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INTRODUCTION 1 

 2 

  Railway transportation has been the backbone of national economies worldwide with well-3 

established benefits compared to other modes [1]. The extensive railroad network, frequently traversing 4 

rugged terrain, encounters several geological risks, including landslides, collapses, debris flows, and 5 

earthquakes [2]. Geohazard failures along the railway right of way (ROW) frequently cause damages that 6 

impact railway operations and safety, potentially with detrimental economic and social effects [3]. 7 

 Satellite radars have been explored as potential tools for rail network geohazard monitoring. 8 

Interferometric Synthetic Aperture Radar (InSAR) is a signal processing approach that has shown 9 

potential to investigate various geohazards, including slope failures [4] [5] [6] and has been commonly 10 

employed for the mapping and monitoring of landslides globally [7] [8]. Limitations in conventional 11 

InSAR techniques stemming from atmospheric effects, site conditions and terrain characteristics have 12 

spurred the development of the Multi-Temporal InSAR (MTInSAR) techniques that reduce errors in the 13 

displacement measurements and enabled tracking changes over time.  Although no single technique can 14 

solve all SAR limitations, selecting the appropriate technique based on limitations can increase the 15 

efficiency of SAR implementations in recognizing geohazards [9].  16 

 The authors have reported on one implementation of MTInSAR techniques that monitors the railway 17 

ROW for identifying critical locations that show high risk for geohazard initiation [10] [11]. Persistent 18 

Scatterer Interferometry (PSInSAR) and Small Baseline and Subset (SBAS) are suitable for site 19 

mobilization monitoring, within the “Multi-Temporal Threshold Stacking” (MTTS) and “Multi-Temporal 20 

Timeline Analysis” (MTTA) workflow introduced in [10] [11].  On the other hand, Coherence Change 21 

Detection (CCD) is suitable for monitoring and detecting changes in soil moisture content in the track and 22 

the ROW [10] [12] [13]. 23 

 Recognizing the crucial role of site conditions in determining the quality of satellite data for the 24 

selection of the most effective MTInSAR, this presentation introduces a site characterization and 25 

classification approach of the area of interest. The concept is designed to effectively characterize regions 26 

based on site conditions in view of satellite monitoring process, classifies sites with respect to effects of 27 

site conditions on the quality and availability of radar data, and is a valuable tool for selecting the 28 

appropriate SAR method in monitoring and detection tasks. The next section discusses and quantifies the 29 

site characteristics that affect the quality of the radar data in view of the proposed MTInSAR-based 30 

workflow for critical geohazard locations, followed by the introduction of the classification system.  The 31 

discussion concludes with the implementation of different SAR techniques according to the classification 32 

system and their ability to identify geohazard potential. 33 

 34 

METHODOLOGY 35 

 36 

The development of the technique that monitors the railway ROW for identifying critical locations 37 

exhibiting high-risk for geohazard initiation is based on the study of nineteen sites with a history of 38 

geohazard events, and/or availability of soil moisture measurements, listed in TABLE 1. The sites are 39 

studied for a period of at least twelve months before an event using both archived and current satellite 40 

SAR data. The MTInSAR processing techniques and the MTTS and MMTA post-processing approach 41 

reported by the authors [10] are implemented and the findings are assessed in view of the data availability 42 

and site characteristics and guided the development of the proposed site classification concept. A site 43 

characterization and classification process is desired to guide the selection of the appropriate tools for 44 

monitoring the railway ROW. The proposed concept accounts for the predominant factors affecting the 45 

quality of results as identified in this study in view of the availability of satellite SAR data for the site. 46 

Four distinct categories, A, B, C and D (good to bad) are established to classify sites based on their 47 

potential for facilitating successful studies.  These categories are developed based on SAR Data 48 

Availability and Site Parameters. 49 

 50 
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 1 

TABLE 1 List of study sites with history of geohazard occurrence and soil moisture data records 2 

ID Site location Coordinates 
(Lat/long) 

