
UNIVERSITY OF CALIFORNIA
RIVERSIDE

Exploring Frontiers in Graph Learning

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

William L. Shiao

September 2024

Dissertation Committee:

Dr. Evangelos E. Papalexakis, Chairperson
Dr. Greg Ver Steeg
Dr. Yue Dong
Dr. Neil Shah

Copyright by
William L. Shiao

2024

The Dissertation of William L. Shiao is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

This is the culmination of an 8-year journey at UC Riverside. It began with my undergraduate

degree, continued to my Master’s, and finally ended with my Ph.D. These years have truly

shaped the trajectory of my life in countless ways and would not have been possible without

the unwavering support and love of my friends and family. I owe so much to the people who

have helped me through the years, and I would like to take this opportunity to thank each of

them.

First and foremost, I would like to express my deepest gratitude to my advisor,

Evangelos (Vagelis) Papalexakis. Our paths crossed during my second year as an undergradu-

ate, and we have worked together ever since. At the time, pursuing a Ph.D. had never crossed

my mind, but Vagelis’s enthusiasm and encouragement convinced me otherwise. After 7

years of working together, I can truly say that he is the kindest and most supportive person

I have had the pleasure to work with. It’s hard to count the number of times I joined a

meeting with Vagelis where I was overwhelmed and fully convinced the project was doomed

to fail, only to come out an hour later full of optimism and hope. On top of that, he was also

always only a Slack message away — ready to help with anything from listening to a practice

presentation or proofreading a particularly difficult email. His generosity, as well as the

freedom and flexibility he offered, made it possible to travel and still enjoy life throughout

the course of my degree.

I would also like to thank the members of my committee: Yue Dong, Greg Ver

Steeg, and Neil Shah, for their invaluable feedback and guidance. I had the pleasure of being

managed and mentored by Neil during the 12 months I interned at Snap. There, I learned

iv

about the wondrous world of GNNs — now the focus of this thesis — and greatly improved

my research skills. Neil and my other mentors, Yozen Liu and Tong Zhao, were always there

when I needed to discuss something. Their guidance was instrumental to my work, and their

kindness made even the dreary Seattle winter enjoyable. There, I had the chance to meet

some amazing co-workers, collaborators, and friends: Zhichun Guo, Clark Ju, Yushun Dong,

Vijay Prakash Dwivedi, Ankit Bara, Matt Kolodner, Shubham Vij, Xiaotian Han, and Wei

Jin. From collaborating on projects to going on fishing trips and even helping me build a

wall from Bubly cans (much to the chagrin of Snap workplace employees), each of them made

my internships much more fun and productive.

I would like to thank my labmates, with whom I spent the majority of my waking

hours (and possibly several non-waking ones): Sara Abdali, Dawon Ahn, Biqian Cheng,

Pravallika Devineni, Negin Entezari, Ekta Gujral, Rutuja Gurav, Miguel Gutierrez, Yiran

Luo, Ravdeep Pasricha, Het Patel, Uday Singh Saini, Yorgos Tsitsikas, and Yunshu Wu.

Their companionship and support made the long hours in the lab much more enjoyable. I

would also like to thank the other residents in the lab: Satish Chandran, Shahrzad Haji

Amin Shirazi, and Yahya Sattar, for their camaraderie and support. My work would not be

possible without my collaborators: Kevin Chan, Jia Chen, Benjamin Miller, Tina Eliassi-Rad,

Zubair Qazi, and Paul Yu, who brought fresh perspectives and expertise to our projects. I

would also like to thank the UCR staff: Victor Hill, Vanda Yamaguchi, Mindi Mobley, Bart

Kats, Sean Mahoney, and Tara Barthol, for providing valuable administrative support and

computational resources.

v

Next, I would like to thank my family. My father always supported my decision

to pursue a Ph.D., but he made me think through my decision by having me sit down and

calculate the opportunity cost compared to working. This exercise ensured that pursuing a

Ph.D. was what I genuinely wanted, and it helped me refocus and get back on track whenever

I wavered during my journey. Throughout my life, he has been an infallible source of sage

advice and wisdom.

My mother was also an important source of strength, letting me know that there

was always a warm hug, delicious meal, and clean bed awaiting me at home, should I need it.

My brother, Theo, has been my best friend and closest confidant, providing a listening ear

and a shoulder to lean on during both the good times and the bad. Our shared experiences,

from heart-to-hearts to the occasional fistfight, have forged an unbreakable bond, and his

support has been invaluable throughout my journey. My many cousins — Timothy and

Aaron Chang, Pim Tamavimoke, Matthew, Johnathan, Sarah, and Michael Capparelli — who

always managed to make time when Theo and I were back home, made returning home extra

enjoyable, and really allowed me to relax. Whether through a quick taco run, a 6-hour game

of Terra Mystica, or a backpacking trip to the Channel Islands, they helped me de-stress and

create unforgettable memories.

I would like to thank my friends, many of whom have been there since my under-

graduate days. There are the “Oracles” (although, despite the name, our stock performance

was anything but Oracle-like): JiHwan Kim, Joshua Sun, Paris Hom, Nikhil Gowda, Aditya

Acharya, Erin Wong, Brandon Lam, Eric Ong, and John Shin. We became close because of

a spur-of-the-moment trip to Hawaii, but our friendship has only strengthened since then.

vi

Many of the most memorable events throughout my Ph.D. have occurred on trips with them,

be it riding ATVs in Vegas, getting lost in the snow on Mt. Rainier, or almost dying while

surfing in Hawaii. I would also like to thank the great housemates (and now friends) I’ve

had over the years who made me happy to return home: Brandon Lam, Satish Chandran,

Chandan Sidhu, Timothy Koo, Patrick Lam, Eric Gong, Garret Lim, Edward Huh, and

Jackson Huang.

Additionally, I owe my gratitude to my friends for their support: Jay Park, Ivan

Liang, Carolyn Kong, Niharika Battula, Amanda Xaypraseuth, Brittney Mun, Daniel Stinson-

Diess, Kennen DeRenard, Jon Chee, Aaroh Mankad, Ed Zabrensky, Colin Lee, David Feng,

Enoch Chang, Andre Castro, Mohit Gupta, Donald Morton, Peter Cunha, and Anthony

Stenzel. Each of them, in their own unique way, has contributed to my personal and

professional growth.

Finally, I would like to thank the others whom I have forgotten to name and who

have helped me along the way. I am forever grateful for the support, guidance, and love I

have received from so many people during this incredible 8-year journey at UC Riverside.

vii

Funding Acknowledgments

This research was supported in part by the National Science Foundation under CAREER

grant no. IIS 2046086 and the CREST Center for Multidisciplinary Research Excellence

in Cyber-Physical Infrastructure Systems (MECIS) grant no. 2112650. Additional support

was provided by the Agriculture and Food Research Initiative Competitive Grant no. 2020-

69012-31914 from the USDA National Institute of Food and Agriculture.

Several UCR coauthors were also sponsored by the Combat Capabilities Development

Command Army Research Laboratory under Cooperative Agreement Number W911NF-

13-2-0045 (ARL Cyber Security CRA). The coauthors of work that appears in this thesis,

Benjamin A. Miller and Tina Eliassi-Rad, were supported in part by the United States Air

Force under Air Force Contract No. FA8702-15-D-0001.

The views and conclusions contained in this document are those of the authors and

should not be interpreted as representing the official policies, either expressed or implied, of

the Combat Capabilities Development Command Army Research Laboratory, the United

States Air Force, the U.S. Government, or any other sponsoring agency. The U.S. Government

is authorized to reproduce and distribute reprints for Government purposes notwithstanding

any copyright notation here on.

Some of this work was also funded by and completed during my internship at Snap

Inc. We would also like to thank UCR Research Computing and Ursa Major for the Google

Cloud resources provided to support this research.

viii

In loving memory of 爷爷，婆婆, and 公公, whose journeys ended before mine.

ix

ABSTRACT OF THE DISSERTATION

Exploring Frontiers in Graph Learning

by

William L. Shiao

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, September 2024

Dr. Evangelos E. Papalexakis, Chairperson

Graphs have been used to model many different types of data, ranging from social

networks to the human brain. We can then formulate real-world problems as tasks (like

link prediction or node classification) on these graphs. For example, item recommendation

can be viewed as link prediction on a user-item purchase graph and bot detection as node

classification on a social interaction graph. Traditionally, these graph tasks have been solved

through statistical or spectral analysis. However, relatively recent works have proposed the

idea of Graph Neural Networks (GNNs), which allow us to solve these problems in a highly

scalable and effective manner.

In our recent work, we focus on exploring three frontiers in graph learning. First,

we bridge ideas from different domains and apply them to graph learning to define new

models and methods. Second, we work on solving tasks in a fast and space-efficient manner,

improving their practical utility. Finally, we revisit and challenge established concepts in

graph learning to see if they are really true. This dissertation summarizes four pieces of

work, each of which fits into two or more of the aforementioned frontiers.

x

The first work in our dissertation, TenGAN, examines the task of multiplex graph

generation - generating graphs that have multiple views, each with different edges but the

same nodes. This is a task that is typically solved with statistical preferential attachment

models. However, these models are inflexible and require the explicit modeling of desired

graph attributes. Modeling these multiplex graphs with a naive generative model is also

difficult due to the large number of parameters required. We propose borrowing ideas from

tensor decompositions to implicitly compress the parameters in the network, greatly reducing

the number of parameters required.

Our second work shifts its focus towards efficient link prediction with GNNs.

Currently, most scalable method is node-based link prediction, where we compute node

embeddings for candidate pairs and use them to compute the probability of a link existing

between them. Most existing state-of-the-art methods rely on contrastive learning, which uses

both positive samples (e.g., neighbors) and negative samples (e.g., non-neighbors). However,

these negative samples are often expensive to obtain. A recent group of methods, dubbed

non-contrastive learning, have been proposed to avoid the expensive negative sampling step

but have only been evaluated on node classification tasks. In this work, we perform a detailed

benchmark of existing non-contrastive methods on link prediction, discover a key limitation,

and mitigate it by proposing a simple modification. This results in an improvement of up to

120

Our third work, CARL-G, also focuses on speeding up self-supervised node repre-

sentation learning. We do this by observing some similarities between contrastive learning

and clustering. We then propose a new framework and loss function that reformulates node

xi

representation learning as a clustering problem. Our key contribution is finding that an

existing class of unsupervised clustering evaluation metrics known as Clustering Validation

Indices (CVIs) can serve as effective substitutes for existing contrastive losses. With the

choice of specific CVIs, we can reduce the cost of computing the loss function to linear

time (in contrast to the quadratic time complexity of most contrastive losses). Then, also

taking advantage of decades of research in speeding up clustering, we can compute better

node representations in much less time. CARL-G trains 79× than the best-performing

node classification baseline and 1,500× faster than the best-performing node clustering and

similarity search baseline.

Our fourth and final work focuses on improving the inductive capabilities of recom-

mendation systems in a fast and space-efficient manner. Recommendation models typically

store an embedding for each unique user and item in embedding tables. However, when per-

forming inference with real-world recommendation systems, we often encounter users/items

that were not present during training. The most common solutions to this are to either

randomly use an embedding from an out-of-vocabulary (OOV) embedding table or a fixed

vector like the mean embedding. Our work challenges the assumption that these simple

methods are sufficient, and we explore 9 different OOV embedding methods on 5 different

models to find more effective approaches. We find that locality-sensitive-hashing (LSH) based

methods generally perform better than the competing methods resulting in a 3.74% mean

improvement over the industry-standard baseline.

xii

Contents

List of Figures xvi

List of Tables xix

1 Introduction 1
1.1 Research Questions . 2

1.1.1 Frontiers in Graph Learning . 3
1.1.2 Multiplex Graph Generation . 3
1.1.3 Non-Contrastive Link Prediction . 4
1.1.4 Contrastive Learning and Clustering on Graphs 5
1.1.5 Improving OOV Support in Recommendation Systems 5

1.2 Thesis Outline . 6

2 Background 7
2.1 Introduction . 7
2.2 Notation . 7
2.3 Definitions . 8

2.3.1 Graph Neural Networks (GNNs) . 8
2.3.2 Link Prediction with GNNs . 8
2.3.3 Multiplex Graphs . 9

3 Generating Multiplex Tensor Graphs 11
3.1 Problem Formulation . 15
3.2 Proposed Method . 16

3.2.1 Sampling . 17
3.2.2 Architecture . 18
3.2.3 Parameter Complexity . 21
3.2.4 Evaluation Metrics . 21
3.2.5 Implementation Details . 25

3.3 Experimental Evaluation . 25
3.3.1 Datasets . 25
3.3.2 Comparison with Existing Methods . 27

xiii

3.3.3 MMD-Based Evaluation . 28
3.3.4 TenScore Evaluation . 30
3.3.5 Classifier-Based Evaluation . 30
3.3.6 Summary . 31

3.4 Related Work . 32
3.5 Conclusion . 34

4 Link Prediction with Non-Contrastive Learning 35
4.1 Introduction . 36
4.2 Preliminaries . 39
4.3 Do Non-Contrastive Learning Methods Perform Well on Link Prediction Tasks? 42

4.3.1 Evaluation . 43
4.4 Improving Inductive Performance in a Non-Contrastive Framework 49
4.5 Other Related Work . 53
4.6 Conclusion . 55

4.6.1 Dataset Statistics . 57
4.6.2 Machine Details . 57
4.6.3 Transductive Setting Details . 57
4.6.4 Inductive Setting Details . 57
4.6.5 Experimental Setup . 59
4.6.6 Full Results . 59
4.6.7 Corruptions . 60
4.6.8 AUC-ROC Results . 61
4.6.9 Why Does BGRL Not Collapse? . 61
4.6.10 How Does BGRL Pull Representations Closer Together? 63
4.6.11 Additional Plots . 64

5 Clustering-Accelerated Representation Learning on Graphs 66
5.1 Introduction . 67
5.2 Preliminaries . 71

5.2.1 Graph Neural Networks . 72
5.2.2 Cluster Validation Indices . 73

5.3 Proposed Method . 75
5.3.1 Training 12CARL-G . 76
5.3.2 Clustering Method . 77
5.3.3 Theoretical Analysis . 78

5.4 Experimental Evaluation . 82
5.4.1 Evaluation Results . 84
5.4.2 Resource Benchmarking . 86
5.4.3 Ablation Studies . 90
5.4.4 Implementation Details . 93
5.4.5 Limitations & Future Work . 94

5.5 Additional Related Work . 94
5.6 Conclusion . 96
5.7 Appendix . 96

xiv

5.7.1 Full Proof of Equivalency to Margin Loss 96
5.7.2 Meaning of Ideal Conditions . 101
5.7.3 Additional Experiment Details . 102

6 Recommendation Systems 105
6.1 Introduction . 106
6.2 Preliminaries and Related Work . 111

6.2.1 Context-Free Models . 112
6.2.2 Context-Aware Models . 113

6.3 Towards a General OOV Embedder . 115
6.3.1 Heuristic-based Embedders . 118
6.3.2 Learning-based Embedders . 119
6.3.3 OOV Embedder Training . 121

6.4 Datasets . 124
6.5 Experimental Evaluation . 127

6.5.1 Evaluation Details . 127
6.5.2 Context-Aware Results . 128
6.5.3 Context-Free Results . 130
6.5.4 Sensitivity Analysis . 131
6.5.5 Recommendations for Practitioners . 132

6.6 Additional Related Work . 133
6.7 Conclusion . 135

7 Conclusion 136
7.1 Future Directions . 138

7.1.1 Multi-Stage Recommendation System Training 138
7.1.2 Non-Contrastive Graph Learning for Other Graph Tasks 139
7.1.3 Diffusion Models for Multi-view Graph Generation 140

xv

List of Figures

3.1 Diagram of the TenGAN discriminator (top) and two different generator
architectures (bottom). TenGAN-CP is based on the CP decomposition, and
generates the factor matrices A,B,C before combining them into the output
adjacency tensor. TenGAN-R is based on the RESCAL decomposition, and
first generates the factor matrix A and factor tensor R before combining them
into the adjacency tensor. 20

3.2 3 plots of pairs of CPD error values that have low, medium, and high EMD
scores. CPD error vs. rank plot on 3 pairs of tensors. The dashed green
lines are the generated results, and the solid blue lines are the original results.
We can see that the EMD scores are lower when the lines are more similar
and that the scores are higher when the lines are further apart. This is the
intuition behind our tensor-based evaluation method. 22

3.3 Diagram of the classifier-based evaluation model. We first calculate an em-
bedding and train a classifier on each view before using the majority vote to
guess if the result is a real or generated multiplex graph. Note that this is
similar to, but different from the discriminator. This is because we use an
established embedding model and a non-neural-network classifier. 24

4.1 These plots show similarities between node embeddings. Left: distribution
of positive/negative link similarities for BGRL. Right: distribution of posi-
tive/negative link similarities for ML-GCN. We can see that while they behave
similarly, the ML-GCN does a better job of ensuring that positive/negative
links are well separated. These scores are computed on Amazon-Photos. . . . 45

4.2 These plots show similarities between node embeddings on Citeseer. Left:
distribution of similarity to non-neighbors for TenGAN and BGRL. Right:
distribution of similarity to neighbors for TenGAN and BGRL. Note that
the y-axis is on a logarithmic scale. TenGAN clearly does a better job of
ensuring that negative link representations are pushed far apart from those of
positive links. 48

4.3 TenGAN architecture diagram. The loss function is also shown in Equa-
tion (4.5). 48

xvi

4.4 Total runtime comparison of different contrastive and non-contrastive methods.
T-BGRL and BGRL have relatively similar runtimes and are significantly
faster than the contrastive methods (GRACE and ML-GCN). 53

4.5 These plots show similarities between node embeddings on Coauthor-Cs. Left:
distribution of similarity to non-neighbors for TenGAN and BGRL (closer
to 0 is better). Right: distribution of similarity to neighbors for TenGAN
and BGRL (closer to 1 is better). Note that the y-axis is on a logarithmic
scale. TenGAN clearly does a better job of ensuring that negative link
representations are pushed far apart from those of positive links. 64

4.6 These plots show similarities between node embeddings on Cora. Left: dis-
tribution of similarity to non-neighbors for TenGAN and BGRL (closer to
0 is better). Right: distribution of similarity to neighbors for TenGAN
and BGRL (closer to 1 is better). Note that the y-axis is on a logarithmic
scale. TenGAN clearly does a better job of ensuring that negative link
representations are pushed far apart from those of positive links, but does not
do as well at differentiating between positive links. 65

5.1 Comparison of our proposed methods with other baselines with respect to
node classification accuracy and speedup on the Amazon-Photos dataset. See
Figure 5.3 for results on the other datasets. 68

5.2 12CARL-G architecture diagram. We describe the method in detail in Section 5.3. 72
5.3 Runtime v.s. accuracy plots. 12CARL-Gsim, 12CARL-GSil, and 12CARL-GVRC are our

proposed methods. Speedup is relative to the slowest baseline (AFGRL).
AFGRL and GRACE run out of memory on Coauthor-Physics. 86

5.4 Mean total training time (left) and max GPU usage (right) for each model.
12CARL-GVRC is the fastest with generally the least amount of memory used.
12CARL-Gsim uses the same amount of memory but is slightly slower. Note that
not all of the baselines use the same encoder size—see Table 5.3 for encoder
sizes. 88

5.5 Node classification accuracy of 12CARL-Gsim on Amazon-Photos and Coauthor-Physics
with a different number of clusters. 88

5.6 Training time versus number of clusters for 12CARL-Gsim on Coauthor-Physics.
As expected (see Section 5.3.1), the training time is linear with respect to the
number of clusters. 103

6.1 Comparison between transductive (left) and inductive (right) settings. In the
transductive setting, RS are evaluated on interactions between users and items
observed during training time (i.e., bold links). Whereas in the inductive
setting, besides transductive interactions, RS are also evaluated on interactions
related to users and items unseen during the training (i.e., both bold and dash
links). 107

6.2 Comparison of inductive vs transductive performance with Wide & Deep mod-
els, where OOV (inductive) values are handled with trained random buckets.
We see a clear gap in inductive performance vs transductive performance,
showing the importance of properly handling OOV values. 110

xvii

6.3 Typical structure of context-aware and context-free recommendation models. . 111
6.4 How IV/OOV user IDs are handled under our framework. Item IDs are

handled the same way. 117
6.5 Visualization of where the inductive split occurs on the datasets. The x-axis is

the time that the user/item first appeared. Everything to the left of the split
time is used for training and validation. The remainder is used for evaluation. 125

6.6 Sensitivity analysis of different training hyperparameters for m-lsh and
r-bucket with WideDeep on Yelp-2018. Note that the y-axis range is
relatively small and that the x-axis for OOV buckets is on a logarithmic scale. 127

xviii

List of Tables

3.1 Since we are unable to share the data for the Comm dataset, we instead
provide network statistics of the computer infrastructure graph. Data are
over the course of one day on five TCP/IP ports: 22 (SSH), 23 (Telnet), 80
(HTTP), 443 (HTTPS), and 445 (MS Directory Services). For each view
(port), we list the number of active nodes, the number of edges, the number
of nodes in the largest strongly connected component (LCC Size), and the
average shortest path length (SP) and average clustering coefficient (CC).
SP and CC are computed based on 1,000 randomly sampled nodes (CC) or
node pairs (SP) within the induced subgraph of the largest strongly connected
component. 27

3.2 Results of TenGAN on the Football, NELL-2, Enron, and Comm datasets.
Lower is better for all of these metrics, including F1/Acc. Deg, Clust,
and Orbit are the mean MMD scores of our MMD-based evaluation method
(see Section 3.3.3). F1 and Acc are the scores produced by the classifier-based
method (see Section 3.2.4). Note that a higher F1/Acc score means that
the classifier is better able to distinguish between positive/negative samples,
implying that the generated samples are less realistic. TenScore is the score
produced by the CPD-based tensor evaluation method (see Section 3.3.4).
HGEN is unable to run on the Comm dataset due to issues mentioned in
Section 3.3.2. 29

4.1 Transductive performance of different link prediction methods. We bold
the best-performing method and underline the second-best method for each
dataset. BGRL consistently outperforms other non-contrastive methods and
GRACE, and also outperforms ML-GCN, on 3/6 datasets. 44

4.3 Transductive performance of TenGAN compared to ML-GCN and BGRL
(same numbers as Table 4.1 above; full figure in Table 4.5). 52

4.2 Performance of various methods in the inductive setting. See Section 4.3.1
for an explanation of our inductive setting. Although we do not introduce
TenGAN until Section 4.4, we include the results here to save space. 56

4.4 Statistics for the datasets used in our work. 57
4.5 Full transductive performance table (combination of Tables 4.1 and 4.3). . . . 60

xix

4.6 Area under the ROC curve for the methods in the transductive setting. 61
4.7 AUC-ROC of various methods in the inductive setting. See Section 4.3.1 for

an explanation of our inductive setting. 62

5.1 Comparison of different self-supervised graph learning methods. *: We use
12CARL-Gsim as the representative method since it is the best-performing across
all of the criteria. 69

5.2 Node clustering performance in terms of cluster NMI and homogeneity. 12CARL-Gsim
outperforms the baselines on 4/5 datasets. 85

5.3 GCN layer sizes used by the encoder for each method. The layer sizes greatly
affect the amount of memory used by each model (shown in Figure 5.4b). . . 87

5.4 k-medoids w/ 12CARL-Gsim. 90
5.5 Table of node classification accuracy. Bolded entries indicate the highest

accuracy for that dataset. Underlined entries indicate the second-highest
accuracy. OOM indicates out-of-memory. 92

5.6 Performance on similarity search. Surprisingly, 12CARL-G performs fairly well on
this task, despite not being explicitly optimized for this task (unlike AFGRL,
which uses KNN during training). 93

5.7 Statistics for the datasets used in our work. 103
5.8 Performance of various methods. 104

6.1 Comparison of the different OOV embedders evaluated in this work. For
applicable methods, θ refers to the number of parameters in the neural
network, b refers to the number of buckets, and n is the number of input items.
Features refer to non-ID features. We assume the embedding dimensionality
is constant for the complexity analysis. 116

6.2 Statistics for each of the datasets used in this work. The number of float/dense
features counts the number of distinct dense vectors, not the total number of
floating point values (e.g., text embeddings count as a single float feature). . . 125

6.3 OOV user AUC of context-aware methods with different OOV embedding
methods. Higher is better. The best-performing method in each column is
bolded, and the second-best is underlined. Rows are sorted from lowest mean
rank to highest mean rank. 127

6.4 OOV user NDCG@20 of context-free methods with different OOV embedding
methods. Higher is better. The best-performing method in each column is
bolded and the second-best is underlined. 129

xx

Chapter 1

Introduction

Graphs are capable of representing a wide array of real-world data, from social

networks to user purchases. For example, a social network could be represented as a graph

where nodes represent users and edges represent users adding each other as friends. We could

then perform various tasks on this graph — for example, node classification could be used to

find “bots” and link prediction could be used to recommend potential friends.

Traditionally, these graph-based tasks have been tackled using statistical or spectral

analysis techniques. However, Graph Neural Networks (GNNs) have steadily increased in

popularity over recent years. These GNNs provide a highly scalable and effective framework

for solving various graph tasks. In the recommendation systems (which can also be framed

as a link prediction task) community, neural networks have also seen increasing popularity.

1

1.1 Research Questions

In this thesis, we examine four developing and relatively under-explored areas in

graph learning:

1. Multiplex Graph Generation: Multiplex graphs are more complex and harder to

generate than traditional graphs. The existing methods are purely statistical — how

can we leverage GNNs and other modern advancements to improve multiplex graph

generation?

2. Non-Contrastive Link Prediction: Non-contrastive learning for GNNs has recently

become popular. However, these models focus solely on node classification, not link

prediction. Do they work for link prediction, and if not, can we improve them?

3. Contrastive Learning and Clustering on Graphs: Contrastive learning on graphs

has many similarities to traditional clustering. However, clustering has the additional

benefit of having been studied for decades longer. Can we connect graph contrastive

learning to clustering and use that connection to improve graph contrastive learning?

4. Improving OOV Support in Recommendation Systems: Out-of-vocabulary

(OOV) values are categorical values first seen at inference time. This means that we

may have no associated embedding for those values. The industry-standard way to

handle this is by randomly selecting a row from an embedding table for OOV values.

Can we improve upon this approach without paying a high computational price?

2

1.1.1 Frontiers in Graph Learning

We answer the above questions by exploring three frontiers in graph learning:

1. Bridge Ideas: We bridge ideas from different domains and apply them to graph

learning to define new models and methods. For example, tensor decompositions

have been shown to compress large tensors effectively and are frequently applied to

multi-view graphs. We can then combine those ideas with modern GNNs to create new

models.

2. Efficiency: Can we solve tasks in a time and space-efficient manner? Many models

work well on smaller graphs but quickly fail as graphs get larger. When solving each of

the above research questions, we take care to consider the efficiency of the methods.

3. Revisiting & Challenging Established Concepts: Are the existing assumptions

in the field correct? Can we propose a better way to frame the problem?

Below, we elaborate on each of the above research questions.

1.1.2 Multiplex Graph Generation

Chapter 3 examines the task of multiplex graph generation — generating graphs

with multiple views, each with different edges but the same nodes. This is a task that is

typically solved with statistical preferential attachment models. However, these models are

inflexible and require explicitly modeling desired graph attributes (e.g., degree distribution or

clustering coefficient). One approach that has been proposed for generating traditional graphs

is to use a neural network [19, 52, 41]. However, this is non-trivial to extend to multiplex

3

graphs for two reasons. First, multiplex graphs must also consider the relationship between

modes, making it difficult to adapt graph models directly. Second, naively modeling these

multiplex graphs with a neural network is difficult due to the large number of parameters

required (compared to a traditional graph). We propose a novel method, TenGAN, that

borrows ideas from tensor decompositions to implicitly compress the parameters in the

network, greatly reducing the number of parameters required. This also allows us to preserve

the interactions between different modes.

1.1.3 Non-Contrastive Link Prediction

Chapter 4 focuses on efficient link prediction with GNNs. Currently, the most

scalable method for link prediction is node-based link prediction, where we compute node

embeddings for candidate pairs and use them to compute the probability of a link between

them. Most existing state-of-the-art methods rely on contrastive learning, which uses both

positive samples (e.g., neighbors) and negative samples (e.g., non-neighbors). However, these

negative samples are often expensive to obtain. This is due to the format in which graphs are

typically stored — we typically store them as adjacency lists (or sparse adjacency matrices)

where we can retrieve the neighbors of a node in O(1) time but may need O(n) time to

retrieve its non-neighbors. A recent group of methods, dubbed non-contrastive learning, have

been proposed to avoid the expensive negative sampling step but have only been evaluated

on node classification tasks. In this chapter, we perform a detailed benchmark of existing

non-contrastive methods on link prediction, discover a key limitation, and mitigate it by

proposing a simple modification. This results in an improvement of up to 120% in Hits@50

compared to existing non-contrastive methods and a 14× speedup over contrastive methods.

4

1.1.4 Contrastive Learning and Clustering on Graphs

Chapter 5 also focuses on speeding up self-supervised node representation learning.

We do this by observing some similarities between contrastive learning and clustering.

We draw a theoretical connection between contrastive learning and clustering. We then

use this knowledge to propose a new framework and loss function that reformulates node

representation learning as a clustering problem. Our key contribution is finding that an

existing class of unsupervised clustering evaluation metrics known as Clustering Validation

Indices (CVIs) can serve as effective substitutes for existing contrastive losses. With the

choice of specific CVIs, we can reduce the cost of computing the loss function to linear

time (in contrast to the quadratic time complexity of most contrastive losses). Then, also

taking advantage of decades of research in speeding up clustering, we can compute better

node representations in much less time. CARL-G trains 79× than the best-performing

node classification baseline and 1,500× faster than the best-performing node clustering and

similarity search baseline.

1.1.5 Improving OOV Support in Recommendation Systems

Chapter 6 focuses on improving the inductive capabilities of recommendation

systems in a fast and space-efficient manner. Recommendation models typically store an

embedding for each unique user and item in embedding tables. However, when performing

inference with real-world recommendation systems, we often encounter users/items that were

not present during training. The most common solutions are randomly using an embedding

from an out-of-vocabulary (OOV) embedding table that is updated during training with

5

synthetically created OOV values or a fixed vector like the mean user/item embedding. Both

of these intuitively seem like sub-optimal approaches since one would expect that similar

users should have similar embeddings. Our work challenges the established assumption

that these simple OOV handling methods are sufficient, and we explore 9 different OOV

embedding methods on 5 different models to find more effective approaches. We find that

locality-sensitive-hashing (LSH) based methods generally perform better than the competing

methods, resulting in a 3.74% mean improvement over the industry-standard baseline.

1.2 Thesis Outline

This thesis addresses several research questions in graph learning, including multi-

view graph generation, non-contrastive link prediction, connecting clustering and contrastive

learning, and the handling of OOV values in recommendation systems. We improve these

by focusing on three frontiers: bridging ideas from other fields, focusing on time and space

efficiency, and challenging existing ideas.

Chapter 2 provides the necessary background and notation for this thesis. Chap-

ter 3 discusses improving multi-view graph generation. Chapter 4 covers evaluating and

improving non-contrastive link prediction. Chapter 5 connects contrastive learning on graphs

with clustering. Chapter 6 describes how we can improve the handling of OOV values in

recommendation systems. Finally, Chapter 7 summarizes this thesis and its contributions.

6

Chapter 2

Background

In this chapter, we provide the notation and definitions for the material used in this thesis.

2.1 Introduction

In Section 2.2, we provide the necessary definitions and notations. In Section 2.3.1,

we introduce Graph Neural Networks (GNNs) which are used throughout this thesis. We

defer chapter-specific background information to their respective chapters.

2.2 Notation

We denote a graph as G = (V, E), where V is the set of n nodes (i.e., n = |V|) and

E ⊆ V × V be the set of edges. Let the node-wise feature matrix be denoted by X ∈ Rn×f ,

where f is the number of raw features, and its i-th row xi is the feature vector for the i-th

node. Let A ∈ {0, 1}n×n denote the binary adjacency matrix. We denote the graph’s learned

node representations as H ∈ Rn×d, where d is the size of the latent dimension, and hi is the

7

representation for the i-th node. Let Y ∈ {0, 1}n×n be the desired output for link prediction,

as E and A may have validation and test edges masked off. Similarly, let Ŷ ∈ {0, 1}n×n be the

output predicted by the decoder for link prediction. Let Orc be a perfect oracle function for a

link prediction task, i.e., Orc(A,X) = Y . Let N(u) = {v | (u, v) ∈ E ∨(v, u) ∈ E}. Let N(u)

be a function that returns the set of neighbors for a given node u (i.e., N(u) = {v|(u, v) ∈ E}).

Note that we use the terms “embedding” and “representation” interchangeably in this thesis.

2.3 Definitions

Below, we define a few terms used throughout our work which helps set the context for our

thesis.

2.3.1 Graph Neural Networks (GNNs)

A message-passing Graph Neural Network consists of several iterations, which for a

node u, can be described as follows:

h(k+1)
u = Update(k)

(
h(k)
u ,Aggregate(k)({h(k)

v ,∀v ∈ N(u)})
)

(2.1)

where Update and Aggregate are differentiable functions, and h
(0)
u = xu.

2.3.2 Link Prediction with GNNs

Many new approaches have also been developed with the recent advent of graph

neural networks (GNNs). A predominant paradigm is using node-embedding-based methods

[75, 14, 211, 230]. Node-embedding-based methods typically consist of an encoder H =

Enc(A,X) and a decoder Dec(H). The encoder model is typically a message-passing-based

8

Graph Neural Network (GNN) [107, 75, 226]. The decoder model is usually an inner product

or MLP applied on a concatenation of Hadamard product of the source and target learned

node representations [155, 198]. This thesis, for the purposes of link prediction, focuses

exclusively on these node-embedding-based methods.

2.3.3 Multiplex Graphs

A multiplex graph consists of several views, where each view is a graph. Each of

the views contains the same nodes, but with different edges. Formally, a multiplex graph G

with k views can be written as G = (V, (E1, E2, . . . Ek)), where V is the shared vertex set

and Ei are the edges at the i-th layer. It is worth noting that not all of the nodes need to be

connected within each view.

One example of a multiplex graph is a social network, where each edge in a given

view represents a different mode of communication. A time-evolving graph with a constant

number of nodes could also be represented as a multiplex graph, with each view representing

a different timestamp. Finally, a knowledge base could be seen as a multiplex graph, where

each node represents an entity and each view represents a different relation. It is worth

noting that this differs from the traditional notion of a multigraph, where nodes can have

multiple edges between them, but each edge is of the same type. Edges in a multiplex graph

can have multiple types.

Definition 2.3.1 (Augmentation) An augmentation Aug+ is a label-preserving random

transformation function Aug+ : (A,X)→(Ã, X̃) that does not change the oracle’s expected

value: E[Orc(Aug+(A,X))] = Y .

