A process model for **Selective Laser Alloying**

The present invention consists of a novel process for 3D printing a product, utilizing selective laser alloying of elemental powders to produce metal ceramic parts with specific desired alloys shapes and internal structures.

Problem

The traditional printing and alloying methods including cast and powder based metallurgical approaches, significantly affect the micro-structure of the output alloy, impairing its quality and desired physical properties. These methods are also very slow and energy consuming.

Solution

This method 1) adjusts the material composition along all three axes of a part, 2) significantly reduces energy consumption in laser processing, 3) processes metallic/ceramic materials from elemental powders with high melting points at lower melting temperatures, and 4) creates microscale porous structures with controllable shapes, sizes and distributions.

The University of Texas

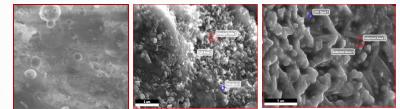
<u>RioGrande</u>Val

Office of Technology Commercialization

 Alloys of varying porosity can be produced by controlling parameters

 Self-sustaining/controllable laser boriding process

IP Status


Licensing available

Status of Development

Prototyping stage

For further information regarding this Technology please contact: Office of Technology Commercialization 1201 W. University Drive Edinburg, TX 78539 Phone: 956-665-3032

Laser Alloyed Ti-B₂ Samples with various Surface Structures

Value Proposition

- This novel technology utilized the reaction energy released from the reaction between elemental titanium and boron powder to reduce the process energy and time consumption of laser-based 3D metal printing.
- It provides solution for in-situ alloying with desired materials at desired locations

Competitive Advantages

•3D printing (free forming) hard-to- process metal and ceramic materials

 Production of parts with complex internal/external shapes or structures

 Saves on processing time and heating requirements

 Simplified process model and parameters

Email: otc@utrgv.edu