Modeling the Useful Residual Life of Railroad Grease

Dr. Doug Timmer, Thania Martinez, Dr. Robert Jones, Dr. Constantine Tarawneh

University of Texas – Pan American

Project Description

- The degradation of grease used to lubricate railroad bearings is believed to occur due two processes:
 - Mechanical processes occurring within the bearing,
 - Oxygen diffusion.
- Appropriate lubrication of the bearings is critical during railroad service operation.
- This study focuses on the development of empirical models that can accurately predict the residual useful life of railroad bearing grease.
- Employed Modeling Techniques:
 - Linear Regression Analysis
 - Regression Trees
 - Split Plots

Project Description (cont.)

 The data set used in the development of the model consists of more than 100 samples of grease taken from the railroad bearings which were observed in a laboratory setting.

Laboratory Bearing Tester

- Four bearings on the axle are subjected to the following experimental variables:
 - Load Conditions
 - Rotational Speed
 - Mileage
 - Temperature

Oxidation Induction Time

- Oxidation Induction Time (OIT) is a test performed in a Differential Scanning Calorimeter (DSC) which measures the level of thermal stabilizers in the material.
- The DSC produces a graph of heat flow vs time.
- The time elapsed between the introduction of air into the cell and the decomposition of the sample reveals the time to oxidation which is then recorded as OIT.

Bearings

- Three samples come from each bearing, giving a total of twelve possible samples from each axle.
- Grease is sampled from the three critical locations of the bearing:
 - Inboard Cone Assembly Raceway
 - Outboard Cone Assembly Raceway
 - Spacer Ring Area

Linear Regression Plot for OIT vs Speed

Regression Tree

Min size split 20

Experimental Design

- Split, Split-plot Design
 - Whole plot: axle-setup
 - Sub plot: each bearing on axle
 - Sub, sub plot: sample location within each bearing
- Single replicate
- Unbalanced design

Unbalanced Data

Parameter Estimation

- Restricted Maximum Likelihood (REML)
- Implemented in Matlab
- Degrees of Freedom are approximate due to unbalanced data

Representation of Bearing Location in Regression Model

- The bearing location was recorded as a nominal value (1, 2, 3, 4)
- Modeled using three indicator variables

		Dummy Variables	
Bearing	X4	X5	Х6
1	0	0	0
2	1	0	0
3	0	1	0
4	0	0	1

Representation of Grease Location in Regression Model

- The grease location was recorded as a nominal value (1, 2, 3)
- Modeled using two indicator variables

	Dummy Variables					
Grease	X7	X8				
1	0	0				
2	1	0				
3	0	1				

Initial Model

	Term	Coef	se(Coef)	t-statistic	approx p-val			
	Intercept	1.0737	3.7641	0.2853	0.7850		Variance Componer	Estimate
	load	1.5122	7.1931	0.2102	0.8405		wp	15.33
wp terms (approx error df = 6)	mileage	-13.2989	4.3152	-3.0819	0.0216	**	sp	1.87
	speed	1.7393	4.5440	0.3828	0.7151		ssp	5.59
	load*mileage	-9.3852	7.4705	-1.2563	0.2557			
	load*speed	-4.6215	7.1840	-0.6433	0.5438		Variance Ratios	Estimates
	mileage*speed	16.6564	7.5960	2.1928	0.0708	•	eta1	2.742
sp terms	x4	2.8713	0.9978	2.8776	0.0083	**	eta2	0.334
(approx error df =	x5	0.6385	1.0011	0.6378	0.5296			
24)	х6	1.6466	0.9917	1.6604	0.1099			
	х7	2.9221	0.6333	4.6141	0.0000	**		
	x8	-0.3409	0.5432	-0.6276	0.5323			
ssp terms	temperature	-8.7969	3.2085	-2.7417	0.0077	**		
(approx error df =	load*temperature	-3.9283	5.1582	-0.7616	0.4488			
72)	mileage*temperature	-7.8488	3.6546	-2.1476	0.0351	**		
	speed*temperature	2.7801	4.1258	0.6738	0.5026			
Analysis of coded v	ariables							
	Obs	Approx DF	Approx Error	· DF				
WP	13	13	6					
SP	40	27	24					
SSP	118	78	72					

