
Module 2

What is Simulation?

- Our goal is to mimic the behavior over time of a real system with a model that behaves in a similar way.
- What are some applications you might encounter in your daily life?

We want just enough fidelity to achieve project objectives.

Why Simulation?

➤ Objects can influence each other

Every system has randomness Breakdowns, illness, late arrivals...

The combination is complex.

Simulation is uniquely capable of managing this complexity.

Traditional Uses of Simulation

- Design and Optimization
 - Visualize and understand the system.
 - Analyze system performance.
 - Evaluate alternatives.

Minimize risk of implementation.

Compelling Benefits

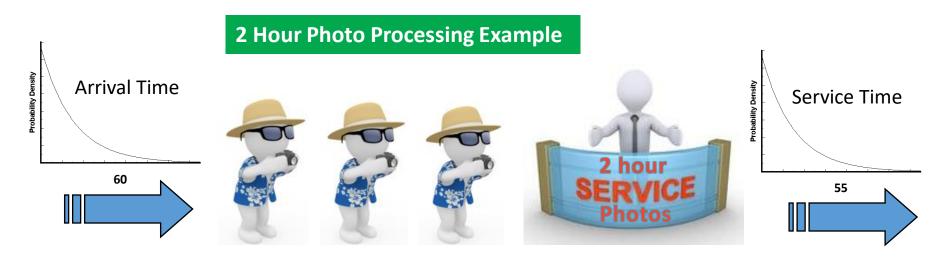
See the future.

- Parture E
- Knowledgebase to document processes.
- ► Answer "what if", analyze alternatives.
- Make mistakes early and in the model.
- Visualize the process/ communicate.

Key Simulation Advantages

- Flexibility
 - Most real systems have unique characteristics that are critical constraints on performance.
- Variability
 - Most real systems have variations that have a critical impact on performance.
- Visualization
 - 3D animation can be a powerful tool for understanding and communication.

A Few Application Areas

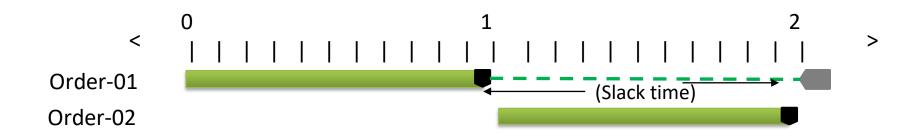

- Manufacturing
- Logistics, supply chain, and distribution
- Construction engineering and project management
- Military operations
- Transportation modes and traffic
- Business processes
- Healthcare
- Pharmaceuticals
- Airports and mass transit systems

Impact of Variation

- Most systems exhibit variation.
 - Demand by customers, parts
 - Arrival times of customers, parts
 - Equipment/personnel failures
 - Shortages of materials/supplies.
- Variation is an important aspect of most systems.
- Static/Analytical tools are of limited value in analyzing random processes.

Why Variability Matters

How will this system perform?


Average & Maximum "Time in System" when run 7 days for 24 hours/day?

How many orders will be completed?

Arrival Time	Service Time	Avg. Time in System?	Max. Time in System?	# Completed
Constant	Constant			
Random*	Constant			
Random*	Random*			

^{*} Exponential Distribution

Why Variability Matters - Planning

- Plan is based on "expected" constant values (60 min arrival & 55 minute service time)
- 92% utilization
- Static process shows: No late orders
- Variable process (exponential distribution) shows:
 73% of the orders are late

