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ABSTRACT 
Train accidents can be attributed to human factors, 

equipment factors, track factors, signaling factors, and 

Miscellaneous factors. Not only have these accidents caused 

damages to railroad infrastructure and train equipment leading to 

excessive maintenance and repair costs, but some of these have 

also resulted in injuries and loss of lives. Big Data Analytics 

techniques can be utilized to provide insights into possible 

accident causes, thus resulting in improving railroad safety and 

reducing overall maintenance expenses as well as spotting trends 

and areas of operational improvements. We propose a 

comprehensive Big Data approach that provides novel insights 

into the causes of train accidents and find patterns that led to their 

occurrence. The approach utilizes a combination of Big Data 

algorithms to analyze a wide variety of data sources available to 

the railroads, and is being demonstrated using the FRA train 

accidents/incidents database to identify factors that highly 

contribute to accidents occurring over the past years. The most 

important contributing factors are then analyzed by means of 

association mining analysis to find relationships between the 

cause of accidents and other input variables. Applying our 

analysis approach to FRA accident report datasets we found that 

railroad accidents are correlating strongly with the track type, 

train type, and train area of operation. We utilize the proposed 

approach to identify patterns that would lead to occurrence of 

train accidents. The results obtained using the proposed 

algorithm are compatible with the ones obtained from manual 

descriptive analysis techniques.   

INTRODUCTION 
The North American railroad industry generates significant 

amounts of information related to its operational efficiency [1-

4]. This information includes operational data, 

accidents/incidents data, track maintenance data, safety data, 

inventory and highway-rail crossing data, and inspection and 

maintenance data [5]. Traditionally, these data sets have been 

stored in multiple databases and analyzed independently using 

traditional descriptive analysis techniques. However, these 

databases can be brought together and analyzed using Big Data 

Analytics techniques in order to uncover hidden patterns and find 

correlations that might not be easily discovered from analyzing 

data separately. In addition, Big Data analysis would allow the 

usage of predictive and perspective analysis techniques to 

forecast future safety measures and provide insights into possible 

accident causes, manufacturer issues, and more. For instance, 

Big Data Analytics tools can combine railroad 

accidents/incidents database with operational and maintenance 

databases and allow for prediction of train failures before they 

occur. It could also allow for efficient scheduling of train and 

track maintenance thus enhance rail safety and reduce the costs 

caused by unnecessary maintenance. There are predictive Big 

Data algorithms that are well known for their accuracy including 

Random Forest (RF) and association mining algorithm. RF is the 

most popular algorithm in conducting in-depth study of Big Data 

[6]. It has classification and regression capabilities and high-

performance efficiency. RF also gives estimates of what 

variables in the input data are more important in achieving 

certain responses [7]. This latter property is very significant as it 

enables selecting the important features and build a simple model 

based on these features, thereby reducing the computational cost. 

Association mining algorithms, on the other hand, analyze the 

input data set for frequent patterns [8]. They automatically find 

the patterns that would take a long time to find manually using 

descriptive analysis techniques. The advantage of association 

algorithms over RF algorithms is that associations can exist 

between any of the input variables. While the RF algorithm 
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builds rules with only a single conclusion, the association 

algorithms attempt to find many rules, each of which may have 

a different conclusion. Association algorithms use the 

support and confidence criteria to identify the most important 

relationships. Support is an expression of how frequently the 

variables appear in the input data, whereas confidence expresses 

how often that relationship has been found to be true within the 

data set. The main drawback in association algorithms is the 

computational efficiency as they require extensive processing 

time to find patterns within a potentially large search space [9-

11].  

In this work we develop a comprehensive Big Data 

algorithm that utilizes the importance measurement feature from 

RF algorithm and the pattern detection capability of association 

mining algorithms. The importance measure helps in choosing 

the most important variables in the input data and thus increase 

the computation speed of the association mining algorithms.  The 

remainder of this paper describes the algorithm structure and the 

results.  

METHODOLOGY 
The proposed algorithm utilizes both RF and association 

mining algorithms. RF allows selection of the most important 

variables in the input data subject to a specific response and feeds 

them to the association algorithm that discovers the connection 

between the variables. Here is the algorithm pseudocode: 

 

1. Let N be the number of rows in the input data, M be the 

number of columns and K is a subset of the possible 

categories 

2. Determine 𝑚 ⊆ 𝑀  such that 𝑚 has high impact on deciding 

K, using the importance feature from RF algorithm 

3. Find 𝑋 → 𝑌 where 𝑋 ⊆ 𝑚, 𝑌 ∈ 𝐾  and 𝑋 ∩ 𝑌 = ∅ 

4. Find support 𝜎(𝑋 → 𝑌 ) and the confidence 𝐶(𝑋 → 𝑌 )[11] 

5. Choose 𝑋 → 𝑌 ∋ 𝜎(𝑋 → 𝑌 ) > 0.1 and 𝐶(𝑋 → 𝑌 ) ≥ 0.8  

 

