
Tracking Control of UAVs with Uncertainty and Input Constraints*

Shihab Ahmed1 and Wenjie Dong1

Abstract— This paper considers the position and attitude
tracking control problem of a vertical take-off and landing
unmanned aerial vehicle with uncertainty and input constraints.
Considering the parametric and non-parametric uncertainties
in the dynamics of systems, a robust adaptive tracking con-
troller is proposed with the aid of the special structure of the
dynamics of the system. Considering the uncertainty and input
constraints, a robust adaptive saturation controller is proposed
with the aid of an auxiliary compensated system. Simulation
results show the effectiveness of the proposed algorithms.

I. INTRODUCTION

Control of vertical take-off and landing (VTOL) unmanned
aerial vehicles (UAVs) has been an active research area in
the past decades due to its wide applications in the areas
such as surveillance, search and rescue missions, monitoring,
etc. A VTOL UAV can operate in cluttered environments
and hover for a long time in the air. A VTOL UAV is an
underactuated system because it has six degrees of freedom
(DOFs) (i.e., three DOFs for the position and three DOFs for
the orientation) but has only four inputs. The underactuated
nature of the system makes its control problems challenging.

In order to deal with its underactuated property, a classi-
cal approach is to utilize the exact linearization technique
for controller design [1]. With the aid of this technique,
one can steer four DOFs to its desired values. However,
by this approach the stability of the system can only be
guaranteed in a very small local region of the selected oper-
ation points. To overcome this limitation, different nonlinear
control approaches have been developed. The dynamics of
a VTOL UAV has a featured cascade structure. With the
aid of this feature, the tracking control of a VTOL UAV
can be solved with the aid of the backstepping techniques
[2], [3]. In addition to this method, there are also many
other approaches, which include the feedback linearization
approach [4], the potential field control method [5], and the
flatness differential method [6], etc. However, if there is
uncertainty in the dynamics of the systems the controllers
obtained in the above literature do not work.

In control of VTOL UAVs, there is always uncertainty in
the dynamics of VTOL UAVs in practice. Generally, there
are two types of uncertainty. One is the non-parametric
uncertainty which includes un-modeled dynamics and dis-
turbance. The other is the parametric uncertainty which
includes the unknown mass and inertia moments of a UAV.
In order to deal with these uncertainties, different adaptive
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and robust controllers have been proposed with the aid of
different approaches. In [7], the position and attitude tracking
control of a quadrotor with inertia parameter uncertainty was
considered. Adaptive tracking controllers were proposed with
the aid of the cascade structure of the dynamics of the system
and the immersion and invariance technique. In [8], [9],
the sliding mode control technique was applied to estimate
disturbance and a sliding mode based tracking controller
was proposed. In [10], [11], the sliding mode technique was
applied to compensate un-modeled dynamics and adaptive
robust tracking controllers were proposed. In [12], composite
learning controllers were proposed by using the terminal
sliding mode for a quadrotor with unknown dynamics and
time-varying disturbances. In [13], [14], [15], the immersion
and invariance technique was applied to design adaptive con-
trollers for a quadrotor with parametric uncertainty. In [16],
the adaptive backstepping technique and command-filter
compensation were applied and adaptive tracking controllers
were proposed without computation of derivatives of signals.
In [17], [18], controllers were proposed with the aid of model
predictive control. In [19], robust adaptive controllers were
proposed in the presence of wind disturbance with the aid
of the singular-perturbation technique.

In the attitude tracking control, the attitude of a UAV
can be represented by Euler angles, modified Rodrigues
parameters (MRPs), or a unit quaternion. The controllers
designed based on Euler angles and MRPs have singularities,
which significantly reduce their applicability for achieving
large angular maneuvers. In order to overcome this issue,
the unit quaternion is used to define the attitude of a UAV
and controllers are designed based on the unit quaternion.
However, quaternions have ambiguities in representing an at-
titude (two quaternions represent one attitude). To overcome
these, the tracking controllers were designed directly on the
special Euclidian group SE(3) in [20], [21], [22]. In these
results, there is an important assumption that the total thrust
is non-zero. To make this assumption satisfied, it is generally
assumed that the reference total thrust is bounded away from
zero and the initial errors between the state of the system
and its desired value are sufficiently small. Therefore, the
controllers proposed in these papers are locally well-defined.
In order to make the thrust force nonzero, some controllers
have been proposed with the aid of saturation control in [23],
[24].