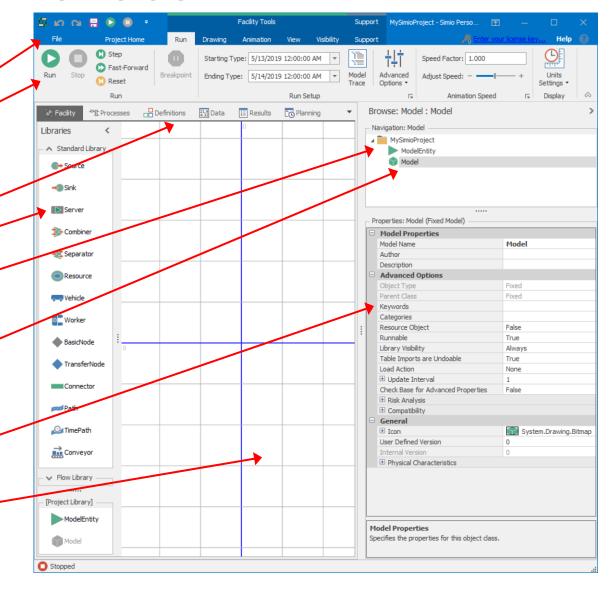
Managing Variation

- Must accurately account for variation in models.
- The degree of variation often has more impact on system behavior than the mean.
- We can dramatically improve system performance by reducing variation.
 - Identify/explain variation.
 - Eliminate sources of variation.
 - Accurately model the variation.

Introduction to Simio

Quick Overview of Simio

Building an Example Model


Expressions, Distributions, Results

Randomness

Simio User Interface

- Ribbons
- Project Tabs
- Libraries
- Project
- Current Model
- Properties
- ► Facility View

Key Simio Object Concepts

Object: Defines data, logic, behavior, view, events, and interaction

with other objects.

Model: An object that is executable.

Project: A collection of models/objects.

A project can be loaded as a library.

Properties: Static inputs to an object.

States: Changeable values associated with an object

Events: Supports communication between objects.

Fired when key things happen.

Resource: Constrains the system. Any object (even an entity) may be

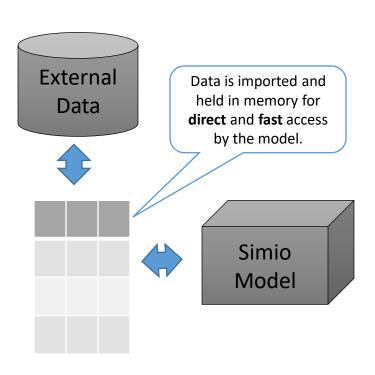
a resource.

Entity: A dynamic object that may move through system

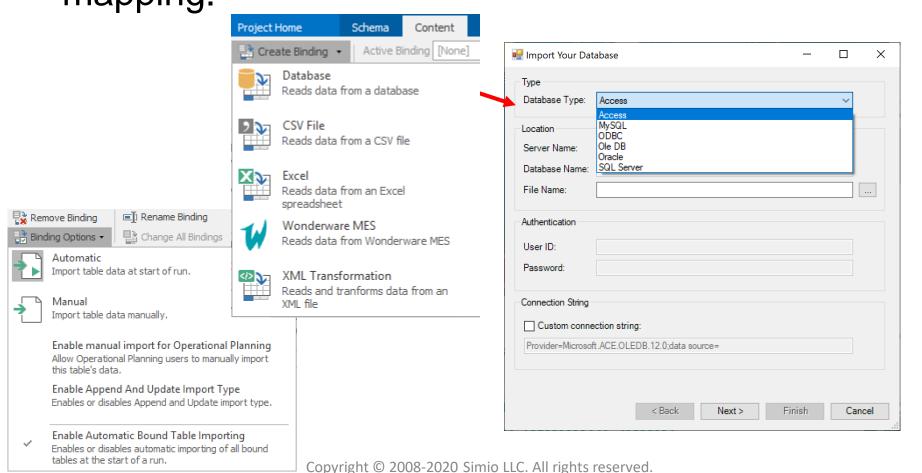
Transporter: An entity that can "work on" or carry other entities.

Vehicles and Workers are entities (and resources).

Processes


- A process is a set of actions that take place over time that may change the state of the system.
- All objects are built from a combination of processes and other objects.
- Add-on Processes provide a powerful mechanism to add model flexibility without programming.
- Steps perform actions such as:
 - Delay by a specified time.
 - Seize or release an object.
 - Fire an event or Wait for an event to occur.
 - Decide based on a probability or condition.
 - Transfer an entity into a station.
 - Search for an item or object ...

Process1


Model Data

- Models often have large amounts of data that describe the different objects and Entities that move through the system.
- It is slow and inconvenient to repeatedly access the external data as the model is running. Simio brings the data into memory for fast access.
- Simio can represent data in simple tables or in complete data sets with multiple relations.
- The data schema for the tables are user-defined.

Data Table Import/Export

Flexible import and export that supports many common data forms, databases, and flexible mapping.