Event Event Date Site Class 

1 Lincoln, NE  40.70, -96.53 Derailment 6/25/2021 B 

2 Birmingham, AL 33.47, -86.95 Stability Monitor Continuous B 

3 Maupin, OR 45.17, -121.10 Rockfall 5/7/2020 A 

4 Atlanta, GA 33.83, -84.30 Sinkhole 12/2021 C 

5 Burlington, ND 48.25, -101.46 Derailment 5/1/2022 A 

6 Shiner, TX 29.43, -97.18 Derailment 6/3/2022 A 

7 Yellowstone, MT 43.64, -111.36 Landslides 6/16/2022 A 

8 Santa Clemente, CA 33.25, -117.37 Soil Erosion 10/1/2022 A 

9 Sandstone WV 37.76, -80.89 Rockfall/Derailment 4/9/2023 C 

10 Raymond, MN 45.01, -95.23 Derailment 4/30/2023 B 

11 Blackville, SC 33.36, -81.33 Moisture Data Continuous B 

12 Yosemite, CA 37.76, -119.82  Moisture Data Continuous A 

13 Bodega, CA 38.32, 123.07 Moisture Data Continuous A 

14 Santa Barbara, CA 34.41, -119.88 Moisture Data Continuous A 

15 Cortez, CO 37.26, -108.50 Moisture Data Continuous A 

16 Chatham, MI 46.33, -86.92 Moisture Data Continuous B 

17 Sandstone, MN 46.11, -92.99 Moisture Data Continuous B 

18 Stonehaven, Scotland 56.95, -2.32 Mudslides/Derailment 8/12/2020 C 

19 Pikeville, KY 37.34, -82.39 Landslide/Derailment 2/13/2020 D 

 3 

 SAR Data Availability: Sites should have access to extensive stacks of satellite data (over 12 months) to 4 

effectively monitor the region. Regions with less than 7 months of data are automatically classified as “C” 5 

class due to the inability to perform multi-temporal SAR analysis. If the region is covered by multiple 6 

satellites, the classification process is applied for each satellite, and the highest classification is chosen as 7 

the site classification, since visibility may improve when viewed from an alternate angle or through an 8 

additional satellite. 9 

 10 

Site Parameters: The site parameters directly influencing the proposed site classification in order of 11 

priority are: (i) slope grade, (ii) slope alignment, (iii) vegetation, (iv) surface roughness, and (v) surface 12 

wetness. The classification process is captured in a flowchart shown in Figure 1. The classification 13 

begins by identifying the slope grade and potential slope alignment. These are prioritized because the 14 

sensor covers a large area (250 km x 250 km), and topographic features are the most significant 15 

influences on the classification. Next, the process considers surface parameters that can affect 16 

classification on a more regional level. 17 

Slope grade: The slope grade is classified into three categories based on the incidence angle of the 18 

observing satellite. Regions with slope values more than 50 have a higher chance of geometric distortions 19 

like layover, shadowing, and overlaying effects. Flat terrain has additional influences like surface 20 

wetness, which do not influence regions with slopes [14]. 21 

Slope alignment: The slope alignment is classified into two categories: (i) slope aligned with the line of 22 

sight, and (ii) slope directly faces the satellite, i.e. perpendicular to LOS. Large-scale deformations are 23 

still detected in case (ii), and conventional InSAR can still be used for monitoring and early warning 24 

systems. Finally, regions with large slopes not facing the satellite cannot be monitored due to the 25 

shadowing effect. 26 

Vegetation: - After slope alignment, the radar signal first interacts with vegetation before it interacts with 27 

the surface. Two cases are considered: (i) Low vegetation (<12 cm) and (ii) medium vegetation (12-45 28 

cm). The proposed system does not consider data from sites with large vegetation(>45cm) as no 29 
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backscatter is available from these conditions and the site should be classified as D. 1 

Surface roughness: In view of the wave backscattering and surface roughness of the region, the process 2 

distinguishes between smooth and rough. Regions with slope in the look direction of the SAR sensor 3 

require surface roughness for backscattering. When the region is smooth, the signal gets reflected away; 4 

this signal loss leads to a classification of D. The presence of vegetation helps in some smooth terrains 5 

where the radar signal gets reflected due to the vegetation acting like a rough surface. In conditions where 6 

the surface is facing toward the sensor, the surface roughness does not influence to the degree as it would 7 

other terrain conditions. 8 

Surface wetness: - Surface wetness causes the surface roughness of the region to be converted to a smooth 9 

surface, causing the specular reflection to the radar signal, i.e., the signal gets reflected away. The only 10 

conditions where the surface wetness can improve the results would be when additional elements like 11 

vegetation or man-made structures cause the reflected radar signal to go back to the sensor [15]. 12 

