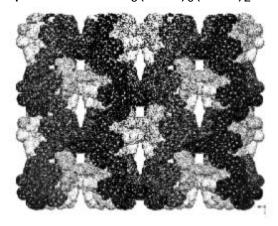
The University of Texas Rio Grande Valley

Office of Technology Commercialization

Methods for Acetylene/Gas Storage using Metal-Organic Framework

Microporous metal-organic frameworks (MOFs) have been rapidly emerging as promising porous materials for gas storage, separation, sensing and heterogeneous catalysis. This invention introduces methods for acetylene/gas storage using metal-organic frameworks.


Problem

Acetylene is a very important raw material for various industrial chemicals, consumer products and for oxy-acetylene cutting in metal fabrication shops. Due to its high flammability, instability and unique transportation requirements, developing new methods for acetylene storage and transportation is necessary.

Solution

The present technology provides multiple novel metal-organic framework materials for acetylene/gas storage using open metal sites, MOFs with repeat unit $M_2(DHTP)$ or MOFs with repeat unit $Zn_5(BTA)_6(TDA)_2$.

Interpenetrated Zn₅(BTA)₆(TDA)₂ MOF

Value Proposition

This invention presents effective, low cost, novel, and efficient MOF materials for storing acetylene/gas. Their highly porous nature and permanent porosity allows for large volumes of gas storage.

Competitive Advantages

- Easy synthesis
- Significantly improved storage capacities
- Safe and easy transportation and delivery at low pressure and room temperature
- · Highly robust materials
- Applications include selective sorption and detection of gas molecules

Status of Development

Seeking commercial partners

IP Status

- Licensing available
- Patent #US8664419B2, US9120080B2, US9127025B2