTA) models, generally designed for general detection applications, 

often require substantial computational resources and may not deliver high accuracy in 

specialized railroad scenarios. 

4. Many of these models underperform in edge segmentation of rail surfaces. 

5. There is a notable scarcity of datasets specifically related to rail surfaces, complicating the 

development and training of effective detection models. 

3. OBJECTIVES AND SCOPE 

This project aims to establish a specialized RSD_UAV database and develop a tailored model 

for rail surface defect detection with UAV-imagery. During the data collection process, factors 

such as different heights from the rails and different lateral ranges were taken into account to 

understand the influence of UAV flight. The dataset is rich and has practical value. The database 

contains a total of 13,053 images, divided into 70% for the training set, 15% for the verification 

set, and 15% for the test set. Next, the improved DeepLabv3-plus model was trained using the new 

RSD_UAV dataset to inspect RSD with high accuracy and efficiency. To accelerate inference 

speed without sacrificing accuracy, the lightweight ResNet-18 backbone was adopted. The model 

was enhanced to focus on critical feature representations by integrating the Convolutional Block 

Attention Module (CBAM) into the decoder part of the improved DeepLabv3-plus model. The 
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Lovász-Softmax loss was implemented to address severe data imbalance. The improved model 

achieves the best performance based on evaluation metrics and visualizations. 

4. METHODOLOGY 

4.1 Data Collection 

In this project, the RSD_UAV data was collected on Sumter St, Columbia, SC 29201 

(coordinates: 33.987932, -81.025855), as depicted in Figure 2. This section of the railway is 

located in the downtown area, where large freight trains frequently pass and which is near a 

crossroads, resulting in many typical rail surface defects. As shown in Figure 3, the Parrot ANAFI 

USA, a powerful American-made drone, was used to collect the RSD_UAV data. The drone, when 

unfolded, measures 242 x 315 x 64 mm and weighs 315 g. It has a maximum speed of 55 km/h, a 

maximum vertical speed of 4 m/s, and can resist winds up to 50 km/h. 

 
Figure 2: The area of RSD_UAV data collection (Google Map) 

 

In the experimental plan for data collection, two variables were established: the flying height 

of the drone and the lateral distance of the drone's flight path from the track. The flight heights are 

set at 3 ft, 6 ft, 9 ft, and 12 ft, respectively. Lateral distances are set at 0 ft (i.e., flying directly 
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above the rails) and 5 ft, creating a total of eight different conditions. Roboflow was employed for 

data labeling. The RSD_UAV dataset includes two segmentation classes, "railsurface" and 

"defects." After labeling all the RSD_UAV data, preprocessing and augmentations were applied 

to increase the robustness of the dataset. Ultimately, the RSD_UAV dataset was successfully built 

and contains a total of 13,053 images. It is divided into 70% for the training set, 15% for the 

verification set, and 15% for the test set. 

4.2 Model Training 

The improved DeepLabv3+ model (Figure 3) was trained using the new RSD_UAV dataset 

to inspect RSD with high accuracy and efficiency. To accelerate inference speed without 

sacrificing accuracy, the lightweight backbone, ResNet-18, is adopted. The model focuses on 

critical feature representations by integrating the Convolutional Block Attention Module (CBAM) 

with the decoder part of the improved DeepLabv3+ model. Lovász-Softmax loss is used to address 

severe data imbalance. This model develops an effective decoder to enhance the final segmentation 

results with refined object boundaries. The resolution of extracted encoder features can be adjusted 

with atrous convolution, and both the Xception model and depthwise convolution are adopted for 

better segmentation performance.  

Figure 3: The pipeline of improved Deeplabv3+ 

In this project, settings were as follows: batch size at 64, learning rate at 0.01, momentum at 
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0.9, optimizer as SGD, and weight decay at 0.0005. Ultimately, the model achieves the best 

performance in both evaluation metrics and visualizations. The mean Intersection over Union 

(mIoU) is the primary indicator of accuracy, with the rail surface class achieving an IoU of 91.77 

and an accuracy of 96.36. For defects, the IoU is 63.60 and the accuracy is 81.72. For the trained 

model, the mean IoU is 84.97 and mean accuracy is 92.60. 

5. RESULTS 

The trained model was applied to test videos under 8 different conditions, and visualized 

results were obtained respectively. When the height distance of the UAV from the rail was 3 ft (as 

depicted in Figure 4), the rail surface was accurately detected whether directly above the rail or 5 

ft laterally from the rail. However, rail surface defects were only accurately detected when flying 

directly above the rails; they could not be detected when 5 ft laterally away from the rails.  

At a height distance of 6 ft from the rail (as depicted in Figure 5), the rail surface was 

accurately detected in both positions. However, while rail surface defects were accurately detected 

when flying directly above the rails, they were only partly detected when 5 ft laterally away from 

the rails.  

At a height distance of 9 ft from the rail (as depicted in Figure 6), the same detection pattern 

was observed as at 6 ft: the rail surface was accurately detected in both positions, but defects were 

only partly detected when 5 ft laterally away.  

When the height distance of the UAV was 12 ft from the rail (as depicted in Figure 7), the 

rail surface was still accurately detected in both positions. Similarly, while defects were accurately 

detected directly above the rails, detection was only partial when the UAV was 5 ft laterally away. 
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(a) (b) 
Figure 4: Visualized results of RSD_UAV detection: (a) HD = 3ft, LD = 0 ft; (b) HD = 3ft, 

LD = 5ft. 

 

 

(a) (b) 
Figure 5: Visualized results of RSD_UAV detection: (a) HD = 6ft, LD = 0 ft; (b) HD = 6ft, 

LD = 5ft. 

 

 

(a) (b) 
Figure 6: Visualized results of RSD_UAV detection: (a) HD = 9ft, LD = 0 ft; (b) HD = 9ft, 

LD = 5ft. 

 

 

(a) (b) 
Figure 7: Visualized results of RSD_UAV detection: (a) HD = 12ft, LD = 0 ft; (b) HD = 

12ft, LD = 5ft. 
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6. CONCLUSIONS 

In this project, a comprehensive UAV-Imagery-base rail surface defect dataset, referred to as 

the RSD_UAV dataset, was constructed specifically for enhancing the capabilities of rail surface 

defect (RSD) detection using unmanned aerial vehicles (UAVs). 

The improved DeepLab v3+ model was fine-tuned using this customized dataset, resulting in 

remarkable improvements in defect detection performance, evidenced by a mean Intersection over 

Union (mIOU) of 84.97 and a mean accuracy (mAccuracy) of 92.60. 

Further empirical evaluation demonstrated that the model effectively detects RSD when the 

UAV is operated between 3 ft and 9 ft above the rail surface. However, as the UAV’s altitude 

increases to 12 ft or more, the detection accuracy diminishes, indicating only partial detection of 

RSD under these conditions. Additionally, when the UAV is positioned 5 ft laterally from the rail 

surface, the detection of RSD is significantly compromised at a height of 3 ft, though elevating the 

UAV slightly improves detection. 

Throughout various experimental setups, the rail surface was consistently detectable under 

all tested conditions, underscoring the robustness of the developed detection system. This research 

highlights the potential of UAV-based imaging combined with advanced deep learning models for 

improving the safety and maintenance of railway infrastructure. 
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