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1. Introduction 

The U.S. rail network is the largest, safest, and most efficient railway network in the world that 

operates over 160,000 railway miles. It plays a pivotal role in enabling the transportation of goods 

and people throughout the nation; and due to this crucial function, it serves as a fundamental pillar 

in supporting the economic expansion of the United States [1]. On the other hand, the U.S. highway 

network also plays a crucial role in enabling the seamless transportation of both individuals and 

cargo, consisting of a sophisticated linked grid of roads that spans the entire nation. According to 

data from the U.S. Department of Transportation (USDOT), the average monthly traffic volume 

for the year 2022 exceeded 3,000 billion miles [2]. However, at the intersection of these two crucial 

transportation modes lies a point of concern—the Highway Rail Grade Crossing (HRGC), which 

are where a road or pathway intersects with a railway track [3].  

 

 
Figure 1: Photo of a simple active HRGC in Edinburg, Texas (Source: Google Maps) 

  

HRGCs facilitate the safe passage of vehicles, cyclists, and pedestrians across railway lines. 

However, they pose safety challenges due to the potential for collisions between trains and road 

users even when they are equipped by an active waning system as shown in Figure 1. If the road 

users attempt to cross the railway when a train is approaching without noticing warning signals, a 

catastrophic collision can occur that can lead to severe injuries or fatalities. Between 2010 and 

2018, a total of 1,114 fatal crashes tragically occurred at HRGCs in the United States that resulted 

in the loss of 1,306 lives [4]. Over the course of eight years, there has been a significant 20% 

decrease in accidents related to HRGC. While this is an encouraging development, it is important 
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to acknowledge that the number of fatalities continues to be alarmingly high. This highlights the 

urgent necessity to persistently improve safety measures in HRGCs, especially in rural areas where 

road users mostly rely on passive warning devices and electrical power is scarce.  

A viable solution to the increase of safety at HRGCs is to proactively detect the approaching 

trains from a distance from the road prior to their arrival at the crossing [5,6]. This approach 

provides road users with ample reaction time to react and pass the crossing safely. There are various 

methods for detecting trains before they reach a HRGC or a specific work zone. Some examples 

include the Automated Wayside Horn [7], the Magnetic Anomaly Detector [8], and Doppler Radar 

[9]. While these techniques have demonstrated considerable capability, they do possess limitations, 

primarily in their high cost and inability to detect an approaching train from a long distance, often 

limited to distances very close to the railway which are not long enough to provide a safe passage 

through the crossing.  

The objective of this study is to assess the feasibility of using vibration sensors placed along 

the track for the detection and identification of approaching trains from a distance upstream. This 

is achieved through the data analysis of rail vibrations and the development of a time series 

predictive machine learning (ML) model. For this purpose, a finite element (FE) model of a 

ballasted track railway is created in SAP2000, including the key components of the track such as 

rails, sleepers, rail pads, ballast, and subgrade. The acceleration time history of the rails induced 

by a moving single car is recorded and then utilized as input data for training and testing a Long 

Short-Term Memory (LSTM) network using the Keras open-source library in Python [10]. This 

model is employed to predict the key parameters of the approaching train, including its location 

and speed. The prediction of these parameters will facilitate the determination of the exact moment 

when the train reaches the HRGC, providing road users with ample reaction time to safely cross 

the railway track. 

2. Ballasted Track Railway Dynamic System  

The dynamic interaction between a moving train and a ballasted track railway dynamic system 

is a complex problem which is characterized by numerous unknown parameters and uncertainties. 

The discussion below outlines the essential components of a simplified, yet reliable, “Ballast 

Model” proposed by Zhai et al. (2004), designed for the vibration analysis of a ballasted track 

railway subjected to a moving railcar [11]. 
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2.1 Ballast Model Description 

Figure 2 illustrates the key components of the ballast model, including the rail, rail pads, 

sleepers, ballast, and subgrade. The vertical deflection of the track is based on the 

conceptualization that the rail functions as a continuously elastic beam supported on an elastic 

foundation, the ballast, as initially proposed by Winkler [12]. The ballast is the most crucial 

component in the model, undergoing a localized large vertical deformation when subjected to the 

axle load transmitted through the sleepers. In addition, it undergoes a complex energy dissipation 

process attributed to dry friction between gravels and vibration wave radiation through the 

subgrade. 