RF used in step 2 is an aggregation of decision trees where 

every node in the tree is used as a binary condition on a single 

variable of the input data set. The condition at each node splits 

the variables into two groups, such that each group contains data 

that provides a similar response. The measure of the optimal 

splitting condition is based on Gini impurity. When training RF 

with the input data set, the decrease in the weighted impurity 

caused by each variable of the input data set is computed. The 

impurity reduction caused by each variable is averaged and the 

variables are ranked according to this measure. Variables that can 

remove more impurity are ranked as more important than the 

ones that remove less impurity. We can think of the important 

variables (𝑚) as the ones who contributed the most to the rules 

formed by RF algorithm and thus a change in their value would 

degrade RF prediction ability as measured by out-of-bag (OOB) 

techniques [11].  

The implication relationship in step 3 is the association 

mining rule where X and Y are called antecedent and 

consequent, respectively. In step 4 we select the rules from the 

set of all possible rules found by the association mining 

algorithm constraints to the thresholds on support and 

confidence measures. A rule is identified as important if the 

confidence and the support are within 0.8 and 0.1, respectively.  

IMPLEMENTATION AND RESULTS 
 
A. INPUT DATA 

The proposed algorithm was implemented in RStudio [12] 

by leveraging both RF and “arules” packages. In order to assess 

the algorithm efficiency, we tested the algorithm on the Federal 

Railroad Administration (FRA) accident/incidents database and 

compared the obtained results with the ones from manual 

descriptive analysis.  

The input data set used is from the Federal Railroad 

Administration accident data sets [13] obtained for the period 

from January 2013 to December 2016. It contains information 

regarding a variety of conditions or circumstances that may have 

contributed to the occurrence of the reported accidents.  The data 

accounts for damages to on-track equipment, signals, track, track 

structures, and roadbed. It comprises 50 columns (M), which are 

the fields from the “F.6180.54” form, and 9864 rows (N) that 

represent the number of accident/incident reports filed over the 

mentioned time period. According to the data base, there are five 

major classes (K) of train accidents, namely: human factors (H), 

equipment factors (E), track factors (T), signaling factors (S), 

and miscellaneous factors (M). The number of accidents in each 

accident cause category is shown in Fig. 1. 

 

B. IMPORTANT FEATURES SELECTION  
The input data is applied to the RF algorithm in order to find 

the variables that contributed the most to the cause of these 

accidents, based on the mean decrease in Gini impurity.    

 
Fig. 1: Accident causes category versus number of accidents 
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Fig. 2 displays the 30 most important variables in the input 

data on the y-axis and the mean decrease in Gini score on the x-

axis. A higher value of mean decrease in Gini score implies a 

higher importance of the associated variable. For example, the 

grade crossing ID number (GXID) and the DRUG in Fig. 2 are 

the most important variables in predicting the cause of accident. 

Table 1 lists the most important variable and their description.  

The most important variables are applied to the association 

algorithm, which resulted in 58987 patterns. However, it is clear 

that going through all these patterns manually is not a viable 

option. Therefore, we used the scatter plot to visually see the 

rules and interactively choose the most significant ones based on 

their confidence value. The scatter plot of the confidence and the 

support for all rules is shown in Fig. 3. The plot consists of the 

support as x-axis and confidence as y-axis and each dot on the 

Fig. 3: Scatter plot  

 

Support  

 

Table. 1: Most Important Variables 

Feature acronym  Description 

GXID Grade crossing ID number: 0= No 

grade crossing, 1= Grade crossing 

DRUG Number of positive drug tests: 0=No 

positive drug test reported, 1=positive 

drug test reported  

Longitude Longitude in decimal degrees 

TRKNAME Track name 

Latitude Latitude in decimal degrees 

ALCOHOL Number of positive alcohol tests 

0=No positive alcohol test reported, 

1=positive alcohol test reported 

HIGHSPD Maximum speed reported for 

equipment involved 

STATION Nearest city and town 

RRCAR1 Car initials (first involved) 

STCNTY FIPS State & County code 

TEMP Temperature in degrees Fahrenheit 

TRNNBR Train ID number 

LOADF1 Number of loaded freight cars 

TRNSPD Speed of train in miles per hour 

Column1 Gross tonnage, excluding power units 

TIMEHR Hour of incident 

IMO Month of incident 

STATE FIPS State code 

EMPTYF1 Number of empty freight cars 

RAILROAD Reporting railroad  

TRKDNSTY Annual track density - gross tonnage 

in millions 

LOADED1 car loaded or not (first involved): 

