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Abstract
Railway transportation has been the backbone of national economies worldwide. When geohazards occur and damage the
network, they affect railway operations, resulting in delays and detrimental social and economic effects. A potential tool for
monitoring the vast network for geohazards is satellite-based radars. Interferometric synthetic aperture radar (InSAR) may
be used to study a wide range of geophysical phenomena. Its ability to study geohazards is frequently constrained by several
challenges stemming from adverse atmospheric effects and wave scattering associated with site conditions and terrain charac-
teristics. The authors have developed the framework of a monitoring system that uses satellite radar imagery analysis for
identifying geohazard-prone locations through continuous monitoring of large regions. This paper discusses one implementa-
tion of multitemporal InSAR techniques that includes the new concept of a ‘‘Rolling SAR Image Stack.’’ In addition, it intro-
duces three postprocessing techniques that enable the detection of critical locations where geohazard failures may initiate
along the railway right of way before an event takes place. A site characterization and classification guide is introduced to
facilitate the selection of the most effective SAR analysis method for monitoring the area of interest. The guide considers on-
site conditions affecting the quality and availability of radar data. This paper summarizes the investigations, methodologies,
and approaches that led to the development of the workflow of the proposed monitoring system and demonstrates the abil-
ity of the proposed monitoring framework to identify critical locations of geohazard failure potential through implementation
case studies.
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Railway transportation has been the backbone of
national economies worldwide, facilitating strong com-
mercial connections, and enabling efficient transit. Its
benefits over other modes of transportation are well
established and include a large carrying capacity, low
operating costs, extensive range, smaller carbon foot-
print, and weather resilience (1). Railroads frequently
travel over rugged terrain and often traverse natural or
constructed slopes susceptible to shallow geohazards
such as landslides and subsidence (2). Geohazards are
critical geologic conditions with a high potential to cause
significant damage to infrastructure, property, and even
loss of life. Shallow geohazards occur in the upper layer

of the Earth’s crust and have a direct impact on infra-
structure (3). Geohazards progress slowly over long peri-
ods of time, and they are relatively stable until triggered
by external events such as rainfall, mining, and construc-
tion (4). Geohazard failures when they occur along the
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railway right of way (ROW) cause significant damage to
railway infrastructure and affect railway safety and oper-
ations, resulting in service disruption and potentially det-
rimental social and economic effects (5). The early
detection of shallow geohazards is critical to safety and
to maintain the network in a state of good repair.
Detection relies on identifying and monitoring their
underlying causes (6–11).

Satellite-based radars have gained popularity as inno-
vative tools for monitoring the vast railway network for
geohazards to significantly improve early warning and
mitigation strategies (12). An imaging radar sensor on an
orbiting satellite observing Earth’s surface emits electro-
magnetic microwave beams (wavelength in the range
1mm to 1m) toward a target on the Earth’s surface and
captures the properties of the backscatter signal. The
captured image contains information about the backscat-
ter strength and the time delay between the incident and
backscatter wave, is typically of very limited resolution,
and depends primarily on the characteristics and proper-
ties of the target on the Earth’s surface. Synthetic aper-
ture radar (SAR) is a technique that synthesizes SAR
images to produce much higher resolution images of vast
areas (up to 250km wide swaths) (13). Comparing the
time delay (phase) information between any two SAR
images obtained at different times allows detection of
ground movement with respect to the satellite position, a
process that creates an interferometric SAR (InSAR)
image. InSAR has shown potential to investigate various
geohazards, such as seismic cycles of earthquakes (14),
volcanic activities (15), and slope failures (16). InSAR
has been commonly employed for the mapping and mon-
itoring of landslides globally (17, 18). While conventional
InSAR may be used to study a wide range of geophysical
phenomena, its ability to study geohazards is frequently
constrained by several challenges stemming from phase
decorrelation, and errors in phase unwrapping as a result
of adverse atmospheric effects and wave scattering asso-
ciated with site conditions and terrain characteristics.
Limitations in conventional InSAR techniques have
spurred the development of the multitemporal InSAR
(MTInSAR) techniques. The MTInSAR techniques
reduce errors in the displacement measurements and
enable tracking changes over time. This is achieved by
utilizing collections of InSAR images (interferograms)
derived from an extensive series of SAR images (data
stack) of the specific region under investigation (19).
Although no single technique can solve all SAR limita-
tions, selecting the appropriate technique based on lim-
itations can increase the efficiency of SAR
implementations in recognizing geohazards (20). Despite
the advances of the MTInSAR techniques, their applica-
tion for detecting landslides and other shallow

geohazards is limited to mapping and monitoring the
geohazards after their occurrence.

The authors have developed the framework of a
remote monitoring system that utilizes satellite data and
other data sources for the identification and localization
of critical areas along the railway ROW that exhibit
higher risk for geohazard failure initiation (21, 22). This
is achieved by monitoring two main precursors to event
initiation, that is, localized ground surface mobilization
before the event initiation, and large, localized changes
in soil moisture content (21). The InSAR family of sig-
nal processing is implemented for the monitoring of the
sites. Changes of amplitude and phase of the signals
between image acquisitions are correlated to changes in
surface deformations, precipitation, and soil moisture
content. The research team adapted three MTInSAR
techniques, that is, persistent scatterer InSAR
(PSInSAR), small baseline subset (SBAS), and coher-
ence change detection (CCD), to improve the detection
of scatterers in the broader region of interest by introdu-
cing the new concept of a ‘‘Rolling SAR Image Stack.’’
Furthermore, the team developed three postprocessing
techniques, that is, Thresholding, Scatterer
Accumulation, and Clustering Timeline that enabled the
detection of the critical locations where geohazard fail-
ures may initiate (21–23). This paper recognizes the cru-
cial role of site conditions in determining the quality of
satellite data for the selection of the most effective
MTInSAR, and also discusses a site characterization
and classification guide of the area of interest. The guide
is designed to effectively characterize regions based on
site conditions in view of satellite monitoring process,
classifies sites with respect to the effect of site conditions
on the quality and availability of radar data, and is a
valuable tool for selecting the appropriate SAR method
in monitoring and detection tasks. This paper sum-
marizes the investigations, methodologies, and
approaches that led to the development of the workflow
of the proposed monitoring system and demonstrates
the ability of the proposed monitoring framework to
identify critical locations of geohazard failure potential
through implementation case studies.

Methods

The development of the technique that monitors the rail-
way ROW for identifying critical locations exhibiting
high-risk for geohazard initiation is based on the study
of sites with a history of geohazard events, and/or avail-
ability of soil moisture measurements. The sites were
monitored for a period of at least 12 months before the
known event date using both archived and current satel-
lite SAR data and typical PSInSAR and SBAS processes
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reported in the literature. These sites are considered case
studies that provide data and guide research activities.
The collected site datasets were not used in a statistical
framework. The findings of the study of these sites led to
the development, implementation, and preliminary vali-
dation of the MTInSAR processing techniques with the
Rolling Stack (RS) concept and the three postprocessing
operations, that is, Thresholding, Scatterer
Accumulation, and Clustering Timeline, and to the
development of a site classification guide in view of the
data quality and availability and site characteristics to
facilitate the selection of the appropriate analysis tool.

Site Selection

Several sites are identified during the course of the work
in coordination with Class I railroads and the Federal
Railroad Administration. The preliminary selection of
sites is conducted based on the event type and the need
for site data collection for method development and
approach validation. The events considered in this study
are:

� Landslides
� Rockfalls
� Track settlement
� Embankment failure
� Slope failure
� Derailment
� Slope stability risk

� No event (for site data collection, routine satellite
monitoring, or both).

Once the sites are identified, the availability of satellite
data is investigated in regard to:

� Number of satellites monitoring the site
� Number of orbits of each satellite
� Availability and length of historic data for at least

12months before the event.