 

 
Figure 2: Longitudinal cross-section of a ballasted track railway with its key parameters   

 

The axle load transmitted from the sleeper to the ballast can be approximately represented by 

a conical distribution characterized by the angle α as shown in Figure 2 [11,13]. Other important 

parameters include Ss, representing the center-to-center spacing between sleepers; Ls, the length; 

Ws, the width; Hs, the height of the sleeper, and Hb, the depth of the ballast. The height of the 

overlap between two adjacent conical stress distributions, denoted by H0 in Figure 2, is assumed 

to be zero (i.e., H0 = 0). Given this assumption, it can be concluded that [11]: 
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tan (α) =
Ss − Ws

2Hb
 (1) 

Figure 3 shows the three-layer lumped dynamic model used in this study to describe the 

dynamic behavior of a ballasted track [11]. The rail and the sleeper are modeled using elastic beam 

elements connected through a rail pad, represented by a spring with stiffness Kp and a damper with 

damping coefficient Cp. The sleeper is assumed to be rigid. The dynamic response of ballast 

beneath the sleeper is described by a spring with stiffness Kb, and the effective mass Mb 

concentrated at the mass center of the ballast, as illustrated in Figure 3. To account for continuity 

and shear coupling effects among interlocking ballast granules, a spring with stiffness Kw is 

introduced between adjacent ballast masses in the ballast model. In addition, the energy dissipation 

in the ballast model is considered through the inclusion of two dampers with damping coefficients 

Cb and Cw, as depicted in Figure 3. The vibration of the ballast is transferred to the subgrade 

through a spring of the coefficient Ks and a damper of the damping coefficient Cs.  

  

 
Figure 3: Three-layer dynamic model of a ballasted track railway 
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The effective mass of the ballast vibrating under one side of sleeper under a single rail can be 

calculated by, 

Mb = ρbHb �
1
2

LsWs + �
1
2

Ls + Ws�Hbtan (α) +
4
3

Hb
2tan2(α)� (2) 

where ρb is the mass density of ballast. The stiffness coefficient Kb of the ballast is calculated as, 

Kb =
2(Ls − Ws)tan (α)

ln �Ls
Ws

Ws + 2Hbtan (α)
Ls + 2Hbtan (α) �

Eb (3) 

where Eb is the modulus of elasticity of ballast. Furthermore, the stiffness coefficient Ks of the 

subgrade is calculated as, 

Kf = [Ls + 2Hb tan(α)] [Ws + 2Hb tan(α)]Ef (4) 

where Ef is the subgrade modulus. The other parameters of the dynamic model, Kp, Ks, Cp, Cb, Cw, 

and Cs, are given from [11]. 

2.2 Ballast Model Parameters 

It is assumed that the rail has the profile number 100ARA-A with a specific mass of 50 kg/m, 

a total height of 15.24 cm, a foot width of 13.97 cm, and a head height of 3.96 cm. The dimensions 

of the sleepers are Ls = 2.5 m, Ws = 0.2 m, and Hs = 0.2 m. It is also assumed that the depth of the 

ballast is Hb = 0.5 m and the angle of stress cone is α = 16.7° for H0 = 0. Furthermore, it is assumed 

that the mass density of the ballast is ρb = 1800 kg/m³, and the modulus of elasticity of the ballast 

is Eb = 110 MPa. The subgrade modulus is also assumed to be Ef = 90 MPa/m. Table 1 lists the 

values of the key parameters of the ballast model shown in Figure 3. 

 

Table 1: Parameters of the ballast model used in the FE analysis 

 

 

 

Member Parameter Value Unit 

Rail Pad Kp 65 MN/m 
Cp 75 kN·s/m 

Ballast 

Kb 100 kN/m 
Cb 60 kN·s/m 
Kw 78 MN/m 
Cw 80 kN·s/m 
Mb 450 kg 

Subgrade Kf 70 MN/m 
Cf 31 kN·s/m  
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3. Numerical Study 

Figure 4 shows the configuration of the ballasted track railway and the position of a vibration 

sensor at Xs. The total length of the track is 221 m.  