For a VTOL UAV, there is always constraint on its inputs.
For tracking control of systems with input constraints, there
are lots of research results in literature [25], [26], [27], [28],
[29], [30]. For the tracking control of VTOL UAVs with
input constraints, a nested tracking controller was proposed



with the aid of the nested saturation control in [31] if there
is no uncertainty and disturbance. However, the selection
of the control parameters are intricate and the stability of
the closed-loop system cannot be guaranteed if there is
uncertainty in the model of the system. To overcome this,
the tracking control problem of a quadrotor with parametric
uncertainty and input constraints was studied in [32] and
an adaptive tracking controller was proposed. However, the
closed-loop tracking error system is semi-globally stable
and the non-parametric uncertainty was not considered. In
[33], the trajectory tracking control was studied for a VTOL
aircraft with a simplified model under an input constraint.
Since the proposed controller is based on a 3 DOF model, it
cannot be extended to deal with a 6 DOF model of VTOL
vehicles. In [34], the trajectory tracking control of a 6-
DOF quadrotor UAV with an input constraint was studied.
Position tracking controllers were proposed with the aid of
backstepping techniques and a Nussbaum function under the
assumptions that the inertia parameters are exactly known
and the disturbances in the dynamics are constants. However,
in practice these assumptions are not true.

In this paper we study two control problems of 6-DOF
VTOL UAVs under the conditions that there is uncertainty
and input constraint. One problem is the position and attitude
tracking control of VTOL UAVs with both parametric and
non-parametric uncertainty. The other problem is the position
and attitude tracking control of VTOL UAVs with both
uncertainty and input constraint. For the first problem, with
the aid of backstepping techniques and saturation control a
new quaternion-based robust adaptive controller is proposed
such that the position and the attitude converge to their
desired values, respectively. For the second problem, by
introducing an auxiliary compensated system a new robust
adaptive saturation controller is proposed such that the
tracking errors of the position and the attitude are uniformly
ultimately bounded (UUB). The contributions of this paper
are as follows:

• This paper solves the tracking control of 6-DOF VTOL
UAVs with both parametric and non-parametric uncer-
tainties. A new quaternion-based robust adaptive con-
troller is proposed for the tracking control of position
and attitude in the presence of parametric and non-
parametric uncertainties. While [2], [3], [4], [5], [6]
solved the tracking control of VTOL UAVs without
uncertainty, [13], [14], [15] solved the tracking control
of VTOL UAVs without parametric uncertainty, and
[10], [11], [7] solved the tracking control of VTOL
UAVs only with parametric uncertainty.

• This paper solves the tracking control problem of 6-
DOF VTOL UAVs with uncertainty and input satura-
tion. By introducing an auxiliary compensated system, a
robust adaptive saturation controller is proposed for the
tracking control of position and attitude in the presence
of both parametric and non-parametric uncertainties.
The proposed controller guarantees that the tracking
error system is globally stable and the magnitudes of

the inputs are less than given values. While in [32] the
proposed controllers can only make the tracking error
system semi-globally stable and the non-parametric
uncertainty is not considered. Compared to the results
in [33], in this paper we consider the tracking problem
of 6-DOF VTOL UAVs with uncertainty, while in [33]
the tracking problem is considered for a 3-DOF model.
Compared with the results in [34], in this paper we
solve the position and attitude tracking problem in the
presence of unknown inertial parameters and input con-
straint, while in [34] the position tracking problem was
solved under the assumptions that the inertia parameters
are exactly known and the non-parametric uncertainties
are constants.

• By introducing saturation functions in the proposed
controllers and using quaternions in the proposed con-
trollers, the thrust force is guaranteed to be positive and
the desired attitude is guaranteed to be well-defined at
any time. The singularity of the proposed controllers is
avoided.

The remaining parts of this paper is organized as follows.
In Section 2, the considered problems are defined and some
preliminary results are presented. In Section 3, a robust
adaptive controller is proposed to solve the tracking control
problem when there are parametric and non-parametric un-
certainty. In Section 4, a robust adaptive saturation controller
is proposed to solve the tracking control problem when there
are uncertainty and input saturation. In Section 5, simulation
is done to verify the proposed controllers. The last section
concludes this paper.

II. PROBLEM STATEMENT AND SOME PRELIMINARIES

A. Problem Statement

Consider a rigid VTOL UAV. The well-known rigid body
model can be written as [35]:

ṗ = v (1)

v̇ = −ge3 +
1

m
fRe3 + d1 (2)

Ṙ = RS(ω) (3)
Jω̇ = S(Jω)ω + τ + d2 (4)

where p and v are the position and velocity of the mass
center of the UAV in the inertia frame, respectively, g is the
gravitational acceleration, e3 = [0, 0, 1]>, f ∈ < is the total
thrust, R = [b1, b2, b3] is the rotation matrix of the body
frame with respect to the inertia frame, ω = [ω1, ω2, ω3]>

is the angular velocity of the UAV in its body frame, J
is the inertia moment of the UAV, d1 and d2 denote non-
parametric uncertainty which include un-modeled dynamics,
friction, and disturbance, S(·) is a skew-symmetric matrix
defined by

S(ω) =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ,



and τ = [τ1, τ2, τ3]> is the torque input of the system. The
dynamics of the thrust f and the torque τ are omitted for
simplicity.