Subsequently, the diverse site conditions that may
affect the quality of the acquired satellite data are con-
sidered when evaluating the site. Such conditions
include:

� Vegetation including seasonal variation and vege-
tation coverage level classified as (i) no vegetation,
(ii) low/sparse growth (e.g., grass typically\ 5 in.),
(iii) medium growth, and (iv) tall/dense growth
(e.g., tree canopy)

� Soil condition (per OSHA classification) (24)
� Main soil type (silt/clay/sand)
� Topography and terrain
� Climate (e.g., rainfall, snow fall and snow cover,

extreme weather conditions within a year)
� Seismicity
� Human-induced vibrations (e.g., blasts).

The selected sites are listed in Table 1 where the last col-
umn shows the site class as identified by the proposed site

Table 1. List of Study Sites with History of Geohazard Occurrence and Soil Moisture Data Records

ID Site location Coordinates (lat/long) Event Event date Site classa

1 Lincoln, NE 40.70, 296.53 Derailment 6/25/2021 B
2 Birmingham, AL 33.47, 286.95 Stability monitor Continuous B
3 Maupin, OR 45.17, 2121.10 Rockfall 5/7/2020 A
4 Atlanta, GA 33.83, 284.30 Sinkhole 12/2021 C
5 Burlington, ND 48.25, 2101.46 Derailment 5/1/2022 A
6 Shiner, TX 29.43, 297.18 Derailment 6/3/2022 A
7 Yellowstone, MT 43.64, 2111.36 Landslides 6/16/2022 A
8 Santa Clemente, CA 33.25, 2117.37 Soil erosion 10/1/2022 A
9 Sandstone WV 37.76, 280.89 Rockfall/Derailment 4/9/2023 C
10 Raymond, MN 45.01, 295.23 Derailment 4/30/2023 B
11 Blackville, SC 33.36, 281.33 Soil moisture change Continuous B
12 Yosemite, CA 37.76, 2119.82 Soil moisture change Continuous A
13 Bodega, CA 38.32, 123.07 Soil moisture change Continuous A
14 Santa Barbara, CA 34.41, 2119.88 Soil moisture change Continuous A
15 Cortez, CO 37.26, 2108.50 Soil moisture change Continuous A
16 Chatham, MI 46.33, 286.92 Soil moisture change Continuous B
17 Sandstone, MN 46.11, 292.99 Soil moisture change Continuous B
18 Stonehaven, Scotland 56.95, 22.32 Mudslides/Derailment 8/12/2020 C
19 Pikeville, KY 37.34, 282.39 Landslide/Derailment 2/13/2020 D

aSite class shown in the last column is based on the proposed classification guide.
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classification guide discussed after the introduction of the
analysis methods.

Multitemporal InSAR Techniques

The image pairs referred to as interferograms were used
in early studies to identify changes between the acquisi-
tions and to obtain displacement in satellite lines of sight
(LOS). Subsequently, the method was modified to incor-
porate a multitemporal approach (MTInSAR) in an
effort to reduce errors in the displacement measurements
and to enable tracking of surface changes over time. In
contrast to the early InSAR analysis process that consid-
ers a single pair of SAR images, MTInSAR techniques
combine interferograms derived from an extensive series
of SAR images (stack of images) acquired within the
period of observation. One of MTInSAR’s key features
is its ability to identify small surface changes over a long
time. However, during the analysis period, if there is a
sudden large change (.30mm deformation, etc.) between
any two acquisitions in the interferogram or the scatterer
loses coherence as a result of other factors, MTInSAR
analysis fails to monitor the change even if the surface is
experiencing the deformation. The main difference
among the multitemporal methods lies in how SAR
image pairs are created. The PSInSAR and SBAS
approaches are two MTInSAR techniques used for dis-
placement measurements. The CCD timeline method is
an alternate multitemporal technique that observes
changes to surface properties and is used as an indicator
for soil moisture change. The PSInSAR, SBAS, and
CCD techniques are summarized in the following subsec-
tions while details on how the methods are adopted in
this work are presented in Byrraju (25).

Persistent Scatterer Interferometric Synthetic Aperture
Radar. The PSInSAR technique is one of the first devel-
oped MTInSARs (26) that employs fundamental InSAR
principles over an extensive sequence of images to
achieve highly accurate displacement measurements. The
process begins with identifying PS in the observation
area and can encompass a range of objects, including
urban infrastructure like buildings, windows, roofs, and
railway lines, as well as natural features like rocks and
roads. The PS are identified by first creating InSAR
pairs with one common master SAR image in the image
stack, which is equidistant temporally from the first and
last SAR image. PS are identified as individual pixels, or
group of pixels, exhibiting consistent high coherence in
all the image pairs throughout the analysis period (27)
and are considered for displacement over time measure-
ment. The image pairs are depicted graphically through
connection graphs, which use the satellite acquisition
date on the x-axis and the relative satellite position on

the y-axis. An implementation example of the PSInSAR
on the Maupin, OR site (ID 3) is shown in Figure 1. The
connection graph is shown in Figure 1a and the com-
puted deformation map is shown in Figure 1b. Blue
deformation points indicate subsidence and red deforma-
tion points indicate the raising of the surface in the direc-
tion of the satellite’s line of sight (LOS).

PSInSAR is effective in regions with many highly
reflective surfaces with respect to satellite LOS. Highly
reflective surfaces allow accurate measurement of surface
deformations by transmitting most of the radar signal
back. Regions like rocky, hilly terrain in the path of sat-
ellite LOS generate many stable PS that can be used to
generate displacement data.

Small Baseline Subset. The SBAS technique is a variant of
multitemporal differential InSAR analysis, which
shares some similarities with PSInSAR. In contrast to
PSInSAR, which primarily concentrates on observing
deformation in coherent targets, SBAS analysis is pri-
marily concerned with monitoring the progression of
deformation in diffused radar targets or distributed
scatterers (DS). The processing methodology of the
SBAS technique exhibits numerous notable distinctions
compared with PSInSAR. One prominent distinction is
using multiple master files in the SBAS approach and
is employed to mitigate the deterioration of coherence
in InSAR pairs of PSInSAR as the temporal baseline
expands in extreme pairs. The utilization of numerous
master files results in a decrease in both temporal and
geographical baselines, therefore enabling the assess-
ment of deformation in DS. An implementation exam-
ple of the SBAS on the Maupin, OR site (ID 3) is also
shown in Figure 1, c and d. The connection graph is
shown in Figure 1c and the computed deformation
map is shown in Figure 1d. This difference in process-
ing makes SBAS analysis particularly effective in areas
with low concentrations of coherent targets because of
temporal factors like seasonal vegetation growth. The
ability to measure deformations when low PS is present
makes it suitable for measuring deformations in rural
regions. Unlike PSInSAR, where the deformation mea-
surements are close to actual measurements, SBAS
readings have a lower level of precision because of the
low coherence threshold used in the development of
deformation maps. In view of the deformation maps
shown in Figure 1, b and d, it is noted that PSInSAR
produces a lower density of deformation points than
the SBAS at the same site using the same dataset.
Furthermore, the SBAS deformation map shows a
larger activity region, while the PSInSAR analysis
shows the exact region where the rockfall event
occurred.
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Coherence Change Detection Timeline. The CCD approach
utilizes radar waves obtained from SAR imagery to iden-
tify changes that have taken place between two consecu-
tive images. The sensitivity of the SAR sensor to changes
allows the technique to detect subtle changes not visible
in other methods. The coherence between the two images
is evaluated by the sum of the spatial and temporal dec-
orrelation of the signals, ranging from 0 to 1 (28). An
area with 0 coherence has changed drastically between
the image acquisitions, attributed mainly to moisture
change, surface roughness, or a long time elapsed
between acquisitions. While a single CCD analysis can
identify critical surface and subsurface features, process-
ing individual pairs of images is inadequate for monitor-
ing a region over an extended period (29). Using a large
stack of SAR images, the timeline method creates image
pairs for CCD analysis based on the chronological order
of the SAR images. An example of a CCD analysis is
shown in Figure 2. Figure 2a shows the visual image of a

site with a railroad track segment between points A and
B clearly visible. Figure 2b shows a typical coherence
image of the site showing high coherence along the track
that is attributed to low moisture content in the track.
Figure 2c shows decreasing coherence because of increas-
ing soil moisture associated with rainfall event. Figure 2d
shows the coherence along the track being completely
lost attributed to very high soil moisture content result-
ing from prolonged intensive rainfall. The relationship
between soil moisture content and coherence computed
by the CCD was explored further to develop models of
soil moisture change as a function of signal coherence
that can be used in future studies to define threshold val-
ues of the triggering events and quantify the risk. This
model was first introduced in Byrraju (22) and details of
the development are reported in Li et al. (23). The model
was developed with in-situ data from National Ocean
and Atmospheric Administration (NOAA) sensors
located at Site ID: 14, Santa Barbara, CA.