Standard Library

Source: Generate entities of a specified type and arrival pattern.

Sink: Destroy entities.

Server: Capacitated process, such as a machine.

Combiner: Batches entities with a parent entity (e.g., pallet).

Separator: Splits batches or copies entities.

Resource: Seized/Released by objects.

Vehicle: Fixed route or on-demand pickups/drop-offs.

Worker: Moveable resource, for stationary and non-stationary tasks.

BasicNode: Simple intersection, fixed object input.

TransferNode: Change destination/get rides, fixed object output.

Connector: Zero travel time.

Path: Entities independently move at their own speeds.

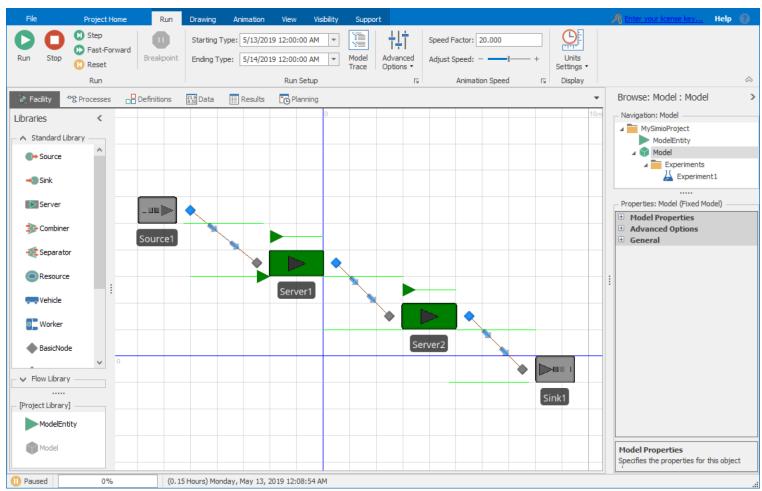
TimePath: Entities complete travel in a specified time.

Conveyor: Accumulating/non-accumulating conveyor devices.

Building a Sample Model

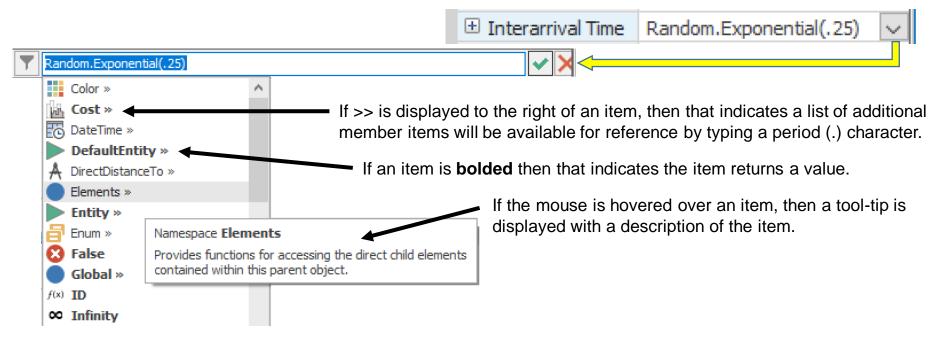
- Build a Sample Simio Model Simple Flow Line
- Simio Object Hierarchy
- Expressions and Editing Object Properties

Simple Flow Line



Server 1

Server 2

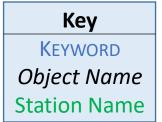

Simio "dot" Notation

- Simio uses a "dot" notation for addressing an object's data such as it's properties and states.
- The general form is "xxx.yyy" where yyy is a component of xxx.
- Server1.Capacity.Allocated.Average provides the average allocated capacity for Server1.