Y=yes N=no blank=not applicable 

TYPEQ Type of train: 1=freight train, 

2=passenger train, 3=commuter train, 

4=work train, 5=single car, 6= cut of 

cars, 7= yard / switching, 8= light 

loco(s), 9= maintenance / inspection 

car 

ENGHR Number of hours engineers on duty: 

blank=not applicable 

TYPTRK Type of track: 1=main, 2=yard, 

3=siding, 4=industry 

CDTRHR Number of hours conductors on duty: 

blank=not applicable 

HEADEND1 Number of head end locomotives 

 

Fig. 2. Importance plot 
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plot represents one of the obtained rules. We adjust the logarithm 

so that we can see only the patterns with confidence higher than  

80%. Also, the dots are color coded so that the red dots 

indicate that the rule has high confidence value and needs to be 

further explored. 

Table 2 displays an example of the four most important 

patterns and their support and confidence. These patterns are 

regarded as important because the confidence is above 80%. The 

first rule states that accidents due to human factors (H) often 

occur at rail yards (TYPEQ= yard / switching) when no grade 

crossing is involved (GXID=No) and the train engineers are not 

under the influence of drugs (DRUG=No). The algorithm 

also states that this pattern is 98.3% reliable and applies to 12.4% 

of the input data. By analyzing the data manually, we found that 

among the 3782 accidents that are caused by human errors, 1397 

accident occurred at the rail yards when train engineers tested 

negative on drugs and no GXID report was found. Therefore, the 

manual results are compatible with the automatic results 

obtained using the proposed algorithm. The second pattern states 

that the accidents caused by Miscellaneous factors (M) often 

occurs to passenger trains (TYPEQ=Passenger train) on a single 

main track (TRKNAME=Single main track) when train 

engineers are not on drugs (DRUG=No). It also states that this 

pattern applies to 10.5% of the input data and has 97.8% 

reliability. Manual analysis confirms that the highest number of 

accidents (34/35) due to Miscellaneous (M) factors occurred to 

passenger train on a single main track when train engineers tested 

negative for drugs. The third significant pattern in Table 2 

implies that accidents caused by track factors (T) often occurs to 

freight trains (TYPEQ= Freight train) in state 48 (Texas) given 

no alcohol (ALCOHOL=No) or drugs (DRUG=No) are involved  

and no GXID (GXID=No) is involved. It also states that this 

pattern applies to 19.5% of the input data and has 94.4% 

reliability. This also agrees with the manual analysis which show 

that among the 639 accidents that happened to freight train in 

Texas, 200 accidents occurred due to track factors as illustrated 

in Fig. 4. 

The last rule implies that most accidents caused by 

equipment factors (E) are occurring for freight trains (TYPEQ= 

Freight train) in state 48 (Texas) when the engineers are tested 

negative for drugs (DRUG=No). It also states that this pattern 

applies to 16.5% of the input data and has 91.2% reliability. This 

also agrees with the manual analysis, which shows that among 

the 639 accidents of freight train in Texas, 58 accidents occurred 

due to equipment factors as illustrated in Fig. 4. 

Notice that the algorithm can be used to predict what cause 

category the accident should fall into. For instance, given that an 

accident occurred at rail yards (TYPEQ= yard / switching) 

when no grade crossing is involved (GXID=No) and the train 

engineers are not under the influence of drugs (DRUG=No), 

according to the first rule in Table 2, we can predict with 98.3% 

accuracy that the accident is caused by human factors.  

 

DISCUSSION 

Studying more closely the rules in Table 2 we can observe 

that the variables that appear in the rules are the ones that have 

the largest mean Gini score shown in Fig. 2. The variable DRUG, 

for instance, is associated with every accident because the actual 

number of accidents involving DRUG is zero. GXID, on the 

other hand, has such a large mean Gini score since grade crossing 

accidents are quite common and the presence of a grade crossing 

is always a factor for a crossing related accident. Notice that all 

the variable that are regarded as important according to Table 1 

have appeared in some rules generated from the association 

mining. However, some of those rules might have low 

confidence.   

One of the main advantages of the proposed algorithm as 

compared to the manual analysis is the ability to detect and 

extract useful information from large-scale data with high 

computational speed and is scalable to very large datasets not 

feasible for manual analysis.  Another key differentiator is that 

with the proposed approach it is possible to detect the impact 

from weaker correlations among different parameters that may 

not be apparent using manual analysis. 
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Fig. 4: Freight train accidents in Texas between 2013 and 2016. 