 13 

 14 
Figure 1 Site Classification Concept 15 

 16 

A descriptive characterization of each site class is presented next: 17 

Class A – Ideal:  Examples include flat terrain and hilly/mountainous terrain (when slopes follow the 18 

satellite line of sight), minimal vegetation coverage without significant seasonal 19 

variation, multiple satellites and/or orbits, and at least 24-month satellite historical 20 

data are available with multiple orbit directions. 21 

Class B – Normal: Examples include open terrain, rolling hills, short escarpments, minimal vegetation 22 

coverage without significant seasonal variation, and at least 12-month satellite 23 

historical data available. 24 

Class C – Noisy:  Examples include hilly/mountainous terrain (when slopes face away from satellite line 25 

of sight) with medium to dense and tall vegetation with significant seasonal variation, 26 

escarpments, less than 12-month satellite historical data available, or intermittent data 27 

availability. 28 

Class D – Dark: These are sites that are not visible to the satellite, and there is no line of sight. 29 

Examples include mountainous terrains, gorges with dense and tall vegetation, tall 30 

escarpments, and dense vegetation coverage without significant seasonal variation. 31 

 32 
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After a site has been classified, the most appropriate method can be selected from TABLE 2 1 

 2 

TABLE 2 Method selection based on site class  3 

Method 
Site Class 

A B C D 

PSInSAR Yes Yes1 No No 

SBAS Yes3 Yes No No 

CCD Yes3 Yes Yes2 No 

/w MTTS Yes3 Yes Yes No 

/w MTTA Yes Yes Yes No 
1 no presence of seasonal vegetation 
2 coherence change measured from the surrounding region  
3 PSInSAR can provide more reliable results than other methods 

 4 

FINDINGS  5 

The proposed classification concept is applied to the sites listed in TABLE 1 and one case is presented 6 

here  In Sandstone, West Virginia, a freight train experienced derailment after colliding with a rockfall 7 

blocking the track, injuring three crew members and the subsequent release of diesel gasoline into the 8 

adjacent river. The occurrence transpired during the early hours of Wednesday, March 8, 2023, 9 

approximately one mile from the town. Locomotive video footage shows the rock blocking the track right 10 

before the collision. This region has high vegetation on one side of the railway line and a river on the 11 

other side. Due to these site conditions, this region is classified as C.  In view of TABLE 2, the preferred 12 

method of analysis is PSInSAR with MTSS. Figure 2(a) shows an aerial image of rockfall event where 13 

two failure areas 100 m apart are clearly identified.  Archived SAR images for a period of 15 months 14 

before the event were analyzed PSInSAR with and without MTSS post processing and the deformation 15 

maps are shown in Figure 2(b) and (c), respectively.   It is evident that, despite the low classification of 16 

the site, the PSInSAR with MTSS successfully identified the high-risk areas at least a month before the 17 

event took place. 18 

 19 

 20 
Figure 2 Implementation Example Site 9, Class C, 15 month monitoring before the event: (a) Aerial 21 

image of rockfall showing two failure areas 100 m apart; (b) PSInSAR without MTSS deformation 22 

map fails to identify potential for failure initiation; (c) PSInSAR with MTSS deformation map 23 

clearly identifies potential for failure initiation in two areas 100 m apart at least one month before 24 

the event. 25 

 26 

CONCLUSIONS 27 

This paper introduces a site classification concept based on site characteristics for choosing the most 28 

appropriate site-specific SAR approach for critical location identification susceptible to geohazard failure. 29 

The proposed methodology, which was validated through implementation examples on different sites, 30 

highlight the practical implementation of this system as well as the benefits it offers in terms of improving 31 

the efficiency and effectiveness of geohazard monitoring. PSInSAR are better suited for monitoring site 32 

class A regions. The displacement data effectively identified locations experiencing higher formation 33 
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rates compared to the surroundings, indicating higher risk of geohazard failure. SBAS analysis, on the 1 

other hand, can be used in monitoring site class B regions.  The Multi-Temporal Threshold Stacking” 2 

(MTTS) and “Multi-Temporal Timeline Analysis” (MTTA) postprocessing workflow introduced by the 3 

authors, when used with PSInSAR deformation data, can identify geohazard potential in sites classified as 4 

B, and when used with SBAS data, geohazard potential in sites classified as C can be identified. For 5 

future works, the site classification can be improved further by adding soil type and soil moisture.  6 

 7 
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