Tip: Read expression from right to left

Editing Object Properties

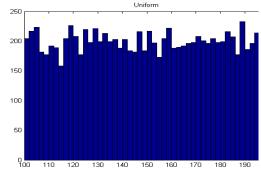
- Displayed in Properties Window
- Defined by object builder
- Integers, Booleans, rules, expressions, ...
- Expression editor (down arrow at right)
- Results are filtered by default

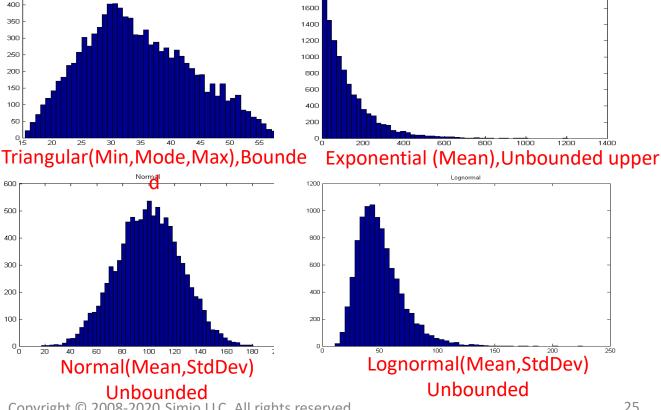


Enhancing our Sample Model

- Expressions
- Common Probability Distributions
- Continue with the Flow Line Model
 - Expressions
 - Viewing Results
 - Resource Utilization

"Top 10" Expressions

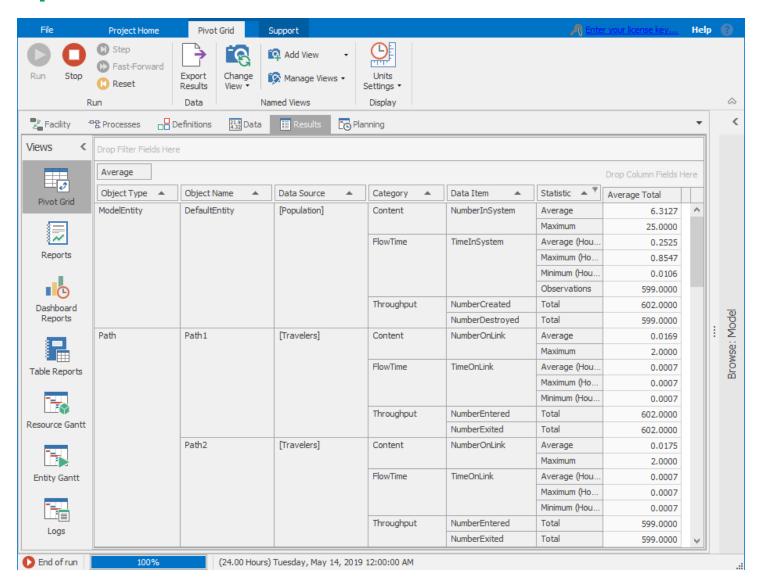

- X (a number integer or real)
- RANDOM.{Lots of choices, next slide}
- MATH.{Lots of choices, chap 5}
- DATETIME.{Lots of choices, chap 5}


- ServerName.CAPACITY.ScheduledUtilization
- ServerName.InputBuffer.Contents
- ► DefaultEntity.Population.TimeInSystem.Average
- DefaultEntity.POPULATION.NumberInSystem.Average
- SinkName.InputBuffer.NumberEntered
- SinkName.TimeInSystem.Average

Commonly used Random Expressions

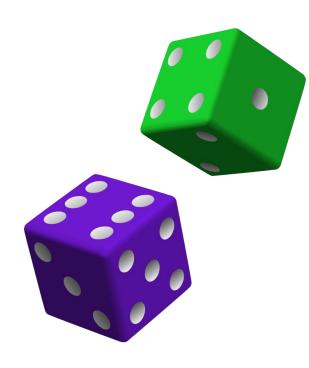
- RANDOM.Exponential(mean)
- RANDOM.Triangular(*min*, *mode*, *max*)
- ► RANDOM.Uniform(*min*, *max*)

Uniform(Min, Max), Bounded



Simple Flow Line – Expressions

- Source1
 - Interarrival Time: Random.Exponential(2.4)
- Server1
 - Processing Time: Random.Exponential(2)
- Server2
 - Processing Time: Random.Exponential(1.71)


*Times in Minutes

Sample Pivot Table

Random In – Random Out

- What is the value of a single trial?
- How many rolls of a dice pair is enough to determine the odds of rolling a 7?
- How confident are you betting on a 7 based on your "research" of 1 roll? 10 rolls? 100 rolls? 1000 rolls?
- How confident are you making a model recommendation based on 1 "replication"?
- Interactive results based on a single replication are generally not actionable.

