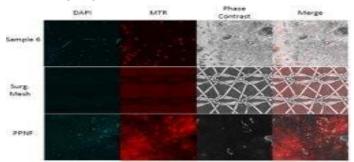
The University of Texas RioGrande Valley

Office of Technology Commercialization

Polyolefin Fibers for Skin Regeneration and Implant


This invention uses melt-spun polyolefin fine fibers to develop a new kind of nanofibrous surgical mesh suited for skin regeneration and mesh implantation. The material may be used as a scaffold in tissue engineering, wound dressing, hernia repair, pelvic organ prolapse support, cardiac patches, and as a coating for different implantable medical devices that need to be integrated within the body.

Problem

Polypropylene (PP) surgical mesh has been utilized extensively for wound healing applications due to its tensile strength properties. Despite this, PP surgical mesh shows a high rate of rejection by the body, approaching 40% of patients implanted.

Solution

The invention provides a novel means to avoid the high rate of rejection of PP surgical mesh by providing a nanofiber environment that promotes, rather than inhibits, cell growth and wound healing. Confocal microscopy, using embryonic fibroblast-3T3 cells on nanofibers were visualized from map imaging of mats.

Value Proposition

- The novel invention uses the application of Forcespinning[™] technology to provide supports for robust cell proliferation and growth.
- The results has shown to improve faster wound healing time over the conventional PP surgical mesh.

Competitive Advantages

- Improved patient outcome through increased cell proliferation and healing
- Re-purposing of proven Forcespinning[™] technology
- Easy to manufacture smallgauge nanofiber mats and treat with antibacterial/ antifungal properties

Status of Development

Lab prototype successful

IP Status

- Patent pending US20200289249A1
- Licensing available

For further information regarding this Technology please contact: Office of Technology Commercialization

1201 W. University Drive Edinburg, TX 78539 Email: otc@utrgv.edu Phone: 956-665-3032