9

Definition 2.3.2 (Corruption) A corruption Aug− is a label-altering random transforma-

tion Aug− : (A,X) → (Ǎ, X̌) that changes the oracle’s expected value: E[Orc(Aug−(A,X))] ̸=

Y .1

Definition 2.3.3 (Contrastive Learning) Contrastive methods select anchor samples (e.g.

nodes) and then compare those samples to both positive samples (e.g. neighbors) and negative

samples (e.g. non-neighbors) relative to those anchor samples.

Definition 2.3.4 (Non-Contrastive Learning) Non-contrastive methods select anchor

samples, but only compare those samples to variants of themselves, without leveraging other

samples in the dataset.

Definition 2.3.5 (OOV Values) We consider a value Out-Of-Vocabulary (OOV) if it is a

categorical value that does not exist at training time but appears at inference time.

Definition 2.3.6 (IV Values) We consider a value in-vocabulary (IV) if it is a categorical

value that exists at both training and evaluation time — i.e., it is not an OOV value.

Definition 2.3.7 (Tranductive Setting) We define the transductive setting as an evalua-

tion setting where no new categorical values (OOV values) are present during inference.

Definition 2.3.8 (Inductive Setting) We define the inductive setting as an evaluation

setting where some OOV values appear at inference time. We consider it fully inductive if

all of the evaluation samples contain OOV values, and partially inductive if the evaluation

samples consist of both IV and OOV values.

1Note that the definition of these functions are different from the corruption functions in Zhu et al. [236]
(which we define as augmentations) and are instead similar to the corruption functions in Veličković et al.
[186].

10

Chapter 3

Generating Multiplex Tensor Graphs

In this work, we explore multiplex graph (networks with different types of edges)

generation with deep generative models. We discuss some of the challenges associated with

multiplex graph generation that make it a more difficult problem than traditional graph

generation. We propose TenGAN, the first neural network for multiplex graph generation,

which greatly reduces the number of parameters required for multiplex graph generation.

We also propose 3 different criteria for evaluating the quality of generated graphs: a graph-

attribute-based, a classifier-based, and a tensor-based method. We evaluate its performance

on 4 datasets and show that it generally performs better than other existing statistical

multiplex graph generative models. We also adapt HGEN, an existing deep generative model

for heterogeneous information networks, to work for multiplex graphs and show that our

method generally performs better.

Graphs are used to represent many different types of data—from protein interac-

tions [144] to social networks [135]. There are a similarly large number of useful graph-related

11

tasks, like link prediction and node classification. One of these tasks is graph generation,

which is the focus of this work. Graph generation models can generally be split into two

types: statistical attribute-based generative models and deep generative models. Statistical

generative models like the Erdős-Rényi (ER) [48], Barabási-Albert (BA) [11], and stochastic

block models [84] have explicitly defined parameters like the attachment rate or the number

of communities.

In contrast, many deep generative models can learn directly from one or more input

graphs. This ability allows them to mimic attributes of the input dataset without defining

them explicitly. The majority of these models are based on either RNNs (Recurrent Neural

Networks), GANs (Generative Adversarial Networks) [63], or VAEs (Variational Autoen-

coders) [104]. Examples of these include GraphRNN [214], NetGAN [18], GraphVAE [105],

and LGGAN [51].

However, sometimes a simple graph structure may not be sufficient to represent a

dataset accurately. One example of this is the Enron dataset [152], where each node is a

person and each edge is an email between them. Representing this as a standard graph would

only show that two people communicated with each other, without any information on when

they communicated. For example, the two people may have exchanged an email once, daily,

or once a month–each of which would indicate a very different relationship. Representing

this data as a multiplex graph allows us to fully represent this information.

Another use-case for a multiplex graph is to capture different types of social media

interactions across the same users. Each node would represent a person and each edge

type could represent a different form of interaction. An example of this could be a graph

12

representing Twitter interactions, where each edge could either represent a retweet, mention,

or following. Using only one of these would unecessarily limit the information captured in

the graph.

Traditional graph generation models and multiplex graph generation models are

useful in many of the same ways. For example, they can be used to anonymize private data

[197] in order to enhance the reproducibility of models trained on private datasets. This

would allow the user to preserve interesting structures in the graph without leaking private

user information.

However, all of the current multiplex network generation models are statistical

generative models. BINBALL [13] adapts ideas from BA and ER models and proposes new

multiplex preferential attachment rules. StarGen [57] further builds upon BINBALL by

separating the parameters controlling the global and local degree of nodes, increasing the

diversity of individual layers. ANGEL [58] uses a hub-and-spoke-based model to generate

multiplex graphs, allowing it to better mimic certain structures. These existing works pose

some major limitations, namely:

1. Explicit parameterization. The existing models declare a set of parameters that affect

the output of the graph. These parameters are inflexible and may lead to overfitting to

a particular graph attribute while neglecting another.

2. Limited datasets. All three of the methods focus on Airline Transportation Networks

(ATNs), specifically on the EU airline dataset [25]. It is difficult to determine if the

methods will work for different datasets. In this work, we explore the task of multiplex

graph generation on datasets from wildly varying domains.

13

3. Limited evaluation criteria. It is difficult to quickly compare the performance of the

models on different datasets. The performance evaluation of the models is primarily

done visually by comparing the distributions of various topological properties. This

also ignores some other potentially interesting characteristics of the generated graphs

like whether or not a classifier can distinguish between real and generated samples,

especially useful for tasks like graph anonymization.

The first problems can be resolved by using a neural network to learn directly from

a set of input graphs. However, extending a traditional graph generation network is not

straightforward since the layers are often correlated. There are also many more parameters

required. Furthermore, it is difficult to evaluate the quality of the generated graphs. We

further investigate these issues in Section 3.1 below.

In this work, we tackle these issues and propose TenGAN, a tensor-based GAN, to

generate multi-view graphs. With minor modifications, our approach readily generalizes to

other data sources that can be modelled well with tensor decompositions. For example, tensor

decompositions have been shown to work well on a variety of data, including fMRI [137] and

EEG data [36], NBA game data [140], network traffic data [12], and spatio-temporal urban

computing data [195]. However, in this work, we focus on the domain of multiplex graphs

and reserve exploring other domains for future work.

Our contributions include:

• Novel method: We propose a novel GAN-based method to generate multiplex graphs

that uses tensor decomposition to reduce the number of parameters required.

14

• Evaluation criteria: We propose 3 different evaluation metrics for multiplex graph

generation and evaluate their effectiveness.

• Thorough experimentation: We conduct thorough experiments on 4 different

datasets across 2 different models to evaluate the performance of our method. We also

modify an existing method for heterogeneous graphs to work with multiplex graphs

and compare our method against it.

3.1 Problem Formulation

We consider the following problem:

Given a set of multiplex graphs G drawn from some unknown distribution preal(G),

learn a distribution pgen(G) such that, on average, a graph Ĝ ∼ pgen(G) is indis-

tinguishable from a graph G ∼ preal(G) with respect to a set of criteria C while

maintaining diversity (i.e., G1 ̸= G2 w.h.p. for G1, G2 ∼ pgen).

Some examples of criteria in C may include graph attributes (like clustering coefficient and

degree distribution) or the correlation between different slices. However, it is not fully clear

what these criteria should be and is one of several challenges in multiplex graph generation,

some of which are listed below:

Challenge 1: Inadequate Evaluation Criteria. Before we can decide on an appropriate model,

we must determine our evaluation criteria. This is challenging because we need to consider

not only the graph attributes of each view but also the relationships between each view. This

15

means that many of the graph evaluation metrics commonly used in graph generation are

insufficient for multiplex graph generation. In this work, we propose 3 methods of evaluation

for multiplex graph generation models, described in Section 3.2.4 below.

Challenge 2: Sampling from Multiplex Graphs. Many existing multiplex datasets consist

of a single graph with multiple views. However, since we are emulating a set of multiplex

graphs, we need many smaller multiplex graphs to form a distribution. In the traditional

graph setting, there are existing datasets that consist of multiple graphs (e.g., the PPA

dataset[87]). However, to the best of our knowledge, there are no such existing datasets

for multiplex graphs. Therefore, we need a sampling method that samples smaller multi-

plex sub-graphs from a larger multiplex graph. We describe our method in Section 3.2.1 below.

Challenge 3: Large Number of Parameters. If we naively attempt to generate a multiplex

graph, the number of parameters required will explode. This is because we need O(k × n2)

parameters to generate an adjacency tensor for a multiplex graph with k views and n

nodes. We propose TenGAN (described in Section 3.2.2) that generates a compressed

tensor-decomposition-based representation to solve this problem.

3.2 Proposed Method

We propose TenGAN, a GAN-based model that first generates factors of a tensor

decomposition model, then uses those to generate the adjacency tensor. We propose two

variants: TenGAN-CP, which uses the CPD and TenGAN-R, which uses the RESCAL

16

decomposition. We first sample sub-multiplex graphs from the dataset, as described in

Section 3.2.1. Then, we train our GAN on the sampled multiplex graphs. Finally, we sample

random graphs from the generator (by passing in different random noise vectors) and evaluate

them with the metrics described in Section 3.2.4.

3.2.1 Sampling

Many generative models require multiple input samples, rather than a single example.

For example, LGGAN [51] is trained on 2-hop and 3-hop egonets extracted from the original

source graph. However, it has been shown that this can lead to biased samples that may

not necessarily be representative of the original graph, especially in terms of in-degree and

community structure [115]. To help avoid this, we perform random-walk sampling across

each view. We then use the induced subgraph on the remainder of the views.

However, one issue with many large multiplex datasets is that most of the nodes

may be disconnected in any given view. In extreme examples, like in some knowledge graphs,

almost all nodes will be disconnected in each view. Oftentimes, even the union of all edges

across all views will still result in a disconnected graph.

Another issue is that these datasets are often too large or have too many views.

For example, the NELL dataset [26, 176] has over 2 million views. Random sampling of the

dataset would produce extremely or completely sparse entries. In order to produce better

quality samples, we use the sampling method of ParCube [49].

17

This computes the following importance score for each slice along each mode. For

example, the importance scores for each slice along the three modes for a tensor T would,

respectively, be:

ai =

J∑
j=1

K∑
k=1

T i,j,k; bj =

I∑
i=1

K∑
k=1

T i,j,k; ck =

I∑
i=1

J∑
j=1

T i,j,k

We then randomly sample indices for each mode, with the probability of a given index being

selected proportional to its score. For example, a given index i is selected with probability

ai/
∑I

x=1 ax. This results in a more dense tensor and therefore a multiplex graph with more

connected nodes, reducing the chance of getting empty (or near-empty) tensors as inputs to

our model.

3.2.2 Architecture

Our model is a GAN and consists of a generator network and a discriminator

network. The generator consists of a MLP, followed by two or three smaller MLPs to generate

the factor matrices/tensors (depending on the factorization method). We further describe

the two generator architectures below in Section 3.2.2. The discriminator uses the max

pool of several Graph Convolutional Networks (GCNs) [106] (one per view) followed by a

fully-connected layer to predict if a sample is generated or drawn from the original real

dataset. A diagram of our architecture is shown in Figure 3.1.

TenGAN-CP Architecture

TenGAN-CP uses a shared feature extractor layer and splits into separate networks,

each of which generates a different factor in the CPD. This can be considered a higher-order

18

extension of the BRGAN-B [171] architecture and uses the tensor CPD instead of the matrix

SVD.

After generating the factors, we calculate the sum of the outer products of vectors

from our factor matrices A,B, and C:
∑r

i=1 ai ◦ bi ◦ ci. As shown in Section 3.2.3, this

reduces the number of parameters needed to generate a given multiplex graph. We use the

loss function from Wei et al. [199] (which is based on Arjovsky et al. [7]):

L = E
JA,B,CK∼Pg

[D(JA,B,CK)]− E
x∼Pr

[D(x)] + λ1GP + λ2CT

where GP is the gradient penalty term from Gulrajani et al. [69], CT is the consistency

term from Wei et al. [199], and A,B,C is the output from the generator. Pg denotes the

distribution of graphs generated by the generator, and Pr denotes the real distribution of

graphs. D(·) denotes the output of the discriminator on a given tensor. The goal of this loss

function is to minimize the difference between the expected values of the discriminator’s

output on the generated data and the input (real) data.

TenGAN-R Architecture

We also propose the TenGAN-R architecture, which is initially similar to the

TenGAN-CP architecture, with the distinction that we use the RESCAL decomposition

instead of the CPD. This results in more parameters for the same value of r, but performs

better on certain datasets.

19

TenGAN Discriminator

...

��� ���

������

��� ���

Max
Pool

�������

View 1

View 2

View n
��� ��������������
������

���
�

Real
Fake

	�	�	

Training Set

Random
Noise

Generator
TenGAN-R
TenGAN-CP

OR

TenGAN-CP Generator

A
n×r

B
n×r

C
k×r

�
��
��

�
��������
���
�
�
������
���

�������

�������

�������

TenGAN-R Generator

A
n×r

R
r×r×k

�
��
��

X(k)=AR(k)AT ∀ k

�������

�������

�

���
��
����
��

Figure 3.1 Diagram of the TenGAN discriminator (top) and two different generator architec-
tures (bottom). TenGAN-CP is based on the CP decomposition, and generates the factor
matrices A,B,C before combining them into the output adjacency tensor. TenGAN-R is
based on the RESCAL decomposition, and first generates the factor matrix A and factor
tensor R before combining them into the adjacency tensor.

20

3.2.3 Parameter Complexity

If we attempted to generate an adjacency tensor for a multiplex graph with n nodes

and k views directly, we would have to use O(kn2) parameters in the final layer. However,

if we generate the CPD factors first, we only need O(r(n + k)) parameters in the final

layer, where r is a hyperparameter that increases the quality of the fit at the cost of more

parameters. This offers savings for r < n2, and we show that our models work well for this

case in Table 3.2. For the RESCAL-based formulation, we need O(nr + kr2) parameters in

the final layer. In this case, we only reduce the number of parameters in the case where

r < n.

3.2.4 Evaluation Metrics

Another difficult task in multiplex graph generation is evaluating the quality of the

generated graphs. Gretton et al. [65] found that measuring the Maximum Mean Discrepancy

(MMD) between distributions of different graph statistics works well for simple graphs. We

propose 3 methods for evaluating the structural similarity between generated and input

graphs:

MMD-Based Evaluation

One method to evaluate the quality of generated multiplex graphs would be to apply

the evaluation criteria used for simple graphs to each view. We measure the Mean MMD

(M-MMD) score between the distributions of different graph attributes. More concretely, for

each graph attribute, we take the mean of the MMD between the i-th view of a generated

21

graph G′ and a graph G. We can use the clustering coefficient, degree distribution, and the

orbit of the graphs similar to [214].

The main downside of this approach is that it does not take the relationship between

the views into account. For example, consider the case where we generate multiplex graphs

with two views. Let the list of the generated first and second views be V ′
1 = g′(1)∀g′ ∈ G′

and V ′
2 = g′(2)∀g′ ∈ G′. Then, suppose the MMD scores of V ′

1 and V ′
2 across all the graph

attributes are 0. Then, the overall Mean MMD (M-MMD) would be 0. However, swapping

V ′
1 and V ′

2 , yields same M-MMD.

This is clearly an undesirable behavior in any case where each of the views are

correlated with each other. An extreme example of this would be a multiplex graph g where

g(1) has an edge iff g(2) does not have an edge. Then, it is possible for a generated graph g′

to have g′(1) = g′(2), but still have a perfect M-MMD of 0 in all the graph attributes. To

address this issue, we propose the tensor-based evaluation method below.

0.0 0.2 0.4 0.6 0.8 1.0
Rank

0.0

0.5

1.0

E
rr

or

0 10 20 30 40
0.00

0.25

0.50

0.75

1.00
EMD: 0.03

0 10 20 30 40

EMD: 0.08

0 10 20 30 40

EMD: 0.12

Figure 3.2 3 plots of pairs of CPD error values that have low, medium, and high EMD scores.
CPD error vs. rank plot on 3 pairs of tensors. The dashed green lines are the generated
results, and the solid blue lines are the original results. We can see that the EMD scores
are lower when the lines are more similar and that the scores are higher when the lines are
further apart. This is the intuition behind our tensor-based evaluation method.

22

Tensor-Based Evaluation

Multiplex graphs can be viewed as third-order tensors, where each slice is a graph

across the same nodes, and tensor decompositions have been shown to be able to extract

structure (like communities) from multiplex graphs [68, 59, 3, 169]. We take advantage of this

fact by applying the CPD to each multiplex graph or tensor. The normalized reconstruction

error of the decomposition for various values of r provides a heuristic for how much structure

there is along the three modes of the tensor. We then compare the errors of the generated

and original tensors across different ranks to see if they are similar in terms of trilinear

structure. It may be possible to produce a similar reconstruction error for a given rank

without matching the structure of the real graph, but we argue that it is highly unlikely for

this to occur across many different values of r.

We randomly sample n tensors from the generated and real tensors and compute

an error vector e of the errors across different ranks. We then calculate the sum of the

Wasserstein metric (a.k.a. the earth mover’s distance: EMD) between all n2 pairs of error

vectors. The lower this score, the more similar pairs are (on average). While this score works

well across a fixed dataset, it is difficult to compare this score across datasets of different

sizes. This is because the number of feasible r values changes with the size of the tensor;

and a given dataset may naturally have a wider range of pairwise distances.

23

To solve this issue, we normalize the sum of generated-real distances by the sum of

pairwise real-real distances. More formally, given real error matrix E and generated error

matrix E′ (where every row Ei is a vector of the i-th sample’s CPD errors):

TenScore =

∑n
i=1

∑n
j=1 EMD(Ei,E

′
j)∑n

i=1

∑n
j=1 EMD(Ei,Ej)

(3.1)

The lower the TenScore, the more realistic the generated samples are. TenScore also

serves as an indicator for graph diversity. If it near 0, it likely means that the model is

suffering from mode collapse—a common problem among GANs. We also propose a modified

version of TenScore for knowledge base graphs: TenScore-R, which uses RESCAL’s

error.

...

���������
�����

�����������
���

���������
�����

�����������
���

���������
�����

�����������
���

	��������
���������

	��������
���������

	��������
���������

View 1

View 2

View n

Majority
Vote

Real/
Generated

Figure 3.3 Diagram of the classifier-based evaluation model. We first calculate an embedding
and train a classifier on each view before using the majority vote to guess if the result is a real
or generated multiplex graph. Note that this is similar to, but different from the discriminator.
This is because we use an established embedding model and a non-neural-network classifier.

Classifier-Based Evaluation

We train a classifier on generated and original data; then check to see if it correctly

predicts the origin of an example. We calculate the accuracy and F1 score of the resulting

24

model (the closer to 0.5 or 50%, the better). In the model, we calculate a graph2vec

[134] embedding for each view of the multiplex graph. Then, we split the embeddings into

training/test data and train a SVM classifier for each view. Finally, we take the majority

vote of the ensemble. These steps are shown in a diagram in Figure 3.3.

3.2.5 Implementation Details

We implemented this model in PyTorch [143] on Python 3.9. We used Net-

worKit [177] and NetworkX [74] for graph data, and Tensorly [110] for tensor decomposi-

tions. We extended portions of the GraphRNN [214] evaluation code and heavily modified

HGEN [122] to work for multiplex graphs (see details in Section 3.3.2). We use the code

from [157] for the BINBALL, StarGen, and ANGEL baselines. It was originally written for

undirected networks, so we extend it to work for directed multiplex graphs. The code for our

experiments is available here1.

3.3 Experimental Evaluation

3.3.1 Datasets

We used 4 multiplex graph datasets selected to represent a wide variety of data types,

including a social media network, a knowledge graph, a computer network communication

graph, and a time-evolving network.

1. Football [64]: 248 English Premier League football players and clubs on Twitter,

where each of the 6 views corresponds to a different interaction between the accounts
1https://github.com/willshiao/tengan

25

https://github.com/willshiao/tengan

(follows, followed-by, mentions, mentioned-by, retweets, retweeted-by). Note that 3 of

the views are essentially transposes of the other 3.

2. NELL-2 [26]: A sampled version of the NELL-2 dataset (from [176]) that consists of

(entity, relation, entity) tuples. The original size is 12, 092× 9, 184× 28, 818, but we

resample it to a 1, 000 × 4 × 1, 000 tensor (where 4 is the number of views) for the

purpose of evaluation. The sampling method is described in Section 3.2.1.

3. Comm: An enterprise communication network dataset of 1,558,594 computers. Each

view corresponds to communications between nodes on one of five ports (22, 23, 80,

443, and 445), with one view for each port. In the view associated with port p, a

directed edge from u to v exists if u initiates a connection to v over port p. Since we

are unable to provide a copy of this network, descriptive statistics of each view in this

network are shown below in Table 3.1.

4. Enron [152]: A multiplex graph of emails sent between Enron employees, where each

view represents a two-month (60-day) time interval and edges represent emails. The

original tensor (available at [176]) is 6,066 senders × 5,699 recipients × 244,268 words

× 1,176 days. We collapse the words dimension and simply add an unweighted edge for

each email sent in a given time interval. We also aggregate the slices so that each view

represents a 60-day period to reduce the number of views. Finally, we sample 1,000

senders and 1,000 recipients using the methodology described in the supplementary

material. Finally, we sample 1,000 senders and 1,000 recipients using the methodology

described in Section 3.2.1.

26

We perform random walk sampling to extract a set of sub-multiplex-graphs from each dataset.

We describe this process with more detail in Section 3.2.1.

Port # Nodes # Edges LCC Size SP CC

22 295,077 1,039,721 205,043 3.9 0.10

23 9,304 17,408 5,578 3.1 0

80 640,492 3,495,394 374,767 4.4 0.04

443 1,172,959 6,705,799 439,911 4.7 0.02

445 437,119 7,927,648 219,089 3.8 0.06

Table 3.1 Since we are unable to share the data for the Comm dataset, we instead provide
network statistics of the computer infrastructure graph. Data are over the course of one
day on five TCP/IP ports: 22 (SSH), 23 (Telnet), 80 (HTTP), 443 (HTTPS), and 445 (MS
Directory Services). For each view (port), we list the number of active nodes, the number of
edges, the number of nodes in the largest strongly connected component (LCC Size), and
the average shortest path length (SP) and average clustering coefficient (CC). SP and CC
are computed based on 1,000 randomly sampled nodes (CC) or node pairs (SP) within the
induced subgraph of the largest strongly connected component.

3.3.2 Comparison with Existing Methods

To the best of our knowledge, no other deep learning models for multiplex graph

generation exist. The existing models are statistical and are built to match specific attributes

of the underlying graph. We compare our method against BINBALL [13], StarGen [57], and

ANGEL [58]. We also adapt HGEN [122]—a generative model for heterogeneous graphs—to

work for multiplex graphs. A heterogeneous graph consists of nodes of different types and,

therefore, edges of different types. An common example of this is a citation graph, where we

might have nodes for authors, papers, and conferences. This is in contrast to multiplex graphs,

27

where we have different views of the same nodes. As such, it is difficult to directly compare

the two methods—however, we attempt to convert multiplex graphs to heterogeneous graphs

and evaluate its performance. The HGEN code2 (as provided in the paper) does not support

different edge types or a single node belonging to multiple classes, so we encountered the

following issues (some of which may affect its performance).

Lack of multiplex graph support. Let n be the number of nodes and k be the number of views

in our original multiplex graph. To work around the lack of support for different edge types,

we create k nodes for each of the n nodes in the original graph, each with a different class in

the range [1, k]. Then, we link together each of these k nodes in the heterogeneous network.

This results in a total of nk nodes across k classes in the resulting heterogeneous network.

Graph size issues. While the actual HGEN model is efficient for generation, it requires HIN

node embeddings for each node in the input graph. We chose to use hin2vec [56]— same as in

the original HGEN code. However, we have nk nodes after the conversion to a HIN, causing

the embeddings to take too long to calculate on some datasets (like the Comm dataset).

3.3.3 MMD-Based Evaluation

The MMD-based evaluations compares the similarity of different graph attributes

for each slice between the real and generated graphs. From Table 3.2, we can see that

TenGAN-CP and TenGAN-R generally perform fairly well on the Football, NELL-2 and

Comm datasets. However, this is a layer-level comparison, and even BA (which treats each
2https://github.com/lingchen0331/HGEN

28

https://github.com/lingchen0331/HGEN

Football NELL-2

Model Name Deg Clust Orbit F1 Acc TenScore Deg Clust Orbit F1 Acc TenScore

TenGAN-CP 0.10 0.45 0.10 0.57 0.70 0.92 0.48 0.70 0.31 0.94 0.94 0.89

TenGAN-R 1.09 1.12 0.75 0.94 0.94 0.77 0.93 0.77 0.91 0.49 0.66 2.64

HGEN 1.03 1.45 0.84 1.00 1.00 5.00 0.98 0.74 0.65 1.00 1.00 5.67

Barabási-Albert 1.07 1.50 0.60 1.00 1.00 2.93 0.81 0.31 0.30 1.00 1.00 13.16

BINBALL 1.10 1.30 0.99 0.64 0.66 11.64 0.47 0.27 0.24 0.92 0.93 3.33

StarGen 1.06 1.25 0.99 0.63 0.70 11.20 0.77 0.40 0.25 0.91 0.91 2.55

ANGEL 0.15 0.37 0.18 0.48 0.52 4.59 0.78 0.25 0.51 0.94 0.94 6.78

Enron Comm

Model Name Deg Clust Orbit F1 Acc TenScore Deg Clust Orbit F1 Acc TenScore

TenGAN-CP 0.65 0.19 0.53 0.87 0.89 0.86 0.37 0.39 0.38 0.72 0.61 1.50

TenGAN-R 1.77 1.97 1.74 0.99 0.99 4.32 0.34 0.40 0.35 0.69 0.56 1.31

HGEN 0.59 0.02 0.06 1.00 1.00 0.90 - - - - - -

Barabási-Albert 0.67 0.03 0.23 1.00 1.00 1.57 1.24 0.001 0.37 1.00 1.00 3.46

BINBALL 0.32 0.02 0.07 0.92 0.92 3.41 0.78 0.46 0.06 1.00 1.00 0.89

StarGen 0.64 0.16 0.07 0.99 0.99 4.61 0.90 0.58 0.07 1.00 1.00 1.06

ANGEL 0.58 0.01 0.19 0.98 0.98 1.34 0.99 0.08 0.20 1.00 1.00 1.14

Table 3.2 Results of TenGAN on the Football, NELL-2, Enron, and Comm datasets.
Lower is better for all of these metrics, including F1/Acc. Deg, Clust, and Orbit
are the mean MMD scores of our MMD-based evaluation method (see Section 3.3.3). F1
and Acc are the scores produced by the classifier-based method (see Section 3.2.4). Note
that a higher F1/Acc score means that the classifier is better able to distinguish between
positive/negative samples, implying that the generated samples are less realistic. TenScore
is the score produced by the CPD-based tensor evaluation method (see Section 3.3.4). HGEN
is unable to run on the Comm dataset due to issues mentioned in Section 3.3.2.

29

layer separately) performs decently well in this comparison. This is why the other evaluation

methods are important, especially the tensor-based evaluation, which provides a holistic look

at the generated tensors.

3.3.4 TenScore Evaluation

TenGAN-CP tends to perform best in terms of TenScore across all the datasets,

with the exception of the Comm dataset (where BINBALL performs slightly better). Ten-

GAN-CP has a TenScore of below 1 on the Football, NELL-2, and Enron datasets. This

indicates that the mean EMD for all real-generated pairs is lower than the mean EMD for all

real-real pairs in the dataset. None of the methods have a very low TenScore, which means

that all of the methods exhibit a good amount of diversity comparable to that of the original

data. However, some of the baseline methods have a very high TenScore, indicating that

the generated graphs have a very different amount of trilinear structure from that of the

input graphs.

Suprisingly, Barabási-Albert outperforms some of the other statistical methods

on the Football and Enron datasets like BINBALL and StarGen. This is likely because

BINBALL and StarGen focus on airport transportation networks and therefore focus on

modelling behavior like hub-spoke formations [13, 57]. These structures are more present in

the sparser NELL-2 and Comm datasets than the denser Football and Enron datasets.

3.3.5 Classifier-Based Evaluation

TenGAN-CP performs fairly well on the Football dataset, with an accuracy of 0.70

and F1 score of 0.57 (recall that the lower the accuracy, the better). TenGAN-R performs

30

well on the NELL-2 and Comm datasets. No model does a very good job of fooling the

classifier on Enron, likely due to the higher number of views.

Most of the baselines do a poor job of fooling the classifier, with many baselines

resulting in the classifier having 100% accuracy. One reason is because some generators

are able to model some layers extremely well, but sometimes fail to model other layers.

This leads to the classifier for certain layers to have very high accuracy, making the overall

classifier very accurate. For example, BINBALL randomly assigns (based on a parameter p)

a layer as a BA model or an ER model. This assignment can mean that the generated results

for a given layer will be significantly different from those of the original graph, causing the

classifier to be very accurate on that layer.

Another reason for the poor performance of the baselines is that the majority of

them are statistical models and rely on general rules (e.g. preferential attachment for BA).

While this may be able to mimic some attributes, the node and graph embeddings will likely

greatly differ (except in the case where the original graphs exhibit simple structure).

3.3.6 Summary

TenGAN performs well on the majority of the datasets across all of the evaluation

criteria. It performs especially well in the classifier-based and TenScore evaluations. This

is likely because TenGAN learns directly from the data in contrast to most of the other

baselines, which have to learn explicitly defined parameters instead. However, TenGAN-

R does significantly worse than TenGAN-CP on most datasets, despite requiring more

parameters. This is likely because TenGAN-R tends to have a hard time converging on the

Football and Enron datasets. A possible reason for this is that the RESCAL decomposition

31

imposes a stricter requirement on the factor matrix A since it is shared across all layers,

making it difficult for the model to learn well. The hyperparameter r is also important in

how well the model performs. Generally, r has to be higher for sparser tensors and lower for

denser tensors. We do not carefully tune r in this paper—we select a resonable default (e.g.,

r = 100) and increase/decrease it until the model converges.

3.4 Related Work

There have been several works on the topic of multiplex graph sampling. Interdonato

et al. [91] found that methods that work on standard graphs like Metropolis-Hastings random

walks, BFS, and forest fire sampling [115] can also be applied to multiplex graphs. To improve

random walk sampling on multiplex graphs, Gjoka et al. [62] proposes union multigraph

sampling — a method that uses the “union multigraph”, which consists of all edges across

all views in the multiplex graph. Union multigraph sampling then performs a random walk

over this multigraph to sample it. While unbiased samples are useful, we sometimes want a

biased sample to better sample nodes with special properties. Khadangi et al. [101] propose

using learning automata to do so.

There has also been some previous work on multiplex graph generation. For example,

Nicosia et al. [136] propose a model to grow a multiplex graph based on traditional preferential

attachment models like the Barabási-Albert (BA) model [11]. BinBall [13] also builds upon

the BA model and focuses on air transportation networks. StarGen [57] directly improves

upon BinBall by using a per-layer edge count distribution and splitting the scaling factor of a

new node into global and local factors. Kim and Goh [102] also uses single-layer preferential

32

attachment models and tunes the correlation between layers. ANGEL [58] specifically tries

to emulate the hub-and-spoke structure found in many graphs.

In recent years, neural networks have also been applied to graph generation.

GraphRNN [214] uses an RNN to model graphs as a sequence of nodes of edges. Net-

GAN [18] uses an LSTM to learn the distribution of biased random walks and reconstructs

graphs from them. GraphVAE [105] uses a variational autoencoder to generate graphs.

LGGAN [51] generates the adjacency matrix directly, along with its associated labels. BR-

GAN [171] generates rank-constrained graphs by first generating factor matrices, in a similar

manner to TenGAN. There have also been several models for multi-scale graphs. The key

difference between a multiplex and multi-scale graph is that a multiplex graph contains the

same nodes with different edges in each view, while a multi-scale graph typically contains

representations of the same underlying graph at different resolutions (different number of

nodes) in each layer. Misc-GAN [235] generates a multi-scale graph before collapsing it into

a standard graph, and DMGNN [116] predicts multi-scale graphs from previous ones.

To the best of our knowledge, there have been no other neural-network-based models

for multiplex graph generation. HGEN [122] allows for the deep generation of heterogeneous

networks by modeling random walks over the graph with a GAN. However, their approach

largely focuses on the modeling of inter-layer edges with meta-paths. Heterogeneous networks

refer to graphs with different node and edge types, while we focus on the case with shared

nodes but different edges/views. We elaborate more on the precise definition of a multi-view

graph in Section 2.3.3 above.

33

3.5 Conclusion

In this work, we discuss some of the issues associated with multiplex graph genera-

tion, as well as some solutions to those issues. One of these issues is the large number of

parameters required to generate a multiplex graph using a neural network. We tackle this by

proposing a novel GAN-based method that leverages the CPD and RESCAL decompositions

to greatly reduce the number of parameters required.

Another issue with multiplex graph generation is a lack of evaluation criteria. We

address this by proposing 3 different evaluation metrics that evaluate the realism of the

graph along different aspects. We also modify HGEN, a model for heterogeneous networks,

to work with multiplex graphs. We run our models on 4 different datasets, compare their

results against HGEN and 3 other statistical multiplex generation models, and find that we

perform better on the majority of them.

34

Chapter 4

Link Prediction with Non-Contrastive

Learning

Graph neural networks (GNNs) are prominent in the graph machine learning domain,

owing to their strong performance across various tasks. A recent focal area is the space of

graph self-supervised learning (SSL), which aims to derive useful node representations without

labeled data. Notably, many state-of-the-art graph SSL approaches are contrastive methods,

which use a combination of positive and negative samples to learn node representations.

Owing to challenges in negative sampling (slowness and model sensitivity), recent literature

introduced non-contrastive methods, which instead only use positive samples. Though such

methods have shown promising performance in node-level tasks, their suitability for link

prediction tasks, which are concerned with predicting link existence between pairs of nodes,

and have broad applicability to recommendation systems contexts, is yet unexplored. In this

work, we extensively evaluate the performance of existing non-contrastive methods for link

35

prediction in both transductive and inductive settings. While most existing non-contrastive

methods perform poorly overall, we find that, surprisingly, BGRL generally performs well in

transductive settings. However, it performs poorly in the more realistic inductive settings

where the model has to generalize to links to/from unseen nodes. We find that non-contrastive

models tend to overfit to the training graph and use this analysis to propose TenGAN, a novel

non-contrastive framework that incorporates cheap corruptions to improve the generalization

ability of the model. This simple modification strongly improves inductive performance in

5/6 of our datasets, with up to a 120% improvement in Hits@50—all with comparable

speed to other non-contrastive baselines, and up to 14× faster than the best-performing

contrastive baseline. Our work imparts interesting findings about non-contrastive learning for

link prediction and paves the way for future researchers to further expand upon this area.