Figure 1. PSInSAR and SBAS analysis of Maupin Site ID 3: (a) PSInSAR image connection graph, (b) PSInSAR computed deformation
map, (c) SBAS image connection graph, and (d) SBAS computed deformation map.
Note: PSInSAR = persistent scatterer interferometric synthetic aperture radar; SBAS = small baseline subset.
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Rolling Stack-MTInSAR. MTInSAR’s key feature is its abil-
ity to accurately identify small surface changes over a
long time at each PS. However, if the coherence is lost at
the scatterer during the analysis period as a result of a
large change (e.g., movement. 30mm) between two
acquisitions or other factors, the scatterer is ignored, and
the change cannot be monitored even if the surface is
experiencing the deformation. Therefore, detection of
critical areas through deformation monitoring using con-
ventional MTInSAR is not possible. In such cases the
proposed RS concept is implemented with MTInSAR
techniques to detect and retain scatterers over longer
time periods with very promising results. The proposed
rolling stack-MTInSAR (RS-MTInSAR) limits the size
of the stack of SAR images in the conventional imple-
mentation to several images that are necessary to pre-
serve accuracy and to control noise, typically between 15
and 25, depending on the site characteristics and the par-
ticular MTInSAR method. Subsequently, site monitoring
for a period of time that exceeds the time spanned by the
stack is achieved by performing a series of MTInSAR
analysis. Each analysis uses an updated SAR image stack
where the first SAR image is dropped from the head of
the stack and a new SAR image is added to the tail of
the stack, creating an RS effect. Figure 3 demonstrates
the concept assuming a monitoring period of one year,
and temporal image acquisition baseline of 12 days yield-
ing a total number of 30 SAR images.

Assuming for demonstration purposes only a stack
size of 20 SAR images, 12 MTInSAR analyses need to be
performed. Each analysis produces the geolocation of the
PS, or DS, within the analysis stack as well as the time
history of movement at each point. This information is
considered in the postprocessing steps of the proposed
method.

Postprocessing Techniques

In the research, three postprocessing techniques were
developed to identify regions within the area of interest
with geohazard initiation potential. Thresholding identi-
fies PS or DS points that are considered ‘‘high-risk’’ if
the deformation at the point at any given time exceeds a
threshold value. Scatterer Accumulation identifies the
spatial distribution of the high-risk areas in a qualitative
manner, while the Clustering Timeline analysis quantifies
the rate of change of the precursors to the event initia-
tion within the high-risk areas identified by the Scatterer
Accumulation approach.

Thresholding. MTInSAR methods implement filters to
treat temporal and spatial decorrelation of the signals to
improve the quality of the deformation results, but only
to a certain extent. Loss of coherence because of atmo-
spheric contributions results in higher noise in the defor-
mation measurements derived from the MTInSAR and

Figure 2. Example of coherence change detection (CCD) image analysis and correlation with water content: (a) visual image of site with
a railroad track between point A and B, (b) a typical coherence image of the site showing high coherence along the track, (c) coherence
along the track is changing because of increasing soil moisture, and (d) coherence along the track is lost because of high soil moisture
content.
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hinders the detection of critical areas. The proposed
Thresholding is a postprocessing filtering method imple-
mented to all deformation analyses from the proposed
RS-MTInSAR. The objective of the proposed filtering is
to identify and remove the scatterers from the solutions
that are formed by residual coherence losses from dec-
orrelations, or represent points that, although they are
properly identified, the exhibit small movement and are
of no interest in the identification of the critical areas.

The criterion for the threshold is based on the coher-
ence threshold used in the PS and DS identification pro-
cess. In the case of PSInSAR, a coherence threshold of
0.7 is used as an indicator of PS, while in the case of
SBAS, a coherence threshold of 0.3 is used as an indicator
for DS points. The magnitude of the filter is determined
by the theoretical precision of SAR deformation data as
reported in Fiaschi et al. (30) and Bamler and Just (31).

The precision depends on the wavelength of the SAR sen-
sor and the measured coherence. For example, for a C-
band sensor and a scatterer with 0.7 coherence, the theo-
retical precision is 20mm and any deformation above the
theoretical is considered the true deformation. However,
any deformation below the theoretical value may be
masked by noise. In the proposed RS-MTInSAR, the the-
oretical precision should not be used as the threshold cri-
terion because the coherence fluctuates in each SAR
image pair in the stack. Thus, to prevent active deforma-
tion points from being filtered, conservative threshold
values are recommended as presented in Table 2.

Scatterer Accumulation. The identification of the critical
areas in the region of interest starts with establishing the
Landsat optical image of the region to geolocate the scat-
terers. Landsat is publicly available through Google
Earth. At the end of each RS-MTInSAR analysis the
identified set of scatterers are filtered as discussed in the
preceding ‘‘Thresholding’’ section and superimposed on
the optical image of the region. For both event investiga-
tion and active monitoring, it is recommended that the
monitoring period starts at least one year before the date
of the event, or before the active monitoring commences.
The scatterer accumulation will result in a continuously
updated deformation map with the location of all scat-
terers appearing on the optical image. At this step, the
critical locations can be identified by visual inspection,
as areas where the density of accumulated scatterers
increases over time. The detection of the critical loca-
tions, however, is implemented in a structured manner in

Figure 3. RS-MTInSAR analysis concept.
Note: SAR = synthetic aperture radar; MTInSAR = multitemporal interferometric synthetic aperture radar; RS-MTInSAR = rolling stack interferometric

synthetic aperture radar.

Table 2. Recommended Threshold Values

Coherence
Theoretical

precision (mm)
Threshold

value 6 (mm)

0.9 8 6
0.8 14 8
0.7 20 10
0.65 23 11
0.6 26 12
0.55 30 14
0.5 35 16
0.45 41 18
\0.4 .50 20
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the last postprocessing tool, that is, Clustering Timeline,
discussed next.

Clustering Timeline. The last step in the proposed process
for identifying the critical location within a larger moni-
toring region pertains to identifying the formation and
progression of cluster of scatterers every time a new set
of RS-MTInSAR analysis data becomes available. To
this end, a grid is overlayed on the optical image with a
subset size dependent on a combination of the desired
resolution of the critical areas and the average number of
the detected scatterers in the region. Higher risk areas are
identified as those subsets, or group of subsets, that exhi-
bit higher density of the clustered scatterers compared
with their surrounding subsets. At this stage, although
regions with a high potential for geohazard failure are
identified, the imminency of the failure is not evident. A
timeline analysis showing the rate at which the clusters
are formed between any two successive datasets is used
as an indication that a geohazard event failure is immi-
nent. The timeline method is based on the geohazard
observation that before the triggering event there is a
rapid increase in density of the cluster in the geohazard
vicinity.