 

 
Figure 4: Configuration of the ballasted track railway, the moving railcar, and vibration 

sensor  

 

 
Figure 5: FE model of a ballasted track in SAP2000 

 

3.1 Finite Element Model 

In Figure 5, the FE model created in SAP2000 is depicted, where segments of the track passing 

through the grade crossing are represented by rigid elements supported by a series of springs and 

dampers, simulating a stiff subgrade. The center-to-center space between the sleepers is assumed 

to be Ss = 0.5 m. In this study, two sensors, one installed at Xs = 3.0 m (S1: track’s end point) and 
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one at Xs = 103 m (S2: track’s midpoint) are used to measure the acceleration and deformation of 

the track. The dynamic load of a train with N axles moving with the constant speed v can be 

expressed as follows, 

P(t) = � Pnfn(t)δn(xn − vt)
N

n=0

 (5) 

where Pn is the n-th axle load, fn(t) = 1 + Aneiωnt is a harmonic function describing the vibration 

of suspension system of n-th axle with An and ωn being the amplitude and frequency parameters 

of the of suspension system, and δn is the Dirac delta function with xn being the location of the n-

th axle. In this study, a single rail car with four axles (N = 4) is used for vibration analysis of the 

ballasted track with Pn = 300 KN and An = 0 for n = 1, 2, 3, and 4, as shown in Figure 4. The 

distances between the four axles are assumed to be 2.5 m, 10 m, and 2.5 m which are typical for 

Class I freight railcars in the US. 

 

 

Figure 6: Maximum (a) displacement and (b) acceleration of the ballasted track at the end 

and mid points of the track 
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3.2 Time-Frequency Analysis 

A parametric study was conducted to investigate the sensitivity of track vertical deformation 

and acceleration to the speed of a moving railcar, determining the critical (resonance) speed. Figure 

6(a) illustrates the variation in the maximum displacement of the track at points Xs = 3.0 m (track’s 

endpoint) and Xs = 103.0 m (track’s midpoint) across a range of railcar speeds from 15 m/s to 80 

m/s. It is observed that the track deformation, as anticipated, remains relatively insensitive to the 

railcar’s speed, staying close to static deformation at approximately 1.9 mm. However, Figure 6(b) 

demonstrates that the acceleration of the track at these two points is highly sensitive to the railcar’s 

speed for v > 30 m/s. The critical speed of the railcar is estimated to be 65 m/s, resulting in an 

acceleration as high as 80g for both locations. 

  

 
Figure 7: Time history displacement response of the ballasted track: (a) v = 25 m/s and (b) 

v = 65 m/s 
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Figure 8: Time history and Hilbert spectrum of the acceleration response of the ballasted 

track: (a) v = 25 m/s and (b) v = 65 m/s 
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Figures 7(a) and 7(b) depict the time history of the track midpoint deformation for the speeds 

25 m/s and 65 m/s (i.e., the critical speed). These plots illustrate that track deformation is highly 

localized, approaching zero a few meters away from the location of load. This localized effect can 

be attributed to high damping within the ballast. However, the acceleration response is particularly 

sensitive to the railcar's speed, especially at higher speeds. Figures 8(a) and 8(b) show the time 

history of acceleration signals recorded by sensor S2 at speeds of 25 m/s and 65 m/s, along with 

their respective Hilbert spectra in the time-frequency domain. The Hilbert spectrum for v = 25 m/s 

illustrates the distribution of signal’s energy concentration over a broad frequency range from f = 

10 Hz to f = 45 Hz. In contrast, for the case of v = 65 m/s, the energy is concentrated around f = 

48 Hz. 

4.  Machine Learning Model 

4.1 Moving Load Identification 

The identification of a dynamic load applied to a mechanical system, utilizing the system's 

characteristics and response—such as the moving load of a train on a ballasted track railway—is 

inherently an “inverse problem”.  

Here, let z(t) represent the response of a linear dynamic system to the dynamic force p(t) and 

a zero initial condition. The relationship between these two functions in the time domain is given 

by the convolution integral [14], 

z(t) =  � h(t − τ)p(τ)dτ
t

0
 (5) 

where h(t−τ) is called the Green kernel function. This equation can be written into a dispersed 

matrix form in the modal domain as: Z(t)=H(t)P(t) where the elements in matrix H(t) are the 

impulse response functions. The load components can be estimated by determining the inverse of 

the H(t) matrix. 