4.1 Introduction

Graph neural networks (GNNs) are ubiquitously used modeling tools for relational

graph data, with widespread applications in chemistry [29, 71, 72, 124], forecasting and traffic

prediction [42, 181], recommendation systems [211, 81, 159, 182, 53], graph generation [213,

52, 172], and more. Given significant challenges in obtaining labeled data, one particularly

exciting recent direction is the advent of graph self-supervised learning (SSL), which aims to

learn representations useful for various downstream tasks without using explicit supervision

besides available graph structure and node features [236, 94, 183, 15].

One prominent class of graph SSL approaches are contrastive methods [93]. These

methods typically utilize contrastive losses such as InfoNCE [138] or margin-based losses [211]

36

between node and negative sample representations. However, such methods usually require

either many negative samples [79] or carefully chosen ones [211, 207], where the first one results

with quadratic number of in-batch comparisons, and the latter is especially expensive on

graphs since we often store the sparse adjacency matrix instead of its dense complement [183,

15]. These drawbacks motivated the development of non-contrastive methods [183, 15, 222,

100], based on advances in the image domain [66, 33, 32], which do not require negative

samples and solely rely on augmentations. This allows for a large speedup compared to their

contrastive counterparts with strong performance [15, 222].

However, non-contrastive SSL methods are typically evaluated on node-level tasks,

which is a more direct analog of image classification in the graph domain. In comparison,

the link-level task (link prediction), which focuses on predicting link existence between

pairs of nodes, is largely overlooked. This presents a critical gap in understanding: Are

non-contrastive methods suitable for link prediction tasks? When do they (not) work, and

why? This gap presents a huge opportunity, since link prediction is a cornerstone in the

recommendation systems community [81, 225, 14].

Present Work. To this end, our work first performs an extensive evaluation of

non-contrastive SSL methods in link prediction contexts to discover the impact of different

augmentations, architectures, and non-contrastive losses. We evaluate all of the (to the

best of our knowledge) currently existing non-contrastive methods: CCA-SSG [222], Graph

Barlow Twins (GBT) [15], and Bootstrapped Graph Latents (BGRL) [183] (which has the

same design as the independently proposed SelfGNN [100]). We also compare these methods

against a baseline end-to-end GCN [107] with cross-entropy loss, and two contrastive baselines:

37

GRACE [236], and a GCN trained with max-margin loss [210]. We evaluate the methods in

the transductive setting and find that BGRL [183] greatly outperforms not only the other

non-contrastive methods, but also GRACE—a strong augmentation-based contrastive model

for node classification. Surprisingly, BGRL even performs on-par with a margin-loss GCN

(with the exception of 2/6 datasets). However, in the more realistic inductive setting, which

considers prediction between new edges and nodes at inference time, we observe a huge gap

in performance between BGRL and a margin-loss GCN (ML-GCN). Upon investigation, we

find that BGRL is unable to sufficiently push apart the representations of negative links from

positive links when new nodes are introduced, owing to a form of overfitting. To address

this, we propose TenGAN, a novel non-contrastive method which uses a corruption function

to generate cheap “negative” samples—without performing the expensive negative sampling

step of contrastive methods. We show that it greatly reduces overfitting tendencies, and

outperforms existing non-contrastive methods across 5/6 datasets on the inductive setting.

We also show that it maintains comparable speed with BGRL, and is 14× faster than the

margin-loss GCN on the Coauthor-Physics dataset.

Main Contributions. In short, our main contributions are as follows:

• To the best of our knowledge, this is the first work to explore link prediction with

non-contrastive SSL methods.

• We show that, perhaps surprisingly, BGRL (an existing non-contrastive model) works well

in the transductive link prediction, with performance at par with contrastive baselines,

implicitly behaving similarly to other contrastive models in pushing apart positive and

negative node pairs.

38

• We show that non-contrastive SSL models underperform their contrastive counterparts

in the inductive setting, and notice that they generalize poorly due to a lack of negative

examples.

• Equipped with this understanding, we propose TenGAN, a novel non-contrastive method

that uses cheap “negative” samples to improve generalization. TenGANis simple to

implement, very efficient when compared to contrastive methods, and improves on BGRL’s

inductive performance in 5/6 datasets, making it at or above par with the best contrastive

baselines.

4.2 Preliminaries

Notation. We denote a graph as G = (V, E), where V is the set of n nodes

(i.e., n = |V|) and E ⊆ V × V be the set of edges. Let the node-wise feature matrix be

denoted by X ∈ Rn×f , where f is the number of raw features, and its i-th row xi is the

feature vector for the i-th node. Let A ∈ {0, 1}n×n denote the binary adjacency matrix.

We denote the graph’s learned node representations as H ∈ Rn×d, where d is the size of

latent dimension, and hi is the representation for the i-th node. Let Y ∈ {0, 1}n×n be the

desired output for link prediction, as E and A may have validation and test edges masked

off. Similarly, let Ŷ ∈ {0, 1}n×n be the output predicted by the decoder for link prediction.

Let Orc be a perfect oracle function for our link prediction task, i.e., Orc(A,X) = Y .

Let N(u) = {v | (u, v) ∈ E ∨ (v, u) ∈ E}. Note that we use the terms “embedding” and

“representation” interchangeably in this work.

39

GNNs for Link Prediction. Many new approaches have also been developed

with the recent advent of graph neural networks (GNNs). A predominant paradigm is the

use of node-embedding-based methods [75, 14, 211, 230]. Node-embedding-based methods

typically consist of an encoder H = Enc(A,X) and a decoder Dec(H). The encoder

model is typically a message-passing based Graph Neural Network (GNN) [107, 75, 226].

The message-passing iterations of a GNN for a node u can be described as follows:

h(k+1)
u = Update(k)

(
h(k)
u ,Aggregate(k)({h(k)

v ,∀v ∈ N(u)})
)

(4.1)

where Update and Aggregate are differentiable functions, and h
(0)
u = xu. The decoder

model is usually an inner product or MLP applied on a concatenation of Hadamard product

of the source and target learned node representations [155, 198].

Graph SSL. Below, we define a few terms used throughout our work which helps

set the context for our discussion.

Definition 4.2.1 (Augmentation) An augmentation Aug+ is a label-preserving random

transformation function Aug+ : (A,X)→(Ã, X̃) that does not change the oracle’s expected

value: E[Orc(Aug+(A,X))] = Y .

Definition 4.2.2 (Corruption) A corruption Aug− is a label-altering random transforma-

tion Aug− : (A,X) → (Ǎ, X̌) that changes the oracle’s expected value: E[Orc(Aug−(A,X))] ̸=

Y .1

1Note that the definition of these functions are different from the corruption functions in Zhu et al. [236]
(which we define as augmentations) and are instead similar to the corruption functions in Veličković et al.
[186].

40

Definition 4.2.3 (Contrastive Learning) Contrastive methods select anchor samples (e.g.

nodes) and then compare those samples to both positive samples (e.g. neighbors) and negative

samples (e.g. non-neighbors) relative to those anchor samples.

Definition 4.2.4 (Non-Contrastive Learning) Non-contrastive methods select anchor

samples, but only compare those samples to variants of themselves, without leveraging other

samples in the dataset.

BGRL. While we examine the performance of all of the non-contrastive graph

models, we focus our detailed analysis exclusively on BGRL2 [183] due to its superior perfor-

mance in link prediction when compared to GBT [15] and CCA-SSG [222]. BGRL consists

of two encoders, one of which is referred to as the online encoder Encθ; the other is referred

to as the target encoder Encϕ. BGRL also incorporates a predictor Pred (typically a MLP)

and two sets of augmentations: A+
1 ,A+

2 . A single training step for BGRL is as follows: (a)

we apply these augmentations: (Ã(1), X̃(1)) = Aug+
1 (A,X); (Ã(2), X̃(2)) = Aug+

2 (A,X).

(b) we perform forward propagation H = Enc(Ã(1), X̃(1));H2 = Enc(Ã(2), X̃(2)). (c) we

pass the output through the predictor Z = Pred(H1). (d) we use the mean pairwise cosine

distance of Z and H2 as the loss (see Eqn. 4.2). (e) Encθ is updated via backpropagation

and Encϕ is updated via exponential moving average (EMA) from Encθ. The BGRL loss is

as follows:

LBGRL = − 2

n

n−1∑
i=0

z̃i · h(2)
i

||z̃i|| ||h(2)
i ||

(4.2)

In the next section, we evaluate BGRL and other non-contrastive link prediction

methods against contrastive baselines.
2Self-GNN [100], which was published independently, also shares the same architecture. As such, we refer

to these two methods as BGRL.

41

4.3 Do Non-Contrastive Learning Methods Perform Well on

Link Prediction Tasks?

Several non-contrastive methods have been proposed and have shown effectiveness

in node classification [100, 183, 222, 15]. However, none of these methods evaluate or target

link prediction tasks. We thus aim to answer the following questions: First, how well do these

methods work for link prediction compared to existing contrastive/end-to-end baselines?

Second, do they work equally well in both transductive and inductive settings? Finally, if

they do work, why; if not, why not?

Differences from Node Classification. Link prediction differs from node

classification in several key aspects. First, we must consider the embedding of both the

source and destination nodes. Second, we have a much larger set of candidates for the same

graph—O(n2) instead of O(n). Finally, in real applications, link prediction is usually treated

as a ranking problem, where we want positive links to be ranked higher than negative links,

rather than as a classification problem, e.g. in recommendation systems, where we want to

retrieve the top-k most likely links [37, 90]. We discuss this in more detail in Section 4.3.1

below. Given these differences, it is unclear if methods performing well on node classification

naturally perform well on link prediction tasks.

Ideal Link Prediction. What does it mean to perform well on link prediction? We

clarify this point here. For some nodes u, v, w ∈ V, let (u, v) ∈ E and (u,w) ̸∈ E . Then, an

ideal encoder for link prediction would have Dist(hu,hv) < Dist(hu,hw) for some distance

function Dist. This idea is the core motivation behind margin-loss-based models [210, 75].

42

4.3.1 Evaluation

Datasets. We use datasets from three different domains: citation networks, co-

authorship networks, and co-purchase networks. We use the Cora and Citeseer citation

networks [166], the Coauthor-CS and Coauthor-Physics co-authorship networks, and the

Amazon-Computers and Amazon-Photos co-purchase networks [168]. We include dataset

statistics in Section 4.6.1.

Metric. Following work in the heterogeneous information network [30], knowledge-

graph [120], and recommendation systems [37, 90] communities, we choose to use Hits@k

over AUC-ROC metrics, since we often empirically prioritize ranking candidate links from

a selected node context (e.g. ranking the probability that user A will buy item B, C, or

D), as opposed to arbitrarily ranking a randomly chosen positive over negative link (e.g.

ranking whether the probability that user A buys item B is more likely than user C does not

buy item D). We report Hits@50 (k = 50) to strike a balance between the smaller datasets

like Cora and the larger datasets like Coauthor-Physics. However, for completeness of the

evaluation, we also include AUC-ROC results in Section 4.6.8.

Decoder. Since our goal is to evaluate the performance of the encoder, we use the

same decoder for all of our experiments across all of the methods. The choice of decoder has

also been previously studied [198, 196], so we use the best-performing decoder - a Hadamard

product MLP. For a candidate link (u, v), we have Ŷ = Dec(hu ∗ hv) where ∗ represents

the Hadamard product, and Dec is a two-layer MLP (with 256 hidden units) followed by a

sigmoid. For the self-supervised methods, we first train the encoder and freeze its weights

before training the decoder. As a contextual baseline, we also report results on an end-to-end

43

Table 4.1 Transductive performance of different link prediction methods. We bold the
best-performing method and underline the second-best method for each dataset. BGRL
consistently outperforms other non-contrastive methods and GRACE, and also outperforms
ML-GCN, on 3/6 datasets.

End-To-End Contrastive Non-Contrastive

Dataset E2E-GCN ML-GCN GRACE CCA-SSG GBT BGRL

Cora 0.816±0.013 0.815±0.002 0.686±0.056 0.348±0.091 0.460±0.149 0.792±0.015

Citeseer 0.822±0.017 0.771±0.020 0.707±0.068 0.249±0.168 0.472±0.196 0.858±0.020

Amazon-Photos 0.642±0.029 0.430±0.032 0.486±0.025 0.369±0.013 0.434±0.038 0.562±0.013

Amazon-Computers 0.426±0.036 0.320±0.060 0.240±0.027 0.201±0.032 0.258±0.008 0.346±0.018

Coauthor-CS 0.762±0.010 0.787±0.011 0.456±0.066 0.229±0.018 0.298±0.033 0.515±0.016

Coauthor-Physics 0.798±0.018 0.810±0.003 OOM 0.157±0.009 0.187±0.011 0.476±0.015

GCN (E2E-GCN), for which we train the encoder and decoder jointly, backpropagating a

binary cross-entropy loss on link existence.

Transductive Evaluation

Transductive Setting. We first evaluate the performance of the methods in

the transductive setting, where we train on Gtrain = (V, Etrain) for Etrain ⊂ E , validate

our method on Gval = (V, Eval) for Eval ⊂ (E − Etrain), and test on Gtest = (V, Etest) for

Etest = E − Etrain − Eval. Note that the same nodes are present in training, validation,

and testing. We also do not introduce any new edges during inference time—inference is

performed on Etrain.

Results. The results of our evaluation are shown in Table 4.1. As expected,

the end-to-end GCN generally performs the best across all of the datasets. We also find

that CCA-SSG and GBT similarly perform poorly relative to the other methods. This is

44

−0.2 0.0 0.2 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Pe
rc

en
t

BGRL Positive/Negative Link Scores

Positive Links
Negative Links

Similarity −0.2 0.0 0.2 0.6 0.8 1.0
0

2

4

6

8

10

12

14

Pe
rc

en
t

ML-GCN Positive/Negative Link Scores

Positive Links
Negative Links

Similarity

Figure 4.1 These plots show similarities between node embeddings. Left: distribution of
positive/negative link similarities for BGRL. Right: distribution of positive/negative link
similarities for ML-GCN. We can see that while they behave similarly, the ML-GCN does
a better job of ensuring that positive/negative links are well separated. These scores are
computed on Amazon-Photos.

intuitive, as neither method was designed for link prediction and were only evaluated for

node classification in their respective papers. Surprisingly, however, BGRL outperforms the

ML-GCN (the strongest contrastive baseline) on 3/6 of the datasets and performs similarly

on 1 other (Cora). It also outperforms GRACE across all of the datasets.

Understanding BGRL Performance. Interestingly, we find that BGRL exhibits

similar behavior to the ML-GCN on many datasets, despite the BGRL loss function (see

Equation (4.2)) not explicitly optimizing for this. Relative to an anchor node u, we can

express the max-margin loss of the ML-GCN as follows:

L(u) = Ev∼N(u)

[
Ew∼E−N(u)J(u, v, w)

]
(4.3)

where J(u, v, w) is the margin ranking loss for an anchor u, positive sample v, and negative

w:

J(u, v, w) = max{0,hu · hv − hu · hw +∆} (4.4)

and ∆ is a hyperparameter for the size of the margin. This seemingly explicitly optimizes

for the aforementioned ideal link prediction behavior (anchor-aware ranking of positive over

45

negative links). Despite these circumstances, Figure 4.1 shows that both BGRL and ML-GCN

both clearly separate positive and negative samples, although ML-GCN pushes them further

apart. We provide some intuition on why this may occur in Section 4.6.10 below.

Why Does BGRL Not Collapse? The loss function for BGRL (see Equa-

tion (4.2)) is 0 when h
(2)
i = 0 or z̃i = 0, i.e., the loss is minimized when the model produces

all-zero outputs. While theoretically possible, this is clearly undesirable behavior since this

does not result in useful embeddings. We refer to this case as model collapse. It is not fully

understood why non-contrastive models do not collapse, but there have been several reasons

proposed in the image domain with both theoretical and empirical grounding. We discuss

this more in Section 4.6.9. Consistent with the findings from Thakoor et al. [183], we find

that collapse does not occur in practice (with reasonable hyperparameter selection).

Conclusion. We find that CCA-SSG and GBT generally perform poorly compared

to contrastive baselines. Surprisingly, we find that BGRL generally performs well in the

transductive setting by successfully separating positive and negative link distance distributions.

However, this setting may not be representative of real-world problems. In the next section,

we evaluate the methods in the more realistic inductive setting to see if this performance

holds.

Inductive Evaluation

Inductive Setting. While we observe some promising results in favor of non-

contrastive methods (namely, BGRL) in the transductive setting, we note that this setting is

not entirely realistic. In practice, we often have both new nodes and edges introduced at

inference time after our model is trained. For example, consider a social network upon which

46

a model is trained at some time t1 but is used for inference (for a GNN, this refers to the

message-passing step) at time t2, where new users and friendships have been added to the

network in the interim. Then, the goal of a model run at time t2 would be to predict any

new links at new network state t3 (although we assume there are no new nodes introduced

at that step since we cannot compute the embedding of nodes without performing inference

on them first). To simulate this setting, we first partition the graph into two sets of nodes:

“observed” nodes (that we see during training) and “unobserved nodes” (that are only used

for inference and testing). We then withhold a portion of the edges at each of the time steps

t3, t2, t1 to serve as testing-only, inference-only, and training-only edges, respectively. We

describe this process in more detail in Section 4.6.4.

Results. Table 4.2 shows that in the inductive setting, BGRL is outperformed by

the contrastive ML-GCN on all datasets. It still outperforms CCA-SSG and GBT, but it is

much less competitive in the inductive setting. We next ask: what accounts for this large

difference in performance?

Why Does BGRL Not Work Well in the Inductive Setting? One possible

reason for the poor performance of BGRL in the inductive setting is that it is unable to

correctly differentiate unseen positives from unseen negatives, i.e., it is overfitting on the

training graph. Intuitively, this could happen due to a lack of negative samples—BGRL never

pushes samples away from each other. We show that this is indeed the case in Figure 4.2,

where BGRL’s negative link score distribution has heavy overlap with its positive link score

distribution. We can also see this behavior in Figure 4.1 where the ML-GCN does a clearly

better job of pushing positive/negative samples far apart, despite BGRL’s surprising success.

47

0.0 0.2 0.4 0.6 0.8 1.0
10−1

100

101

102

Pe
rc

en
t

Citeseer Negative Inductive Link Scores

T-BGRL
BGRL

0.0 0.2 0.4 0.6 0.8 1.0
10−1

100

101

102

Pe
rc

en
t

Citeseer Positive Inductive Link Scores

T-BGRL
BGRL

Figure 4.2 These plots show similarities between node embeddings on Citeseer. Left:
distribution of similarity to non-neighbors for TenGAN and BGRL. Right: distribution of
similarity to neighbors for TenGAN and BGRL. Note that the y-axis is on a logarithmic
scale. TenGAN clearly does a better job of ensuring that negative link representations are
pushed far apart from those of positive links.

EMA

Figure 4.3 TenGAN architecture diagram. The loss function is also shown in Equation (4.5).

Naturally, improving the separation between these distributions increases the chance of a

correct prediction. We investigate this hypothesis in Section 4.4 below and propose TenGAN

(Figure 4.3), a novel method to help alleviate this issue.

48

4.4 Improving Inductive Performance in a Non-Contrastive

Framework

In order to reduce this systematic gap in performance between ML-GCN (the

best-performing contrastive model) and BGRL (the best-performing non-contrastive model),

we observe that we need to push negative and positive node pair representations further

apart. This way, pairs between new nodes—introduced at inference time—have a higher

chance of being classified correctly. Contrastive methods utilize negative sampling for this

purpose, but we wish to avoid negative sampling owing to high computational cost. In lieu

of this, we propose a simple, yet powerfully effective idea below.

Model Intuition. To emulate the effect of negative sampling without actually

performing it, we propose Triplet-BGRL (TenGAN). In addition to the two augmentations

performed during standard non-contrastive SSL training, we add a corruption to function

as a cheap negative sample. For each node, like BGRL, we minimize the distance between

its representations across two augmentations. However, taking inspiration from triplet-

style losses [83], we also maximize the distance between the augmentation and corruption

representations.

Model Design. Ideally, this model should not only perform better than BGRL in

the inductive setting, but should also have the same time complexity as BGRL. In order to

meet these expectations, we design efficient, linear-time corruptions (same asymptotic runtime

as the augmentations). We also choose to use the online encoder Encϕ to generate embeddings

for the corrupted graph so that TenGAN does not have any additional parameters. Figure 4.3

49

Algorithm 1: PyTorch-style pseudocode for TenGAN

Enc_o: online encoder network

Enc_t: target encoder network

Pred: predictor network

lam: trade-off

decay: EMA decay parameter

g: input graph

feat: node features

g1, feat1 = augment(g, feat) # augmentation #1

g2, feat2 = augment(g, feat) # augmentation #2

c_g, c_feat = corrupt(g, feat) # corruption

h1 = Enc_o(g1, feat1)

h2 = Enc_t(g2, feat2)

c_z = Enc_t(c_g, c_feat)

z1 = Pred(z1)

loss = lam*cosine_similarity(z1, c_z) \

- (1-lam)*cosine_similarity(z1, h2)

loss.backward() # backprop

Update Enc_t with EMA

Enc_t.params = decay * Enc_t.params \

+ (1-decay) * Enc_o.params

50

illustrates the overall architecture of the proposed TenGAN, and Algorithm 1 presents

PyTorch-style pseudocode. Our new proposed loss function is as follows:

LTenGAN =
λ

n

n−1∑
i=0

z̃i · ȟi

||z̃i|| ||ȟi||︸ ︷︷ ︸
TenGAN Loss Term

−(1− λ)

n

n−1∑
i=0

z̃i · h(2)
i

||z̃i|| ||h(2)
i ||︸ ︷︷ ︸

BGRL Loss

(4.5)

where λ is a hyperparameter controlling the repulsive forces between augmentation and

corruption.

Corruption Choice. We experiment with several different corruptions meth-

ods, but limit ourselves to linear-time corruptions in order to maintain the efficiency of

BGRL. We find that ShuffleFeatRandomEdge(A,X) = (Ǎ, X̌), where Ǎ∼{0, 1}n×n

and X̌ = ShuffleRows(X) works the best. We describe each of the different corruptions

we experimented with in Section 4.6.7.

Inductive Results. Table 4.2 shows that TenGAN improves inductive perfor-

mance over BGRL in 5/6 datasets, with very large improvements in the Cora and Citeseer

datasets. The only dataset where BGRL outperformed TenGAN is the Amazon-Photos

dataset. However, this gap is much smaller (0.01 difference in Hits@50) than the improve-

ments on the other datasets. We plot the scores output by the decoder for unseen negative

pairs compared to those for unseen positive pairs in Figure 4.2. We can see that TenGAN

pushes apart unseen negative and positive pairs much better than BGRL.

Transductive Results. We also evaluate the performance of TenGAN in

the transductive setting to ensure that it does not significantly reduce performance when

compared to BGRL. See Table 4.3 on the right for the results.

Difference from Contrastive Methods. While our method shares some similari-

ties with contrastive methods, we believe TenGAN is strictly non-contrastive because it does

51

not require the O(n2) sampling from the complement of the edge index used by contrastive

methods. This is clearly shown in Figure 4.4, where T-BGRL and BGRL have similar

runtimes and are much faster than GRACE and ML-GCN. The corruption can be viewed as

a “negative” augmentation—with the only difference being that it changes the expected label

for each link. In fact, one of the corruptions that we consider, SparsifyFeatSparsifyEdge,

is essentially the same as the augmentations using by BGRL (except with much higher drop

probability). We discuss other corruptions below in Section 4.6.7.

Table 4.3 Transductive performance of Ten-
GAN compared to ML-GCN and BGRL (same
numbers as Table 4.1 above; full figure in Ta-
ble 4.5).

Dataset ML-GCN BGRL TenGAN

Cora 0.815 0.792 0.773±0.020

Citeseer 0.771 0.858 0.868±0.023

Coauthor-Cs 0.787 0.515 0.555±0.009

Coauthor-Physics 0.810 0.476 0.471±0.021

Amazon-Computers 0.320 0.346 0.315±0.015

Amazon-Photos 0.430 0.562 0.517±0.016

Scalability. We evaluate the run-

time of our model on different datasets. Fig-

ure 4.4 shows the running times to fully train

a model for different contrastive and non-

contrastive methods over 5 different runs.

Note that we use a fixed 10,000 epochs for

GRACE, CCA-SSG, GBT, BGRL, and Ten-

GAN, but use early stopping on the ML-

GCN with a maximum of 1,000 epochs. We find that (i) TenGAN is comparable to BGRL

in runtime owing to efficient choices of corruptions, (ii) it is about 4.3× faster than GRACE

on Amazon-Computers (the largest dataset which GRACE can run on), and (ii) it is 14×

faster than ML-GCN. CCA-SSG is the fastest of all the methods but performs the worst. As

mentioned above, we do not compare with SEAL [224] or other subgraph-based methods

due to how slow they are during inference. SUREL [209] is ~250× slower, and SEAL [224] is

about ~3900× slower according to [209]. In conclusion, we find that TenGAN is roughly as

52

scalable as other non-contrastive methods, and much more scalable than existing contrastive

methods.

ML­GCN GRACE CCA­SSG GBT BGRL T­BGRL
Model

103

104

To
ta

l R
un

tim
e

(s
)

1196

1684

284
352

421 426

7768

2952

503
420

566
685

20179

872

1364
1163

1438

Amazon­Computers
Coauthor­Cs
Coauthor­Physics

Figure 4.4 Total runtime comparison of different contrastive and non-contrastive methods.
T-BGRL and BGRL have relatively similar runtimes and are significantly faster than the
contrastive methods (GRACE and ML-GCN).

4.5 Other Related Work

Link Prediction. Link prediction is a long-standing graph machine learning task.

Some traditional methods include (i) matrix [130, 193] or tensor factorization [2, 46] methods

which factor the adjacency and/or feature matrices to derive node representations which

can predict links equipped with inner products, and (ii) heuristic methods which score node

pairs based on neighborhood and overlap [216, 218, 151]. Several shallow graph embedding

methods [67, 149] which train node embeddings by random-walk strategies have also been

53

used for link prediction. In addition to the node-embedding-based GNN methods mentioned

in Section 4.2, several works [209, 224, 77] propose subgraph-based methods for this task,

which aim to classify subgraphs around each candidate link. Few works focus on scalable

link prediction with distillation [73], decoder [196], and sketching designs [28].

Graph SSL Methods. Most graph SSL methods can be put categorized into

contrastive and non-contrastive methods. Contrastive learning has been applied to link

prediction with margin-loss-based methods such as PinSAGE [210], and GraphSAGE [75],

where negative sample representations are pushed apart from positive sample representations.

GRACE [236] uses augmentation [228] during this negative sampling process to further

increase the performance of the model. DGI [186] leverages mutual information maximization

between local patch and global graph representations. Some works [97, 94] also explore using

multiple contrastive pretext tasks for SSL. Several works [215, 119] also focus on graph-level

contrastive learning, via graph-level augmentations and careful negative selection. Recently,

non-contrastive methods have been applied to graph representation learning. Self-GNN [100]

and BGRL [183] use ideas from BYOL [66] and SimSiam [33] to propose a graph framework

that does not require negative sampling. We describe BGRL in depth in Section 4.2 above.

Graph Barlow Twins (GBT) [15] is adapted from the Barlow Twins model in the image

domain [219] and uses cross-correlation to learn node representations with a shared encoder.

CCA-SSG [222] uses ideas from Canonical Correlation Analysis (CCA) [85] and Deep CCA [5]

for their loss function. These models are somewhat similar in that it has also been shown

that Barlow Twins is equivalent to Kernel CCA [10].

54

4.6 Conclusion

To our knowledge, this is the first work to study non-contrastive SSL methods and

their performance on link prediction. We first evaluate several contrastive and non-contrastive

graph SSL methods on link prediction tasks, and find that surprisingly, one popular non-

contrastive method (BGRL) is able to perform well in the transductive setting. We also

observe that BGRL struggles in the inductive setting, and identify that it has a tendency

to overfit the training graph, indicating it fails to push positive and negative node pair

representations far apart from each other. Armed with these insights, we propose TenGAN,

a simple but effective non-contrastive strategy which works by generating extremely cheap

“negatives” by corrupting the original inputs. TenGANsidesteps the expensive negative

sampling step evident in contrastive learning, while enjoying strong performance benefits.

TenGANimproves on BGRL’s inductive performance in 5/6 datasets while achieving similar

transductive performance, making it comparable to the best contrastive baselines, but with

a 14× speedup over the best contrastive methods.

Reproducibility Statement

To ensure reproducibility, our source code is available online at https://github.

com/snap-research/non-contrastive-link-prediction. The hyperparameters and in-

structions for reproducing all experiments are provided in the README.md file.

55

https://github.com/snap-research/non-contrastive-link-prediction
https://github.com/snap-research/non-contrastive-link-prediction

Table 4.2 Performance of various methods in the inductive setting. See Section 4.3.1 for
an explanation of our inductive setting. Although we do not introduce TenGAN until
Section 4.4, we include the results here to save space.

End-To-End Contrastive Non-Contrastive

Dataset E2E-GCN ML-GCN GRACE GBT CCA-SSG BGRL T-BGRL

Overall

Cora 0.523±0.019 0.490±0.028 0.448±0.043 0.135±0.077 0.120±0.018 0.324±0.184 0.568±0.033

Citeseer 0.621±0.034 0.661±0.036 0.514±0.053 0.305±0.026 0.170±0.071 0.526±0.055 0.727±0.027

Coauthor-Cs 0.484±0.048 0.572±0.037 0.313±0.017 0.182±0.025 0.176±0.013 0.438±0.025 0.534±0.026

Coauthor-Physics 0.386±0.016 0.550±0.059 OOM 0.112±0.014 0.037±0.051 0.439±0.013 0.463±0.023

Amazon-Computers 0.179±0.010 0.279±0.044 0.212±0.057 0.172±0.015 0.155±0.013 0.270±0.034 0.312±0.027

Amazon-Photos 0.420±0.123 0.478±0.008 0.262±0.010 0.289±0.032 0.182±0.072 0.460±0.023 0.450±0.017

Performance on Observed-Observed Node Edges

Cora 0.574±0.020 0.490±0.029 0.557±0.038 0.149±0.084 0.124±0.026 0.345±0.196 0.624±0.027

Citeseer 0.610±0.023 0.621±0.021 0.602±0.050 0.358±0.031 0.197±0.082 0.605±0.045 0.768±0.021

Coauthor-Cs 0.504±0.047 0.591±0.034 0.332±0.018 0.187±0.023 0.177±0.013 0.462±0.025 0.535±0.026

Coauthor-Physics 0.390±0.015 0.566±0.058 OOM 0.117±0.014 0.039±0.054 0.445±0.012 0.469±0.023

Amazon-Computers 0.177±0.009 0.278±0.044 0.212±0.059 0.169±0.016 0.155±0.014 0.270±0.034 0.313±0.027

Amazon-Photos 0.418±0.123 0.483±0.009 0.265±0.011 0.295±0.031 0.185±0.070 0.467±0.023 0.457±0.015

Performance on Observed-Unobserved Node Edges

Cora 0.462±0.023 0.487±0.021 0.367±0.045 0.128±0.075 0.115±0.014 0.309±0.175 0.528±0.037

Citeseer 0.645±0.055 0.705±0.039 0.458±0.063 0.280±0.024 0.148±0.067 0.487±0.064 0.708±0.034

Coauthor-Cs 0.459±0.049 0.545±0.042 0.284±0.017 0.175±0.026 0.177±0.013 0.402±0.025 0.536±0.027

Coauthor-Physics 0.379±0.019 0.525±0.058 OOM 0.106±0.013 0.035±0.048 0.429±0.013 0.455±0.022

Amazon-Computers 0.183±0.010 0.281±0.045 0.213±0.056 0.177±0.014 0.155±0.011 0.270±0.034 0.312±0.027

Amazon-Photos 0.424±0.123 0.470±0.007 0.258±0.011 0.279±0.032 0.178±0.076 0.449±0.022 0.439±0.021

Performance on Unobserved-Unobserved Node Edges

Cora 0.239±0.027 0.507±0.063 0.252±0.066 0.100±0.076 0.125±0.020 0.287±0.164 0.463±0.065

Citeseer 0.595±0.073 0.681±0.101 0.287±0.039 0.137±0.019 0.126±0.043 0.271±0.078 0.595±0.045

Coauthor-Cs 0.372±0.043 0.483±0.046 0.230±0.019 0.159±0.037 0.157±0.011 0.341±0.032 0.517±0.032

Coauthor-Physics 0.365±0.024 0.505±0.065 OOM 0.098±0.013 0.034±0.047 0.424±0.014 0.445±0.026

Amazon-Computers 0.183±0.008 0.275±0.046 0.214±0.052 0.181±0.015 0.155±0.012 0.265±0.032 0.305±0.029

Amazon-Photos 0.419±0.126 0.461±0.014 0.251±0.010 0.265±0.044 0.172±0.084 0.442±0.028 0.416±0.027

56

4.6.1 Dataset Statistics

Table 4.4 Statistics for the datasets used in our work.

Dataset Nodes Edges Features

Cora 2,708 5,278 1,433

Citeseer 3,327 4,552 3,703

Coauthor-Cs 18,333 163,788 6,805

Coauthor-Physics 34,493 495,924 8,415

Amazon-Computers 13,752 491,722 767

Amazon-Photos 7,650 238,162 745

4.6.2 Machine Details

We run all of our experiments on either NVIDIA P100 or V100 GPUs. We use

machines with 12 virtual CPU cores and 24 GB of RAM for the majority of our experiments.

We exclusively use V100s for our timing experiments. We ran our experiments on Google

Cloud Platform.

4.6.3 Transductive Setting Details

We use an 85/5/10 split for training/validation/testing data—following Zhang and

Chen [224], Cai et al. [22].

4.6.4 Inductive Setting Details

The inductive setting represents a more realistic setting than the transductive

setting. For example, consider a social network upon which a model is trained at some time

57

t1 but is used for inference (for a GNN, this refers to the message-passing step) at time

t2, where new users and friendships have been added to the network in the interim. Then,

the goal of a model run at time t2 would be to predict any new links at new network state

t3 (although we assume there are no new nodes introduced at that step since we cannot

compute the embedding of nodes without performing inference on them first). To simulate

this setting, we first perform the following steps:

1. We withhold a portion of the edges (and the same number of disconnected node pairs)

to use as testing-only edges.

2. We partition the graph into two sets of nodes: “observed” nodes (that we see during

training) and “unobserved nodes” (that can only be seen during testing).

3. We mask out some edges to use as testing-only edges.

4. We mask out some edges to use as inference-only edges.

5. We mask out some edges to use as validation-only edges.

6. We mask out some edges to use as training-only edges.

As the test edges are sampled before the node split, there will be three kinds of them after

the splitting. Specifically: edges within observed nodes, edges between observed nodes and

unobserved nodes, and edges within unobserved nodes. For ease of data preparation, we use

the same percentages for the test edge splitting, unobserved node splitting, and validation

edge splitting. Specifically, we mask out 30% of the edges (at each of the above stages) on

the small datasets (Cora and Citeseer), and 10% on all the other datasets. We use a 30%

58

split on the small datasets to ensure that we have a sufficient number of edges for testing

and validation purposes.