Effects of Site Parameters on SAR Imagery

Within this study’s scope, several site parameters that
influence the reliability of the MTInSAR methodology
are identified, and their effect on SAR data is discussed.
The parameters are classified into two categories: geo-
metric parameters and surface parameters. The following
sections provide further discussion on the topic.

Geometric Parameters

Geometric parameters are influenced by topographic fea-
tures like slope grade and the alignment of the said slope.
SAR sensors are side-looking sensors that monitor a
region with an angle of incidence. This influences the
quality of data as some regions will not be illuminated
by the sensor, and others will be partially illuminated.
The illumination of these regions is dependent on the
topographic features, which are geological parameters,
and they affect the SAR sensor measurements through
geometric interactions (32).

Slope Grade. The region under monitoring can be flat or
have a sloped terrain. Regions that are flat reflect back-
scatter based on surface properties like roughness, dielec-
tric constant, and vegetation. However, regions with
slopes are influenced by additional topographic charac-
teristics like the steepness of the slope and its alignment.
Monitoring steep slopes using SAR can be challenging

because of the geometric alignment of the topographic
features. In cases of steep slopes, a phenomenon called
layover occurs where the imaging shows the top part of
the slope being laid over the lower section of the slope.
The other effect of a steep slope is shadowing, where the
SAR signal does not illuminate part of the region because
of the intervening slope (28). Furthermore, these complex
topographic conditions make it challenging to eliminate
errors in deformation measurements. By taking into
account the ‘‘local incidence angle,’’ or the angle between
the SAR look direction and the slope, a more sensible
monitoring limit can be established. This range can be
used as a rough guideline for the local incidence angle.
As most SAR satellites have incidence angles between
20� and 50�, this establishes the slope limit at approxi-
mately 50� (33).

Slope Alignment. Slope alignment is a topographic feature
that affects the backscatter of SAR satellites. Current
SAR satellites are polar orbiting, that is, they orbit
around the poles for each revolution and monitor Earth’s
surface (34). Since the direction of the satellite is con-
stant, when the SAR LOS direction is in the same direc-
tion as the slope, the SAR’s sensitivity to movement
along the slope is maximum. In conditions where the
slopes will be directly facing the satellite, the sensitivity to
slope movement is reduced since the displacement should
cross a threshold in the satellite LOS before it can be
detected (35). This phenomenon can be seen in the case
of SBAS deformation analysis of a rockfall event shown
in Figure 4 at a location marked by the red square. As a
result of regional properties like rocky terrain, this region
has high backscatter. Although the surface properties of
the region were supposed to generate large backscatter,
the look angle contributed the most in monitoring the
region. Data captured from two different orbits of the
same satellite, Sentinel-1, are considered. In the first orbit
analysis shown in Figure 4a, the LOS of Sentinel-1B is in
the same direction as the slope movement within the red
square and, thus, the component of the movement in the
direction of the LOS is significant and was noticed eight
months before the event took place. On the other hand,
the same region was observed using Sentinel-1A, where
the slope is facing the satellite, the sensitivity to deforma-
tions was low, and the deformations were not observed
until one month before the event took place, as seen in
Figure 4b.

Surface Parameters

Surface characteristics like surface roughness, soil moist-
ure, vegetation, and soil type influence surface scattering.
These parameters influence the amount of radar signal
reflected back to the sensor and thereby affect the quality
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of the monitoring process (36). This study uses a C-band
radar onboard satellite Sentinel-1 that has a 5.5 cm wave-
length, and its interactions with surface parameters are
discussed in the following subsections.

Surface Roughness. The main factor controlling how radar
signals bounce back from a surface is its roughness and
the target’s dielectric constant. A smooth and flat surface
will reflect the incident radar wave away from the radar
and is known as specular scattering. In these conditions
there will be no scattering of energy back toward the
radar unless the surface is facing the radar. Because the
majority of natural surfaces are not perfectly smooth, the
scattering of the incident radar wave is diffused in a vari-
ety of directions, including back again toward the radar
(37). Surfaces with a higher degree of roughness disperse
more energy in all directions, including the direction
toward the radar. For the purpose of better illumination,
a surface should be ‘‘rougher,’’ which means the height
variations of the surface should be large (34). Surface
roughness can be quantified based on the root mean
square height, hrms, of the mean height of the surface into
three categories, that is, smooth, intermediate and rough
as

Smooth : hrms \
l

25 cos u

Intermediate :
l

25 cos u
\ hrms\

l

4 cos u
ð1Þ

Rough : hrms.
l

4 cos u

The surface roughness is directly related to satellite wave-
length l and inversely related to the cosine of the incident
angle u (38). The area for surface roughness measure-
ment is the resolution cell, which is the smallest distin-
guishable area that a radar system can differentiate (39).
This study does not directly measure surface roughness
for the purpose of site classification. Instead, it uses an
existing database that categorizes surface roughness
according to the soil type (40–42).

Dielectric Constant. A material’s dielectric constant indi-
cates how it affects the transmission of electromagnetic
waves. The dielectric constant of the majority of natural
materials falls somewhere in the range of 3 to 8 when the
material is dry. However, the dielectric constant of liquid
water is approximately 80. Therefore, the quantity of
water present in the target, regardless of its form (such as
soil moisture or vegetation water content), significantly
affects the radar backscattering (43). A higher percentage
of liquid water raises the dielectric constant and decreases
the radar wave’s ability to penetrate the target. The
amount of liquid water in the target can change as a
result of environmental conditions, and this change can
be easily observed in SAR images and their multitem-
poral interferometric combinations (34). It should also be
important to consider that the presence of soil moisture
has minimal effect on the quantitative error in

Figure 4. Effects of slope alignment on deformation measurements—Maupin, OR site: (a) Sentinel-1B LOS is in the direction of the
slope and causes maximum sensitivity to SAR measurement of ground movement and (b) Sentinel-1A LOS is perpendicular to slope
causes low SAR sensitivity to SAR measurement of ground movement.
Note: LOS = lines of sight; SAR = synthetic aperture radar; SBAS = small baseline subset.
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deformation studies; it mainly affects the signal strength
(44), and thus the ability of the methods to detect and
retain PS points. Although the dielectric constant greatly
influences the backscatter of a region but not the accu-
racy, it is not considered a factor for site classification for
deformation measurements since it changes rapidly and
requires accurate site readings that are difficult to track.
However, it is utilized as a factor in CCD, which depends
on the change in backscatter as an indicator of soil moist-
ure change (45).

Vegetation. There are intricate and varied relationships
between the various types of vegetation and the scatter-
ing processes that result caused by big differences in their
geometric shape and density of plants. Leaves, tree
trunks, grass blades, and shrubs in a variety of forms can
all be considered scattering elements. The dielectric
changes that are brought about by variations in the
amount of water present in the soil and canopy have a
significant impact on the backscattered intensity that is
measured in agricultural areas. Similarly, the forests also
exhibit significant variations in forest backscatter because
of fluctuations in soil and canopy water content. The
scattering coefficient of such radar targets is defined by
the scattering characteristics of the individual items, their
spatial distribution within the layer, and the medium’s
dielectric constant (34). As a general rule, a C-band radar
sensor cannot penetrate deep and is more sensitive to the
structure of the canopy. The backscattering signal, in
most cases, gets trapped within the canopy, and low
backscattering occurs. The backscattering increases in
dry and fall conditions when there is low leaf cover (46).
C-band SAR sensors can be used for short (less than
12 cm in height) and, in some cases, medium vegetation
(12–45 cm). Areas with large vegetation are difficult to
monitor for deformations as a result of complex factors
involved in the backscattering mechanism (47).

Surface Wetness. Flooding a region can cause a significant
alteration in the backscatter signature of the affected
area. The backscatter in regions with a low-forest canopy
will increase suddenly because the radar signal will
bounce with the forest and reflect back to the sensor
(‘‘double bounce’’). In contrast, if the region has no for-
est and the plain surface is flooded, the region will lose
its backscatter as the radar signal bounces away from the
sensor (‘‘specular reflection’’) (34). The sudden change in
the scattering principle is because of water covering the
surface roughness and making the surface completely
smooth.