Model 2

		Term	Coef	se(Coef)		t-statistic	approx p-val		
		Intercept	0.6999		1.5747	0.4445	0.6672	Variance Components	Estimate
wp terms (approx error df = 9)	mileage	-8.0003		3.1156	-2.5678	0.0303 **	wp	13.680	
	(approx error at = 9)	speed	1.6769		1.8711	0.8962	0.3935	sp	2.052
		mileage*speed	6.0180		3.7871	1.5891	0.1465	ssp	5.497
sp terms	(approx error df = 26)	x4	1.9142		0.7417	2.5808	0.0159 **		
		x7	2.9134		0.5294	5.5032	0.0000 **	Variance Ratios	Estimates
ssp terms	(approx error df = 75)	temperature	-6.6029		2.4734	-2.6696	0.0093 **	eta1	2.4885
		mileage*temperature	-6.2692		2.4603	-2.5481	0.0129 **	eta2	0.3733

Analysis of coded variables

	Obs	Approx DF	Approx Error DF
WP	13	13	9
SP	40	27	26
SSP	118	78	75

Model 3

		Term	Coef s	e(Coef)	t-statistic	approx p-val		
wp terms	(approx error df = 11)	Intercept	1.8964	1.3727	1.3815	0.1697	Variance Components	Estimate
		mileage	-3.9511	1.9252	-2.0523	0.0423 **	wp	14.71
sp terms	(approx error df = 26)	x4	1.8173	0.7385	2.4608	0.0208 **	sp	2.08
		x7	2.7981	0.5002	5.5940	0.0000 **	ssp	5.50
sp terms	(approx error df = 75)	temperature	-5.0227	1.9157	-2.6219	0.0106 **		
		mileage*temperature	-3.5885	3.0580	-1.1735	0.2443	Variance Ratios	Estimates
		mileage*temperature	-3.5885	3.0580	-1.1735	0.2443	Variance Ratios eta1	Estimates 2.675
alysis of coc	ded variables	mileage*temperature	-3.5885	3.0580	-1.1735	0.2443		
alysis of cod	ded variables	mileage*temperature Obs	-3.5885 Approx DF)p			0.2443	eta1	2.675
alysis of coo	ded variables Wi	Obs				0.2443	eta1	2.675
alysis of coo		Obs 13	Approx DF)p	orox Error [0.2443	eta1	2.675

Final Model

SSP

118

		Term	Coef	se(Coef)	t-statistic	approx p-val			
wen tarms	(11)	Intercept	2.3872	1.184	6 2.0152	0.0690		Variance Components	Estimate
wp terms	(approx error df = 11)	mileage	-3.8116	1.728	1 -2.2057	0.0496	**	wp	11.311
sp terms	(approx error df = 26)	x4	1.7551	0.752	1 2.3336	0.0276	**	sp	2.231
		х7	2.7443	0.498	6 5.5040	0.0000	**	ssp	5.599
ssp terms	(approx error df = 76)	temperature	-3.7388	1.548	5 -2.4145	0.0160	**		
								Variance Ratios	Estimates
nalysis of coo	led variables							eta1	2.0202
								eta2	0.3984
		Obs	Approx DF	Approx Error DI					
	W	P 13	13	11					
	SI	P 40	27	26					

76

Final Model

- $\widehat{OIT} = 2.3872 3.8116 * mileage' + 1.7551 * x_4 + 2.7443 * x_7 3.7388 * temperature'$
- Where
 - $mileage' = \frac{mileage 53396}{45687}$
 - $temperature' = \frac{temperature 80.16}{32.71}$
 - x_4 is 1 if bearing 2 location, 0 for other bearing locations
 - x_7 is 1 if grease sampling location is the spacer ring and 0 for the inner or outer raceway

Future Research

- Model Diagnostics
 - Residual analysis
 - R^2
 - VIF
- Model Refinement
 - Why is bearing 2 statistically different?
 - Is temperature a covariate (function of load, mileage and speed)?
 - Developing second response variable related to length of grease molecule
 - Alternative Model: neural network or ensemble of neural networks

Acknowledgements

- University Transportation Center for Railway Safety (http://www.utrgv.edu/railwaysafety) for their support of this research
- The Matlab code was provided by Dr. Marcus Perry, Associate Professor of Statistics, Culverhouse College of Commerce, University of Alabama