4.6.5 Experimental Setup

To ensure that we fairly evaluate each model, we run a Bayesian hyperparameter

sweep for 25 runs across each model-dataset combination with the target metric being the

validation Hits@50. Each run is the result of the mean averaged over 5 runs (retraining both

the encoder and decoder). We used the Weights and Biases [16] Bayesian optimizer for our

experiments. We provide a sample configuration file to reproduce our sweeps, as well as the

exact parameters used for the top TenGAN runs shown in our tables.

We used the reference GRACE implementation and BGRL implementation but

modified them for link prediction instead of node classification. We based our E2E-GCN off

of the OGB [87] implementation. We re-implemented CCA-SSG and GBT. The code for all

of our implementations and modifications can be found in the link in our paper above.

4.6.6 Full Results

Table 4.5 shows the results of all the methods (including TenGAN) on transductive

setting.

59

Table 4.5 Full transductive performance table (combination of Tables 4.1 and 4.3).

End-To-End Contrastive Non-Contrastive

Dataset E2E-GCN ML-GCN GRACE CCA-SSG GBT BGRL T-BGRL

Cora 0.816±0.013 0.815±0.002 0.686±0.056 0.348±0.091 0.460±0.149 0.792±0.015 0.773±0.020

Citeseer 0.822±0.017 0.771±0.020 0.707±0.068 0.249±0.168 0.472±0.196 0.858±0.020 0.868±0.023

Amazon-Photos 0.642±0.029 0.430±0.032 0.486±0.025 0.369±0.013 0.434±0.038 0.562±0.013 0.517±0.016

Amazon-Computers 0.426±0.036 0.320±0.060 0.240±0.027 0.201±0.032 0.258±0.008 0.346±0.018 0.315±0.015

Coauthor-Cs 0.762±0.010 0.787±0.011 0.456±0.066 0.229±0.018 0.298±0.033 0.515±0.016 0.555±0.009

Coauthor-Physics 0.798±0.018 0.810±0.003 OOM 0.157±0.009 0.187±0.011 0.476±0.015 0.471±0.021

4.6.7 Corruptions

In this work, we experiment with the following corruptions:

1. RandomFeatRandomEdge: Randomly generate an adjacency matrix Ã and X̃

with the same sizes as A and X, respectively. Note that Ã and A also have the same

number of non-zero entries, i.e., the same number of edges.

2. ShuffleFeatRandomEdge: Randomly shuffle the rows of X, and generate a random

Ã with the same size as A. Note that Ã and A also have the same number of non-zero

entries, i.e., the same number of edges.

3. SparsifyFeatSparsifyEdge: Mask out a large percentage (we chose 95%) of the

entries in X and A.

Of these corruptions, we find that ShuffleFeatRandomEdge works the best

across our experiments.

60

Table 4.6 Area under the ROC curve for the methods in the transductive setting.

End-To-End Contrastive Non-Contrastive

Dataset E2E-GCN ML-GCN GRACE CCA-SSG GBT BGRL T-BGRL

Cora 0.911±0.004 0.893±0.007 0.883±0.020 0.647±0.076 0.736±0.109 0.911±0.008 0.910±0.005

Citeseer 0.922±0.006 0.891±0.006 0.863±0.042 0.661±0.050 0.755±0.120 0.934±0.009 0.953±0.003

Coauthor-Cs 0.964±0.005 0.966±0.001 0.961±0.003 0.758±0.047 0.894±0.017 0.959±0.002 0.956±0.002

Coauthor-Physics 0.978±0.001 0.986±0.000 OOM 0.821±0.051 0.834±0.084 0.961±0.002 0.963±0.001

Amazon-Computers 0.985±0.001 0.983±0.001 0.951±0.011 0.907±0.025 0.946±0.007 0.969±0.002 0.976±0.001

Amazon-Photos 0.989±0.000 0.983±0.002 0.981±0.001 0.939±0.008 0.956±0.015 0.980±0.000 0.982±0.000

4.6.8 AUC-ROC Results

Here we include the area under the ROC curve for each of the different models

under both the inductive and transductive settings. Note that we perform early stopping

on the validation Hits@50 when training the link prediction model, not on the validation

AUC-ROC.

4.6.9 Why Does BGRL Not Collapse?

The loss function for BGRL (see Equation (4.2)) is 0 when h
(2)
i = 0 or z̃i = 0.

While theoretically possible, this is clearly undesirable behavior since this does not result in

useful embeddings. We refer to this case as the model collapsing. It is not fully understood

why non-contrastive models do not collapse, but there have been several reasons proposed in

the image domain with both theoretical and empirical grounding. Chen and He [33] showed

that the SimSiam architecture requires both the predictor and the stop gradient. This has

also been shown to be true for BGRL. Tian et al. [184] claim that the eigenspace of predictor

weights will align with the correlation matrix of the online network under the assumption

61

Table 4.7 AUC-ROC of various methods in the inductive setting. See Section 4.3.1 for an
explanation of our inductive setting.

End-To-End Contrastive Non-Contrastive

Dataset E2E-GCN ML-GCN GRACE GBT CCA-SSG BGRL T-BGRL

Overall

Cora 0.788±0.015 0.842±0.008 0.858±0.012 0.704±0.032 0.595±0.035 0.814±0.022 0.920±0.008

Citeseer 0.810±0.016 0.873±0.004 0.886±0.010 0.691±0.007 0.621±0.070 0.891±0.006 0.954±0.003

Coauthor-Cs 0.881±0.040 0.956±0.001 0.944±0.001 0.875±0.036 0.831±0.068 0.968±0.001 0.958±0.001

Coauthor-Physics 0.957±0.004 0.976±0.001 OOM 0.818±0.092 0.614±0.050 0.974±0.001 0.976±0.001

Amazon-Computers 0.974±0.009 0.981±0.001 0.972±0.012 0.919±0.023 0.910±0.031 0.980±0.002 0.982±0.002

Amazon-Photos 0.976±0.003 0.982±0.001 0.977±0.002 0.962±0.011 0.885±0.057 0.984±0.000 0.981±0.001

Performance on Observed-Observed Node Edges

Cora 0.827±0.011 0.834±0.010 0.883±0.010 0.714±0.034 0.584±0.047 0.800±0.025 0.929±0.005

Citeseer 0.792±0.014 0.840±0.013 0.905±0.012 0.705±0.019 0.635±0.078 0.875±0.006 0.956±0.005

Coauthor-Cs 0.886±0.037 0.951±0.001 0.947±0.002 0.874±0.037 0.828±0.070 0.967±0.001 0.955±0.002

Coauthor-Physics 0.959±0.004 0.976±0.001 OOM 0.819±0.091 0.615±0.049 0.974±0.001 0.975±0.001

Amazon-Computers 0.974±0.010 0.981±0.001 0.971±0.012 0.918±0.024 0.910±0.030 0.979±0.002 0.981±0.002

Amazon-Photos 0.976±0.003 0.981±0.001 0.977±0.002 0.962±0.011 0.885±0.055 0.983±0.000 0.981±0.001

Performance on Observed-Unobserved Node Edges

Cora 0.741±0.022 0.844±0.010 0.840±0.017 0.696±0.030 0.602±0.024 0.818±0.023 0.912±0.010

Citeseer 0.841±0.019 0.901±0.005 0.877±0.012 0.687±0.016 0.610±0.069 0.904±0.006 0.955±0.004

Coauthor-Cs 0.877±0.045 0.964±0.001 0.940±0.001 0.876±0.036 0.836±0.067 0.969±0.001 0.964±0.001

Coauthor-Physics 0.953±0.004 0.975±0.001 OOM 0.817±0.093 0.612±0.052 0.975±0.001 0.976±0.000

Amazon-Computers 0.974±0.009 0.981±0.001 0.973±0.011 0.921±0.022 0.909±0.032 0.980±0.002 0.982±0.002

Amazon-Photos 0.977±0.003 0.983±0.001 0.977±0.002 0.963±0.012 0.884±0.059 0.986±0.000 0.981±0.002

Performance on Unobserved-Unobserved Node Edges

Cora 0.571±0.043 0.879±0.016 0.810±0.019 0.693±0.039 0.626±0.040 0.866±0.024 0.911±0.011

Citeseer 0.852±0.047 0.917±0.021 0.827±0.029 0.637±0.052 0.599±0.062 0.916±0.012 0.941±0.011

Coauthor-Cs 0.850±0.059 0.964±0.001 0.928±0.004 0.877±0.034 0.839±0.061 0.967±0.002 0.966±0.001

Coauthor-Physics 0.949±0.006 0.978±0.001 OOM 0.818±0.091 0.613±0.056 0.978±0.001 0.981±0.001

Amazon-Computers 0.970±0.010 0.979±0.001 0.969±0.011 0.914±0.022 0.899±0.035 0.977±0.002 0.979±0.003

Amazon-Photos 0.978±0.004 0.982±0.002 0.977±0.002 0.965±0.011 0.886±0.063 0.986±0.001 0.982±0.003

62

of a one-layer linear encoder and a one-layer linear predictor. Wen and Li [201] looked at

the case of a two-layer non-linear encoder with output normalization and found that the

predictor is often only useful during the learning process and often converges to the identity

function. We did not observe this behavior on BGRL—the predictor is usually significantly

different from that of the identity function.

4.6.10 How Does BGRL Pull Representations Closer Together?

Here we clarify the intuition behind BGRL pulling similar points together. To

simplify this analysis, we assume that the predictor is the identity function, which Wen and

Li [201] found is true in the image representation learning setting. Although we have not

observed this in the graph setting, this assumption greatly simplifies our analysis, and we

argue it is sufficient to understand why BGRL works.

Suppose we have three nodes: an anchor node u, a neighbor v, and a non-neighbor

w. That is, we have (u, v) ∈ E , (u,w) ̸∈ E , and (v, w) ̸∈ E . Let u,v,w be the embeddings

for u, v, w, respectively (e.g. u = Enc(u)).

Assuming homophily between the nodes, we have u · v < u ·w.

We then apply the two augmentations on u, producing ũ1 = Aug1(u) and ũ2 =

Aug2(u). For the sake of simplicity, let us assume that we perform edge dropping and feature

dropping with the same probability p (in practice, they may be different from each other).

We represent the space of possible values for ũ1 and ũ2 as a circle with radius r centered at

u, where r is controlled by p.

63

0.0 0.2 0.4 0.6 0.8 1.0

Similarity

100

101

102

Pe
rc

en
t

Coauthor-Cs Negative Link Node Embedding Similarity

BGRL
Triplet

0.0 0.2 0.4 0.6 0.8 1.0

Similarity

100

101

102

Pe
rc

en
t

Coauthor-Cs Positive Link Node Embedding Similarity

BGRL
Triplet

Figure 4.5 These plots show similarities between node embeddings on Coauthor-Cs. Left:
distribution of similarity to non-neighbors for TenGAN and BGRL (closer to 0 is better).
Right: distribution of similarity to neighbors for TenGAN and BGRL (closer to 1 is better).
Note that the y-axis is on a logarithmic scale. TenGAN clearly does a better job of ensuring
that negative link representations are pushed far apart from those of positive links.

The BGRL loss is stated in Equation (4.2) above, but we rewrite it relative to our

anchor u and with our assumption about the predictor:

Lu = − ũ1 · ũ2

||ũ1|| ||ũ2||
(4.6)

Minimizing this loss pushes ũ1 and ũ2 closer. Let us denote the encoder after one

round of optimization as Enc′. Then:

E
[
||Enc′(Aug(u))− Enc′(Aug(u))||

]
< E [||Enc(Aug(u))− Enc(Aug(u))||] (4.7)

Note that v in this example lies within the space of possible augmentations — that is, v ∈ A,

where A is the set of all possible values of Aug(u). This means, as we repeat this process,

we implicitly push u and v closer together — leading to distributions like those shown in

Figure 4.1.

4.6.11 Additional Plots

64

0.0 0.2 0.4 0.6 0.8 1.0

Similarity

10−1

100

101

102

Pe
rc

en
t

Cora Negative Link Node Embedding Similarity

BGRL
Triplet

0.0 0.2 0.4 0.6 0.8 1.0

Similarity

101

Pe
rc

en
t

Cora Positive Link Node Embedding Similarity

BGRL
Triplet

Figure 4.6 These plots show similarities between node embeddings on Cora. Left: distribution
of similarity to non-neighbors for TenGAN and BGRL (closer to 0 is better). Right:
distribution of similarity to neighbors for TenGAN and BGRL (closer to 1 is better). Note
that the y-axis is on a logarithmic scale. TenGAN clearly does a better job of ensuring that
negative link representations are pushed far apart from those of positive links, but does not
do as well at differentiating between positive links.

65

Chapter 5

Clustering-Accelerated Representation

Learning on Graphs

Self-supervised learning on graphs has made large strides in achieving great perfor-

mance in various downstream tasks. However, many state-of-the-art methods suffer from a

number of impediments, which prevent them from realizing their full potential. For instance,

contrastive methods typically require negative sampling, which is often computationally

costly. While non-contrastive methods avoid this expensive step, most existing methods

either rely on overly complex architectures or dataset-specific augmentations. In this paper,

we ask: Can we borrow from classical unsupervised machine learning literature in order

to overcome those obstacles? Guided by our key insight that the goal of distance-based

clustering closely resembles that of contrastive learning: both attempt to pull representations

of similar items together and dissimilar items apart. As a result, we propose CARL-G — a

novel clustering-based framework for graph representation learning that uses a loss inspired

66

by Cluster Validation Indices (CVIs), i.e., internal measures of cluster quality (no ground

truth required). CARL-G is adaptable to different clustering methods and CVIs, and we

show that with the right choice of clustering method and CVI, CARL-G outperforms node

classification baselines on 4/5 datasets with up to a 79× training speedup compared to

the best-performing baseline. CARL-G also performs at par or better than baselines in node

clustering and similarity search tasks, training up to 1,500× faster than the best-performing

baseline. Finally, we also provide theoretical foundations for the use of CVI-inspired losses

in graph representation learning.

5.1 Introduction

Graphs can be used to represent many different types of relational data, including

chemistry graphs [29, 71], social networks [135, 166], and traffic networks [42, 181]. Graph

Neural Networks (GNNs) have been effective in modeling graphs across a variety of tasks, such

as for recommendation systems [210, 81, 159, 182, 53, 230], graph generation [213, 52, 172],

and node classification [236, 183, 224, 227, 95, 76]. These GNNs are traditionally [107]

trained with a supervised loss, which requires labeled data that is often expensive to obtain in

real-world scenarios. Graph self-supervised learning (SSL), a recent area of research, attempts

to solve this by learning multi-task representations without labeled data [236, 183, 94, 15, 98].

Most of these existing graph SSL methods can be grouped into either contrastive

or non-contrastive SSL. Contrastive learning pulls the representations of similar (“positive”)

samples together and pushes the representations of dissimilar (“negative”) samples apart.

In the case of graphs, this often means either pulling the representations of a node and its

67

100 101 102 103

Speedup

88.8

89.2

89.6

90.0
A

cc
ur

ac
y

∼900× faster!

∼ 2 points
more accurate

AFGRL
BGRL
G-BT
GRACE
CARL-GSIM

CARL-GSIL

CARL-GVRC

Figure 5.1 Comparison of our proposed methods with other baselines with respect to node
classification accuracy and speedup on the Amazon-Photos dataset. See Figure 5.3 for results
on the other datasets.

neighbors together [75] or pulling the representations of the same node across two different

augmentations together [215]. Graph contrastive learning methods typically use non-neighbors

as negative samples [236, 210], which can be costly. Non-contrastive learning [174, 183, 15,

113] avoids this step by only pulling positive samples together while employing strategies to

avoid collapse.

However, all of these methods have some key limitations. Contrastive methods

rely on a negative sampling step, which has an expensive quadratic runtime [183] and

requires careful tuning [208]. Non-contrastive methods often have complex architectures (ex.

extra encoder with exponentially updated weights [183, 113, 100]) and/or rely heavily on

augmentations [15, 222, 183, 229]. Lee et al. [113] shows that augmentations can change the

68

Proposed Baseline Methods

CARL-G* AFGRL [113] BGRL [183] G-BT [15] GRACE [236] MVGRL [79]

Avoids Negative Sampling ✓ ✓ ✓ ✓ ✗ ✗

Augmentation-Free ✓ ✓ ✗ ✗ ✗ ✗

Single Encoder ✓ ✗ ✗ ✓ ✗ ✗

Single Forward Pass per Epoch ✓ ✗ ✗ ✗ ✗ ✗

Table 5.1 Comparison of different self-supervised graph learning methods. *: We use
CARL-Gsim as the representative method since it is the best-performing across all of the
criteria.

semantics of underlying graphs, especially in the case of molecular graphs (where perturbing

a single edge can create an invalid molecule).

Upon further inspection, we observe that the behavior of contrastive and non-

contrastive methods is somewhat similar to that of distance-based clustering [203]—both

attempt to pull together similar nodes/samples and push apart dissimilar ones. The primary

advantage of using clustering over negative sampling is that we can work directly in the smaller

embedding space, preventing expensive negative sampling over the graph. Furthermore, there

have been decades of research exploring the theoretical foundations of clustering methods and

many different metrics have been proposed to evaluate the quality of clusters [158, 24, 103, 47].

These metrics have been dubbed Cluster Validation Indices (CVIs) [6]. In this work, we

ask the following question: Can we leverage well-established clustering methods and CVIs to

create a flexible, fast, and effective GNN framework to learn node representations without

any labels?

It is worth emphasizing that our goal is not node clustering directly—it is self-

supervised graph representation learning. The goal is to develop a general framework that is

capable of learning node embeddings for various tasks, including node classification, node

69

clustering, and node similarity search. There exists some similar work. DeepCluster [27]

trains a Convolutional Neural Network (CNN) with a supervised loss on pseudo-labels

generated by a clustering method to learn image embeddings.

AFGRL [113] uses clustering to select positive samples in lieu of augmentations

for graph representation learning and applies the general BGRL [183] framework to push

those representations together. SCD [175] searches over different hyperparameters to obtain

a clustering where the silhouette score is maximized. However, to the best of our knowledge,

there is no existing work in self-supervised representation learning that directly optimizes for

CVIs, which, as we elaborate below, presents us with tremendous potential in advancing and

accelerating the state of the art.

We fill this gap by proposing the novel idea of using Cluster Validation Indices

(CVIs) directly as our loss function for a neural network. In conjunction with advances in

clustering methods [164, 165, 114, 146], CVIs have been improved over the years as measures

of cluster quality after performing clustering and have been shown for almost 5 decades to

be effective for this purpose [158, 163, 6, 24].

Our proposed method, CARL-G, has several advantages over existing graph SSL

methods by virtue of CVI-inspired losses. First, CARL-G generally outperforms other graph

SSL methods in node clustering, clustering, and node similarity tasks (see Tables 5.2, 5.5

and 5.6). Second, CARL-G does not require the use of graph augmentations — which are

required by many existing graph contrastive and non-contrastive methods [236, 100, 183, 113,

15, 222] and can inadvertently alter graph semantics [113]. Third, CARL-G has a relatively

simple architecture compared to the dual encoder architecture of leading non-contrastive

70

methods [183, 100, 113], drastically reducing the memory cost of our framework. Fourth,

we provide theoretical analysis that shows the equivalence of some CVI-based losses and a

well-established (albeit expensive) contrastive loss. Finally, CARL-G is sub-quadratic with

respect to the size of the graph and much faster than the baselines, with up to a 79× speedup

on Coauthor-CS over BGRL [183] (the best-performing baseline).

Our contributions can be summarized as follows:

• We propose CARL-G, the first (to the best of our knowledge) framework to use a Cluster

Validation Index (CVI) as a neural network loss function.

• We propose 3 variants of CARL-G based on different CVIs, each with its own advantages

and drawbacks.

• We extensively evaluate CARL-Gsim — the best all-around performer — across 5 datasets

and 3 downstream tasks, where it generally outperforms baselines.

• We provide theoretical insight on CARL-Gsim’s success.

• We benchmark CARL-Gsim against 4 state-of-the-art models and show that it is up to

79 × faster with half the memory consumption (with the same encoder size) compared

to the best-performing node classification baseline.

5.2 Preliminaries

Notation We denote a graph as G = (V, E). V is the set of n nodes (i.e., n = |V|) and

E ⊆ V × V is the set of edges. We denote the node-wise feature matrix as X ∈ Rn×f ,

where f is the dimension of raw node features, and its i-th row xi is the feature vector for

the i-th node. We denote the binary adjacency matrix as A ∈ {0, 1}n×n and the learned

71

Graph & Node Features
Clustering Assignment

Encoder
(GNN)

Use for downstream
tasks

Predictor
(MLP)

Clustering
k-means

Only used for training

pushed apart

pushed apart

pulled closer

Backpropagate CVI-based loss
Initialize k-means using same centroids

Query:
1)
2)
3)
4)
5)

Similarity Search Node Classi�cationNode Clustering

(1)

(1)

(1)

(2)

(2)

(3)

CVI-based loss

Figure 5.2 CARL-G architecture diagram. We describe the method in detail in Section 5.3.

node representations as H ∈ Rn×d, where d is the size of latent dimension, and hi is the

representation for the i-th node. Let N(u) be a function that returns the set of neighbors for

a given node u (i.e., N(u) = {v|(u, v) ∈ E}).

Let C be the set of clusters, Ci ⊆ V be the set of nodes in the i-th cluster, and

c = |C| be the number of clusters. For ease of notation, let U ∈ [1, c]n be the set of cluster

assignments, where Uu is the cluster assignment for node u. Let µ = 1
c

∑
u∈V hu be the

global centroid and µi =
1

|Ci|
∑

u∈Ci hu be the centroid for the i-th cluster.

5.2.1 Graph Neural Networks

A Graph Neural Network (GNN) [107, 75, 226] typically performs message-passing

along the edges of the graph. Each iteration of the GNN can be described as follows [160]:

h(k+1)
u = Update(k)

(
h(k)
u ,Aggregate(k)({h(k)

v ,∀v ∈ N(u)})
)
, (5.1)

where Update and Aggregate are differentiable functions, and h
(0)
u = xu. In this work,

we opt for simplicity and use Graph Convolutional Networks (GCNs) [107] as the default

GNN. These are GNNs where Update consists of a single MLP layer, and Aggregate is

72

the mean of a node’s representation with its neighbors. Formally, each iteration of the GCN

can be written as:

h(k+1)
u = σ

W (k+1)
∑

v∈N(u)∪{u}

hv√
|N(u)| · |N(v)|

 . (5.2)

5.2.2 Cluster Validation Indices

Clustering is a class of unsupervised methods that aims to partition the input space

into multiple groups, known as clusters. The goal of clustering is generally to maximize the

similarity of points within each cluster while minimizing the similarity of points between

clusters [203]. In this work, we focus on centroid-based clustering algorithms like k-means [129]

and k-medoids [141].

Cluster Validation Indices (CVIs) [6] estimate the quality of a partition (i.e.,

clustering) by measuring the compactness and separation of the clusters without knowledge of

the ground truth clustering. Note that these are different from metrics like Normalized Mutual

Information (NMI) [38] or the Rand Index [153], which require ground truth information

of cluster labels. Many different CVIs have been proposed over the years and extensively

evaluated [6, 163].

Arbelaitz et al. [6] extensively evaluated 30 different CVIs over a wide variety of

datasets and found that the Silhouette [158], Davies-Bouldin* [103], and Calinski-Harabasz

(also known as the VRC: Variance Ratio Criterion) [24] indices perform best across 720

different synthetic datasets. The VRC has also been shown to be effective in determining

the number of clusters for clustering methods [163, 24, 132, 50]. As such, we focus on the

73

silhouette index (the best-performing CVI) and VRC (an effective CVI — especially for

choosing the number of clusters) in this work.

Silhouette

The silhouette index computes the ratio of intra-cluster distance with respect to

the inter-cluster distance of itself with its nearest neighboring cluster. It returns a value in

[-1, 1], where a value closer to 1 signifies more desired and better distinguishable clustering.

The silhouette index [158] is defined as Sil(C) = 1
n

∑
u∈V s(u), where:

s(u) =
b(u)− a(u)

max{a(u), b(u)} , (5.3)

and

a(u) =
1

|CUu | − 1

∑
v∈(CUu−{u})

Dist(hu,hv) , (5.4)

b(u) = min
i ̸=Uu

1

|Ci|
∑
v∈Ci

Dist(hu,hv) . (5.5)

The runtime of computing the silhouette index for a given node is O(n), which can be

expensive if calculated over all nodes. We discuss this issue and a modified solution later in

Section 5.3.1.

Variance Ratio Criterion

The VRC [24] computes a ratio between its intra-cluster variance and its inter-

cluster variance. Its intra-cluster variance is based on the distances of each point to its

74

centroid, and its inter-cluster variance is based on the distance from each cluster centroid to

the global centroid. Formally,

VRC(C) = n− c

c− 1

∑
Ck∈C |Ck|Dist(µk,µ)∑

Ck∈C
∑

u∈Ck Dist(hu,µ)
. (5.6)

For the purposes of this paper, we use Euclidean distance, i.e., Dist(a, b) = ∥a− b∥2.

5.3 Proposed Method

Problem Formulation

Given a graph G and its node-wise feature matrix X ∈ Rn×f , learn node embeddings

hu ∈ Rd for each node u ∈ V without any additional information (e.g. node class labels).

The learned embeddings should be suitable for various downstream tasks, such as node

classification and node clustering.

CARL-G

We propose CARL-G, which consists of three main steps (Figure 5.2). First, a GNN

encoder Enc(·) takes the graph as input and produce node embeddings H = Enc(X,A).

Next, a multi-layer perceptron (MLP) predictor network Pred(·) takes the embeddings by

GNN and produces a second set of node embeddings Z = Pred(H). We then perform

a clustering algorithm (e.g., k-means) on Z to produce a set of clusterings C. It is worth

noting that the clustering algorithm does not have to be differentiable. Finally, we compute

a cluster validation index (CVI) on the cluster assignments and backpropagate to update

the encoder’s and predictor’s parameters. After training, only the GNN encoder Enc(·)

and its produced embeddings H are used to perform downstream tasks, and the predictor

75

network Pred(·) is discarded (similar to the prediction heads in non-contrastive learning

work [183, 113, 100]).

5.3.1 Training CARL-G

As aforementioned in Section 5.2.2, we evaluate the silhouette index [158] and

the VRC [24] as learning objectives. In order to use them effectively, we must make slight

modifications to the loss functions. First, we must negate the functions since a higher score

is better for both CVIs, and we typically want to minimize a loss function. Second, while

Sil(C) = 1 and VRC(C) → ∞ are theoretically ideal, we find this is generally not true

in practice. This is because the clustering method may miscluster some nodes and fully

maximizing the CVIs will push the misclustered representations too close together, negatively

impacting a classifier’s ability to distinguish them. To bound the maximum values of our

loss, we add τSil and τvrc — the target silhouette and VRC indices, respectively. The

silhouette-based and VRC-based losses are then defined as follows:

LSil = |τSil − Sil(C)| , Lvrc = |τvrc − VRC(C)| , (5.7)

where τSil ∈ [−1, 1] is the target silhouette index and τvrc ∈ [0,∞) is the target VRC.

Upon careful inspection of Equation (5.3), we can observe that the computational

complexity for the silhouette is O(n2), while the complexity of VRC is only O(nc), where

c ≪ n. This is a critical weakness in using the silhouette, especially when the goal is to avoid

a quadratic runtime (the typical drawback of contrastive methods). Backpropagating on

this loss function would also result in quadratic memory usage because we have to store the

gradients for each operation. To resolve this issue, we leverage the simplified silhouette [86],

76

which instead uses the centroid distance. The simplified silhouette has been shown to have

competitive performance with the original silhouette [189] while being much faster — running

in O(nc) time. As such, we also try the simplified silhouette, which can be written as:

s′(u) =
b′(u)− a′(u)

max{a′(u), b′(u)} , (5.8)

where i = Uu is the cluster assignment for u and

a′(u) = Dist(hu,µi) , b′(u) = min
Ck ̸=Ci

Dist(hu,µi) . (5.9)

We use the same loss function as LSil (Equation (5.7)), simply substituting s′(u) for s(u)

(see Section 5.2.2), and name it Lsim.

5.3.2 Clustering Method

k-means We primarily focus on k-means clustering for this framework due to its fast linear

runtime (although we do briefly explore using k-medoids in Section 5.4.3 below). The goal of

k-means is to minimize the sum of squared errors—also known as the inertia or within-cluster

sum of squares. Formally, this can be written as:

argmin
C

c∑
i=1

∑
x∈Ci

Dist(x,µi) . (5.10)

Finding the optimal solution to this problem is NP-hard [39], but efficient approximation

algorithms [165, 126] have been developed that return an approximate solution in linear time

(see Section 5.5). While k-means is fast, it is known to be heavily dependent on its initial

centroid locations [21, 8], which can be partially solved via repeated re-initialization and

picking the clustering that minimizes the inertia.

77

Poor initialization is typically not a large issue in k-means use cases since the end

goal is usually to compute a single clustering so we can simply repeat and re-initialize until

we are satisfied. However, since we generate a new clustering once per epoch in CARL-G, poor

initialization can result in a large amount of variance between epochs.

To minimize the chance of poor centroid initialization occurring during training,

we carry the cluster centroids over between epochs. The centroids will naturally update after

running k-means since the embeddings Z changes each epoch (after backpropagation with

CVI-based loss).

5.3.3 Theoretical Analysis

To gain a theoretical understanding of why our framework works, we compare it to

Margin loss — a fundamental contrastive loss function that has been shown to work well for

self-supervised representation learning [75, 210]. We show that CVI-based loss (especially

silhouette loss) has some similarity to Margin based loss, which intuitively explains the

success of CVI-based loss. In addition, we show that CVI-based loss has the advantages of

(a) lower sensitivity to graph structure, and (b) no negative sampling required.

Similarity analysis of CVI-based loss and Margin loss

Both Margin loss and CVI-based loss fundamentally consist of two terms: one

measuring the distance between neighbors/inter-cluster points and one measuring the distance

between non-neighbors/inter-cluster points. This similarity allows us to analyze basic versions

of our proposed silhouette loss and margin loss in the context of node classification and show

that they are identical in both of their ideal cases. We further analyze the sensitivity of

78

these losses with respect to various parameters of the graph to examine the advantages and

disadvantages of our proposed method. To do this, we first define the mean silhouette and

margin loss functions:

Definition 1 (Mean Silhouette) We define the mean silhouette loss (removing the hyper-

parameter τSil, focusing on the numerator (un-normalizing the index) and replacing min with

the mean) as follows:

Lms(u) = −(bms(u)− a(u)) = a(u)− bms(u) , (5.11)

where

bms(u) =
1

c− 1

∑
j ̸=i

1

|Cj |
∑
v∈Cj

Dist(hu,hv) . (5.12)

Definition 2 (Margin Loss) We define margin loss as follows:

ml(u) =
1

|N(u)|
∑

v∈N(u)

Dist(hu,hv) (5.13)

− 1

|V −N(u)− {u}|
∑

t̸∈N(u)

Dist(hu,ht) .

It is worth noting that this margin loss differs from the max-margin loss traditionally used

in graph SSL [210]. We simplify it above in Theorem 2 by removing the max function for

ease of analysis.

Let L be the set of true class labels, and Lu be the class label for a node u ∈ V.

We define the expected inter-class and intra-class distances as follows:

E [Dist(hu,hv)] =


α, if Lu = Lv ;

β, otherwise,

(5.14)

79

where α, β ∈ R+. Next, let

P ((u, v) ∈ E) =


p, if Lu = Lv ;

q, otherwise,

(5.15)

i.e., G follows a stochastic block model with a probability matrix P ∈ [0, 1]c×c of the form:

P =



p q q q

q

q

q p


. (5.16)

Note that q does not necessarily equal 1 − p. Finally, we define the inter-class clustering

error rate ϵ and intra-class clustering error rate δ as follows:

P (Cu ̸= Cv|Lu = Lv) = ϵ ; (5.17)

P (Cu = Cv|Lu ̸= Lv) = δ . (5.18)

Claim 3 Given the above assumptions, the expected value of the simplified silhouette loss

approaches that of the margin loss as p → 1, q → 0, and ϵ, δ → 0.

Proof. To find E [Ls(u)], we first find E [a(u)] and E [bs(u)]:

E [a(u)] =
α

c
− ϵα

c
+ δβ − δβ

c
; (5.19)

E [bs(u)] =
ϵα

c
+ β − βδ − β

c
+

δβ

c
; (5.20)

E [Ls(u)] = E [a(u)]− E [bs(u)] (5.21)

= −2ϵα

c
− 2δβ

c
+

β

c
+

α

c
− β + 2δβ .

80

Next, we take its limit as ϵ, δ → 0:

lim
ϵ,δ→0

(
−2ϵα

c
− 2δβ

c
+

β

c
+

α

c
− β + 2δβ

)
=

β

c
+

α

c
− β . (5.22)

To find E [ml(u)], we first find the expected value of its left and right sides:

E

 1

N(u)

∑
v∈N(u)

Dist(hu,hv)

 =
αp

c
+ βq − βq

c
; (5.23)

E

 1

|V −N(u)− {u}|
∑

t̸∈N(u)

Dist(hu,ht)

 (5.24)

=
α

c
− αp

c
+ β − βq − β

c
+

βq

c
. (5.25)

Substituting them back in, we get

E [ml(u)] =
2αp

c
+ 2βq − 2βq

c
− α

c
+

β

c
− β . (5.26)

Taking its limit as p → 1, q → 0, we find

lim
p→1,q→0

(
2αp

c
+ 2βq − 2βq

c
− α

c
+

β

c
− β

)
(5.27)

=
2α

c
− α

c
+

β

c
− β =

α

c
+

β

c
− β . (5.28)

∴ lim
p→1,q→0

E [ml(u)] = lim
ϵ,δ→0

E [Ls(u)] . (5.29)

Since the two loss functions are identical in their ideal cases, one may wonder: Why not

use margin loss instead? Well, the silhouette-based loss has two key advantages:

Lower sensitivity to graph structure.

The margin loss is minimized as p → 1 and q → 0. However, p and q are attributes

of the graph itself, making it difficult for a user to directly improve the performance of a model

using that loss function. On the other hand, the mean silhouette depends on ϵ and δ, the

81

inter/intra-class clustering error rates, instead. Even on the same graph, a silhouette-based

loss can likely be improved by either choosing a more suitable clustering method or distance

metric. This greatly increases the flexibility of this loss function.

No negative sampling.

Negative sampling is required for most graph contrastive methods and often requires

either many samples [79] or carefully chosen samples [212, 207]. This is costly, often costing

quadratic time [183]. The primary advantage of non-contrastive methods is that they avoid

this step [15, 183]. The simplified silhouette avoids this issue by only working in the n× d

embedding space instead of the n× n graph. It also contrasts node representations against

centroid representations instead of against other nodes directly.