Site Characterization and Classification

It is evident in the preceding discussion that a site char-
acterization and classification guide is desired to guide
the selection of the appropriate tools for monitoring the
railway ROW and detect locations at higher risk of geo-
hazard initiation. The proposed guide accounts for the
predominant factors affecting the quality of results as
identified in this study in view of the availability of satel-
lite SAR data for the site.

Four distinct categories, A, B, C, and D (good to bad)
are established to classify sites based on their potential
for facilitating successful studies. The availability and
quality of the satellite radar signals, as it relates to noise
affecting the analysis results, guided the definition of the
‘‘four site classes.’’ Class A (ideal) is associated with mini-
mum or negligible effects of noise in the results. Class B
(normal) is associated with moderate noise that its source
is identifiable, it is directly related to site conditions, and
is typically steady over time. Class C (noisy) is associated
with higher noise levels that may vary over time and is
typically attributed to multiple sources. Class D (dark)
sites are associated with sites that are either not visible by
any satellites, or the noise is so high that the results are
deemed unreliable.

SAR Data Availability

Sites should have access to extensive stacks of satellite
data (over 12months) to effectively monitor the region.
Regions with less than 7months of data are automati-
cally classified as ‘‘C’’ class. The low classification is given
because of the inability to perform multitemporal SAR
analysis. If the region has access to multiple satellites, the
classification guide is applied for each satellite, and the
highest classification is chosen as the site classification.
In many cases, if an area is inaccessible or classified as a
lower tier by one satellite, its classification improves
when viewed from an alternate angle or through an addi-
tional satellite.

The site parameters directly influencing the pro-
posed site classification in order of priority are: (i)
slope grade, (ii) slope alignment, (iii) vegetation, (iv)
surface roughness, and (v) surface wetness. The classifi-
cation process is captured in a chart shown in Figure 5.
The classification process starts by identifying the slope
grade and potential slope alignment. These are priori-
tized because the sensor covers a large area
(250 3 250 km), and topographic features are the most
significant influences on the classification. Next, the
process considers surface parameters that can affect
classification on a more regional level.
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Slope Grade. The slope grade is classified into three cate-
gories based on the incidence angle of the observing sat-
ellite. Regions with slope values greater than 50� have a
higher chance of geometric distortions like layover, sha-
dowing, and overlaying effects. Flat terrain has addi-
tional influences like surface wetness, which do not
influence regions with slopes (33).

Slope Alignment. The slope alignment is classified into two
categories: (i) slope aligned with the LOS, and (ii) slope
directly faces the satellite, that is, perpendicular to LOS.
Large-scale deformations are still detected in case (ii),
and conventional InSAR can still be used for monitoring
and early warning systems. Finally, regions with large
slopes not facing the satellite cannot be monitored
because of the shadowing effect.

Vegetation. After slope alignment, the radar signal first
interacts with vegetation before it interacts with the
surface. Two cases are considered: (i) low vegetation
(\12 cm) and (ii) medium vegetation (12–45 cm). The
proposed guide does not consider data from sites with
large vegetation (.45cm) as no backscatter is available
from these conditions and the site should be classified
as D.

Surface Roughness. Since this study does not measure the
exact surface roughness of the region, the monitoring is
divided into only two categories: smooth and rough.
Regions with slope in the look direction of the SAR sen-
sor require surface roughness for backscattering. When
the region is smooth, the signal gets reflected away; this
signal loss leads to a classification of D. The presence of
vegetation helps in some smooth terrains where the radar
signal gets reflected because of the vegetation acting like
a rough surface. In conditions where the surface is facing
toward the sensor, the surface roughness does not influ-
ence to the degree as it would other terrain conditions.

Surface Wetness. Surface wetness causes the surface
roughness of the region to be converted to a smooth sur-
face, causing the specular reflection to the radar signal,
that is, the signal gets reflected away. The only condi-
tions where the surface wetness can improve the results
would be when additional elements like vegetation or
manufactured structures cause the reflected radar signal
to go back to the sensor (47).

Representative examples of each site class are shown
in Figure 6 followed by a descriptive characterization.

Class A (ideal): This site class is associated with strong
signals where the noise as a result of site

Figure 5. Site classification chart.
Note: LOS = lines of sight.
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characteristics has minimum or negligible effects on
the analysis results. Examples include flat terrain and
hilly/mountainous terrain (when slopes follow the sat-
ellite line of sight), minimal vegetation coverage with-
out significant seasonal variation, multiple satellites
and/or orbits, and at least 24-month satellite histori-
cal data are available with multiple orbit directions.
Figure 6a shows an example of a Class A site.

Class B (normal): This site class is associated with sig-
nals where the noise as a result of site characteristics
has moderate effects, its source is identifiable, it is
directly related to site conditions, and is typically
steady over time. Examples include open terrain, roll-
ing hills, short escarpments, minimal vegetation cov-
erage without significant seasonal variation, and at
least 12-month satellite historical data available.
Figure 6b shows an example of a Class B site.

Class C (noisy): This site class is associated with
higher noise levels that may vary over time and are
typically attributed to multiple sources. Examples
include hilly/mountainous terrain (when slopes face
away from satellite line of sight) with medium to
dense and tall vegetation with significant seasonal
variation, escarpments, less than 12-month satellite

historical data available, or intermittent data avail-
ability. Figure 6c shows an example of a Class C site.

Class D (dark): These are sites that are either not
visible to the satellite, and there is no line of sight,
or the noise is so high that the results are deemed
unreliable. Examples include mountainous terrains,
gorges with dense and tall vegetation, tall escarp-
ments, and dense vegetation coverage without sig-
nificant seasonal variation. In some conditions,

Figure 6. Examples of site classes: (a) Class A—Site 5, Burlington, ND, (b) Class B—Site 2, Birmingham, AL, (c) Class C—Site 18,
Stonehaven, Scotland, and (d) Class D—Site 19, Pikeville, KY.

Table 3. Preferred Method Selection for Critical Location
Identification Based on Site Class

Method

Site class

A B C D

PSInSAR /w Th /w RS & CT NA NA
SBAS NA /w RS, SA & CT /w RS & SA NA
CCD /w Th /w Th /w Tha NA

Note: PSInSAR = persistent scatterer interferometric synthetic aperture

radar; SBAS = small baseline subset; CCD = coherence change detection;

RS = rolling stack; Th = thresholding; SA = scatterer accumulations; CT =

clustering timeline; NA = not applicable.
aCoherence change measured from the surrounding region.

12 Transportation Research Record 00(0)



these sites may be ideal in terrain profile but be
located in satellite blind spots. Figure 6d shows an
example of a Class D site.

After a site has been classified, the most appropriate
method can be selected from Table 3.

Cross-Evaluation of Satellite Analysis with
Other Data Sources

Once a satellite data analysis set is complete for a specific
site, the findings are cross-evaluated with one, or more
data types from other sources that will facilitate detec-
tion of critical areas. Such data sources include optical
imagery, topographic profiles, meteorological data, soil
profiles, and soil moisture.

Optical Imagery

To accurately identify deformation by InSAR and to
track changes in land cover, optical imagery is crucial.
Optical imagery shows changes in the environment
caused by human activity or other sources and can be
used to determine if deformation is environmental or
caused by human factors. Linking surface changes seen
in the imaging with ground motions enhances InSAR
data. Optical photography, for example, might show
urbanization or deforestation, causing landslides or sub-
sidence. This combined approach improves our under-
standing of these occurrences by connecting deformation
episodes to surface alterations and patterns of land use.
Optical imagery is utilized from two sources. Landsat
satellite data provides higher resolution but a high revisit
time of 1 year. The other source is the Sentinel-2 satellite,
which has a revisit time of 12 days but low resolution.
Landsat is publicly available through Google Earth and
Sentinel-2 is obtained from the Sentinel satellite data hub
with the European Space Agency (48) and the Alaska
Satellite Facility (ASF) (49).