However, this would be quite challenging with the traditional methods, especially for a 

complex dynamic system such as a ballasted track railway [15]. To overcome this, we employe a 

deep learning approach based on the Recurrent Neural Network (RNN) [16]. This approach allows 

us to estimate the key features of a moving train load (e.g., speed, axles load, etc.) in terms of the 

rail’s acceleration without having to derive complex formulas from physical principles. 
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4.2 Long Short-Term Memory (LSTM) Network 

LSTM network, a specialized branch of RNN, is an advanced architecture designed to address 

the challenge of learning dependencies in sequence data [17]. The defining characteristic of LSTM 

is its capability to maintain a long-term memory, which is pivotal for applications requiring the 

recognition of patterns over extended time intervals, such as time-series forecasting and natural 

language processing [18].  

The defining feature of LSTM is the cell state, Ct, which acts as a conduit for carrying relevant 

information across the sequence of data. It is accompanied by the hidden state, ht, that holds the 

output from the LSTM cell at each time step and can be utilized for subsequent predictions or 

further processing [17]. The operational integrity of the LSTM is governed by three gates [19], 

each responsible for modulating the flow of information:  

 

Forget Gate (nt): This gate is essential in culling information considered as non-essential from the 

cell state [20]. It operates through the following equation: 

ntl =  σ�Un
l htl−1 +  Wn

lht−1l � (6) 

Input Gate (it): Concurrently, the input gate evaluates new data for addition to the cell state, as 

determined by this relationship: 

itl =  σ�Ui
lhtl−1 +  Wi

lht−1l � (7) 

Output Gate (Ot): The output gate filters the information from the cell state to form the final output 

at each time step: 

otl =  σ�Uo
l htl−1 +  W0

lht−1l �  (8) 

The cell state is updated by synergistically combining the outputs of the forget and input gates, 

which is succinctly expressed as: 

Ct =  nt′ ⊙ Ct−1 +  itl ⊙ Ctl�  (9) 

The Ctl�  symbolizes the candidate values for the cell state update [19], generated by a “tanh” layer 

to regulate the values within the range of -1 to 1:  

Ctl� =  tanh�Uc
lhtl−1 + Wc

lht−1l � (10) 

The output of the LSTM, the hidden state ht, is computed by applying the output gate to the updated 

cell state, as described by: 
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htl =  ot′ ⊙ tanh�Ctl� (11) 

In the above equations, U and W represent the matrices of weights associated with different 

gates within the LSTM cell. These weights are subjected to optimization during the training 

process. The σ function, known as the sigmoid function, yields outputs confined between 0 and 1 

and is integral to the gating mechanisms. The “tanh” function, or hyperbolic tangent, produces 

outputs between -1 and 1 and is utilized to modulate the cell state and the output. Finally, the sign 

⊙ denotes the Hadamard product, which facilitates element-wise multiplication. 

The LSTM operates in a cyclic procedure where the forget gate evaluates and filters out the 

redundant information from the previous cell state. Simultaneously, the input gate, in conjunction 

with the tanh layer, prepares new candidate values. The cell state is then updated, merging retained 

information and new insights. Finally, the output gate synthesizes the cell state into the hidden 

state, delivering the LSTM's output.  

4.3 Data Collection 

Upon finalizing the FE model, a rail car was subjected to multiple runs at varying speeds along 

the track using the moving load algorithm in SAP2000. These speeds ranged from 15 m/s to 60 

m/s, increasing incrementally by 5 m/s. The acceleration responses were collected from the two 

distinct points on the track: Xs = 3.0 m (the proximal sensor, or S1) and Xs = 103.0 m (the distal 

sensor, or S2). The placement of these sensors aimed to discern the impact of location on capturing 

optimal acceleration responses, a crucial factor in determining the train's most suitable speed. The 

data, collected at a time step of dt = 0.01 sec, resulted in two comprehensive datasets. Each dataset 

consists of approximately 14,000 data points, cumulatively presenting a set of 28,000 data points 

for the ML model training. This approach was essential in enhancing the understanding of train 

dynamics on ballasted tracks. 

4.4 ML Model Training and Testing 

The acceleration response datasets are processed through the LSTM model. To establish a 

robust testing environment, data corresponding to a speed of 25 m/s was deliberately omitted from 

both the training and testing datasets. This specific dataset was exclusively reserved for assessing 

the LSTM model's performance as unseen data. The “StandardScaler” function was employed to 

normalize these datasets. Furthermore, an investigation was carried out to optimize the 

hyperparameters of the LSTM model. This optimization is focused on tuning the number of 
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epochs. The training regimen for the model extended over 200 epochs, with a batch size of 50. 

This implies that the model underwent 200 complete iterations across the training dataset, with 

each iteration processing batches comprising 50 data points.  