5.4 Experimental Evaluation

We evaluate 3 variants of CARL-G: (a) CARL-GSil — based on the silhouette loss

in Equation (5.7), (b) CARL-GVRC — based on the VRC loss in Equation (5.7), and (c)

CARL-Gsim — based on the simplified silhouette loss in Equation (5.8). We evaluate these

variants on 5 datasets on node classification and thoroughly benchmark their memory usage

and runtime. We then select the best-performing variant, CARL-Gsim, and evaluate its

performance across 2 additional tasks: node clustering, and embedding similarity search.

Node Classification

A common task for GNNs is to classify each node into one of several different classes.

In the supervised setting, this is often explicitly optimized for during the training process

82

since the GNN is typically trained with cross-entropy loss over the labels [107, 75] but this is

not possible for graph SSL methods where we do not have the labels during the training of

the GNN. As such, the convention [186, 236, 15, 183, 113] is to train a logistic regression

classifier on the frozen embeddings produced by the GNN.

Following previous works, we train a logistic regression model with ℓ2 regularization

on the frozen embeddings produced by our encoder model. We compare against a variety of

self-supervised baselines, including both GNN-based and non-GNN-based: DeepWalk [149],

RandomInit [186], DGI [186], GMI [147], MVGRL [79], GRACE [236], G-BT [15], AF-

GRL [113], and BGRL [183]. We also evaluate our method against two supervised models:

GCA [237] and a GCN [107]. We follow [183, 113] and use an 80/10/10 train/validation/test,

early stopping on the validation accuracy. We re-run AFGRL and BGRL using their pub-

lished code and weights (where possible) on that split1. Finally, we use node2vec results from

[113] and the reported results of the other baseline methods from their respective papers.

See Section 5.4.4 for implementation details.

Node Clustering

Following previous graph representation learning work [79, 142, 113], we also evaluate

CARL-G on the task of node clustering. We fit a k-means model on the generated embeddings

H using the evaluation criteria from [113] — NMI and cluster homogeneity. Following [113],

we re-run our model with different hyperparameters (the embeddings are not the same as

node classification) and report the highest clustering scores. Due to computational resource
1The official BGRL implementation online uses an 80/0/20 split compared to the 80/10/10 split mentioned

in [183], so we re-run their trained models on an 80/10/10 split. Most results are similar but we get slightly
different results on Amazon-Computers.

83

https://github.com/nerdslab/bgrl/blob/dec99f8c605e3c4ae2ece57f3fa1d41f350d11a9/bgrl/logistic_regression_eval.py#L9

constraints, we choose to only evaluate CARL-Gsim, the overall best-performing model. We

report the scores of the baselines models from [113].

Similarity Search

Following [113], we evaluate our model on node similarity search. The goal of

similarity search is to, given a query node u, return the k nearest neighbors. In our setting,

the goal is to return other nodes belonging to the same class as the query node. We evaluate

the performance of each method by computing its Hits@k — the percentage of the top k

neighbors that belong to the same class. Similar to [113], we evaluate our model every epoch

and report the highest similarity search scores. We use k ∈ {5, 10} and use the scores from

[113] as baseline results.

5.4.1 Evaluation Results

Node Classification Performance

We show the node classification accuracy of our three proposed methods along

with the baseline results in Table 5.5. CARL-GSil generally performs the best of all the

evaluated methods, with the highest accuracy on 4/5 of the datasets (all except Wiki-CS).

CARL-Gsim generally performs similarly to CARL-GSil, with similar performance on all datasets

except Wiki-CS and Amazon-Photos, and still outperforms the baselines on 4/5 datasets.

CARL-GVRC is the weakest-performing method of the three methods. It only outperforms

baselines on 2/5 datasets. Since CARL-Gsim is much faster than CARL-GSil (see Section 5.3.1

and Figure 5.4a) without sacrificing much performance, we focus on CARL-Gsim for the

remainder of the evaluation tasks.

84

GRACE GCA BGRL AFGRL CARL-Gsim

WikiCS
NMI 0.428 0.337 0.397 0.413 0.471

Hom. 0.442 0.353 0.416 0.430 0.491

Computers
NMI 0.479 0.528 0.536 0.552 0.558

Hom. 0.522 0.582 0.587 0.604 0.607

Photo
NMI 0.651 0.644 0.684 0.656 0.701

Hom. 0.666 0.658 0.700 0.674 0.718

Co.CS
NMI 0.756 0.762 0.773 0.786 0.790

Hom. 0.791 0.797 0.804 0.816 0.815

Co.Physics
NMI OOM OOM 0.557 0.729 0.771

Hom. OOM OOM 0.602 0.735 0.776

Table 5.2 Node clustering performance in terms of cluster NMI and homogeneity. CARL-Gsim

outperforms the baselines on 4/5 datasets.

Node Clustering Performance

We evaluate CARL-Gsim on node clustering and display the results in Table 5.2. We

find that it generally outperforms its baselines on 5/5 datasets in terms of NMI and 4/5

datasets in terms of homogeneity. CARL-Gsim and AFGRL [113] both encourage a clusterable

representations by utilizing k-means clustering as part of their respective training pipelines.

Similarity Search Performance

We evaluate CARL-Gsim on similarity search in Table 5.6, where it roughly performs

on par with AFGRL, the best-performing baseline. This is surprising, as AFGRL specifically

85

100 101 102 103

Speedup

88.25

88.50

88.75

89.00

89.25

89.50

89.75

90.00
A

cc
ur

ac
y AFGRL

BGRL
G-BT
GRACE
CARL-GSIM

CARL-GSIL

CARL-GVRC

(a) Amazon-Comp

100 101 102 103

Speedup

91.5

92.0

92.5

93.0

A
cc

ur
ac

y

(b) Coauthor-CS

100 101

Speedup

95.2

95.4

95.6

95.8

96.0

A
cc

ur
ac

y

(c) Coauthor-Physics

100 101 102 103

Speedup

76.5

77.0

77.5

78.0

78.5

79.0

79.5

80.0

A
cc

ur
ac

y

(d) Wiki-CS

Figure 5.3 Runtime v.s. accuracy plots. CARL-Gsim, CARL-GSil, and CARL-GVRC are our
proposed methods. Speedup is relative to the slowest baseline (AFGRL). AFGRL and
GRACE run out of memory on Coauthor-Physics.

optimizes for the similarity search task by using k-NN as one of the criteria to sample

neighbors.

5.4.2 Resource Benchmarking

We benchmark the 3 variants of our proposed method against BGRL [183] (the

best-performing baseline), AFGRL [113] (the most recent baseline), G-BT [15] (the fastest

baseline), and GRACE [236] (a strong contrastive baseline). We time the amount of time

it takes to train each of the best-performing node classification models. We remove all

evaluation code and purely measure the amount of time it takes to train each method, taking

care to synchronize all asynchronous GPU operations. We use the default values in the

respective papers for AFGRL and BGRL: 5,000 epochs for AFGRL and 10,000 epochs for

BGRL. We use 50 epochs for CARL-G, although our method converges much faster in practice.

We also measure the GPU memory usage of each method. We use the hyperparame-

ters by the respective paper authors for each dataset, which is why the methods use different

encoder sizes. Note that the encoder sizes greatly affect the runtime and memory usage of

86

each model, so we report the layer sizes used in Table 5.3. Our benchmarking results can be

found in Figures 5.4a and 5.4b.

Computers Photos Co-CS Co-Phy Wiki

AFGRL [512] [512] [1024] OOM [1024]

BGRL [256,128] [256,128] [512,256] [256,128] [512,256]

G-BT [256,128] [512,256] [512,256] [256,128] [512,256]

GRACE [256,128] [256,128] [512,256] [256,128] [512,256]

CARL-Gsim [512,256] [512,256] [512,256] [512,256] [512,256]

CARL-GSil [512,256] [512,256] [512,256] [512,256] [512,256]

CARL-GVRC [512,256] [512,256] [512,256] [512,256] [512,256]

Table 5.3 GCN layer sizes used by the encoder for each method. The layer sizes greatly affect
the amount of memory used by each model (shown in Figure 5.4b).

CARL-G is fast.

In Figure 5.4a, we show that CARL-Gsim is much faster than competing baselines,

even in cases where the encoder is larger (see Table 5.3). BGRL is the best-performing node

classification baseline, and CARL-Gsim is about 79× faster on Coauthor-CS, and 57× faster

on Coauthor-Physics. AFGRL is by far the slowest method, requiring much longer to train.

87

Amazon-Photos Wiki-CS Amazon-Computers Coauthor-CS Coauthor-Physics
Dataset

101

102

103

104

To
ta

lT
ra

in
in

g
Ti

m
e

(s
)

4659

16185

8311

19533

284

720

387

1032
1270

37
52

26

67
89

414

838

1734 1815

6
4

9
7

17

30

217
172

832

524

9

15

8
13

27

(a) Mean total training time. The y-axis is

on a log. scale.

Amazon-Photos Wiki-CS Amazon-Computers Coauthor-CS Coauthor-Physics
Dataset

0

2

4

6

8

10

G
PU

M
em

or
y

U
sa

ge
(G

iB
)

1.2

4.1

2.6

5.4

0.6

1.8

1.1

2.6

4.7

1.0

1.8

1.1

2.1

4.5

1.8

4.0

5.4

10.7

1.0

1.8
2.1

1.3

3.3

1.0

1.8
2.1

4.6

9.8

1.0

1.8
2.1

1.3

3.3

AFGRL
BGRL
G-BT
GRACE
CARL-G VRC
CARL-G SIL

CARL-G SIM

(b) Max GPU memory usage.

Figure 5.4 Mean total training time (left) and max GPU usage (right) for each model.
CARL-GVRC is the fastest with generally the least amount of memory used. CARL-Gsim uses
the same amount of memory but is slightly slower. Note that not all of the baselines use the
same encoder size—see Table 5.3 for encoder sizes.

101 102

Number of Clusters

92.8

93.0

93.2

93.4

A
cc

ur
ac

y

(a) Acc. on Amazon-Photos.

101 102

Number of Clusters

95.75

95.80

95.85

95.90

95.95

A
cc

ur
ac

y

(b) Acc. on Coauthor-Physics.
Figure 5.5 Node classification accuracy of CARL-Gsim on Amazon-Photos and
Coauthor-Physics with a different number of clusters.

88

CARL-G works with a fixed encoder size

We find that CARL-G works well with a fixed encoder size (see Table 5.3). Unlike

AFGRL, BGRL, GRACE, and G-BT, we fix the encoder size for CARL-G across all datasets.

This has practical advantages by allowing a user to fix the model size across datasets, thereby

reducing the number of hyperparameters in the model. We observed that increasing the

embedding size also increases the performance of our model across all datasets. This is not

true for all of our baselines — for example, [113] found that BGRL, GRACE, and GCA

performance will often decrease in performance as embedding sizes increase. We limited our

model embedding size to 256 for a fair comparison with other models.

CARL-Gsim uses much less memory for the same encoder size.

When the encoder sizes of baseline methods are the same, CARL-Gsim uses much

less memory than the baselines. The GPU memory usage of CARL-Gsim is also much lower

than (about half) the memory usage of a BGRL model of the same size. This is because

BGRL stores two copies of the encoder with different weights. The second encoder’s weights

gradually approach that of the first encoder during training but still takes up twice the space

compared to single-encoder models like CARL-Gsim or G-BT [15].

CARL-Gsim’s runtime is linear with respect to the number of neighbors.

In Section 5.3.1, we mention that the runtime of CARL-GSil, the silhouette-based loss,

is O(n2). This was the motivation for us to propose CARL-Gsim — the simplified-silhouette-

based loss which has an O(nc) runtime instead.

89

5.4.3 Ablation Studies

We perform an ablation and sensitivity analysis on several aspects of our model.

First, we examine the sensitivity of our model with respect to c—the number of clusters.

Second, we examine the effect of using k-medoids instead of k-means. Finally, we try to

inject more graph structural information during the clustering stage to see if we are losing

any information.

Effect of the number of clusters.

We perform sensitivity analysis on c — the number of clusters (see Figures 5.5a

and 5.5b). We find that, generally, the accuracy of our method goes up as the number of

clusters increases. As the number of clusters continues to increase, the accuracy begins to

drop. This implies that, much like traditional clustering [163], there is some “sweet spot” for

c. However, it is worth noting that this number does not directly correspond to the number

of classes in the data and is much higher than c for all of the datasets. DeepCluster [27] also

makes similar observations, where they find 10,000 clusters is ideal for ImageNet, despite

there only being 1,000 labeled classes.

Table 5.4 k-medoids w/ CARL-Gsim.

Dataset Accuracy ∆

Computers -1.41

Co.CS -0.33

Co.Phy -0.07

Photos -0.11

90

k-medoids v.s. k-means.

We study the effect of using k-medoids instead of k-means as our clustering algorithm.

Both algorithms are partition-based clustering methods [203] and have seen optimizations in

recent years [164, 165]. We find that the k-means-based CARL-Gsim generally performs better

across all 4 of the evaluated datasets. The differences in node classification accuracy are

shown in Table 5.4.

Does additional information help?

It may appear as if we are losing graph information by working only with the

embeddings. If this is the case, we should be able to improve the performance of our method

by injecting additional information into the clustering step. We can do this by modifying the

distance function of our clustering algorithm to the following:

Dist(hu,hv) = λ ∥hu − hv∥2 + (1− λ)Du,v , (5.30)

where D is the all-pairs shortest path (APSP) length matrix of G. This allows us to inject

node neighborhood information into the clustering algorithm on top of the aggregation

performed by the GNN. However, we find there is no significant change in performance for

low λ and performance decreases for high λ. This helps confirm the hypothesis that the

GNN encoder is able to successfully embed a sufficient amount of structural data in the

embedding.

91

Method Wiki-CS Amazon-Computers Amazon-Photos Coauthor-CS Coauthor-Physics

Traditional

Raw Features 71.98 ± 0.00 73.81 ± 0.00 78.53 ± 0.00 90.37 ± 0.00 93.58 ± 0.00

node2vec [67] 71.79 ± 0.05 84.39 ± 0.08 89.67 ± 0.12 85.08 ± 0.03 91.19 ± 0.04

DeepWalk [149] 74.35 ± 0.06 85.68 ± 0.06 89.44 ± 0.11 84.61 ± 0.22 91.77 ± 0.15

DeepWalk [149] + Feat. 77.21 ± 0.03 86.28 ± 0.07 90.05 ± 0.08 87.70 ± 0.04 94.90 ± 0.09

GNN SSL

Random-Init [186] 78.95 ± 0.58 86.46 ± 0.38 92.08 ± 0.48 91.64 ± 0.29 93.71 ± 0.29

DGI [186] 75.35 ± 0.14 83.95 ± 0.47 91.61 ± 0.22 92.15 ± 0.63 94.51 ± 0.09

GMI [147] 74.85 ± 0.08 82.21 ± 0.31 90.68 ± 0.17 OOM OOM

MVGRL [79] 77.52 ± 0.08 87.52 ± 0.11 91.74 ± 0.07 92.11 ± 0.12 95.33 ± 0.03

GRACE [236] 80.14 ± 0.48 89.53 ± 0.35 92.78 ± 0.45 91.12 ± 0.20 OOM

G-BT [15] 76.65 ± 0.62 88.14 ± 0.33 92.63 ± 0.44 92.95 ± 0.17 95.07 ± 0.17

AFGRL [113] 78.52 ± 0.72 89.55 ± 0.36 92.91 ± 0.26 93.14 ± 0.23 OOM

BGRL [183] 79.98 ± 0.10 89.90 ± 0.19 93.17 ± 0.30 93.34 ± 0.13 95.77 ± 0.05

Proposed

CARL-GVRC 78.81 ± 0.49 88.90 ± 0.39 93.31 ± 0.36 93.18 ± 0.31 95.92 ± 0.14

CARL-Gsim 79.58 ± 0.60 90.14 ± 0.33 93.37 ± 0.37 93.36 ± 0.39 95.96 ± 0.09

CARL-GSil 79.73 ± 0.44 90.14 ± 0.34 93.44 ± 0.32 93.37 ± 0.33 95.97 ± 0.14

Supervised
GCA [237] 78.35 ± 0.05 88.94 ± 0.15 92.53 ± 0.16 93.10 ± 0.01 95.73 ± 0.03

Supervised GCN [107] 77.19 ± 0.12 86.51 ± 0.54 92.42 ± 0.22 93.03 ± 0.31 95.65 ± 0.16

Table 5.5 Table of node classification accuracy. Bolded entries indicate the highest accuracy
for that dataset. Underlined entries indicate the second-highest accuracy. OOM indicates
out-of-memory.

92

GRACE GCA BGRL AFGRL CARL-Gsim

WikiCS
Hits@5 0.775 0.779 0.774 0.781 0.789

Hits@10 0.765 0.767 0.762 0.766 0.775

Computers
Hits@5 0.874 0.883 0.895 0.897 0.881

Hits@10 0.864 0.874 0.886 0.889 0.871

Photo
Hits@5 0.916 0.911 0.925 0.924 0.922

Hits@10 0.911 0.905 0.920 0.917 0.917

Co.CS
Hits@5 0.910 0.913 0.911 0.918 0.916

Hits@10 0.906 0.910 0.909 0.914 0.914

Co.Physics
Hits@5 OOM OOM 0.950 0.953 0.953

Hits@10 OOM OOM 0.946 0.949 0.950

Table 5.6 Performance on similarity search. Surprisingly, CARL-G performs fairly well on this
task, despite not being explicitly optimized for this task (unlike AFGRL, which uses KNN
during training).
5.4.4 Implementation Details

For fair evaluation with other baselines, we elect to use a standard GCN [107]

encoder. Our focus is on the overall framework rather than the architecture of the encoder.

All of our baselines also use GCN layers. Following [183, 113], we use two-layer GCNs for all

datasets and use a two-layer MLP for the predictor network.We implement our model with

PyTorch [143] and PyTorch Geometric [54]. A copy of our code is publically available at

https://github.com/willshiao/carl-g. We adapt the code from [173], which contains

implementations of BGRL [183], GRACE [236], and GBT [15] to use the split and downstream

tasks from [113]. We also use the official implementation of AFGRL [113]. We perform 50

runs of Bayesian hyperparameter optimization on each dataset and task for each of our 3

93

https://github.com/willshiao/carl-g

methods. The hyperparameters for our results are available at that link. All of our timing

experiments were conducted on Google Cloud Platform using 16 GB NVIDIA V100 GPUs.

5.4.5 Limitations & Future Work

While our proposed framework has been shown to be highly effective in terms of

both training speed and performance across the 3 tasks, there are also some limitations to

our approach. One such limitation is that we use hard clustering assignments, i.e., each

node is assigned to exactly one cluster. This can pose issues for multi-label datasets like the

Protein-Protein Interaction (PPI) [238] graph dataset. One possible solution to this problem

is to perform soft clustering and use a weighted average of CVIs for second/tertiary cluster

assignments, but this would require major modifications to our method, and we reserve an

exploration of this for future work.

5.5 Additional Related Work

Deep Clustering. A related, but distinct, area of work is deep clustering, which uses a

neural network to directly aid in the clustering of data points [4]. However, the fundamental

goal of deep clustering differs from graph representation learning in that the goal is to produce

a clustering of the graph nodes rather than just representations of them. An example of this

is DEC [202], which uses a deep autoencoder with KL divergence to learn cluster centers,

which are then used to cluster points with k-means.

Clustering for Representation Learning. There exists work that uses clustering to

learn embeddings [231, 27, 204]. Notably, DeepCluster [27] trains a CNN with standard

94

cross-entropy loss on pseudo-labels produced by k-means. Similarly, [204] simultaneously

performs clustering and dimensionality reduction with a deep neural network. The key

difference between those models and our proposed framework is that we use graph data and

CVI-based losses instead of traditional supervised losses.

Clustering for Efficient GNNs. There also exists work that uses clustering to speed

up GNN training and inference. Cluster-GCN [35] samples node blocks produced by graph

clustering algorithms and speeds up GCN layers by limiting convolutions within each block

for training and inference. However, it is worth noting that it computes a fixed clustering,

rather than updating the clustering jointly with our model (unlike CARL-G). FastGCN [31]

does not explicitly cluster nodes but uses Monte Carlo importance sampling to similarly

reduce neighborhood size and improve the speed of GCNs.

Efficient k-means. Over the years, many variants and improvements to k-means have

been proposed. The original method proposed to solve the k-means assignment problem was

Lloyd’s algorithm [126]. Since then, several more efficient algorithms have been developed.

Bottou and Bengio [20] propose using stochastic gradient descent for finding a solution.

Sculley [165] further builds on this work by proposing a k-means variant that uses mini-

batching to dramatically speed up training. Finally, approximate nearest-neighbor search

libraries like FAISS [96] allow for efficient querying of nearest neighbors, further speeding up

training.

95

5.6 Conclusion

In this chapter, we are the first to introduce Cluster Validation Indexes in the

context of graph representation learning. We propose a novel CVI-based framework and

investigate trade-offs between different CVI variants. We find that the loss function based

on the simplified silhouette achieves the best overall performance to runtime ratio. It

outperforms all baselines across 4/5 datasets in node classification and node clustering tasks,

training up to 79× faster than the best-performing baseline. It also performs on-par with

the best performing node similarity search baseline while training 1,500× faster. Moreover,

to more comprehensively understand the effectiveness of CARL-G, we establish a theoretical

connection between the silhouette and the well-established margin loss.

5.7 Appendix

5.7.1 Full Proof of Equivalency to Margin Loss

Proof. For ease of analysis, we work with the simplified silhouette loss (Theorem 1)

and the non-max margin loss (Theorem 2). Let L be the set of class labels, and Lu be the

class label for node u. Let Cu be the cluster assignment for node u, and c = |C| be the

number of clusters/classes. We define the expected inter-class and intra-class distances as

follows:

E [Dist(hu,hv)] =


α if Lu = Lv

β otherwise

, (5.31)

96

where α, β ∈ R+. Next, let

P ((u, v) ∈ E) =


p if Lu = Lv

q otherwise

, (5.32)

i.e., G follows a stochastic block model with a probability matrix P ∈ [0, 1]c×c of the form:

P =



p q q q

q

q

q p


. (5.33)

Note that q does not necessarily equal 1− p. We define the inter-class clustering error rate ϵ

and intra-class clustering error rate δ as follows:

P (Cu ̸= Cv|Lu = Lv) = ϵ (5.34)

P (Cu = Cv|Lu ̸= Lv) = δ . (5.35)

97

To find E [ss(u)], we first find E [a(u)] and E [bs(u)]:

E [a(u)] = E

 1

|Ci| − 1

∑
v∈(Ci−{u})

Dist(hu,hv)

 (5.36)

= Ev [Dist(hu,hv)|Cu = Cv] (5.37)

= P (Lu = Lv) · P (Cu = Cv|Lu = Lv) (5.38)

· Ev [Dist(hu,hv)|Cu = Cv ∧ Lu = Lv]

+ P (Lu ̸= Lv) · P (Cu = Cv|Lu ̸= Lv)

· Ev [Dist(hu,hv)|Cu = Cv ∧ Lu ̸= Lv]

=

(
1

c

)
(1− ϵ)α+

(
1− 1

c

)
δβ (5.39)

=
α

c
− ϵα

c
+ δβ − δβ

c
(5.40)

and

E [bs(u)] = E

 1

c− 1

∑
j ̸=i

1

|Cj |
∑
v∈Cj

Dist(hu,hv)

 (5.41)

= Ej ̸=i

 1

|Cj |
∑
v∈Cj

Dist(hu,hv)

 (5.42)

= Ev [Dist(hu,hv|Cu ̸= Cv)] (5.43)

98

= P (Lu = Lv) · P (Cu ̸= Cv|Lu = Lv)· (5.44)

Ev [Dist(hu,hv)|Cu ̸= Cv ∧ Lu = Lv]

+ P (Lu ̸= Lv) · P (Cu ̸= Cv|Lu ̸= Lv)

· Ev [Dist(hu,hv)|Cu ̸= Cv ∧ Lu ̸= Lv]

=

(
1

c

)
ϵα+

(
1− 1

c

)
(1− δ)β (5.45)

=
ϵα

c
+ β

(
1− δ − 1

c
+

δ

c

)
(5.46)

=
ϵα

c
+ β − βδ − β

c
+

δβ

c
. (5.47)

Now, we can find E [ss(u)]:

E [ss(u)] = E [bs(u)]− E [a(u)] (5.48)

=
ϵα

c
+ β − βδ − β

c
+

δβ

c
−
(
α

c
− ϵα

c
+ δβ − δβ

c

)
(5.49)

=
ϵα

c
+ β − βδ − β

c
+

δβ

c
− α

c
+

ϵα

c
− δβ +

δβ

c
(5.50)

=
2ϵα

c
+

2δβ

c
− β

c
− α

c
+ β − 2δβ . (5.51)

Taking its limit as ϵ, δ → 0, we find

lim
ϵ,δ→0

(
−2ϵα

c
− 2δβ

c
+

β

c
+

α

c
− β + 2δβ

)
=

β

c
+

α

c
− β . (5.52)

99

We similarly break down the margin loss into two terms:

E

 1

N(u)

∑
v∈N(u)

Dist(hu,hv)

 (5.53)

= Ev [Dist(hu,hv)|(u, v) ∈ E] (5.54)

= P (Lu = Lv) · P ((u, v) ∈ E|Lu = Lv) (5.55)

· Ev [Dist(hu,hv)|(u, v) ∈ E ∧ Lu = Lv]

+ P (Lu ̸= Lv) · P ((u, v) ∈ E|Lu ̸= Lv)

· Ev [Dist(hu,hv)|(u, v) ∈ E ∧ Lu ̸= Lv]

=

(
1

c

)
αp+

(
1− 1

c

)
βq (5.56)

=
αp

c
+ βq − βq

c
(5.57)

and

E

 1

|V −N(u)− {u}|
∑

t̸∈N(u)

Dist(hu,ht)

 (5.58)

= Ev [Dist(hu,hv)|(u, v) ̸∈ E] (5.59)

= P (Lu = Lv) · P ((u, v) ̸∈ E|Lu = Lv) (5.60)

· Ev [Dist(hu,hv)|(u, v) ̸∈ E ∧ Lu = Lv]

+ P (Lu ̸= Lv) · P ((u, v) ̸∈ E|Lu ̸= Lv)

· Ev [Dist(hu,hv)|(u, v) ̸∈ E ∧ Lu ̸= Lv]

=

(
1

c

)
(1− p)α+

(
1− 1

c

)
(1− q)β (5.61)

=
α

c
− αp

c
+ β − βq − β

c
+

βq

c
. (5.62)

100

Re-substituting the terms into the margin loss equation, we get

E

 1

|N(u)|
∑

v∈N(u)

Dist(hu,hv) (5.63)

− 1

|V −N(u)− {u}|
∑

t̸∈N(u)

Dist(hu,ht)



= E

 1

|N(u)|
∑

v∈N(u)

Dist(hu,hv)

 (5.64)

− E

 1

|V −N(u)− {u}|
∑

t̸∈N(u)

Dist(hu,ht)


=

αp

c
+ βq − βq

c
−
(
α

c
− αp

c
+ β − βq − β

c
+

βq

c

)
(5.65)

=
αp

c
+ βq − βq

c
− α

c
+

αp

c
− β + βq +

β

c
− βq

c
(5.66)

=
2αp

c
+ 2βq − 2βq

c
− α

c
+

β

c
− β . (5.67)

Taking its limit as p → 1, q → 0:

lim
p→1,q→0

(
2αp

c
+ 2βq − 2βq

c
− α

c
+

β

c
− β

)
(5.68)

=
2α

c
− α

c
+

β

c
− β =

α

c
+

β

c
− β (5.69)

∴ lim
p→1,q→0

E [ml(u)] = lim
ϵ,δ→0

E [Ls(u)] . (5.70)

5.7.2 Meaning of Ideal Conditions

Our analysis in Section 5.7.1 aims to show that the more traditional margin-based

losses and silhouette-based losses are sensitive to different parameters and their equivalence

in the best-case scenario. Here, we briefly summarize what each of those ideal conditions

means:

101

• p → 1: We approach the case where an edge exists between each node of the same

class.

• q → 0: We approach the case where an edge never exists between nodes of different

classes.

• ϵ → 0: We approach the case where we always place two nodes in the same cluster if

they are the same class.

• δ → 0: We approach the case where we never place two nodes in the same cluster if

they are in different classes.

Essentially, the ideal case for a margin-loss GNN is p → 1 and q → 0. Conversely,

the ideal case for CARL-G is ϵ → 0, δ → 0. As we mentioned in Section 5.3.3, silhouette-based

loss relies on the clustering error rate rather than the inherent properties of the graph. We

show that a margin-loss GNN is exactly equivalent to a mean-silhouette-loss GNN under the

above conditions; however, it also follows that some equivalence can also be drawn between

them for different non-ideal values of p, q, ϵ, and δ, but we feel such analysis is out of the

scope of this work.

5.7.3 Additional Experiment Details

We ran our experiments on a combination of local and cloud resources. All non-

timing experiments were run on an NVIDIA RTX A4000 or V100 GPU, both with 16 GB

of VRAM. All timing experiments were conducted on a Google Cloud Platform (GCP)

instance with 12 Intel Skylake CPU cores, 64 GB of RAM, and a 16 GB V100 GPU.

102

Dataset Nodes Edges Features Classes

Wiki-CS 11,701 216,123 300 10

Coauthor-CS 18,333 163,788 6,805 15

Coauthor-Physics 34,493 495,924 8,415 5

Amazon-Computers 13,752 491,722 767 10

Amazon-Photos 7,650 238,162 745 8

Table 5.7 Statistics for the datasets used in our work.

0 50 100 150 200 250 300 350 400

Number of Clusters

10

20

30

40

50

60

Tr
ai

ni
ng

Ti
m

e

Figure 5.6 Training time versus number of clusters for CARL-Gsim on Coauthor-Physics.
As expected (see Section 5.3.1), the training time is linear with respect to the number of
clusters.

Accuracy means and standard deviations are computed by re-training the classifier on 5

different splits. The code and exact hyperparameters for this paper can be found online at

https://github.com/willshiao/carl-g.

103

https://github.com/willshiao/carl-g

Method Dataset Max GPU Memory Mean CPU Memory Training Time Layer Sizes

AFGRL

Amazon-Computers 2,637 2,671 8,311.94 [512]

Amazon-Photos 1,221 2,615 4,659.91 [512]

Coauthor-CS 5,537 3,038 19,533.74 [1024]

Wiki-CS 4,177 2,647 16,185.56 [1024]

BGRL

Amazon-Computers 1,081 2,289 387.03 [256,128]

Amazon-Photos 615 2,267 284.29 [256,128]

Coauthor-CS 2,637 2,722 1,032.14 [512,256]

Coauthor-Physics 4,769 3,362 1,270.93 [256,128]

Wiki-CS 1,877 2,240 720.37 [512,256]

CARL-Gsim

Amazon-Computers 2,100 2,910 8.97 [512,256]

Amazon-Photos 1,032 2,875 9.29 [512,256]

Coauthor-CS 1,325 3,352 13.07 [512,256]

Coauthor-Physics 3,405 3,998 27.11 [512,256]

Wiki-CS 1,816 2,857 15.64 [512,256]

CARL-GSil

Amazon-Computers 2,100 3,435 172.26 [512,256]

Amazon-Photos 1,032 3,320 30.13 [512,256]

Coauthor-CS 4,682 4,273 832.25 [512,256]

Coauthor-Physics 10,074 4,882 524.27 [512,256]

Wiki-CS 1,816 3,392 217.63 [512,256]

CARL-GVRC

Amazon-Computers 2,100 2,875 9.15 [512,256]

Amazon-Photos 1,032 2,843 6.04 [512,256]

Coauthor-CS 1,325 3,320 7.57 [512,256]

Coauthor-Physics 3,405 3,964 17.22 [512,256]

Wiki-CS 1,816 2,826 4.08 [512,256]

Table 5.8 Performance of various methods.

104

Chapter 6

Recommendation Systems

Recommendation systems (RS) are an increasingly relevant area for both academic

and industry researchers, given their widespread impact on the daily online experiences

of billions of users. One common issue in real RS is the cold-start problem, where users

and items may not contain enough information to produce high-quality recommendations.

This work focuses on a complementary problem: recommending new users and items unseen

(out-of-vocabulary, or OOV) at training time. This setting is known as the inductive setting

and is especially problematic for factorization-based models, which rely on encoding only

those users/items (and, more generally, other sparse features) seen at training time with fixed

parameter vectors. However, despite its practical significance, handling OOV values is often an

afterthought in many academic works due to a predominant focus on transductive evaluation,

where all categorical values for sparse features are observed at training time. As a result,

existing solutions applied in practice are often naïve, such as assigning OOV users/items to

random buckets. In this work, we tackle this problem and propose approaches that better

105

leverage available user/item features to improve OOV handling at the embedding table level.

We discuss general-purpose plug-and-play approaches that are easily applicable to most RS

models and improve inductive performance without negatively impacting transductive model

performance. We extensively evaluate 9 OOV embedding methods on 5 models across 4

datasets (spanning different domains). One of these datasets is a proprietary production

dataset from a prominent RS employed by a large social platform serving hundreds of

millions of daily active users. In our experiments, we find that several proposed methods

that exploit feature similarity using LSH consistently outperform alternatives on a majority

of model-dataset combinations, with the best method showing a mean improvement of 3.74%

over the industry standard baseline in inductive performance. We release our code and hope

our work helps practitioners make more informed decisions when handling OOV for their RS

and further inspires academic research into improving OOV support in RS.

6.1 Introduction

Recommendation systems (RS) suggest items to users and have found wide adoption

across a variety of domains. For example, they have been used to recommend advertise-

ments [191, 192], movies [78], friends [159, 170], and products [44, 121] to users. These

methods are studied in both academia and industry, but many aspects often differ be-

tween academic and industrial recommendation systems [162]. One such difference is their

evaluation methodology.

RS research in academia primarily focuses on the transductive setting [188, 178],

where a portion of interactions are masked out for validation and testing. Such a setting

106

Figure 6.1 Comparison between transductive (left) and inductive (right) settings. In the
transductive setting, RS are evaluated on interactions between users and items observed
during training time (i.e., bold links). Whereas in the inductive setting, besides transductive
interactions, RS are also evaluated on interactions related to users and items unseen during
the training (i.e., both bold and dash links).

assumes that all users and items in the dataset are seen during training. However, in

industrial RS environments, there is often a constant influx of new, or out-of-vocabulary

(OOV), users and items that were not seen at training time, i.e., the inductive setting which

correspond to new users and/or items showing up at validation and testing. Almost all

production models are deployed to be utilized in an (at least partially) inductive setting,

but a recent survey [162] found that only about 10%1 of 88 recent RS papers evaluated

their models in the fully inductive setting, in which OOV users and items are considered.