Topographic Profiles

Topography affects phase shifts, coherence, and radar
signal propagation, considerably affecting InSAR.
Geometric distortions such as foreshortening, layover,
and shadowing can occur in areas with steep or rugged
terrain, making it more difficult to discern surface displa-
cement. Topography can also increase errors and
decrease coherence, particularly in places with steep
slopes. Topographic data are utilized in two stages. The
optical image for the area of interest is observed to
obtain initial topographic properties, followed by an in-
depth analysis from United States Department of
Agriculture (USDOA) surveys.

Meteorological Data

Meteorological data like rain and snowfall play a crucial
role in understanding the impact of environmental condi-
tions on SAR radio waves. Rainfall, in particular, can
significantly affect InSAR coherence by altering surface
properties and causing a correlation between radar acqui-
sitions. When rain increases soil moisture or promotes
vegetation growth, the ground’s dielectric properties
change, leading to a loss of coherence, especially in vege-
tated or agricultural areas. Rainfall data are obtained
from three different sources based on the requirement.
The first two are from the NOAA’s USCRN program
and sensors deployed in the field. The third is from com-
mercial websites like the Weather Company (50), which
reports hourly weather forecasts based on data from the
National Weather Service and different personal weather
stations.

Soil Profiles

Soil profiles, with their diverse layers and unique physical
properties, are a key element in SAR data interpretation.
The composition and structure of these layers, encom-
passing factors such as soil texture, moisture content,
and surface roughness, dictate the nature of radar signal
interaction with the ground, thereby influencing InSAR
analyses. The impact of soil texture on the penetration
depth of the SAR radar wave, and consequently on the
signal strength and SAR coherence, shows the impor-
tance of soil profiles. A region’s soil profile is obtained
from annual soil surveys conducted by USDOA. These
data are county-based and available from USDOA ser-
vice centers like ‘‘websoilsurveys’’ (51). These surveys
contain essential information such as the type of soil, soil
profile, the height of the water table, the water drainage
class, and the slope properties.

Soil Moisture

Soil moisture significantly affects the behavior of SAR
signals, influencing both the backscatter intensity and
coherence of the radar data. The dielectric properties of
soil change as moisture content increases, directly affect-
ing how radar waves interact with the ground. Therefore,
the satellite analysis data needs to be cross-examined
with soil moisture conditions. Soil moisture data are
obtained from open-sourced ground-based sensors from
the USCRN program (52), which collect ground soil
moisture and weather over distinct observation points
nationwide. These sensors provide data daily for a
roughly 1 km area. Alternatively, soil moisture sensors
are deployed by researchers to monitor a given region to
obtain soil moisture every 5min, with the location of sen-
sors being known to be 1m in precision.
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Implementation Example: Site ID
3—Maupin OR

This section presents a case study that demonstrates the
implementation of the classification guide and the
employed methods. The case study pertains to site ID
3—Maupin, OR, listed in Table 1 and is among the first
case studies considered in this work (22). Further details
are reported in Byrraju et al. (22) while analysis results
of all studies can be found in Byrraju (25).

Case Study Site

In the early morning of May 7, 2020, a derailment
occurred because of a rockfall near Maupin in Oregon,
as shown in Figure 7, a and b. The derailment took place
approximately 0.71mi from the city center. This region
has slopes between 40� and 70� and is well drained, as
shown in Figure 7c. The area of interest encompasses
5.85 mi2 and is characterized by the top 4 in. of the soil
being extremely stony loam, with the bedrock lying

12–20 in. deep (53) This region has access to multiple
satellites with both satellites facing the monitoring
region. In view of the site classification chart in Figure 5
the site is classified as A.

Data Availability

The study area is on the West Coast and benefits from
multiple satellite passes, providing access to SAR data
from different angles. The site has high radar reflectivity
with minimal signal losses. The dataset for this study is
obtained from the Sentinel constellation, and the satellite
images are downloaded from the Sentinel-1 EU datahub
(48) and ASF (49). Figure 7d shows the area captured as
the Sentinel-1B satellite approaches (ascending path) the
site and as it is leaves (descending path) the site, and
Figure 7e shows the area captured on the path of
Sentinel-1A satellite. The analysis employs PSInSAR,
SBAS, and CCD techniques using archived satellite
radar images spanning 24months, covering the event’s
occurrence. To ensure accurate results, the study is

Figure 7. Site ID 3: Maupin, OR (a) Google Earth image of site, (b) Google Earth closeup view, (c) street view of site, (d) Sentinel-1B
paths, and (e) Sentinel-1A path.
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divided into two periods—pre-event and postevent.
Separation is essential since events such as rockfalls can
cause sudden subsidence and significant changes in the
Digital Elevation Map (DEM), leading to a loss of
coherence and PS, affecting data quality. The acquisition
periods are detailed in Table 4.

Deformation Monitoring

The PSInSAR and SBAS analysis for site mobilization
monitoring was conducted using a stack of 20 and 25
images respectively, at a minimum. The deformation
maps from the three orbits are superimposed on an opti-
cal image taken on April 10, 2020. The displacement
observed is plotted on the color-coded PS images that
show the total displacement over the entire analysis. The
negative displacement (blue) indicates subsidence, and
the positive displacement (red) denotes height gain with
respect to the line of sight of the satellite acquisition.

Pre-Event Analysis. The PSInSAR and SBAS analyses over
the period June 2019 to April 2020 produced the defor-
mation map shown in Figure 8, a and b, respectively.
Both analyses reveal that while the area of interest
remains ‘‘quiet’’ during the monitoring period, the area
within the area marked by the yellow circle mobilizes

months before the event occurrence. The PSInSAR anal-
ysis identifies individual PS points that can be monitored
throughout the monitoring period. The SBAS analysis
identifies such points in an average sense.

Figure 9 displays the change in position of one PS
point with the most substantial displacement over the
analysis period. The highlighted area where the rockfall
occurred was relatively quiet until the end of September
2019, period T1 in Figure 9. The region experienced high
displacement in the period T2 until the start of
December, followed by a brief stable period, T3, before
it experienced high displacement leading to the rockfall,
T4. This indicates that for at least eight months before
the event, the region experienced a change in position,
compared with the broader area. At the start of the
observation period, the deformation changes were
because of noise.

Postevent Analysis. A postevent PSInSAR analysis has
been conducted on all three orbits after the event, and
the results have been combined to generate the deforma-
tion map in Figure 10. The area within the red square
shows no significant displacement, indicating that the
region is not undergoing any surface movement and is
now in a state of equilibrium.

Table 4. Satellite Data Acquisition Periods for Maupin OR

Dataset Sentinel-1B ascending Sentinel-1B descending Sentinel-1A

Pre-event 6/1/2019 to 5/2/2020 6/21/2019 to 4/28/2020 6/16/2019 to 5/5/2020
Postevent 5/14/2020 to 1/9/2021 5/10/2019 to 4/6/2021 5/17/2020 to 12/31/2020

Figure 8. Deformation map of site ID= 3 as obtained from: (a) PSInSAR analysis and (b) SBAS analysis.
Note: PSInSAR = persistent scatterer interferometric synthetic aperture radar; SBAS = small baseline subset.
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Figure 9. Displacement over time of one PS (Persistent Scaterer) point.

Figure 10. Postevent analysis total deformation map of persistent scatterers. No significant position change noted.