 

Table. 2: Sample of the most important patterns 

Rule Support Confidence 

{GXID=No, DRUG=No, 

TYPEQ= yard / switching} 

=> {CAUSE=H} 

0.124 0.983 

{DRUG=No, 

TRKNAME=Single main track, 

TYPEQ=Passenger train}  

=> {CAUSE=M} 

0.105 0.978 

{GXID=No, DRUG=No, 

ALCOHOL=No, 

TYPEQ= Freight train, 

State=48}    => {CAUSE=T} 

0.195 0.944 

{DRUG=No, 

TYPEQ= Freight train, 

State=48 }  => {CAUSE=E} 

0.165 0.912 
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The proposed algorithm has predictive capabilities since it 

utilizes Association mining and RF algorithms, both of which are 

predictive algorithms. However, maintenance and operational 

data sets are needed for these predictive capabilities. The 

ultimate goal of our work is to apply the algorithm for predictive 

analysis, so we can reliably predict what cause category the 

accident should fall into and therefore help the railroads and 

government agencies improve the productivity, reliability, and 

safety of their operations. We are also working on applying the 

proposed algorithm to an integrated database that comprises 

operational data, accidents/incidents data, track maintenance 

data, safety data, inventory data, highway-rail crossing data, and 

inspection and maintenance data. The goal is to process the data 

for new insights into component failure prediction, maintenance 

schedule optimization, replacement component selection, and 

failure cause analysis.  

CONCLUSION 
We proposed a comprehensive Big Data algorithm that 

utilizes the importance feature from RF algorithms and the 

pattern detection ability from the association mining algorithms 

in combination to reduce computational complexity while 

retaining all the insights available from the collective data set. 

The developed algorithm was applied to the FRA 

accidents/incidents data as an evaluation tool for its efficacy and 

has shown results similar to the results that were obtained using 

manual analysis, thus validating its accuracy.   Our work shows 

that Big Data analytics applies to maintenance and operational 

data can reliably identify accident categories and cause factors, 

and thus assist with improving the productivity, reliability, and 

safety of the rail operations. 

 

ACKNOWLEDGMENT 
This study was conducted at the University of Nebraska-

Lincoln by the research faculty and students at the Advanced 

Telecommunications Engineering Laboratory 

(www.TEL.unl.edu). This project is supported by the University 

Transportation Center for Railway Safety (UTCRS). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REFERENCES 
[1]. M. Zarembski, "Some examples of big data in railroad 

engineering", 2014 IEEE International Conference on Big 

Data (Big Data), 2014. 

[2]. A. Zarembski, "Integration of multiple inspection system 

data to identify potentially unsafe track rail conditions: data 

collection, consolidation and preparation", Report 

Prepared for US Federal Railroad Administration, 2014. 

[3]. N. Attoh-Okine, "Big data challenges in railway 

engineering," IEEE International Conference on Big Data 

(Big Data), 2014. 

[4]. D. Hunt, J. Kuehn, and O. Wyman, "Big data and rail- road 

analytics". Newsletter of the Railway Applications Section, 

2013. 

[5]. Federal Railroad Administration(FRA): 

https://www.fra.dot.gov/Page/P0001 

[6]. Y. Xu, "Research and implementation of improved random 

forest algorithm based on Spark", IEEE 2nd International 

Conference on Big Data Analysis (ICBDA), 2017. 

[7]. W. Lin, Z. Wu, L. Lin, A. Wen and J. Li, "An ensemble 

Random Forest Algorithm for insurance big data 

analysis", IEEE Access, 2017. 

[8]. A. Behnamian, K. Millard, S. N. Banks, L. White, M. 

Richardson and J. Pasher, "A systematic approach for 

variable selection with Random Forests: achieving stable 

variable importance values", IEEE Geoscience and Remote 

Sensing Letters, 2017. 

[9]. Y. Motai, "Kernel association for classification and 

prediction: a survey", IEEE Transactions on Neural 

Networks and Learning Systems, 2015. 

[10]. H. Yan and H. Hu, "A Study on association algorithm of 

smart campus mining platform based on big 

data", International Conference on Intelligent 

Transportation, Big Data & Smart City (ICITBS), 2017. 

[11]. K. Max, and K. Johnson, "Applied predictive modeling", 

Vol. 26, Springer, 2013. 

[12]. RStudio homepage, [Online] https://www.rstudio.com/  

[13]. Federal Railroad Administration Office of Safety Analysis, 

[Online]http://safetydata.fra.dot.gov/OfficeofSafety/Defau

lt.aspx 

 

 

 

 

 

 

 

 

 

 

 

5 Copyright © 2018 ASME