Similarly, existing state-of-the-art models [23, 217, 192] also use embedding tables for sparse

ID features, which face similar issues when encountering values unseen at training time since

a model would not have an existing row in the embedding table for unseen values.
1based on an estimate from Figure 1 of [162].

107

While handling the inductive setting, industrial practitioners often use primitive

methods such as random hashing to a fixed number of OOV buckets whose values are updated

during training2. Such random hashing on OOV values intuitively can unlock the inductive

capability for almost any transductive RS without affecting transductive performance and

have been incorporated into industrial RS infrastructures as default options [1]. However,

while simple to implement, these primitive methods can easily map two very different OOV

users/items to the same embedding bucket, which is known as embedding collision and can

greatly affect the recommendation performance [125, 220]. In Figure 6.2, we show that with

a primitive method like assigning OOV values to random buckets, there exists a clear gap

between inductive and transductive performance for all datasets. This demonstrates the

importance of properly handling OOV values and leads us to the following question: Can

we re-imagine how we handle OOV users and items to improve the inductive

capability of RS?

While many methods in literature could potentially be used to solve this problem,

we constrain our search to methods that meet criteria important to industry practitioners:

• Efficient : the OOV embedding method should run in sub-linear time with respect to the

total number of users/items.

• Maintains Transductive Performance: active users and popular items are often the plat-

form’s main income sources. Hence, the OOV embedding method should not sacrifice the

base model’s performance on non-OOV items.
2Some examples of industry usage are https://engineering.linkedin.com/blog/2023/

enhancing-homepage-feed-relevance-by-harnessing-the-power-of-lar, https://blog.taboola.
com/preparing-for-the-unexpected/ and in the Monolith source code [125].

108

https://engineering.linkedin.com/blog/2023/enhancing-homepage-feed-relevance-by-harnessing-the-power-of-lar
https://engineering.linkedin.com/blog/2023/enhancing-homepage-feed-relevance-by-harnessing-the-power-of-lar
https://blog.taboola.com/preparing-for-the-unexpected/
https://blog.taboola.com/preparing-for-the-unexpected/
https://github.com/bytedance/monolith/blob/135c491a52b151772b976af989d8bc938c44d210/monolith/core/feature.py#L436

• Model-Agnostic: the OOV embedding method should be applicable to RS with different

model architectures.

Given the above criteria, this work explores existing and proposes new OOV

embedding methods. These methods range from simply using a zero vector to feature-

similarity-based methods. In our experiments, we thoroughly evaluate nine different OOV

embedding methods (detailed in section 6.3) to provide a broad empirical understanding

of the performance of different OOV strategies. Among the 9 OOV methods, inspired by

feature-based cold-start work [111], we propose using several feature-based methods, which

utilize feature information to compensate for OOV values. In particular, we propose two

locality-sensitive hashing (LSH) [61] based methods that exploit feature-similarity consistently

outperform other feature or non-feature-based methods in most models-dataset combinations,

with the best method showing a mean improvement of 3.74% over the industry-standard

random bucket assignment method.

To properly evaluate OOV methods under inductive settings, we also create ap-

propriate inductive datasets, as existing public datasets are (1) transductive and (2) lack

user/item features. Such limitations directly contradict the setting faced in industrial rec-

ommendation systems, where we usually have rich feature information for both users and

items and many OOV values. Therefore, we augment three existing open-source datasets

and perform a time-based split such that unseen items naturally appear during evaluation.

Furthermore, we also created a proprietary industrial dataset from a large social media

company containing rich feature information to evaluate OOV methods properly under real

applications.

109

LastFM-artists H&M Yelp-2018
0.5

0.6

0.7

0.8

0.9

1.0
A

U
-R

O
C

Evaluation Type
Inductive
Transductive

Figure 6.2 Comparison of inductive vs transductive performance with Wide & Deep models,
where OOV (inductive) values are handled with trained random buckets. We see a clear gap
in inductive performance vs transductive performance, showing the importance of properly
handling OOV values.

Our contributions can be summarized as the following,

• To the best of our knowledge, our work is the first to provide a comprehensive empirical

understanding of the performances of various OOV methods for RS.

• We demonstrate that a class of proposed feature-aware, locality-sensitive hashing-based

OOV embedders that exploit feature-similarity consistently outperform existing approaches

in inductive performance.

• We provide realistic inductive datasets by augmenting and splitting three open-source

datasets, enabling experiments on inductive performance and OOV methods of RS, which

will be publicly available upon the release of this manuscript.

110

• We will open-source our evaluation framework, a major extension of the popular RecBole [232]

RS library that adds inductive and OOV support to encourage future research in this area.

6.2 Preliminaries and Related Work

In this section, we formally define OOV values and the user/item recommendation

system problem. We detail the difference between the two classes of RS model setups that

we study, delineated by the use of contextual features: context-free vs. context-aware models

since OOV handling behaves differently for each class of models.

Context-Aware Models

Sparse
Embedding

Table

score

Recommendation
Model

user ID sparse features dense featuresitem ID

Context-Free Models

User
Embedding

Table

Item
Embedding

Table

score

user ID item ID

Recommendation
Model

Neural
Network(s)

Figure 6.3 Typical structure of context-aware and context-free recommendation models.

Notation We denote the set of users as U and the set of items as I. We denote the set

of interactions as R ⊆ U × I. For flexibility, let R be the interaction matrix such that

Ru,i = 1 ⇐⇒ (u, i) ∈ R. Let m = |U| and n = |I| be the number of users and items,

respectively. Let U ∈ Rm×d and I ∈ Rn×d be the user/item feature matrices. We assume3

3We assume users/item features to have the same dimension d for simplicity, but this can be enforced in
practice with a projection layer if user/item features have different dimensions du and di respectively.

111

that both feature matrices are of dimension d. For a given user u ∈ U , we have the associated

contextual features Uu. Similarly, for a given item i ∈ I, we have the associated features Ii.

cmean(·) : Rn×d → Rd is the column-wise mean of a matrix.

We split the set of users and items based on a time t. All users/items appearing

before time t are considered a part of the training set, users Utrain ⊆ U and items Itrain ⊆ I.

The set of training interactions Rtrain ⊆ R is also similarly created.

OOV Values We consider a value Out-Of-Vocabulary (OOV) if it is a categorical value

that does not exist at training time but appears at inference time. Formally, a user u is OOV

if and only if u ̸∈ Utrain ∧ u ∈ U and an item i is OOV if and only if i ̸∈ Itrain ∧ i ∈ I. We

abbreviate non-OOV values as IV (In-Vocabulary).

Transductive vs. Inductive Settings In the transductive setting, RS models are

evaluated on interactions between users and items that are observed during the model training

(i.e., Ueval ⊆ Utrain and Ieval ⊆ Itrain). Whereas in the inductive setting, besides transductive

interactions, RS models are also evaluated on interactions between users and items that do

not appear during the model training (i.e., Ueval ∪ Utrain ̸= Utrain and Ieval ∪ Itrain ̸= Itrain).

6.2.1 Context-Free Models

Context-free models are the ones that do not use any additional feature information

other than the IDs of users or items. They are also known as latent factor models [167] and

are typically based on matrix factorization (MF) [109, 108], with the goal of approximating

the training interaction matrix Rtrain ∈ Rm×n. Typically, they factor Rtrain into two matrices

112

A ∈ Rm×d and B ∈ Rn×d such that Rtrain ≈ AB⊤. The rows of A and B are the user and

item embeddings, respectively.

These embeddings can be learned in a variety of ways. For example, the Non-

negative Matrix Factorization (NMF) [112] of the interaction matrix can be computed via

non-negative least squares or gradient descent. In this work, we focus on two popular

context-free models: Bayesian Personalized Ranking (BPR) [154] and DirectAU [188].

BPR is a pairwise ranking model that learns user and item embeddings by maxi-

mizing the likelihood of observed interactions.

LBPR =
1

|R|
∑

(u,i)∈R

− log
(
σ(Au ·B⊤

i −Au ·B⊤
i′)

)
, (6.1)

where i′ is a randomly sampled item from I such that (u, i′) ̸∈ R and σ(·) is the sigmoid

function. In Equation (6.1), Au ·B⊤
i could be regarded as the dot-product similarity between

user u and item i. One recent work [80] replaces the dot-product similarity by an MLP to infer

a similarity score. Unlike BPR that utilizes negative sampling (i.e., Au ·B⊤
i′ in Equation (6.1))

for training, DirectAU [188] is a loss function that instead directly optimizes for alignment and

uniformity — factors that have been shown to be important for representation quality [194].

It is worth noting that these are often used as retrieval models in production [170], which is

why we evaluate them as such in our experiments.

6.2.2 Context-Aware Models

Context-aware models utilize complimentary contextual features in addition to the

user or item IDs. They are often based on the two-tower architecture [89], where each tower

is responsible for embedding the user and item features, respectively. The two towers output

113

embeddings of the same dimensionality, allowing them to be directly compared to produce a

score for each user-item pair.

However, these models are very dependent on the quality of the input contextual

features. In production, practitioners often produce cross-features [34] that capture the inter-

actions between features. As such, we focus on 3 context-aware models that incorporate these

cross-features: Wide & Deep [34], eXtreme Deep Factorization Machine (xDeepFM) [117],

and Deep & Cross Networks V2 (DCN-V2) [192]. We focus on these models as they are three

of the most popular context-aware models in practice. The models are often used during the

ranking or re-ranking stage in production pipelines, hence we evaluate them using ranking

metrics in our experiments.

The features used in context-aware models are typically categorized into two types:

sparse and dense. Sparse features are categorical features that are typically one-hot or

multi-hot encoded. Dense features are continuous features. For example, in the case of social

media content recommendation, a user’s country could be a sparse feature and their mean

daily app usage could be a dense feature. Sparse features are typically embedded using an

embedding table where each row represents the embedding for that feature’s ID. These tables

are typically randomly initialized and gradually updated during training. Dense features are

typically either unmodified or passed through neural network layers. In this work, we focus

primarily on the handling of OOV values in sparse features — specifically, the user/item IDs,

which are most likely to be OOV in production settings.

114

6.3 Towards a General OOV Embedder

The motivation for this work stems from how OOV users/items are typically handled

in real-world production settings. In practice, OOV users/items are often assigned to a

random bucket within which all values share the same embedding or are simply assigned

completely random embeddings2. This clearly results in poor performance for any pure

ID-based models (e.g., factorization-based) that rely on stored embeddings for users/items

seen at training time. However, even for models that use features, this can still result in poor

performance since poorly-assigned embeddings simply add additional noise. For example,

random bucket assignment for OOV users means that two OOV users have the same chance

to share an embedding, regardless of how similar/different they are.

Since our goal is to improve OOV support for most general recommendation

systems, regardless of specific model architecture, we limit the scope of our modifications to

a component that is used in almost all production recommendation systems: the embedding

table. In this work, we focus primarily on OOV support for unseen user/item IDs, but the

same ideas can also be easily extended to improve support for unseen categorical values in

other features. This leads to the following formal definition of an OOV embedder:

OOV Embedders A user OOV embedder fuser : U \ Utrain → Rd maps an OOV user to a

real-valued embedding. An item OOV embedder does the same: fitem : I \ Itrain → Rd.

For the sake of simplicity, we describe all the following OOV embedders in terms of

OOV users, but we use them for both OOV users and items during evaluation. They can be

easily converted to item OOV embedders by substituting the appropriate variables.

115

E
m

b
ed

d
er

ze
ro

me
an

ra
nd

r-
bu

ck
et

kn
n

dh
e

fd
he

dn
n

m-
ls

h
s-

ls
h

R
eq

ui
re

s
tr

ai
ni

ng
✗

✗
✗

✓
✗

✓
✓

✓
✓

✓

U
se

s
us

er
/i

te
m

ID
✗

✗
✓

✓
✗

✓
✓

✗
✗

✗

U
se

s
tr

ai
nb

le
O

O
V

bu
ck

et
s

✗
✗

✗
✓

✗
✗

✗
✗

✓
✓

U
se

s
fe

at
ur

es
✗

✗
✗

✗
✓

✗
✓

✓
✓

✓

Sa
m

e
fe

at
ur

es
→

sa
m

e
em

be
dd

in
g

✗
✓

✗
✗

✓
✗

✗
✓

✓
✓

R
eq

ui
re

s
pr

e-
pr

oc
es

si
ng

✗
✓

✗
✗

✓
✗

✗
✗

✗
✗

C
om

pl
ex

it
y

O
(1
)

O
(1
)

O
(1
)

O
(1
)

<
O
(n
)1

O
(θ
)

O
(θ
)

O
(θ
)

O
(b
)

O
(b
)

P
ot

en
ti

al
un

iq
ue

em
be

dd
in

gs
1

1
1

b
>

n
>

n
>

n
>

n
>

n
b

Ta
bl

e
6.

1
C

om
pa

ri
so

n
of

th
e

di
ffe

re
nt

O
O

V
em

be
dd

er
s

ev
al

ua
te

d
in

th
is

w
or

k.
Fo

r
ap

pl
ic

ab
le

m
et

ho
ds

,θ
re

fe
rs

to
th

e
nu

m
be

r
of

pa
ra

m
et

er
s

in
th

e
ne

ur
al

ne
tw

or
k,

b
re

fe
rs

to
th

e
nu

m
be

r
of

bu
ck

et
s,

an
d
n

is
th

e
nu

m
be

r
of

in
pu

t
it

em
s.

Fe
at

ur
es

re
fe

r
to

no
n-

ID
fe

at
ur

es
.

W
e

as
su

m
e

th
e

em
be

dd
in

g
di

m
en

si
on

al
it
y

is
co

ns
ta

nt
fo

r
th

e
co

m
pl

ex
it
y

an
al

ys
is

.

1
T

he
ex

ac
t

co
m

pl
ex

it
y

he
re

is
di

ffi
cu

lt
to

co
m

pu
te

si
nc

e
w

e
re

ly
on

ap
pr

ox
im

at
e

ne
ar

es
t

ne
ig

hb
or

se
ar

ch
[9

6,
70

].

116

In-Vocabulary
User

Embedding Table
m

d

user ID user features

Check if
user ID is OOV

OOV Embedding
Model

IV ID

OOV ID & features

OOV embedding
IV embedding

If OOVIf OOV

If not OOV

Figure 6.4 How IV/OOV user IDs are handled under our framework. Item IDs are handled
the same way.

117

6.3.1 Heuristic-based Embedders

In this work, we first introduce several heuristic-based OOV embedding models

that do not require additional trainable parameters. These are straightforward to apply in

practice due to their speed and ease of implementation.

Zero Embedder zero simply uses the zero vector for all OOV inputs. This is a simple

solution sometimes used in Natural Language Processing (NLP) for OOV words [127, 131].

Formally, fzero(·) = {0}c. For context-free models, all new users will randomly select items

(we ensure that items with the same score will be randomly selected without bias towards

their ID). For context-aware models, all predictions will depend entirely on a user’s/item’s

contextual information.

Mean Embedder mean uses the column-wise mean of the embedding matrix for all

OOV IDs. Note that users and items use their respective means. Formally, for users,

fmean(·) = cmean(U). For context-free models, this means that the RS model will recommend

the same popular items to all new users and that all new items will have the same probability

of being recommended.

Fixed Random Embedder rand returns a random floating point vector for all OOV IDs.

There are b fixed random vectors for each ID type (e.g., user ID, item ID). This ensures that

the model’s output is deterministic for users/items. Formally, for a set of random vectors

V = {v ∈ Rd}, we have frand(·) = Vg(u) where g is a random hash function4 Z → {1, 2, . . . b}.
4We use the three-round integer hash function from https://github.com/skeeto/hash-prospector.

118

https://github.com/skeeto/hash-prospector

This approach is similar to generating a random vector, except that (a) the output for a

given ID is deterministic, and (b) the maximum amount of memory used is bounded by b.

KNN Embedder knn returns the mean of the k nearest neighbors of a given point, as

measured by the inner product of the features. Formally, for a user u, we have fknn(u) =

1
k

∑
a∈K-Nearest(u)Ua. With k = 2, this is similar to the double-hashing performed by

Zhang et al. [220], except that we use feature similarity instead of random hashing to select

rows. In order to meet the efficiency criteria mentioned in Section 6.1, we use approximate

nearest neighbor search through libraries like FAISS [96] and SCaNN [70]. Each training

ID’s k-nearest neighbors can optionally be pre-computed and stored to prevent additional

overhead during training.

6.3.2 Learning-based Embedders

We also consider a set of trained embedders that are optimized during the training

of the base model. As mentioned in Section 6.3.3, we freeze the non-OOV parameters of

the base model to avoid affecting its transductive performance. Some of these methods

use an embedding table with b rows, where each row corresponds to an OOV bucket. This

value can be tuned depending on the expected number of OOV values. In the following

paragraphs, we introduce several different learning-based OOV embedders. We describe how

these embedders are optimized in Section 6.3.3.

Random Buckets r-bucket randomly assigns an embedding (denoted as a bucket) to a

given OOV ID. This mapping is done with a deterministic hash function4 to ensure that

the bucket mappings remain consistent. The chance of any bucket being selected is uniform.

119

Given o OOV IDs and b buckets, each bucket’s expected number of OOV IDs is o/b. This is

similar to rand, except that the values in each bucket are optimized during training. This is

TensorFlow’s [1] default approach for handling OOV values. PyTorch-style pseudocode for

this approach can be found in ?? 2.

DHE Deep Hash Embedding (DHE) [99] substitutes a deep neural network for the em-

bedding table. To ensure determinism for a given ID, they first compute many hashes on

that ID and use those as inputs to the neural network. We use SipHash [9] with different

key values as the hash functions for our implementation. DHE was originally created as a

drop-in replacement for the main embedding table in context-free methods, but we use it as

an OOV embedded (only on OOV IDs) since it naturally works in this case.

F-DHE Kang et al. [99] mentions that DHE can also incorporate user features. fdhe uses

the concatenation of the user/item feature vector with the hash inputs (as with DHE) for

the input to a deep neural network. This incorporates user/item features into the OOV

embedding. However, compared to dnn, it also assigns a unique embedding for each user/item

ID, even if they share the same features.

DNN dnn is a simple feed-forward deep neural network that takes in the user/item features

as input and outputs a real-valued vector. This embedder can be viewed as a modification to

fdhe that omits the hash-related features. As a result, users/items with the same features

will share the same embedding.

120

Mean LSH m-lsh is a locality-sensitive hashing (LSH) [40] based OOV embedder. It uses

a random projection matrix to map a user/item ID to a binary vector. It then uses this

binary vector to index into the OOV embedding table and returns the column-wise mean of

the rows where the binary vector is 1. This helps ensure that similar users/items have similar

embeddings, even if their LSH vector is not exactly the same. The projection matrix remains

constant, but the OOV embedding table values are updated during training. PyTorch-style

pseudocode for this embedder can be found below in ?? 3.

Single LSH s-lsh is similar to m-lsh but instead treats the binary vector as a single

index into the OOV embedding table. This means similar users/items with the same LSH

vector will have the same embedding. Conversely, users/items with different LSH hashes

will have completely different embeddings. As with m-lsh, the projection matrix remains

constant, but the OOV embedding table values are updated during training.

For all of the embedders, we implement per-feature normalization — we normalize

each feature vector individually before concatenating them together. This is done to ensure

that the distance between two users/items is not dominated by a single feature. Otherwise,

long, dense features (like content embeddings) or lists of categorical features (like watch

history) could dominate the similarity computations for OOV embedding methods like KNN.

6.3.3 OOV Embedder Training

The training procedure does not need to be modified for the untrained OOV

embedders (Section 6.3.1) — they can be applied to a pre-trained model. However, trained

embedders (Section 6.3.2) add additional parameters that need to be optimized over OOV

121

Algorithm 2: PyTorch-style pseudocode for the r-bucket OOV embedder.
1 # oov_id: OOV user/item ID

2 # oov_table: OOV embedding table.

3 # Each row of the table is an OOV bucket

4 def rbucket_embed(oov_id, table):

5 # b is the number of rows in oov_table

6 b = oov_table.size(0)

7 # hash_func is a deterministic hash function

8 # that returns an integer

9 hashed_id = hash_func(row_features)

10 # we use the selected bucket's embedding

11 return oov_table[hashed_id % b]

12 # the bucket is updated via backpropagation

users/items. With a time-based inductive dataset split (details in Section 6.4), our training

set contains only IV values, and the test set contains OOV values. OOV embedders are only

used on OOV values so there is no training data for their parameters if only use the training

set. As such, there are two main ways to generate OOV data in training for optimizing our

OOV embedders: (1) withhold training data and use it as OOV samples or (2) generate

synthetic OOV samples from the training data.

Withholding Data Withholding training data to use as OOV samples is the simplest

method, but it also reduces the amount of data available for training. This also complicates

122

Algorithm 3: PyTorch-style pseudocode for the m-lsh OOV embedder.
1 # row_features: vector of the user/item features.

2 # oov_table: OOV embedding table.

3 # Each row of the table is an OOV bucket

4 def lsh_embed(row_features, oov_table):

5 # lsh_hash is a binary vector

6 lsh_hash = random_projection(row_features)

7 # get col-wise mean of rows where vec is 1

8 return oov_table[lsh_hash].mean(axis=1)

9 # oov_table is updated via backpropagation

evaluation when benchmarking trained embedders against untrained embedders since the

untrained embedders do not have access to the withheld data. Reducing the amount of

data available for transductive training worsens transductive performance, violating the

criteria defined in Section 6.1. For this reason, we choose to use synthetic OOV samples.

However, the withholding data approach may be useful in production settings where we often

cannot afford to maintain a unique embedding table entry for every user/item and may treat

low-frequency IDs as OOV values.

Synthetic Data A simple way to train OOV embedders without affecting existing per-

formance is to generate synthetic OOV samples. For each user/item, we create an OOV

version of it that has the same interactions. We then select a subset with ratio α of the

OOV samples each epoch to use for training. We then perform feature masking, a common

123

augmentation for self-supervised learning [236, 183], with mask rate β on the features of the

OOV samples. This ensures that generated samples do not have the exact same features as

the input samples. There are three types of OOV interactions: (IV user) → (OOV item),

(OOV user) → (IV item), and (OOV user) → (OOV item). We generate each type with equal

probability — although, in practice, this can be tuned to match the expected distribution of

OOV interactions in production.

Maintaining Transductive Performance When training our OOV embedder, our aim

is to maintain the performance of the transductive portion of the model. For example, with

synthetic training, interactions that only involve one OOV user/item will result in undesirable

updates to the main embedding table. To avoid this, we split each epoch into two training

steps. In the first step, we train the model on the original training data — as we normally

would in transductive training. There are no OOV values at this point, so it does not affect

any trainable parameters in the OOV embedder. In the second step, we freeze the main

embedding table weights and train the model on the synthetic OOV samples. The only

parameters that can be updated at this step are those of the OOV embedder. We also

checkpoint and restore the optimizer state before and after the second step. This ensures

that the OOV training does not affect the transductive portion of the model.

6.4 Datasets

As mentioned in Section 6.2, following suggestions from recent works [179, 92], we

split the datasets based on a time t. We select t for each dataset by computing the first

time each user/item appeared. We then select a time t such that 20% of the users/items are

124

Dataset IV Users / Items OOV Users / Items Mean User / Item Deg. # User / Item Cat. Feat. # User / Item Float Feat.

Yelp-2018 126,379 / 79,238 28,140 / 13,078 13.74 / 21.92 3 / 7 18 / 6

LastFM-artists 11,962 / 76,152 342 / 17,190 53.69 / 8.39 1 / 2 45 / 1

H&M 200,749 / 18,871 36,961 / 7,024 12.76 / 135.71 7 / 12 0 / 3

Content 74,700 / 30,757 6,610 / 3,941 24.47 / 59.42 57 / 339 172 / 899

Table 6.2 Statistics for each of the datasets used in this work. The number of float/dense
features counts the number of distinct dense vectors, not the total number of floating point
values (e.g., text embeddings count as a single float feature).

1.1 1.2 1.3 1.4 1.5
Date 1e9

0

1000

2000

3000

Co
un

t

Split Time
Users
Items

(a) Yelp-2018

1.1 1.2 1.3 1.4
Date 1e9

0

1000

2000

Co
un

t

Split Time
Items
Users

(b) LastFM-artists

17800 18000 18200 18400
Date

0

5000

10000

Co
un

t

Split Time
Users
Items

(c) H&M

Date
0

1000

2000

3000

4000

5000

Co
un

t

Split Time
Users
Items

(d) Content

Figure 6.5 Visualization of where the inductive split occurs on the datasets. The x-axis is
the time that the user/item first appeared. Everything to the left of the split time is used
for training and validation. The remainder is used for evaluation.

OOV. Formally, select t such that |Utrain|+ |Itrain| ≈ 0.8(n+m). This results in a naturally

different distribution of OOV users compared to OOV items for each of the four datasets.

Plots of the relative user/item distributions can be seen in Figure 6.5.

We benchmark various transductive recommendation system methods across four

different datasets. Below, we briefly describe how we processed each of the datasets. Repre-

sentative statistics for each dataset can be found in Table 6.2.

Yelp The Yelp-2018 dataset consists of user reviews of businesses on Yelp from the 2018

Yelp Dataset Challenge5. We start with the version of the dataset provided by RecBole [232].

We then sample 75% of the users/items and perform 5-core filtering. We also clean up each

feature by removing invalid values, normalizing floating point values, and imputing missing
5https://www.yelp.com/dataset

125

https://www.yelp.com/dataset

values with scikit-learn [145]. We also remove low-frequency values in categorical features

and normalize all strings. Finally, we add text vectors for each business name. We use

300-dimensional GloVe [148] vectors for this purpose.

LastFM The LastFM-artists dataset [161] consists of user/artist interactions on LastFM

gathered in 2014. We start with the LastFM-1b version of the dataset provided by

RecBole [232] and sample 10% of the users and items. We perform the feature cleaning as

with the Yelp-2018 dataset and add GloVe vectors for each artist’s name.

H&M The H&M dataset consists of user/item purchases on the H&M website. The raw

dataset is taken from the H&M Kaggle competition6 and we sample 30% of the users/items.

We compute GloVe vectors for each item’s name and use a pre-trained Vision Transformer [45]

to extract features from each item’s image. We also perform the same feature cleaning as

with the Yelp-2018 dataset.

Content The Content dataset is a proprietary user-item interaction dataset from a large

social platform serving hundreds of millions of daily active users. The data is gathered from 5

days of production traffic over users sampled from a single country. We only collect users who

are 18 years old and above. The Content dataset has rich user/item features as with many

production recommendation systems. Unfortunately, due to the large number of features,

we were unable to train any context-aware models with our RecBole-based [232] evaluation

framework.
6https://www.kaggle.com/competitions/h-and-m-personalized-fashion-recommendations

126

https://www.kaggle.com/competitions/h-and-m-personalized-fashion-recommendations

6.5 Experimental Evaluation

H&M LastFM-artists Yelp-2018

OOV Method DCNV2 WideDeep xDeepFM DCNV2 WideDeep xDeepFM DCNV2 WideDeep xDeepFM

fdhe 66.07 68.51 72.1 85.53 83.25 75.88 71.24 75.87 68.86

dhe 69.09 68.55 74.12 86.15 84.97 59.74 70.57 67.15 71.48

zero 71.06 71.21 69.06 81.57 86.57 84.75 71.16 72.43 76.04

knn 63.71 63.13 63.61 83.9 84.79 83.2 72.73 73.42 75.04

rand 55.17 70.49 66.76 82.14 86.64 85.52 78.95 74.75 73.68

r-bucket 65.48 70.61 68.37 87.13 85.79 84.24 79.88 70.97 76.04

dnn 63.87 71.7 71.09 86.65 84.71 86.19 76.23 77.89 82.26

s-lsh 73.03 72.61 70.64 86.37 79.71 85.86 78.52 76.03 80.68

mean 67.72 70.72 66.12 86.49 85.79 85.16 74.9 79.82 73.88

m-lsh 70.69 71.65 71.3 86.93 86.67 86.78 79.96 76.35 82.48

Table 6.3 OOV user AUC of context-aware methods with different OOV embedding methods.
Higher is better. The best-performing method in each column is bolded, and the second-best
is underlined. Rows are sorted from lowest mean rank to highest mean rank.

6.5.1 Evaluation Details

0.25 0.50 0.75
OOV Training Ratio

78

80

A
U

C Embedder
m-lsh

r-bucket

0.0 0.5
OOV Feature Mask Rate

102 104

User OOV Buckets
102 104

Item OOV Buckets

Figure 6.6 Sensitivity analysis of different training hyperparameters for m-lsh and r-bucket
with WideDeep on Yelp-2018. Note that the y-axis range is relatively small and that the
x-axis for OOV buckets is on a logarithmic scale.

Evaluation Metrics We evaluate the ranking and retrieval models separately. Following

conventions from existing work [192, 191, 205, 154], we use ndcg@k (where k=20) for retrieval

127

models and AUROC for ranking models. In Tables 6.3 and 6.4, we report the inductive

performance of OOV users. It is worth noting that the transductive performance of IV

users to IV items remains the same due to how we train the OOV embedding models (see

Section 6.3.3).

Experimental Details All models utilize a fork of the RecBole [232, 233] framework for

experiments, in which we have made extensive modifications to the framework and models

to support OOV values and swap between different OOV embedder types. We also added

support for filtered evaluation on a subset of users/items. We were very careful to facilitate

the easy addition of OOV support to new models. We run all experiments on Google Cloud

Platform (GCP). Experiments are conducted on Google Compute Engine instances with

NVIDIA Tesla P100 GPUs. The anonymized code, datasets, and hyperparameters for each of

our experiments and embedders are available here: https://github.com/snap-research/

improving-inductive-oov-recsys.

6.5.2 Context-Aware Results

The OOV user evaluation results of context-aware models are displayed in Table 6.3.

On average, the best-performing OOV embedding method is m-lsh and the worst is fdhe.

Unfortunately, we were unable to train context-aware models on Content (even in the

transductive setting) using our RecBole-based framework due to the large number of features

and resulting stability issues. We make the following observations:

Context helps OOV embeddings From Table 6.3, we can see that incorporating

contextual information generally helps OOV embeddings. 3/4 of the best-performing OOV

128

https://github.com/snap-research/improving-inductive-oov-recsys
https://github.com/snap-research/improving-inductive-oov-recsys

Dataset Yelp-2018 LastFM-artists H&M Content

Method BPR DAU BPR DAU BPR DAU BPR

zero 0.79 0.79 0.93 0.93 1.15 1.15 0.71

fdhe 0.99 1.06 0.34 0.35 1.97 2.02 1.32

dhe 1.12 1.11 0.59 0.40 2.09 1.96 1.39

dnn 2.94 4.43 0.38 0.44 2.94 3.36 1.87

knn 6.95 1.58 45.69 4.86 5.23 1.67 6.00

rand 4.05 0.83 15.09 0.71 2.80 1.89 0.94

r-bucket 9.33 1.22 41.78 0.76 6.02 1.38 1.38

s-lsh 9.13 1.05 46.92 0.79 6.19 2.02 1.05

mean 9.40 2.89 48.38 0.12 6.15 1.94 3.74

m-lsh 9.49 1.49 47.85 1.13 6.16 2.15 2.02

Table 6.4 OOV user NDCG@20 of context-free methods with different OOV embedding
methods. Higher is better. The best-performing method in each column is bolded and the
second-best is underlined.

129

embedding models utilize context information. This aligns with our intuition: similar

users/items should have similar embeddings. This is true for both context-free and context-

aware models. In some cases, like with xDeepFM on Yelp-2018, the gap in AU-ROC on

OOV users is as large as 6 points — showing that incorporating feature information in OOV

handling can drastically improve an RS’s ability to generalize to OOV users/items.

LSH-based solutions perform well Both m-lsh and s-lsh work well for the context-

aware models, with one of the two methods performing the best on 6/9 model/dataset

combinations, as shown in Table 6.3. Across the context-aware model experiments, m-lsh

and s-lsh show a mean improvement of 3.74% and 2.58% over r-bucket (a common industry

standard2), respectively. They also perform well compared to the next-best method, mean,

showing respective average improvements of 3.45% and 2.25%.

DHE-based solutions perform poorly. dhe and fdhe are the methods with the lowest

average rank across the model/dataset combinations shown in Table 6.3. Surprisingly, we

find that zero generally outperforms both dhe and fdhe. This is likely due to the additional

noise the multiple hash inputs introduce to DHE-style models — a different ID results in a

completely different embedding.

6.5.3 Context-Free Results

Table 6.4 shows the NDCG@20 for OOV users of BPR and DirectAU. m-lsh has

the highest mean rank of the different OOV embedding methods. Unlike in the context-aware

setting, a relatively large gap exists between different base models on the same dataset.

130

Surprisingly, BPR outperforms DirectAU on OOV users across all three of the datasets. We

make the following observations about OOV embedding methods on the context-free models:

Improving context-free OOV performance is difficult Both BPR and DirectAU

exhibit poor performance on most of the datasets, regardless of OOV embedder choice. This

shows that it is difficult to encode feature information from OOV IDs in a useful manner for

context-free models.

OOV Embedder choice is extremely important From Table 6.4, we can observe

that there is a large gap between the best-performing models on each dataset and the

worst-performing models for context-free models. This is especially true for BPR on

LastFM-artists, where there is a 48.04 gap between the best-performing mean embedder

and the worst-performing fdhe embedder. fdhe and dhe exhibit similarly poor performance

across the four datasets.

6.5.4 Sensitivity Analysis

As mentioned in Section 6.3.3, there are two key hyperparameters for training the

models: α (OOV sampling ratio) and β (feature masking probability). r-bucket, m-lsh, and

s-lsh also assign values to buckets in an embedding table. These methods, therefore, have

another hyperparameter b, the number of buckets, for each instance of the OOV embedding

method. Since we use two instances of each OOV method (one for user IDs and one for item

IDs), each model run has two bucket-related hyperparameters: bu and bi, the number of

user/item buckets, respectively.

131

We conduct a sensitivity analysis on each of the four hyperparameters on m-lsh,

the best-performing OOV embedder, and r-bucket, a frequently-used approach in practice2.

The results of this analysis are shown in Figure 6.6. Generally, the performance is not very

sensitive to OOV training ratio and feature mask rate hyperparameters; even for the number

of user/item OOV buckets, the only performance fluctuates within a relatively small range.

We can also observe that m-lsh outperforms r-bucket even under different low training

ratios and high feature mask rates.

6.5.5 Recommendations for Practitioners

Based on the results of our experiments in Tables 6.3 and 6.4, we make the following

recommendations for practitioners aiming to improve their performance on OOV users/items:

(1) If contextual information (features) is available, try using m-lsh. Across

our experiments, m-lsh generally performs the best. An advantage of m-lsh over s-lsh

is that it results in fewer collisions (see Table 6.1). It can also be trivially computed

directly on the GPU and efficiently implemented through data structures like PyTorch’s [143]

EmbeddingBag.