Figure 11. Coherence maps: (a) 12-day period right before the event and (b) coherence during the event.
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Coherence Change Detection Monitoring

A CCD analysis is also conducted during the observa-
tion period. The complete analysis is reported in
Byrraju (25). An example of the coherence change is
shown in Figure 11. Figure 11a exhibits the coherence
image from the analysis between an image pair cap-
tured on April 20 and May 02 (right before the event),
demonstrating high coherence in the broader area of
the event but noticeable coherence loss in the immedi-
ate region of the event. Figure 11b portrays the coher-
ence analysis of the region studied using data from
May 2 to May 14, that spans over the May 7 event
date. The noticeable coherence loss in the immediate
area of the event is attributed to the surface changes
caused by the rockfall.

Cross-Evaluation with Other Data Sources

The findings from the PSInSAR and CDC analysis are
evaluated next in view of rainfall, topography and soil
information in the area of interest. The coherence images
generated by CCD analysis can provide further insights
into the rockfall event. As evidenced in Figure 9, mobili-
zation of the site started after September 2019. The
coherence map for the period September 17 to September
29, shown in Figure 12, reveals a low coherence in the
region of the rockfall event marked by the yellow marker.
Since the site is still ‘‘quiet’’ and no geometry changes are
detected, the low coherence over the broader region could
be attributed to the other major factor that affects it, that
is, change in soil moisture in the surrounding area. This
observation is verified by the rainfall records for the site
depicted in Figure 12 for the entire month of September.

According to the soil information for the area (53)
and Figure 7c, the immediate region of the rockfall is a

steep, rocky slope where surface runoff is at fast rates,
without any ponding or retained water; this is consistent
with the high coherence for most of the analysis period
in the immediate region. The broader area, however, is
relatively flat, and precipitation seeps through the soil
changing the soil moisture content; this is consistent with
the coherence loss after rain periods.

Validation Study

The RS-MTInSAR with Thresholding, Scatterer
Accumulation, and Clustering Timeline analysis were
first validated through implementation to sites not
included in the development of the proposed approach,
using both SBAS and PSInSAR analyses and have been
reported in Byrraju (25) and Byrraju and Rizos. This sec-
tion presents a case study that considers Site ID 9 for the
validation of the method that is based on the RS-SBAS
analysis. Site ID 9 was assigned by the industry sponsor
at the later stages of the research and serves as a case
study for the validation of the proposed technique.

Study Site and Incident Summary

A freight train near Sandstone, West Virginia, Figure
13a, derailed when it hit a rockslide, Figure 13b, caus-
ing injuries to three crew members and resulting in the
release of diesel gasoline into the nearby river Figure
13c. The yellow dotted box in Figure 13a indicates the
site of the rockfall incident that occurred in the early
hours of Wednesday, March 8, 2023. The collision in
the early morning locomotive footage reveals that the
debris blocking the railway path caused the derailment.
Furthermore, on careful examination of the images
reported in the media, it becomes evident that there are

Figure 12. Rainfall records for the month of September 2019 and associated coherence map.
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two well-defined surface area regions that experienced
slope failure, with an approximate distance of 100m
between them, as evidenced in Figure 13d.

The derailment site is about 1 mi from Sandstone and
is located between a cliff on one side and the New River
on the other. This region has a 35% to 80% slope and is
well drained. The area of interest has decaying plant mat-
ter and silty clay loam on the top 4 in. with stony silty
clay loam underneath. The cliff facing the railway track
has a stony profile, with the region above the cliff having
dense forest cover. Based on the preceding factors, the

site is classified as C, according to the site classification
guide.

Dataset and RS-SBAS

The region under investigation is covered by Sentinel-
1A, also shown in Figure 13a by the area marked in red,
with a frequency of acquisition of 12 days. The region is
located in a rural area with radar signals blocked by the
cliffs facing away from the satellite path. As a result of
the geolocation of the incident area, a low number of PS
points is expected. The Sentinel dataset for this study is
downloaded from the Sentinel-1 EU datahub and ASF.
The region also has a high cloud presence, reducing the
number of optical images available from Sentinel-2. In
view of the relatively low site class, it was decided to
employ the RS-SBAS technique with an image stack size
of 25. The data acquisition began on November 14,
2021, and continued until March 2, 2023, a week before
the event. A total of 44 acquisitions were obtained for
the analysis yielding seven SBAS analyses for the chosen
25-image RS, as presented in Table 5.

Figure 13. Validation study site: (a) incident site, (b) derailment, (c) locomotive view of rockfall, and (d) two distinct slope failures
~100m apart.

Table 5. Site ID= 9: Analysis Datasets

Dataset Sentinel-1A

Analysis 1 10/14/2021 to 09/03/22
Analysis 2 11/19/2021 to 10/09/22
Analysis 3 12/13/2021 to 11/02/22
Analysis 4 01/30/2022 to 12/08/22
Analysis 5 03/07/2022 to 01/13/23
Analysis 6 05/06/2022 to 02/18/23
Analysis 7 06/23/2022 to 03/02/23
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Figure 14. Validation study—DS accumulation at: (a) 6months; (b) 5months; (c) 4months; (d) 3months; (e) 2months; (f) 1month;
(g) 19 days; and (h) 7 days before the rockfall event and derailment.
Note: DS = distributed scatterers.
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The ground surface deformation is computed in all
cases in the satellite LOS. Each analysis cycles three older
images to be replaced by three newer images. Since the
acquisitions are 12 days apart, each new analysis is sepa-
rated by one month.

Thresholding and Accumulation

SBS analysis showed coherence of 0.3, thus, the thresh-
old limits on the displacement computed at the DS point
is set to 6 20mm (Table 2). The DS accumulation over
the entire observation period is shown in Figure 14 at dif-
ferent times before the event. The location of the event is
marked by the yellow dashed circle. DS points are indi-
cated by the white dots that are scarce 7months before
the event in the area of the event, and density increases
as the points accumulate over time in potentially critical
areas. DS points are detected at the onset of the analysis
in other areas of the region of interest. By inspection of
the optical image, these DS points correspond to known
scatterers, for example, buildings.

Clustering and Critical Area Identification

The next step in the process is the identification of the
critical areas through detection of clusters. The clustering
is observed both through visual inspection and through
the optical image subset approach discussed in [25]. In
both cases the identified clusters are marked in Figure 15
by yellow and red rectangles. In these clusters, the density
of the DS points increases with time. The yellow marked
areas correspond to areas of known scatterers, such as
the structures in the town of Sandstone (cluster A), or
agricultural buildings (clusters B and C), or are detected
on flat terrain away from the track and are not of imme-
diate interest. However, clusters F and G, marked by the

red rectangles, are deemed the critical ones since they
exhibit increasing activity over time, and are located on
the path of the track on a highly sloped terrain. Cluster
G is located at the derailment site and on closer investiga-
tion the two subclusters within the subset are approxi-
mately 100m apart, which is consistent with the two
distinct slope failures identified in Figure 13d. Cluster F
is also identified as a critical area, however no failure
occurred at the time of derailment. It was reported that
following the derailment remedial action was taken on
both F and G critical areas.

The DS clustering timeline analysis is shown in Figure
16. The graph shows the DS cumulative and incremental
cluster density at the different times of the analysis. It is
evident in both clustering and timeline analysis that the
cluster has become active long before the rockfall event
and derailment occurred. Furthermore, the incremental
change indicates that the activity has become more pro-
nounced about a week before the slope failure in cluster
G. The activity in cluster F also raised a concern, how-
ever, the issue was addressed by the railroad before an
event occurred.

Conclusions

This paper introduced the framework of a remote moni-
toring workflow that utilizes satellite-based radar data
and other data sources for the identification and localiza-
tion of critical locations along the railway ROW that
exhibit higher potential to geohazard failures. The pro-
posed approach is developed based on the MTInSAR
methods, such as PSInSAR and SBAS analysis. The suc-
cess of the highly accurate MTInSAR techniques
depends on the detection of an adequate number of PS
or DS in the region of interest for a given time period of

Figure 15. DS clustering and critical area identification.
Note: DS = distributed scatterers.