 

 
Figure 9: Relationship between the loss parameter and epoch 

 

Following the LSTM model training process, the Epoch-vs-Loss graph is plotted in Figure 9, 

which illustrates the performance of LSTM model, based on data from sensors S1 and S2, over 

200 training epochs. Loss values, indicating prediction errors, decreased from about 0.0034 to just 

below 0.0026, signaling the LSTM model's enhanced prediction accuracy. Both lines on the graph 

show expected fluctuations, with sensor S1's data displaying slightly greater variability. This visual 

representation confirms the LSTM model's learning efficacy as it was exposed to the acceleration 

data, adjusted through hyperparameter tuning, and improved steadily with each epoch. The epoch 

size was chosen as 150 for training the dataset by accepting Loss = 0.00265.  

Figure 10 illustrates the performance of the LSTM model in terms of actual versus predicted 

speeds, plotted across a speed range of 15 m/s to 60 m/s. As depicted in the figure, the model 

yielded highly accurate training results, successfully predicting nearly every speed with precision. 

It is noteworthy that, due to the exclusion of data points corresponding to v = 25 m/s during 

training, a distinct and abrupt transition is observed between speeds of 20 m/s and 30 m/s.  

After completing the training phase using the designated datasets, the remaining data—

specifically, the acceleration responses corresponding to a velocity of 25 m/s—underwent a 
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predictive analysis. In Figure 11, it is evident that the model successfully forecasted the speed for 

all data points associated with sensors S1 and S2. The predicted speeds for each sensor closely 

matched the actual speeds, exhibiting minimal deviation from v = 25 m/s, as indicated by the small 

spikes observed in the graph. This precision highlights the model's effectiveness in deducing from 

the trained data to accurately predict speed that was not explicitly part of its training set. This 

indicates the robustness of the LSTM model in handling unforeseen data scenarios. 

 

 
Figure 10: Actual vs predicted graphs: (a) sensor S1 and (b) sensor S2 
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Figure 11: LSTM model evaluation for v = 25 m/s (Unseen Data): (a) sensor S1 and (b) 

sensor S2   

Furthermore, the accuracy of the predictions is assessed by calculating the Mean Squared Error 

(MSE), Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE) based 

on the sensor data. Here, lower values of these metrics indicate higher accuracy. Table 2 presents 

the values of these metrics. For sensor S2, the MSE was 0.125, RMSE was 0.353, and MAPE was 

0.014. In addition, for sensor S1, the accuracy was slightly higher, with an MSE of 0.069, RMSE 

of 0.262, and MAPE of 0.010. These statistics not only confirm the model's precision in prediction 

of train’s speed but also highlight that S1 exhibited slightly superior performance in capturing and 

processing acceleration responses for this purpose. 

 

Table 2: LSTM model’s testing accuracy 

Accuracy 
Parameters 

Sensor 
S1 S2 

MSE 0.069 0.125 
RMSE 0.262 0.353 
MAPE 0.010 0.014 
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5. Conclusions 

In summary, this study presents an AI-enabled vibration sensing methodology for train 

detection at highway-rail grade crossings (HRGCs). To conduct the vibration analysis, we have 

developed a finite element model of a ballasted track railway system near a grade crossing, 

capturing acceleration data from a moving railcar with a wide range of speed from v = 15 m/s to 

80 m/s. To tackle the inverse problem of identifying dynamic loads, we have employed a deep 

learning approach, utilizing a Long Short-Term Memory (LSTM) network to estimate the moving 

railcar features (i.e., speed) based on the track’s acceleration. The results demonstrate the high 

accuracy of the trained LSTM model in predicting the train's speed at different speeds, using 

acceleration data collected at two locations: the mid (S2) and end (S1) of the track. The model 

reliably predicted speeds, particularly the excluded 25 m/s data, demonstrating its robust 

generalization capabilities. The accuracy parameters—MSE, RMSE, and MAPE—confirmed the 

model's high predictive accuracy, with S1 slightly outperforming S2. In conclusion, our AI-

enabled system offers a proactive solution for HRGC safety. By integrating vibration analysis and 

machine learning, it holds promise in reducing accidents especially in areas where having access 

to more complex train detection methods is not easy. In the next stage of this study, we aim to 

collect acceleration data in the field, including noise measurement, to further enhance the system's 

robustness and field service applicability. 
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