(2) If no features are available and collisions are not important, consider

using mean. It is extremely cheap to compute and, based on our experiments, is the best-

performing untrained OOV embedder. However, all IDs will receive the same embedding,

making it particularly problematic for context-free models.

(3) If only users or items have features, OOV embedding methods can be

mixed. For example, in a dataset with user features but no item features, m-lsh could be

132

https://pytorch.org/docs/stable/generated/torch.nn.EmbeddingBag.html

used for users and mean for items. This approach can also be used in any case where the

user/item ID distributions are significantly different.

(4) Careful caching can greatly speed up OOV training/inference. Many of

the OOV embedding methods described in this work can benefit from caching — usually for

the mapping from ID to bucket(s). For example, caching the LSH vector in m-lsh and s-lsh

can save a vector-matrix multiplication for each ID. Similarly, caching the k-nearest-neighbors

for knn can save an ANN index query. This is especially true in cases where features are

static or during training, during which the full set of examples is known.

6.6 Additional Related Work

Hashing for Scalable RS While this work primarily utilizes hashing to support unseen

IDs, hashing is often used to improve the scalability of practical RS. One method is via the

“hashing trick” [133, 200], which reduces the feature space required by categorical features.

Zhang et al. [220] uses two hash functions to select and combine the embeddings of high-

frequency items to form the embeddings for low-frequency items. Liu et al. [125] uses cuckoo

hashing [139] on high-frequency IDs to maintain a collision-less hash table. This allows for

the continuous eviction of old IDs during online training. Zhang et al. [223] improves the

speed of recommendations by using LSH to limit candidate pairs. Ghaemmaghami et al. [60]

proposes a novel hierarchical-clustering-based approach to hash users/items to encourage

collisions between similar IDs, resulting in better performance with fewer buckets. Zhang

et al. [221] formulates collaborative filtering as a binary code hashing problem, allowing

users/items to be represented with binary embeddings. This allows for improvements in

133

speed and storage efficiency. Tan et al. [180] instead utilizes a Graph Neural Network (GNN)

to learn the binary hashing function.

Cold-Start RS Methods A known issue in recommendation systems is the cold-start

problem [118], which is when low-degree users and items receive poorer quality recommenda-

tions. In this work, we look specifically at the problem of OOV users/items, which means

they occur exactly zero times in the training examples. However, cold-start methods often

focus on the transductive setting where all the users/items appear at train time (although

some may have very few interactions). Vartak et al. [185] focuses on the case of OOV items

and proposes a meta-learning approach that uses a classifier based on user history to adjust

model parameters. Wang et al. [190] extends Model-Agnostic Meta-Learning (MAML) [55]

for improving cold-start recommendation performance. DropoutNet [187] uses input dropout

during RS model training to improve the model’s generalization to missing features. Lam

et al. [111] proposes a probabilistic approach to handling OOV users on MovieLens [78].

Cold-Start Graph Methods Recommendation systems can be formulated as a link

prediction problem on a bipartite graph, where edges represent interactions between users

and items. As such, we also briefly discuss existing literature focused on improving cold-

start performance on graph-related tasks. These include both training-based [88, 234] and

augmentation-based [156, 230] approaches. However, due to model architecture and training

differences, these approaches are not straightforward to apply to RS.

NLP OOV Handling There has also been extensive study of handling OOV values for

text tokenization in the field of Natural Language Processing (NLP) [131, 17]. Modern DNN

134

models typically use sub-word (e.g., character or byte-level) tokens [150, 43, 131], which

reduce or eliminate the chance of OOV values. However, word-level tokenizers often have to

deal with OOV values, and various approaches have been proposed, including using mean

and random vectors [131, 127, 128].

6.7 Conclusion

In this chapter, we explored the inductive setting in recommendation systems,

where we focused on finding the best method to handle previously unseen (OOV) values.

We evaluated nine different OOV embedder methods that are efficient, model-agnostic, and

guaranteed to maintain transductive performance. To the best of our knowledge, this is

the first comprehensive empirical study of the performance of various OOV methods for

recommendation systems. Our results show that, of the nine methods, the locality-sensitive-

hashing-based methods tend to be the most effective in improving inductive performance.

Additionally, we augment and re-release three inductive datasets to facilitate future study of

inductive performance and OOV methods in recommendation system problems. Furthermore,

we derive a set of four recommendations for industrial practitioners to improve their inductive

recommendation systems performance and alleviate pain points in dealing with OOV values.

We hope this chapter encourages both academic and industrial researchers to further explore

the inductive and OOV settings, considering their immediate practical impact in real-world,

production-scale recommendation systems.

135

Chapter 7

Conclusion

This thesis makes significant contributions to the field of graph learning by addressing

four key research questions and exploring three critical frontiers. The thesis demonstrates the

importance of bridging ideas from different domains, emphasizing efficiency, and challenging

established concepts to advance the state-of-the-art in graph learning.

In the area of multiplex graph generation, we introduce TenGAN, a novel method

that combines ideas from tensor decompositions with modern Graph Neural Networks

(GNNs) to efficiently generate multiplex graphs. By implicitly compressing the parameters

in the network, TenGAN reduces the number of parameters required and preserves the

interactions between different modes, overcoming the limitations of existing statistical

preferential attachment models.

The thesis also makes substantial progress in non-contrastive link prediction by

performing a detailed benchmark of existing methods and identifying a key limitation.

By proposing a simple modification to address this limitation, the thesis demonstrates an

136

improvement of up to 120% in Hits@50 compared to existing non-contrastive methods and a

14× speedup over contrastive methods, highlighting the importance of efficiency in graph

learning tasks.

Furthermore, the thesis establishes a theoretical connection between contrastive

learning and clustering on graphs, leading to the development of CARL-G, a new framework

and loss function that reformulates node representation learning as a clustering problem. By

leveraging Clustering Validation Indices (CVIs) as effective substitutes for existing contrastive

losses, CARL-G achieves better node representations in significantly less time, with a 79×

faster training time than the best-performing node classification baseline and a 1,500× faster

training time than the best-performing node clustering and similarity search baseline.

Finally, the thesis challenges the established assumption that simple out-of-vocabulary

(OOV) handling methods are sufficient in recommendation systems. By exploring 9 different

OOV embedding methods on 5 different models, the thesis identifies locality-sensitive hashing

(LSH) based methods as a more effective approach, resulting in a 3.74% mean improvement

over the industry-standard baseline. This contribution highlights the importance of improving

the inductive capabilities of recommendation systems in a fast and space-efficient manner.

In summary, this thesis makes significant advances in graph learning by introducing

novel methods, frameworks, and insights that address key research questions and challenges in

the field. Although there remains much work to be done, its contributions have the potential

to impact a wide range of applications, from social network analysis to recommendation

systems, and lay the foundation for further research and development in graph learning.

137

7.1 Future Directions

Here we list some potential future directions:

7.1.1 Multi-Stage Recommendation System Training

Typically, recommendation systems in industrial applications consist of multiple

stages. These usually consist of the retrieval, ranking, and re-ranking stages. Each stage

is typically progressively more expensive than the previous stages. Each stage also usually

therefore reduces the number of candidate items considered at that stage. Typically, there is

not much information passed between the stages.

One potentially interesting future direction would be to transfer information between

the stages. This could be in several forms. For example, information about the certainty

of predictions or historical performance on items could be used to either increase or reduce

the candidate count at each stage, potentially saving money or increasing ranking accuracy.

Information could also be passed backward from the later ranking stages in order to facilitate

distillation — each ranking stage could be the teacher for the previous one. This challenges

the traditional notion in production recommendation systems that information only needs to

flow in a single direction.

However, we need a flexible recommendation system evaluation framework before

a large-scale study like this is feasible. Most existing recommendation frameworks like

RecBole [232] only support a single model (whether retrieval or ranking). We believe it may

be worth creating and open-sourcing a framework that realistically emulates multiple retrieval

138

and ranking stages (without the large resource requirements of a typical production-grade

deployment) before attempting to conduct research on multi-stage recommendation systems.

7.1.2 Non-Contrastive Graph Learning for Other Graph Tasks

Non-contrastive graph learning was originally shown to be effective on node classifi-

cation tasks [183, 15]. We also showed that it can be effective for link prediction tasks, with

some modifications, in Chapter 4 above. However, there are various other graph tasks where

these models could potentially be applied to great effect. It would be interesting to see how

effective these non-contrastive models are for those tasks since industrial practitioners often

would use the same node embeddings for various downstream tasks.

For example, non-contrastive models could potentially be used for the task of graph

classification, where we are given a set of input graphs and their classes and the objective is

to determine the class of a given unseen graph. This could be done by using a non-contrastive

model to obtain embeddings for each graph, obtained via a readout function on the node

embeddings, and training a downstream classifier. The goal would be to determine the

difference in the effectiveness of using embeddings from a non-contrastive model compared

to a contrastive model or a more traditional supervised model.

Another pair of interesting tasks to explore would be the node similarity search

(given a node, how likely are its nearest k nearest neighbors to be within the same class)

and node clustering (after running clustering on the embeddings, how pure are the clusters)

tasks. We briefly evaluate the performance of BGRL on those tasks in Chapter 5 but it

would be interesting to perform a more detailed and thorough evaluation across multiple

non-contrastive methods.

139

7.1.3 Diffusion Models for Multi-view Graph Generation

Recent work has led to the development of diffusion models [82, 206] for image

generation as a more stable and effective alternative to GANs [63]. Liu et al. [123] has

proposed diffusion-based graph generative models. This potentially paves the way for future

extensions to multi-view graphs. However, diffusion models are infamous for being costly to

train, especially on large inputs. This would make it difficult to scale to larger multi-view

graphs. One potential approach to this would be to compress the multi-view graph through

a tensor decomposition, much as we showed was possible with TenGAN and may be worth

exploring.

140

Bibliography

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig

Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,

Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal

Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat

Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,

Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay

Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin

Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning

on heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software

available from tensorflow.org.

[2] Evrim Acar, Daniel M. Dunlavy, and Tamara G. Kolda. Link prediction on evolving

data using matrix and tensor factorizations. In 2009 IEEE International Conference

on Data Mining Workshops, pages 262–269, 2009. doi: 10.1109/ICDMW.2009.54.

[3] Esraa Al-Sharoa, Mahmood Al-khassaweneh, and Selin Aviyente. A tensor based

framework for community detection in dynamic networks. In ICASSP, pages 2312–

141

https://www.tensorflow.org/

2316, New Orleans, 2017. IEEE. doi: 10.1109/ICASSP.2017.7952569.

[4] Elie Aljalbout, Vladimir Golkov, Yawar Siddiqui, and Daniel Cremers. Clustering

with deep learning: Taxonomy and new methods, 2018. URL http://arxiv.org/

abs/1801.07648.

[5] Galen Andrew, Raman Arora, Jeff Bilmes, and Karen Livescu. Deep canonical cor-

relation analysis. In International conference on machine learning, pages 1247–1255.

PMLR, 2013.

[6] Olatz Arbelaitz, Ibai Gurrutxaga, Javier Muguerza, Jesús M Pérez, and Iñigo Perona.

An extensive comparative study of cluster validity indices. Pattern recognition, 46(1):

243–256, 2013.

[7] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adver-

sarial networks. In ICML, pages 214–223. PMLR, 2017.

[8] David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding.

Technical report, Stanford, 2006.

[9] Jean-Philippe Aumasson and Daniel J Bernstein. Siphash: a fast short-input prf. In

International Conference on Cryptology in India, pages 489–508. Springer, 2012.

[10] Randall Balestriero and Yann LeCun. Contrastive and non-contrastive self-supervised

learning recover global and local spectral embedding methods. arXiv preprint

arXiv:2205.11508, 2022.

142

http://arxiv.org/abs/1801.07648
http://arxiv.org/abs/1801.07648

[11] Albert-László Barabási and Réka Albert. Emergence of scaling in random networks.

Science, 286(5439):509–512, 1999. doi: 10.1126/science.286.5439.509. URL https:

//www.science.org/doi/abs/10.1126/science.286.5439.509.

[12] Muthu M. Baskaran, Thomas Henretty, James Ezick, Richard Lethin, and David Bruns-

Smith. Enhancing network visibility and security through tensor analysis. FGCS, 96:207–

215, 2019. ISSN 0167-739X. doi: https://doi.org/10.1016/j.future.2019.01.039. URL

https://www.sciencedirect.com/science/article/pii/S0167739X18302073.

[13] Prithwish Basu, Matthew Dippel, and Ravi Sundaram. Multiplex networks: A gen-

erative model and algorithmic complexity. In ASONAM, pages 456–463, 2015. doi:

10.1145/2808797.2808900.

[14] Rianne van den Berg, Thomas N Kipf, and Max Welling. Graph convolutional matrix

completion. arXiv preprint arXiv:1706.02263, 2017.

[15] Piotr Bielak, Tomasz Kajdanowicz, and Nitesh V Chawla. Graph barlow twins:

A self-supervised representation learning framework for graphs. Knowledge-Based

Systems, 256:109631, 2022. ISSN 0950-7051. doi: https://doi.org/10.1016/j.

knosys.2022.109631. URL https://www.sciencedirect.com/science/article/

pii/S095070512200822X.

[16] Lukas Biewald. Experiment tracking with weights and biases, 2020. URL https:

//www.wandb.com/. Software available from wandb.com.

143

https://www.science.org/doi/abs/10.1126/science.286.5439.509
https://www.science.org/doi/abs/10.1126/science.286.5439.509
https://www.sciencedirect.com/science/article/pii/S0167739X18302073
https://www.sciencedirect.com/science/article/pii/S095070512200822X
https://www.sciencedirect.com/science/article/pii/S095070512200822X
https://www.wandb.com/
https://www.wandb.com/

[17] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word

vectors with subword information. Transactions of the association for computational

linguistics, 5:135–146, 2017.

[18] Aleksandar Bojchevski, Oleksandr Shchur, Daniel Zügner, and Stephan Günnemann.

Netgan: Generating graphs via random walks. In ICML, pages 610–619. PMLR, 2018.

[19] Aleksandar Bojchevski, Oleksandr Shchur, Daniel Zügner, and Stephan Günnemann.

Netgan: Generating graphs via random walks. In International conference on machine

learning, pages 610–619. PMLR, 2018.

[20] Leon Bottou and Yoshua Bengio. Convergence properties of the k-means algorithms.

Advances in neural information processing systems, 7, 1994.

[21] Paul S Bradley and Usama M Fayyad. Refining initial points for k-means clustering.

In ICML, volume 98, pages 91–99, San Francisco, CA, USA, 1998. Citeseer, Morgan

Kaufmann.

[22] Lei Cai, Jundong Li, Jie Wang, and Shuiwang Ji. Line graph neural networks for link

prediction, 2020. URL https://arxiv.org/abs/2010.10046.

[23] Xuheng Cai, Chao Huang, Lianghao Xia, and Xubin Ren. Lightgcl: Simple yet effective

graph contrastive learning for recommendation. arXiv preprint arXiv:2302.08191, 2023.

[24] Tadeusz Caliński and Jerzy Harabasz. A dendrite method for cluster analysis. Com-

munications in Statistics-theory and Methods, 3(1):1–27, 1974.

144

https://arxiv.org/abs/2010.10046

[25] Alessio Cardillo, Jesús Gómez-Gardeñes, Massimiliano Zanin, Miguel Romance, David

Papo, Francisco del Pozo, and Stefano Boccaletti. Emergence of network features from

multiplexity. Scientific Reports, 3(1):1344, February 2013.

[26] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R. Hruschka,

and Tom M. Mitchell. Toward an architecture for never-ending language learning. In

AAAI, AAAI’10, page 1306–1313, Atlanta, Georgia, 2010.

[27] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clus-

tering for unsupervised learning of visual features. In Proceedings of the European

conference on computer vision (ECCV), pages 132–149, ECCV 2018, 2018. ECCV.

[28] Benjamin Paul Chamberlain, Sergey Shirobokov, Emanuele Rossi, Fabrizio Frasca,

Thomas Markovich, Nils Hammerla, Michael M Bronstein, and Max Hansmire.

Graph neural networks for link prediction with subgraph sketching. arXiv preprint

arXiv:2209.15486, 2022.

[29] Chi Chen, Weike Ye, Yunxing Zuo, Chen Zheng, and Shyue Ping Ong. Graph networks

as a universal machine learning framework for molecules and crystals. Chemistry of

Materials, 31(9):3564–3572, 2019.

[30] Hongxu Chen, Hongzhi Yin, Weiqing Wang, Hao Wang, Quoc Viet Hung Nguyen,

and Xue Li. Pme: Projected metric embedding on heterogeneous networks for link

prediction. In Proceedings of the 24th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining, KDD ’18, page 1177–1186, New York, NY, USA,

145

2018. Association for Computing Machinery. ISBN 9781450355520. doi: 10.1145/

3219819.3219986. URL https://doi.org/10.1145/3219819.3219986.

[31] Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: fast learning with graph convolutional

networks via importance sampling, 2018.

[32] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A simple

framework for contrastive learning of visual representations. In ICML, Proceedings of

Machine Learning Research, pages 1597–1607, 2020.

[33] Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pages 15750–15758, 2021.

[34] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi

Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al. Wide & deep

learning for recommender systems. In Proceedings of the 1st workshop on deep learning

for recommender systems, pages 7–10, 2016.

[35] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-

gcn: An efficient algorithm for training deep and large graph convolutional networks. In

Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery

& data mining, pages 257–266, New York, NY, USA, 2019. Association for Computing

Machinery.

[36] Fengyu Cong, Qiu-Hua Lin, Li-Dan Kuang, Xiao-Feng Gong, Piia Astikainen, and

Tapani Ristaniemi. Tensor decomposition of eeg signals: A brief review. Journal of

146

https://doi.org/10.1145/3219819.3219986

Neuroscience Methods, 248:59–69, 2015. ISSN 0165-0270. doi: https://doi.org/10.1016/

j.jneumeth.2015.03.018. URL https://www.sciencedirect.com/science/article/

pii/S0165027015001016.

[37] Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. Performance of recommender al-

gorithms on top-n recommendation tasks. In Proceedings of the Fourth ACM Conference

on Recommender Systems, RecSys ’10, page 39–46, New York, NY, USA, 2010. Associ-

ation for Computing Machinery. ISBN 9781605589060. doi: 10.1145/1864708.1864721.

URL https://doi.org/10.1145/1864708.1864721.

[38] Leon Danon, Albert Diaz-Guilera, Jordi Duch, and Alex Arenas. Comparing community

structure identification. Journal of statistical mechanics: Theory and experiment, 2005

(09):P09008, 2005.

[39] Sanjoy Dasgupta. The hardness of k-means clustering. Department of Computer

Science and Engineering, University of California, San Diego, San Diego, CA, USA,

2008.

[40] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-sensitive

hashing scheme based on p-stable distributions. In Proceedings of the twentieth annual

symposium on Computational geometry, pages 253–262, 2004.

[41] Nicola De Cao and Thomas Kipf. MolGAN: An implicit generative model for small

molecular graphs. 5 2018. URL https://arxiv.org/abs/1805.11973.

[42] Austin Derrow-Pinion, Jennifer She, David Wong, Oliver Lange, Todd Hester, Luis

Perez, Marc Nunkesser, Seongjae Lee, Xueying Guo, Brett Wiltshire, et al. Eta

147

https://www.sciencedirect.com/science/article/pii/S0165027015001016
https://www.sciencedirect.com/science/article/pii/S0165027015001016
https://doi.org/10.1145/1864708.1864721
https://arxiv.org/abs/1805.11973

prediction with graph neural networks in google maps. In Proceedings of the 30th ACM

International Conference on Information & Knowledge Management, pages 3767–3776,

Queensland, Australia, 2021. ACM.

[43] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding, 2018. URL

https://arxiv.org/abs/1810.04805.

[44] Ruihai Dong, Michael P O’Mahony, Markus Schaal, Kevin McCarthy, and Barry Smyth.

Combining similarity and sentiment in opinion mining for product recommendation.

Journal of Intelligent Information Systems, 46(2):285–312, 2016.

[45] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua

Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,

Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition

at scale. arXiv preprint arXiv:2010.11929, 2020.

[46] Daniel M Dunlavy, Tamara G Kolda, and Evrim Acar. Temporal link prediction using

matrix and tensor factorizations. ACM Transactions on Knowledge Discovery from

Data (TKDD), 5(2):1–27, 2011.

[47] J. C. Dunn. Some recent investigations of a new fuzzy partitioning algorithm and its ap-

plication to pattern classification problems. Journal of Cybernetics, 4(2):1–15, 1974. doi:

10.1080/01969727408546062. URL https://doi.org/10.1080/01969727408546062.

[48] P. Erdös and A. Rényi. On random graphs i. Publicationes Mathematicae Debrecen, 6:

290, 1959.

148

https://arxiv.org/abs/1810.04805
https://doi.org/10.1080/01969727408546062

[49] Evangelos E. Papalexakis, Christos Faloutsos, and Nicholas D Sidiropoulos. Parcube:

Sparse parallelizable tensor decompositions. In Peter A. Flach, Tijl De Bie, and

Nello Cristianini, editors, ECML-PKDD’12, pages 521–536, Berlin, Heidelberg, 2012.

Springer Berlin Heidelberg. ISBN 978-3-642-33460-3.

[50] Brian. Everitt. Cluster analysis /. Heinemann Educational for the Social Science

Research Council„ London :, 2001. ISBN 0435822977.

[51] Shuangfei Fan and Bert Huang. Labeled graph generative adversarial networks.

arXiv:1906.03220, 2019.

[52] Shuangfei Fan and Bert Huang. Labeled graph generative adversarial networks. CoRR,

abs/1906.03220:1–10, 2019. URL http://arxiv.org/abs/1906.03220.

[53] Wenqi Fan, Xiaorui Liu, Wei Jin, Xiangyu Zhao, Jiliang Tang, and Qing Li. Graph

trend filtering networks for recommendation. In Proceedings of the 45th International

ACM SIGIR Conference on Research and Development in Information Retrieval, pages

112–121, Madrid, Spain, 2022. ACM.

[54] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch

geometric, 2019.

[55] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast

adaptation of deep networks. In International conference on machine learning, pages

1126–1135. PMLR, 2017.

[56] Tao-yang Fu, Wang-Chien Lee, and Zhen Lei. Hin2vec: Explore meta-paths in

heterogeneous information networks for representation learning. In CIKM, page

149

http://arxiv.org/abs/1906.03220

1797–1806. ACM, 2017. ISBN 9781450349185. doi: 10.1145/3132847.3132953. URL

https://doi.org/10.1145/3132847.3132953.

[57] Marzena Fügenschuh, Ralucca Gera, and Tobias Lory. A Synthetic Model for Mul-

tilevel Air Transportation Networks. In Natalia Kliewer, Jan Fabian Ehmke, and

Ralf Borndörfer, editors, Operations Research Proceedings 2017, Operations Research

Proceedings, pages 347–353. Springer, March 2018. doi: 10.1007/978-3-319-89920-6.

URL https://ideas.repec.org/h/spr/oprchp/978-3-319-89920-6%5F47.html.

[58] Marzena Fügenschuh, Ralucca Gera, and Andrea Tagarelli. Angel: A synthetic model

for airline network generation emphasizing layers. IEEE Transactions on Network

Science and Engineering, 7(3):1977–1987, 2020. doi: 10.1109/TNSE.2020.2965207.

[59] Laetitia Gauvin, André Panisson, and Ciro Cattuto. Detecting the community structure

and activity patterns of temporal networks: A non-negative tensor factorization

approach. PLoS ONE, 9(1):e86028, 01 2014. doi: 10.1371/journal.pone.0086028.

URL http://dx.doi.org/10.1371%2Fjournal.pone.0086028.

[60] Benjamin Ghaemmaghami, Mustafa Ozdal, Rakesh Komuravelli, Dmitriy Korchev,

Dheevatsa Mudigere, Krishnakumar Nair, and Maxim Naumov. Learning to collide:

Recommendation system model compression with learned hash functions. arXiv preprint

arXiv:2203.15837, 2022.

[61] Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. Similarity search in high

dimensions via hashing. In Vldb, volume 99, pages 518–529, 1999.

150

https://doi.org/10.1145/3132847.3132953
https://ideas.repec.org/h/spr/oprchp/978-3-319-89920-6%5F47.html
http://dx.doi.org/10.1371%2Fjournal.pone.0086028

[62] Minas Gjoka, Carter T Butts, Maciej Kurant, and Athina Markopoulou. Multigraph

sampling of online social networks. IEEE Journal on Selected Areas in Communications,

29(9):1893–1905, 2011.

[63] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks.

Communications of the ACM, 63(11):139–144, 2020.

[64] Derek Greene and Pádraig Cunningham. Producing a unified graph representation

from multiple social network views. In Proceedings of the 5th Annual ACM Web Science

Conference, WebSci ’13, page 118–121, New York, NY, USA, 2013. ACM. ISBN

9781450318891. doi: 10.1145/2464464.2464471. URL https://doi.org/10.1145/

2464464.2464471.

[65] Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and

Alexander Smola. A Kernel Two-Sample Test. Journal of Machine Learning Research,

13(Mar):723–773, 2012. ISSN ISSN 1533-7928. URL http://jmlr.csail.mit.edu/

papers/v13/gretton12a.html.

[66] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond,

Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad

Gheshlaghi Azar, et al. Bootstrap your own latent-a new approach to self-supervised

learning. Advances in neural information processing systems, 33:21271–21284, 2020.

[67] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In

KDD, pages 855–864, New York, NY, USA, 2016. ACM.

151

https://doi.org/10.1145/2464464.2464471
https://doi.org/10.1145/2464464.2464471
http://jmlr.csail.mit.edu/papers/v13/gretton12a.html
http://jmlr.csail.mit.edu/papers/v13/gretton12a.html

[68] Ekta Gujral and Evangelos E Papalexakis. Smacd: Semi-supervised multi-aspect

community detection. In SDM, pages 702–710. SIAM, 2018.

[69] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C

Courville. Improved training of wasserstein gans. NeurIPS, 30, 2017.

[70] Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and

Sanjiv Kumar. Accelerating large-scale inference with anisotropic vector quantization.

In International Conference on Machine Learning, pages 3887–3896, Cambridge, MA,

USA, 2020. PMLR, PMLR.

[71] Zhichun Guo, Chuxu Zhang, Wenhao Yu, John Herr, Olaf Wiest, Meng Jiang, and

Nitesh V Chawla. Few-shot graph learning for molecular property prediction. In

Proceedings of the Web Conference 2021, pages 2559–2567, New York, NY, USA, 2021.

ACM.

[72] Zhichun Guo, Bozhao Nan, Yijun Tian, Olaf Wiest, Chuxu Zhang, and Nitesh V Chawla.

Graph-based molecular representation learning. arXiv preprint arXiv:2207.04869, 2022.

[73] Zhichun Guo, William Shiao, Shichang Zhang, Yozen Liu, Nitesh Chawla, Neil Shah,

and Tong Zhao. Linkless link prediction via relational distillation. arXiv preprint

arXiv:2210.05801, 2022.

[74] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure,

dynamics, and function using NetworkX. In Proceedings of the 7th Python in Science

Conference (SciPy2008), pages 11–15, Pasadena, CA USA, August 2008. SciPy.

152

[75] William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning

on large graphs. In NIPS, pages 1024–1034, Long Beach, CA, 2017. NeurIPS.

[76] Xiaotian Han, Tong Zhao, Yozen Liu, Xia Hu, and Neil Shah. Mlpinit: Embarrassingly

simple gnn training acceleration with mlp initialization, 2022.

[77] Yu Hao, Xin Cao, Yixiang Fang, Xike Xie, and Sibo Wang. Inductive link prediction

for nodes having only attribute information. In Proceedings of the Twenty-Ninth

International Joint Conference on Artificial Intelligence. International Joint Conferences

on Artificial Intelligence Organization, jul 2020. doi: 10.24963/ijcai.2020/168. URL

https://doi.org/10.24963%2Fijcai.2020%2F168.

[78] F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context.

Acm transactions on interactive intelligent systems (tiis), 5(4):1–19, 2015.

[79] Kaveh Hassani and Amir Hosein Khas Ahmadi. Contrastive multi-view representation

learning on graphs. In ICML, volume 119 of Proceedings of Machine Learning Research,

pages 4116–4126, Cambridge, MA, 2020. PMLR.

[80] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua.

Neural collaborative filtering. In Proceedings of the 26th international conference on

world wide web, pages 173–182, 2017.

[81] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang.

Lightgcn: Simplifying and powering graph convolution network for recommendation.

In Proceedings of the 43rd International ACM SIGIR conference on research and

153

https://doi.org/10.24963%2Fijcai.2020%2F168

development in Information Retrieval, pages 639–648, New York, NY, USA, 2020.

ACM.

[82] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models.

Advances in neural information processing systems, 33:6840–6851, 2020.

[83] Elad Hoffer and Nir Ailon. Deep metric learning using triplet network, 2014. URL

https://arxiv.org/abs/1412.6622.

[84] Paul W. Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic

blockmodels: First steps. Social Networks, 5(2):109–137, 6 1983. ISSN 0378-8733. doi:

10.1016/0378-8733(83)90021-7. URL https://www.sciencedirect.com/science/

article/abs/pii/0378873383900217.

[85] Harold Hotelling. Relations between two sets of variates. In Breakthroughs in statistics,

pages 162–190. Springer, 1992.

[86] Eduardo R Hruschka, Leandro Nunes de Castro, and Ricardo JGB Campello. Evolu-

tionary algorithms for clustering gene-expression data. In Fourth IEEE International

Conference on Data Mining (ICDM’04), pages 403–406, New York, 2004. IEEE, IEEE.

[87] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu,

Michele Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine

learning on graphs. arXiv preprint arXiv:2005.00687, 33:22118–22133, 2020.

[88] Weihua Hu, Kaidi Cao, Kexin Huang, Edward W Huang, Karthik Subbian, and Jure

Leskovec. Tuneup: A training strategy for improving generalization of graph neural

networks. arXiv preprint arXiv:2210.14843, 2022.

154

https://arxiv.org/abs/1412.6622
https://www.sciencedirect.com/science/article/abs/pii/0378873383900217
https://www.sciencedirect.com/science/article/abs/pii/0378873383900217

[89] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry Heck.

Learning deep structured semantic models for web search using clickthrough data. In

Proceedings of the 22nd ACM international conference on Information & Knowledge

Management, pages 2333–2338, 2013.

[90] Nicolas Hubert, Pierre Monnin, Armelle Brun, and Davy Monticolo. New Strategies for

Learning Knowledge Graph Embeddings: the Recommendation Case. In EKAW 2022 -

23rd International Conference on Knowledge Engineering and Knowledge Management,

Bolzano, Italy, September 2022. URL https://hal.inria.fr/hal-03722881.

[91] Roberto Interdonato, Matteo Magnani, Diego Perna, Andrea Tagarelli, and Davide

Vega. Multilayer network simplification: Approaches, models and methods. Computer

Science Review, 36:100246, 2020. ISSN 1574-0137. doi: https://doi.org/10.1016/j.

cosrev.2020.100246. URL https://www.sciencedirect.com/science/article/pii/

S1574013719301923.

[92] Yitong Ji, Aixin Sun, Jie Zhang, and Chenliang Li. A critical study on data leakage in

recommender system offline evaluation. ACM Transactions on Information Systems,

41(3):1–27, 2023.

[93] Wei Jin, Tyler Derr, Haochen Liu, Yiqi Wang, Suhang Wang, Zitao Liu, and Jiliang

Tang. Self-supervised learning on graphs: Deep insights and new direction. arXiv

preprint arXiv:2006.10141, 2020.

[94] Wei Jin, Xiaorui Liu, Xiangyu Zhao, Yao Ma, Neil Shah, and Jiliang Tang. Automated

self-supervised learning for graphs. CoRR, abs/2106.05470:1–20, 2021. URL https:

155

https://hal.inria.fr/hal-03722881
https://www.sciencedirect.com/science/article/pii/S1574013719301923
https://www.sciencedirect.com/science/article/pii/S1574013719301923
https://arxiv.org/abs/2106.05470
https://arxiv.org/abs/2106.05470
https://arxiv.org/abs/2106.05470

//arxiv.org/abs/2106.05470.

[95] Wei Jin, Tong Zhao, Jiayuan Ding, Yozen Liu, Jiliang Tang, and Neil Shah. Empowering

graph representation learning with test-time graph transformation, 2022.

[96] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with

gpus. IEEE Transactions on Big Data, 7(3):535–547, 2019.

[97] Mingxuan Ju, Tong Zhao, Qianlong Wen, Wenhao Yu, Neil Shah, Yanfang Ye, and

Chuxu Zhang. Multi-task self-supervised graph neural networks enable stronger task

generalization. arXiv preprint arXiv:2210.02016, 2022.

[98] Mingxuan Ju, Tong Zhao, Qianlong Wen, Wenhao Yu, Neil Shah, Yanfang Ye, and

Chuxu Zhang. Multi-task self-supervised graph neural networks enable stronger task

generalization, 2023.

[99] Wang-Cheng Kang, Derek Zhiyuan Cheng, Tiansheng Yao, Xinyang Yi, Ting Chen,

Lichan Hong, and Ed H Chi. Learning to embed categorical features without embedding

tables for recommendation. In Proceedings of the 27th ACM SIGKDD Conference on

Knowledge Discovery & Data Mining, pages 840–850, 2021.

[100] Zekarias T. Kefato and Sarunas Girdzijauskas. Self-supervised graph neural networks

without explicit negative sampling. CoRR, abs/2103.14958:1–8, 2021. URL https:

//arxiv.org/abs/2103.14958.

[101] Ehsan Khadangi, Alireza Bagheri, and Amin Shahmohammadi. Biased sampling from

facebook multilayer activity network using learning automata. Applied Intelligence,

156

https://arxiv.org/abs/2106.05470
https://arxiv.org/abs/2106.05470
https://arxiv.org/abs/2106.05470
https://arxiv.org/abs/2106.05470
https://arxiv.org/abs/2103.14958
https://arxiv.org/abs/2103.14958

45(3):829–849, Oct 2016. ISSN 1573-7497. doi: 10.1007/s10489-016-0784-0. URL

https://doi.org/10.1007/s10489-016-0784-0.

[102] Jung Yeol Kim and K.-I. Goh. Coevolution and correlated multiplexity in multiplex

networks. Phys. Rev. Lett., 111:058702, Jul 2013. doi: 10.1103/PhysRevLett.111.058702.

URL https://link.aps.org/doi/10.1103/PhysRevLett.111.058702.

[103] Minho Kim and RS Ramakrishna. New indices for cluster validity assessment. Pattern

Recognition Letters, 26(15):2353–2363, 2005.

[104] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv:1312.6114,

2013.

[105] Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv:1611.07308,

2016.

[106] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolu-

tional networks. In ICLR 2017, pages 1–14, Toulon, France, 2017. OpenReview.net.

URL https://openreview.net/forum?id=SJU4ayYgl.