Figure 16. DS clustering timeline shows the DS cluster density
in the critical subset and the timeline of the change.
Note: DS = distributed scatterers.
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observation. However, as the time period of the analysis
increases, seasonal vegetation coverage and errors
because of larger satellite spatial baseline make the detec-
tion of both PS and DS scarce because of the loss of con-
tinuity in the observable scatterers. The proposed
approach implements MTInSAR techniques using an RS
concept to detect the presence of scatterers over longer
time periods. In conjunction with three postprocessing
operations, that is, Thresholding, Scatterer
Accumulation, and Clustering Timeline, the proposed
approach identifies critical locations in a very large
region of the railway ROW that show much higher ten-
dency for geohazard failure initiation, as compared with
their adjacent areas. The development of the guide is
achieved through investigations of sites with a history of
geohazard events. A site classification guide is developed
based on the parameters that affect the quality of the
satellite-based C-band radar signals, and a classification
chart is introduced.

The details of the development of the RS concept and
the three proposed postprocessing operations, that is,
Thresholding, Scatterer Accumulation, and Clustering
Timeline, are discussed. Two case studies are presented
to demonstrate the implementation and to validate the
proposed approach. It is concluded that the RS
approach in conjunction with the Thresholding,
Scatterer Accumulation, and Clustering Timeline suc-
cessfully detects the presence of reasonable number of
scatterers at least for part of the observation period. This
allows the last step of the Clustering Timeline to success-
fully identify the critical locations that are prone to geo-
hazard failure, and, in most cases, detects the level of
criticality through the timeline analysis.

The proposed technique has also been successfully
implemented to monitor pertinent sites for track settle-
ment. Although several areas along the tracks of the
study sites showed track and embankment settlements
over 30mm in a period of a year, not all of the associated
events could be conclusively attributed to the settlements.

Current and future work focuses on further enhancing
the site classification guide by adding soil type and soil
moisture information. To this end, additional sites will
be considered, as they become available. The additional
sites will also serve to further validate and qualify the
proposed techniques. At present, a soil moisture change
model based on coherence measurements is introduced
that shows great promise in sites classified as A. It is
expected that incorporating the effects of vegetation, the
classification guide will also capture time varying site
conditions. In parallel activities, current work focuses on
fully automating the workflow and in particular the
workflow of the preprocessing phase for data prepara-
tion and the postprocessing phase for critical area identi-
fication in active network monitoring operations where

the location of the event is not known, as well as com-
municating findings with the railroad operators in real
time.
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37. Marzahn, P., and R. Ludwig. On the Derivation of Soil

Surface Roughness from Multi Parametric PolSAR Data

and its Potential for Hydrological Modeling. Hydrology

and Earth System Sciences, Vol. 13, 2009, pp. 381–394.
38. Gaber, A., F. Soliman, M. Koch, and F. El-baz. Using

Full-Polarimetric SAR Data to Characterize the Surface

Sediments in Desert Areas: A Case Study in El-Gallaba

Plain, Egypt. Remote Sensing of Environment, Vol. 162,

2015, pp. 11–28.

39. Jack, H. Manufacturing Processes. Surface, 2013. http://

engineeronadisk.com/V3/engineeronadisk-67.html.
40. Prakash, R., and D. Singh. Modeling of Scattering

Response for Retrieval of Soil Parameters with Bistatic

Radar. Mathematics Applied in Information Systems, Vol.

2, 2018, pp. 168–196.
41. Yang, H. W., B. Baudet, and T. Yao. Characterization of

the Surface Roughness of Sand Particles Using an

Advanced Fractal Approach. Proceedings of the Royal

Society A: Mathematical, Physical and Engineering

Sciences, Vol. 472, 2016, p. 20160524.
42. Li, L., M. A. Nearing, M. H. Nichols, V. O. Polyakov, C.

L. Winter, and M. L. Cavanauggh. Temporal and Spatial

Evolution of Soil Surface Roughness on Stony Plots. Soil

and Tillage Research, Vol. 200, 2020, p. 104526.
43. Sabrina, E. Determination of Soil Moisture and Vegetation

Parameters from Spaceborne C-Band SAR on Agricultural

Areas 2018. https://d-nb.info/1153543524/34
44. Nolan, M., and D. R. Fatland. Penetration Depth as a

DInSAR Observable and Proxy for Soil Moisture. IEEE

Transactions on Geoscience and Remote Sensing, Vol. 41,
2003, pp. 532–537.

45. Barrett, B., P. Whelan, and E. Dwyer. The Use of C-and
L-band Repeat-Pass Interferometric SAR Coherence for
Soil Moisture Change Detection in Vegetated Areas. Open
Remote Sensing Journal, Vol. 5, 2012, pp. 37–53.

46. Bourgeau-Chavez, L. L., Y. M. Lee, M. Battaglia, S. L.
Endres, Z. M. Laubach, and K. Scarbrough. Identification
of Woodland Vernal Pools with Seasonal Change PAL-
SAR Data for Habitat Conservation. Remote Sensing, Vol.
8, 2016, p. 490.

47. Evans, T. L., M. Costa, W. Tomas, and A. R. Camilo. A
SAR Fine and Medium Spatial Resolution Approach for
Mapping the Brazilian Pantanal. Geografia, Vol. 38, 2013,
pp. 25–43.

48. ESA. Copernicus Open Access Hub. April 28, 2023.
https://scihub.copernicus.eu/.

49. ASF. Alaska Satellite Facility - Distributed Active Archive
Center. April 5, 2023. https://search.asf.alaska.edu/#/.

50. The Weather Company. October 4, 2024. www.wunder-
ground.com.

51. United States Department of Agriculture Natural
Resources Conservation Service. SSURGO Data Packa-
ging and Use. 2012. https://www.nrcs.usda.gov/sites/
default/files/2022-08/SSURGO-Data-Packaging-and-Use-
6.pdf

52. National Centers for Environmental Information.
USCRN Intrumtents. 2023. https://www.ncei.noaa.
gov/access/crn/instruments.html. Accessed July 1,
2024.

53. U.S. Department of Agriculture. Soil Survey Geo-
graphic (SSURGO) Database for Wasco County, Ore-
gon, Northern Part. U.S. Department of Agriculture,
Natural Resources Conservation Service, Fort Worth,
TX, 2022.

The opinions expressed in this article are solely those of the
authors and do not represent the opinions of the funding
agencies.

Rizos et al 23

https://earthdata.nasa.gov/s3fs-public/2025-04/SARHB_FullRes_2019.pdf?VersionId=XU9mWLgLcPtEZiL3.m72A2L8lcJOxub4
https://earthdata.nasa.gov/s3fs-public/2025-04/SARHB_FullRes_2019.pdf?VersionId=XU9mWLgLcPtEZiL3.m72A2L8lcJOxub4
https://rosap.ntl.bts.gov/view/dot/42936/dot_42936_DS1.pdf
https://rosap.ntl.bts.gov/view/dot/42936/dot_42936_DS1.pdf
http://engineeronadisk.com/V3/engineeronadisk-67.html
http://engineeronadisk.com/V3/engineeronadisk-67.html
https://d-nb.info/1153543524/34
https://scihub.copernicus.eu/
https://search.asf.alaska.edu/#/
http://www.wunderground.com
http://www.wunderground.com
https://www.nrcs.usda.gov/sites/default/files/2022-08/SSURGO-Data-Packaging-and-Use-6.pdf
https://www.nrcs.usda.gov/sites/default/files/2022-08/SSURGO-Data-Packaging-and-Use-6.pdf
https://www.nrcs.usda.gov/sites/default/files/2022-08/SSURGO-Data-Packaging-and-Use-6.pdf
https://www.ncei.noaa.gov/access/crn/instruments.html
https://www.ncei.noaa.gov/access/crn/instruments.html