[107] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolu-

tional networks. In ICLR, pages 1–14, Toulon, France, 2017. ICLR.

[108] Yehuda Koren. Factorization meets the neighborhood: a multifaceted collaborative

filtering model. In Proceedings of the 14th ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 426–434, 2008.

157

https://doi.org/10.1007/s10489-016-0784-0
https://link.aps.org/doi/10.1103/PhysRevLett.111.058702
https://openreview.net/forum?id=SJU4ayYgl

[109] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for

recommender systems. Computer, 42(8):30–37, 2009.

[110] Jean Kossaifi, Yannis Panagakis, Anima Anandkumar, and Maja Pantic. Tensorly:

Tensor learning in python. arXiv:1610.09555, 2016.

[111] Xuan Nhat Lam, Thuc Vu, Trong Duc Le, and Anh Duc Duong. Addressing cold-

start problem in recommendation systems. In Proceedings of the 2nd International

Conference on Ubiquitous Information Management and Communication, ICUIMC ’08,

page 208–211, New York, NY, USA, 2008. Association for Computing Machinery. ISBN

9781595939937. doi: 10.1145/1352793.1352837. URL https://doi.org/10.1145/

1352793.1352837.

[112] D.D. Lee and H.S. Seung. Learning the parts of objects by non-negative matrix

factorization. Nature, 401(6755):788–791, 1999.

[113] Namkyeong Lee, Junseok Lee, and Chanyoung Park. Augmentation-free self-supervised

learning on graphs. In Proceedings of the AAAI Conference on Artificial Intelligence,

volume 36, pages 7372–7380, Virtual, 2022. AAAI Press.

[114] Lars Lenssen and Erich Schubert. Clustering by direct optimization of the medoid

silhouette. In Similarity Search and Applications: 15th International Conference,

SISAP 2022, Bologna, Italy, October 5–7, 2022, Proceedings, pages 190–204, New York,

NY, USA, 2022. Springer, Springer.

[115] Jure Leskovec and Christos Faloutsos. Sampling from large graphs. In Proceedings of

the 12th ACM SIGKDD, KDD ’06, page 631–636, New York, NY, USA, 2006. ACM.

158

https://doi.org/10.1145/1352793.1352837
https://doi.org/10.1145/1352793.1352837

ISBN 1595933395. doi: 10.1145/1150402.1150479. URL https://doi.org/10.1145/

1150402.1150479.

[116] Maosen Li, Siheng Chen, Yangheng Zhao, Ya Zhang, Yanfeng Wang, and Qi Tian.

Dynamic multiscale graph neural networks for 3d skeleton based human motion predic-

tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 214–223, 2020.

[117] Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and

Guangzhong Sun. xdeepfm: Combining explicit and implicit feature interactions

for recommender systems. In Proceedings of the 24th ACM SIGKDD international

conference on knowledge discovery & data mining, pages 1754–1763, 2018.

[118] Blerina Lika, Kostas Kolomvatsos, and Stathes Hadjiefthymiades. Facing the cold start

problem in recommender systems. Expert systems with applications, 41(4):2065–2073,

2014.

[119] Shuai Lin, Chen Liu, Pan Zhou, Zi-Yuan Hu, Shuojia Wang, Ruihui Zhao, Yefeng

Zheng, Liang Lin, Eric Xing, and Xiaodan Liang. Prototypical graph contrastive

learning. IEEE Transactions on Neural Networks and Learning Systems, 2022.

[120] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learning entity and

relation embeddings for knowledge graph completion. In Proceedings of the Twenty-

Ninth AAAI Conference on Artificial Intelligence, AAAI’15, page 2181–2187. AAAI

Press, 2015. ISBN 0262511290.

159

https://doi.org/10.1145/1150402.1150479
https://doi.org/10.1145/1150402.1150479

[121] Greg Linden, Brent Smith, and Jeremy York. Amazon. com recommendations: Item-

to-item collaborative filtering. IEEE Internet computing, 7(1):76–80, 2003.

[122] Chen Ling, Carl Yang, and Liang Zhao. Deep generation of heterogeneous networks.

In 2021 IEEE ICDM, pages 379–388, Auckland, New Zealand, 2021. IEEE. doi:

10.1109/ICDM51629.2021.00049.

[123] Chengyi Liu, Wenqi Fan, Yunqing Liu, Jiatong Li, Hang Li, Hui Liu, Jiliang Tang,

and Qing Li. Generative diffusion models on graphs: Methods and applications. arXiv

preprint arXiv:2302.02591, 2023.

[124] Gang Liu, Tong Zhao, Jiaxin Xu, Tengfei Luo, and Meng Jiang. Graph rationalization

with environment-based augmentations. In Proceedings of the 28th ACM SIGKDD

Conference on Knowledge Discovery and Data Mining, pages 1069–1078, 2022.

[125] Zhuoran Liu, Leqi Zou, Xuan Zou, Caihua Wang, Biao Zhang, Da Tang, Bolin Zhu,

Yijie Zhu, Peng Wu, Ke Wang, et al. Monolith: real time recommendation system

with collisionless embedding table. arXiv preprint arXiv:2209.07663, 2022.

[126] Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information

theory, 28(2):129–137, 1982.

[127] Johannes V Lochter, Renato M Silva, and Tiago A Almeida. Deep learning models for

representing out-of-vocabulary words. In Brazilian Conference on Intelligent Systems,

pages 418–434. Springer, 2020.

[128] Johannes V Lochter, Renato M Silva, and Tiago A Almeida. Multi-level out-of-

vocabulary words handling approach. Knowledge-Based Systems, 251:108911, 2022.

160

[129] J MacQueen. Some methods for classification and analysis of multivariate observations.

In Proc. 5th Berkeley Symposium on Math., Stat., and Prob, page 281, CA, USA, 1965.

University of California Press.

[130] Aditya Krishna Menon and Charles Elkan. Link prediction via matrix factorization. In

Joint european conference on machine learning and knowledge discovery in databases,

pages 437–452. Springer, 2011.

[131] Sabrina J Mielke, Zaid Alyafeai, Elizabeth Salesky, Colin Raffel, Manan Dey, Matthias

Gallé, Arun Raja, Chenglei Si, Wilson Y Lee, Benoît Sagot, et al. Between words and

characters: a brief history of open-vocabulary modeling and tokenization in nlp. arXiv

preprint arXiv:2112.10508, 2021.

[132] Glenn W Milligan and Martha C Cooper. An examination of procedures for determining

the number of clusters in a data set. Psychometrika, 50:159–179, 1985.

[133] John Moody. Fast learning in multi-resolution hierarchies. Advances in neural infor-

mation processing systems, 1, 1988.

[134] Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui Chen,

Yang Liu, and Shantanu Jaiswal. graph2vec: Learning distributed representations of

graphs. arXiv:1707.05005, 2017.

[135] M. E. J. Newman, D. J. Watts, and S. H. Strogatz. Random graph models of social

networks. Proceedings of the National Academy of Sciences, 99(suppl_1):2566–2572,

2002. doi: 10.1073/pnas.012582999. URL https://www.pnas.org/doi/abs/10.1073/

pnas.012582999.

161

https://www.pnas.org/doi/abs/10.1073/pnas.012582999
https://www.pnas.org/doi/abs/10.1073/pnas.012582999

[136] V. Nicosia, G. Bianconi, V. Latora, and M. Barthelemy. Growing multiplex networks.

Phys. Rev. Lett., 111:058701, Jul 2013. doi: 10.1103/PhysRevLett.111.058701. URL

https://link.aps.org/doi/10.1103/PhysRevLett.111.058701.

[137] Ali Noroozi and Mansoor Rezghi. A tensor-based framework for rs-fmri classification

and functional connectivity construction. Frontiers in Neuroinformatics, 14, 2020.

ISSN 1662-5196. doi: 10.3389/fninf.2020.581897. URL https://www.frontiersin.

org/article/10.3389/fninf.2020.581897.

[138] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with

contrastive predictive coding. arXiv preprint arXiv:1807.03748, 2018.

[139] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. Journal of Algorithms,

51(2):122–144, 2004.

[140] Evangelos Papalexakis and Konstantinos Pelechrinis. Thoops: A multi-aspect analytical

framework for spatio-temporal basketball data. In Proceedings of the 27th ACM CIKM,

CIKM ’18, page 2223–2232, New York, NY, USA, 2018. ACM. ISBN 9781450360142.

doi: 10.1145/3269206.3272002. URL https://doi.org/10.1145/3269206.3272002.

[141] Hae-Sang Park and Chi-Hyuck Jun. A simple and fast algorithm for k-medoids

clustering. Expert systems with applications, 36(2):3336–3341, 2009.

[142] Jiwoong Park, Minsik Lee, Hyung Jin Chang, Kyuewang Lee, and Jin Young Choi.

Symmetric graph convolutional autoencoder for unsupervised graph representation

learning. In Proceedings of the IEEE/CVF international conference on computer vision,

pages 6519–6528, New York, NY, USA, 2019. IEEE.

162

https://link.aps.org/doi/10.1103/PhysRevLett.111.058701
https://www.frontiersin.org/article/10.3389/fninf.2020.581897
https://www.frontiersin.org/article/10.3389/fninf.2020.581897
https://doi.org/10.1145/3269206.3272002

[143] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch:

An imperative style, high-performance deep learning library. Advances in neural infor-

mation processing systems, 32:1–12, 2019. URL http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.

pdf.

[144] Georgios A. Pavlopoulos, Maria Secrier, Charalampos N. Moschopoulos, Theodoros G.

Soldatos, Sophia Kossida, Jan Aerts, Reinhard Schneider, and Pantelis G. Bagos.

Using graph theory to analyze biological networks. BioData Mining, 4(1):10, Apr

2011. ISSN 1756-0381. doi: 10.1186/1756-0381-4-10. URL https://doi.org/10.

1186/1756-0381-4-10.

[145] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.

Journal of Machine Learning Research, 12:2825–2830, 2011.

[146] Dan Pelleg and Andrew Moore. Accelerating exact k-means algorithms with geometric

reasoning. In Proceedings of the fifth ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 277–281, New York, NY, USA, 1999.

ACM.

[147] Zhen Peng, Wenbing Huang, Minnan Luo, Qinghua Zheng, Yu Rong, Tingyang Xu,

and Junzhou Huang. Graph representation learning via graphical mutual information

163

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1186/1756-0381-4-10
https://doi.org/10.1186/1756-0381-4-10

maximization. In Proceedings of The Web Conference 2020, pages 259–270, New York,

NY, USA, 2020. ACM.

[148] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global

vectors for word representation. In Proceedings of the 2014 conference on empirical

methods in natural language processing (EMNLP), pages 1532–1543, 2014.

[149] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social

representations. In Proceedings of the 20th ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 701–710, New York, NY, USA, aug 2014.

ACM. doi: 10.1145/2623330.2623732. URL https://doi.org/10.1145%2F2623330.

2623732.

[150] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,

Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations. In

Proceedings of NAACL-HLT, pages 2227–2237, 2018.

[151] S Yu Philip, Jiawei Han, and Christos Faloutsos. Link mining: Models, algorithms,

and applications. Springer, 2010.

[152] Carey E. Priebe, John M. Conroy, David J. Marchette, and Youngser Park. Scan

statistics on enron graphs. Computational & Mathematical Organization Theory,

11(3):229–247, Oct 2005. ISSN 1572-9346. doi: 10.1007/s10588-005-5378-z. URL

https://doi.org/10.1007/s10588-005-5378-z.

[153] William M Rand. Objective criteria for the evaluation of clustering methods. Journal

of the American Statistical association, 66(336):846–850, 1971.

164

https://doi.org/10.1145%2F2623330.2623732
https://doi.org/10.1145%2F2623330.2623732
https://doi.org/10.1007/s10588-005-5378-z

[154] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr:

Bayesian personalized ranking from implicit feedback. arXiv preprint arXiv:1205.2618,

2012.

[155] Steffen Rendle, Walid Krichene, Li Zhang, and John Anderson. Neural collabora-

tive filtering vs. matrix factorization revisited. In Fourteenth ACM conference on

recommender systems, pages 240–248, Online, 2020. ACM.

[156] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep

graph convolutional networks on node classification. arXiv preprint arXiv:1907.10903,

2019.

[157] Giulio Rossetti. ANGEL: efficient, and effective, node-centric community discovery in

static and dynamic networks. Applied Network Science, 5(1):26, June 2020.

[158] Peter J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation

of cluster analysis. Journal of Computational and Applied Mathematics, 20:53–65,

1987. ISSN 0377-0427. doi: https://doi.org/10.1016/0377-0427(87)90125-7. URL

https://www.sciencedirect.com/science/article/pii/0377042787901257.

[159] Aravind Sankar, Yozen Liu, Jun Yu, and Neil Shah. Graph neural networks for friend

ranking in large-scale social platforms. In Proceedings of the Web Conference 2021,

pages 2535–2546, New York, NY, USA, 2021. ACM.

[160] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele

Monfardini. The graph neural network model. IEEE Transactions on Neural Networks,

20(1):61–80, 2009. doi: 10.1109/TNN.2008.2005605.

165

https://www.sciencedirect.com/science/article/pii/0377042787901257

[161] Markus Schedl. The lfm-1b dataset for music retrieval and recommendation. In

Proceedings of the 2016 ACM on international conference on multimedia retrieval,

pages 103–110, 2016.

[162] Tobias Schnabel, Mengting Wan, and Longqi Yang. Situating recommender systems

in practice: Towards inductive learning and incremental updates. arXiv preprint

arXiv:2211.06365, 2022.

[163] Erich Schubert. Stop using the elbow criterion for k-means and how to choose the

number of clusters instead, 2022.

[164] Erich Schubert and Peter J Rousseeuw. Faster k-medoids clustering: improving the pam,

clara, and clarans algorithms. In Similarity Search and Applications: 12th International

Conference, SISAP 2019, Newark, NJ, USA, October 2–4, 2019, Proceedings 12, pages

171–187, New York, NY, USA, 2019. Springer, Springer.

[165] David Sculley. Web-scale k-means clustering. In Proceedings of the 19th international

conference on World wide web, pages 1177–1178, New York, NY, USA, 2010. ACM.

[166] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina

Eliassi-Rad. Collective classification in network data. AI magazine, 29(3):93–93, 2008.

[167] Shalin Shah. A survey of latent factor models for recommender systems and personal-

ization. Authorea Preprints, 2023.

[168] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Gunne-

mann. Pitfalls of graph neural network evaluation. arXiv preprint arXiv:1811.05868,

2018.

166

[169] Fatemeh Sheikholeslami and Georgios B. Giannakis. Identification of overlapping

communities via constrained egonet tensor decomposition. IEEE Transactions on

Signal Processing, 66(21):5730–5745, 2018. doi: 10.1109/TSP.2018.2871383.

[170] Jiahui Shi, Vivek Chaurasiya, Yozen Liu, Shubham Vij, Yan Wu, Satya Kanduri, Neil

Shah, Peicheng Yu, Nik Srivastava, Lei Shi, et al. Embedding based retrieval in friend

recommendation. 2023.

[171] William Shiao and Evangelos E. Papalexakis. Adversarially generating rank-constrained

graphs. In 2021 IEEE 8th International Conference on Data Science and Advanced

Analytics (DSAA), pages 1–8, Porto, Portugal, 2021. IEEE. doi: 10.1109/DSAA53316.

2021.9564202.

[172] William Shiao and Evangelos E Papalexakis. Adversarially generating rank-constrained

graphs. In 2021 IEEE 8th International Conference on Data Science and Advanced

Analytics (DSAA), pages 1–8, New York, NY, USA, 2021. IEEE, IEEE.

[173] William Shiao, Zhichun Guo, Tong Zhao, Evangelos E Papalexakis, Yozen Liu, and Neil

Shah. Link prediction with non-contrastive learning. arXiv preprint arXiv:2211.14394,

abs/2211.14394:1–19, 2022.

[174] William Shiao, Zhichun Guo, Tong Zhao, Evangelos E Papalexakis, Yozen Liu, and

Neil Shah. Link prediction with non-contrastive learning, 2022.

[175] Blaž Škrlj, Jan Kralj, and Nada Lavrač. Embedding-based silhouette community

detection. Machine Learning, 109:2161–2193, 2020.

167

[176] Shaden Smith, Jee W. Choi, Jiajia Li, Richard Vuduc, Jongsoo Park, Xing Liu, and

George Karypis. FROSTT: The formidable repository of open sparse tensors and tools,

2017. URL http://frostt.io/.

[177] Christian L Staudt, Aleksejs Sazonovs, and Henning Meyerhenke. Networkit: A tool

suite for large-scale complex network analysis. Network Science, 4(4):508–530, 2016.

[178] Aixin Sun. On challenges of evaluating recommender systems in an offline setting. In

Proceedings of the 17th ACM Conference on Recommender Systems, pages 1284–1285,

2023.

[179] Aixin Sun. Take a fresh look at recommender systems from an evaluation standpoint.

In Proceedings of the 46th International ACM SIGIR Conference on Research and

Development in Information Retrieval, pages 2629–2638, 2023.

[180] Qiaoyu Tan, Ninghao Liu, Xing Zhao, Hongxia Yang, Jingren Zhou, and Xia Hu.

Learning to hash with graph neural networks for recommender systems. In Proceedings

of The Web Conference 2020, pages 1988–1998, 2020.

[181] Xianfeng Tang, Yozen Liu, Neil Shah, Xiaolin Shi, Prasenjit Mitra, and Suhang Wang.

Knowing your fate: Friendship, action and temporal explanations for user engagement

prediction on social apps. In Proceedings of the 26th ACM SIGKDD international

conference on knowledge discovery & data mining, pages 2269–2279, San Diego, CA,

2020. ACM.

[182] Xianfeng Tang, Yozen Liu, Xinran He, Suhang Wang, and Neil Shah. Friend story

ranking with edge-contextual local graph convolutions. In Proceedings of the Fifteenth

168

http://frostt.io/

ACM International Conference on Web Search and Data Mining, pages 1007–1015,

Singapore, 2022. ACM.

[183] Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Mehdi Azabou,

Eva L. Dyer, Rémi Munos, Petar Velickovic, and Michal Valko. Large-scale representa-

tion learning on graphs via bootstrapping. In The Tenth International Conference on

Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022, pages 1–18, Vir-

tual, 2022. OpenReview.net. URL https://openreview.net/forum?id=0UXT6PpRpW.

[184] Yuandong Tian, Xinlei Chen, and Surya Ganguli. Understanding self-supervised

learning dynamics without contrastive pairs, 2021. URL https://arxiv.org/abs/

2102.06810.

[185] Manasi Vartak, Arvind Thiagarajan, Conrado Miranda, Jeshua Bratman, and Hugo

Larochelle. A meta-learning perspective on cold-start recommendations for items.

Advances in neural information processing systems, 30, 2017.

[186] Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio,

and R Devon Hjelm. Deep graph infomax, 2018. URL https://arxiv.org/abs/1809.

10341.

[187] Maksims Volkovs, Guangwei Yu, and Tomi Poutanen. Dropoutnet: Addressing cold

start in recommender systems. Advances in neural information processing systems, 30,

2017.

[188] Chenyang Wang, Yuanqing Yu, Weizhi Ma, Min Zhang, Chong Chen, Yiqun Liu,

and Shaoping Ma. Towards representation alignment and uniformity in collaborative

169

https://openreview.net/forum?id=0UXT6PpRpW
https://arxiv.org/abs/2102.06810
https://arxiv.org/abs/2102.06810
https://arxiv.org/abs/1809.10341
https://arxiv.org/abs/1809.10341

filtering. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery

and Data Mining, pages 1816–1825, 2022.

[189] Fei Wang, Hector-Hugo Franco-Penya, John D Kelleher, John Pugh, and Robert Ross.

An analysis of the application of simplified silhouette to the evaluation of k-means

clustering validity. In Machine Learning and Data Mining in Pattern Recognition:

13th International Conference, MLDM 2017, New York, NY, USA, July 15-20, 2017,

Proceedings 13, pages 291–305, New York, NY, USA, 2017. Springer, Springer.

[190] Li Wang, Binbin Jin, Zhenya Huang, Hongke Zhao, Defu Lian, Qi Liu, and Enhong

Chen. Preference-adaptive meta-learning for cold-start recommendation. In IJCAI,

pages 1607–1614, 2021.

[191] Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. Deep & cross network for ad

click predictions. In Proceedings of the ADKDD’17, pages 1–7. 2017.

[192] Ruoxi Wang, Rakesh Shivanna, Derek Cheng, Sagar Jain, Dong Lin, Lichan Hong, and

Ed Chi. Dcn v2: Improved deep & cross network and practical lessons for web-scale

learning to rank systems. In Proceedings of the web conference 2021, pages 1785–1797,

2021.

[193] Shijie Wang, Guiling Sun, and Yangyang Li. Svd++ recommendation algorithm based

on backtracking. Information, 11(7):369, 2020.

[194] Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning

through alignment and uniformity on the hypersphere. In International Conference on

Machine Learning, pages 9929–9939. PMLR, 2020.

170

[195] Yilun Wang, Yu Zheng, and Yexiang Xue. Travel time estimation of a path using

sparse trajectories. In Proceedings of the 20th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, KDD ’14, pages 25–34, New York, NY,

USA, 2014. ACM. ISBN 978-1-4503-2956-9. doi: 10.1145/2623330.2623656. URL

http://doi.acm.org/10.1145/2623330.2623656.

[196] Yiwei Wang, Bryan Hooi, Yozen Liu, Tong Zhao, Zhichun Guo, and Neil Shah. Flash-

light: Scalable link prediction with effective decoders. arXiv preprint arXiv:2209.10100,

2022.

[197] Yue Wang and Xintao Wu. Preserving differential privacy in degree-correlation based

graph generation. Transactions on data privacy, 6:127–145, 08 2013.

[198] Zhitao Wang, Yong Zhou, Litao Hong, Yuanhang Zou, Hanjing Su, and Shouzhi Chen.

Pairwise learning for neural link prediction. CoRR, abs/2112.02936:1–10, 2021. URL

https://arxiv.org/abs/2112.02936.

[199] Xiang Wei, Boqing Gong, Zixia Liu, Wei Lu, and Liqiang Wang. Improving the improved

training of wasserstein gans: A consistency term and its dual effect. arXiv:1803.01541,

2018.

[200] Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola, and Josh Attenberg.

Feature hashing for large scale multitask learning. In Proceedings of the 26th annual

international conference on machine learning, pages 1113–1120, 2009.

[201] Zixin Wen and Yuanzhi Li. The mechanism of prediction head in non-contrastive

self-supervised learning. arXiv preprint arXiv:2205.06226, 2022.

171

http://doi.acm.org/10.1145/2623330.2623656
https://arxiv.org/abs/2112.02936

[202] Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised deep embedding for

clustering analysis. In International conference on machine learning, pages 478–487,

Cambridge, MA, USA, 2016. PMLR, PMLR.

[203] Dongkuan Xu and Yingjie Tian. A comprehensive survey of clustering algorithms.

Annals of Data Science, 2:165–193, 2015.

[204] Bo Yang, Xiao Fu, Nicholas D Sidiropoulos, and Mingyi Hong. Towards k-means-

friendly spaces: Simultaneous deep learning and clustering. In international conference

on machine learning, pages 3861–3870, Cambridge, MA, USA, 2017. PMLR, PMLR.

[205] Liangwei Yang, Zhiwei Liu, Chen Wang, Mingdai Yang, Xiaolong Liu, Jing Ma, and

Philip S Yu. Graph-based alignment and uniformity for recommendation. In Proceedings

of the 32nd ACM International Conference on Information and Knowledge Management,

pages 4395–4399, 2023.

[206] Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao

Zhang, Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of

methods and applications. ACM Computing Surveys, 56(4):1–39, 2023.

[207] Zhen Yang, Ming Ding, Chang Zhou, Hongxia Yang, Jingren Zhou, and Jie Tang.

Understanding negative sampling in graph representation learning, 2020. URL https:

//arxiv.org/abs/2005.09863.

[208] Zhen Yang, Ming Ding, Chang Zhou, Hongxia Yang, Jingren Zhou, and Jie Tang.

Understanding negative sampling in graph representation learning. In Proceedings

172

https://arxiv.org/abs/2005.09863
https://arxiv.org/abs/2005.09863

of the 26th ACM SIGKDD international conference on knowledge discovery & data

mining, pages 1666–1676, New York, NY, USA, 2020. ACM.

[209] Haoteng Yin, Muhan Zhang, Yanbang Wang, Jianguo Wang, and Pan Li. Algorithm and

system co-design for efficient subgraph-based graph representation learning. Proceedings

of the VLDB Endowment, 15(11):2788–2796, 2022.

[210] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and

Jure Leskovec. Graph convolutional neural networks for web-scale recommender systems.

In Proceedings of the 24th ACM SIGKDD international conference on knowledge

discovery & data mining, pages 974–983, London, UK, jul 2018. ACM. doi: 10.1145/

3219819.3219890. URL https://doi.org/10.1145%2F3219819.3219890.

[211] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and

Jure Leskovec. Graph convolutional neural networks for web-scale recommender systems.

In Proceedings of the 24th ACM SIGKDD international conference on knowledge

discovery & data mining, pages 974–983, 2018.

[212] Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton, and

Jure Leskovec. Hierarchical Graph Representation Learning with Differentiable Pooling.

Advances in Neural Information Processing Systems, 2018-December:4800–4810, 6 2018.

URL http://arxiv.org/abs/1806.08804.

[213] Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. Graphrnn:

Generating realistic graphs with deep auto-regressive models. In International confer-

ence on machine learning, pages 5708–5717, Cambridge, MA, 2018. PMLR, JMLR.org.

173

https://doi.org/10.1145%2F3219819.3219890
http://arxiv.org/abs/1806.08804

[214] Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, and Jure Leskovec. Graphrnn:

Generating realistic graphs with deep auto-regressive models. In Jennifer G. Dy and

Andreas Krause, editors, ICML 2018, volume 80, pages 5694–5703, Stockholm, Sweden,

2018. PMLR. URL http://proceedings.mlr.press/v80/you18a.html.

[215] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang

Shen. Graph contrastive learning with augmentations. Advances in Neural Information

Processing Systems, 33:5812–5823, 2020.

[216] Chuanming Yu, Xiaoli Zhao, Lu An, and Xia Lin. Similarity-based link prediction in

social networks: A path and node combined approach. Journal of Information Science,

43(5):683–695, 2017.

[217] Junliang Yu, Xin Xia, Tong Chen, Lizhen Cui, Nguyen Quoc Viet Hung, and Hongzhi

Yin. Xsimgcl: Towards extremely simple graph contrastive learning for recommendation.

IEEE Transactions on Knowledge and Data Engineering, 2023.

[218] Ahmad Zareie and Rizos Sakellariou. Similarity-based link prediction in social networks

using latent relationships between the users. Scientific Reports, 10(1):1–11, 2020.

[219] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins:

Self-supervised learning via redundancy reduction, 2021. URL https://arxiv.org/

abs/2103.03230.

[220] Caojin Zhang, Yicun Liu, Yuanpu Xie, Sofia Ira Ktena, Alykhan Tejani, Akshay Gupta,

Pranay Kumar Myana, Deepak Dilipkumar, Suvadip Paul, Ikuhiro Ihara, et al. Model

size reduction using frequency based double hashing for recommender systems. In

174

http://proceedings.mlr.press/v80/you18a.html
https://arxiv.org/abs/2103.03230
https://arxiv.org/abs/2103.03230

Proceedings of the 14th ACM Conference on Recommender Systems, pages 521–526,

2020.

[221] Hanwang Zhang, Fumin Shen, Wei Liu, Xiangnan He, Huanbo Luan, and Tat-Seng

Chua. Discrete collaborative filtering. In Proceedings of the 39th International ACM

SIGIR conference on Research and Development in Information Retrieval, pages 325–

334, 2016.

[222] Hengrui Zhang, Qitian Wu, Junchi Yan, David Wipf, and Philip S Yu. From canonical

correlation analysis to self-supervised graph neural networks. Advances in Neural

Information Processing Systems, 34:76–89, 2021.

[223] Kunpeng Zhang, Shaokun Fan, and Harry Jiannan Wang. An efficient recommender

system using locality sensitive hashing. 2018.

[224] Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. In

Advances in Neural Information Processing Systems, pages 5165–5175, New York, NY,

USA, 2018. Curran Associates.

[225] Muhan Zhang and Yixin Chen. Inductive matrix completion based on graph neural

networks. arXiv preprint arXiv:1904.12058, 2019.

[226] Ziwei Zhang, Peng Cui, and Wenwu Zhu. Deep learning on graphs: A survey. CoRR,

abs/1812.04202:1–24, 2018. URL http://arxiv.org/abs/1812.04202.

[227] Tong Zhao, Yozen Liu, Leonardo Neves, Oliver Woodford, Meng Jiang, and Neil Shah.

Data augmentation for graph neural networks. In Proceedings of the AAAI Conference

175

http://arxiv.org/abs/1812.04202

on Artificial Intelligence, volume 35, pages 11015–11023, Cambridge, MA, 2021. AAAI

Press.

[228] Tong Zhao, Wei Jin, Yozen Liu, Yingheng Wang, Gang Liu, Stephan Günneman, Neil

Shah, and Meng Jiang. Graph data augmentation for graph machine learning: A

survey. arXiv preprint arXiv:2202.08871, 2022.

[229] Tong Zhao, Gang Liu, Stephan Günnemann, and Meng Jiang. Graph data augmentation

for graph machine learning: A survey, 2022. URL https://arxiv.org/abs/2202.

08871.

[230] Tong Zhao, Gang Liu, Daheng Wang, Wenhao Yu, and Meng Jiang. Learning from

counterfactual links for link prediction. In International Conference on Machine

Learning, pages 26911–26926, Cambridge, MA, 2022. PMLR, PMLR.

[231] Tong Zhao, Xianfeng Tang, Danqing Zhang, Haoming Jiang, Nikhil Rao, Yiwei Song,

Pallav Agrawal, Karthik Subbian, Bing Yin, and Meng Jiang. Autogda: Automated

graph data augmentation for node classification. In The First Learning on Graphs

Conference, pages 1–17, Cambridge, MA, 2022. PMLR.

[232] Wayne Xin Zhao, Shanlei Mu, Yupeng Hou, Zihan Lin, Yushuo Chen, Xingyu Pan,

Kaiyuan Li, Yujie Lu, Hui Wang, Changxin Tian, et al. Recbole: Towards a unified,

comprehensive and efficient framework for recommendation algorithms. In proceedings

of the 30th acm international conference on information & knowledge management,

pages 4653–4664, 2021.

176

https://arxiv.org/abs/2202.08871
https://arxiv.org/abs/2202.08871

[233] Wayne Xin Zhao, Yupeng Hou, Xingyu Pan, Chen Yang, Zeyu Zhang, Zihan Lin,

Jingsen Zhang, Shuqing Bian, Jiakai Tang, Wenqi Sun, et al. Recbole 2.0: towards a

more up-to-date recommendation library. In Proceedings of the 31st ACM International

Conference on Information & Knowledge Management, pages 4722–4726, 2022.

[234] Wenqing Zheng, Edward W Huang, Nikhil Rao, Sumeet Katariya, Zhangyang Wang,

and Karthik Subbian. Cold brew: Distilling graph node representations with incomplete

or missing neighborhoods. arXiv preprint arXiv:2111.04840, 2021.

[235] Dawei Zhou, Lecheng Zheng, Jiejun Xu, and Jingrui He. Misc-gan: A multi-scale

generative model for graphs. Frontiers in Big Data, 2:3, 2019. ISSN 2624-909X. doi:

10.3389/fdata.2019.00003. URL https://www.frontiersin.org/article/10.3389/

fdata.2019.00003.

[236] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Deep

graph contrastive representation learning. CoRR, abs/2006.04131:1–17, 2020. URL

https://arxiv.org/abs/2006.04131.

[237] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Graph

contrastive learning with adaptive augmentation. In Proceedings of the Web Conference

2021, pages 2069–2080, New York, NY, USA, 2021. ACM.

[238] Marinka Zitnik and Jure Leskovec. Predicting multicellular function through multi-layer

tissue networks. Bioinformatics, 33(14):i190–i198, 2017.

177

https://www.frontiersin.org/article/10.3389/fdata.2019.00003
https://www.frontiersin.org/article/10.3389/fdata.2019.00003
https://arxiv.org/abs/2006.04131

	List of Figures
	List of Tables
	Introduction
	Research Questions
	Frontiers in Graph Learning
	Multiplex Graph Generation
	Non-Contrastive Link Prediction
	Contrastive Learning and Clustering on Graphs
	Improving OOV Support in Recommendation Systems

	Thesis Outline

	Background
	Introduction
	Notation
	Definitions
	Graph Neural Networks (GNNs)
	Link Prediction with GNNs
	Multiplex Graphs

	Generating Multiplex Tensor Graphs
	Problem Formulation
	Proposed Method
	Sampling
	Architecture
	Parameter Complexity
	Evaluation Metrics
	Implementation Details

	Experimental Evaluation
	Datasets
	Comparison with Existing Methods
	MMD-Based Evaluation
	TenScore Evaluation
	Classifier-Based Evaluation
	Summary

	Related Work
	Conclusion

	Link Prediction with Non-Contrastive Learning
	Introduction
	Preliminaries
	Do Non-Contrastive Learning Methods Perform Well on Link Prediction Tasks?
	Evaluation

	Improving Inductive Performance in a Non-Contrastive Framework
	Other Related Work
	Conclusion
	Dataset Statistics
	Machine Details
	Transductive Setting Details
	Inductive Setting Details
	Experimental Setup
	Full Results
	Corruptions
	AUC-ROC Results
	Why Does BGRL Not Collapse?
	How Does BGRL Pull Representations Closer Together?
	Additional Plots

	Clustering-Accelerated Representation Learning on Graphs
	Introduction
	Preliminaries
	Graph Neural Networks
	Cluster Validation Indices

	Proposed Method
	Training CARL-G
	Clustering Method
	Theoretical Analysis

	Experimental Evaluation
	Evaluation Results
	Resource Benchmarking
	Ablation Studies
	Implementation Details
	Limitations & Future Work

	Additional Related Work
	Conclusion
	Appendix
	Full Proof of Equivalency to Margin Loss
	Meaning of Ideal Conditions
	Additional Experiment Details

	Recommendation Systems
	Introduction
	Preliminaries and Related Work
	Context-Free Models
	Context-Aware Models

	Towards a General OOV Embedder
	Heuristic-based Embedders
	Learning-based Embedders
	OOV Embedder Training

	Datasets
	Experimental Evaluation
	Evaluation Details
	Context-Aware Results
	Context-Free Results
	Sensitivity Analysis
	Recommendations for Practitioners

	Additional Related Work
	Conclusion

	Conclusion
	Future Directions
	Multi-Stage Recommendation System Training
	Non-Contrastive Graph Learning for Other Graph Tasks
	Diffusion Models for Multi-view Graph Generation