The model in (1)-(4) is a 6-DOF model. Due to the
coupling between the position and attitude, four DOFs can
be controlled independently.

In this paper, we consider the following tracking control
problems.

Tracking control with uncertainty: It is given a desired
trajectory pd(t) and a desired unit vector bd2(t). If m, J , d1,
and d2 are unknown, the control problem is to design a state
feedback controller (f, τ) such that

lim
t→∞

(p(t)− pd(t)) = 0 (5)

lim
t→∞

(b2(t)− bd2(t)) = 0. (6)

Tracking control with uncertainty and input satura-
tion: It is given a desired trajectory pd(t) and a desired unit
vector bd2(t). If m, J , d1, and d2 are unknown, the control
problem is to design a state feedback controller (f, τ) such
that (5)-(6) are satisfied and

0 < f ≤Mf (7)
|τj | ≤Mτ , 1 ≤ j ≤ 3 (8)

where Mf and Mτ are appropriate positive constants.
In order to solve the above problems, the following

assumptions are made.
Assumption 1: The mass m is an unknown constant and

m ∈ [m, m̄] where m and m̄ are known constants.
Assumption 2: The inertia matrix J is an unknown di-

agonal constant matrix (i.e., J = diag([J1, J2, J3])) and
Ji ∈ [J, J̄ ] for 1 ≤ i ≤ 3, where J and J̄ are known
constants.

Assumption 3: d1 and d2 are bounded and |d1j | ≤ D1

and |d2j | ≤ D2 for 1 ≤ j ≤ 3, where D1 and D2 are known
constants, and d1j and d2j are the j-th elements of d1 and
d2, respectively.

Assumption 4: pd(t) = [pd1(t), pd2(t), pd3(t)]> is smooth,
|p̈dj (t)| ≤Mp (1 ≤ j ≤ 3) for any time.

Assumption 5: bd2(t) is smooth. ḃd2 and b̈d2 are bounded.
bd2(t) × bd3(t) = 0 for any time where bd3(t) = p̈d(t)+ge3

‖p̈d(t)+ge3‖
and × denotes the cross product of two vectors.

Assumption 6: Mf >
√

3(D1+Mp)+g
m .

Assumptions 1-2 are reasonable in practice because the
mass and the inertial moments of a UAV are always bounded
by some constants. Since d1 and d2 are friction and distur-
bance, it is reasonable to assume that they are bounded in
Assumption 3. Noting that the limited power of motors of
UAV, it is reasonable to assume that the desired acceleration
of the UAV is bounded in Assumption 4. Assumption 5 is
due to the motion of the UAV in (1)-(2). In Assumption 5, bd3
is obtained as follows. If the UAV moves along the desired
trajectory and there is no uncertainty d1, by (1)-(2) one has

Re3 =
f(p̈d + ge3)

m
=

p̈d + ge3

‖p̈d + ge3‖
.

Since m and f are not zero and Re3 is a unit vector, bd3
should be the third column of R.

In (7)-(8), Mf and Mτ should be large enough such that
there exist controllers which make (5)-(6) satisfied.

B. Quaternions

The attitude of a VTOL UAV can be defined by a unit
quaternion q =

[
η, ε>

]>
where η ∈ < and ε ∈ <3. The

relation between q and R is defined by

R = R(q) = I + 2ηS(ε) + 2S2(ε).

Noting that for any rotation matrix R, there are exactly two
unit quaternions, ±q, such that R = R(q) = R(−q).

For two unit quaternions q1=
[
η1, ε

>
1

]>
and

q2=
[
η2, ε

>
2

]>
, the multiplication of q1 and q2 is defined by

q1 ⊗ q2 =

[
η1η2 − ε>1 ε2

η1ε2 + η2ε1 + S(ε1)ε2

]
.

The identity quaternion is 1 = [1, 0, 0, 0]>. Each unit
quaternion q = [η, ε>]> has an inverse, q−1 = [η,−ε>]>,
such that q−1 ⊗ q = q ⊗ q−1 = 1.

With the aid of the unit quaternion, (3) can be written as

q̇ =
1

2
A(q)ω (9)

where

A(q) =

[
−ε>

ηI + S(ε)

]
. (10)

In this paper, some saturation functions will be applied. It
is given a positive constant M , a function σ : < → < is said
to be a smooth monotonically increasing saturation with M
if it is a smooth function satisfying

(a). sσ(s) > 0 for all s 6= 0;
(b). |σ(s)| ≤M for all s ∈ <.
(c). σ(s) is monotonically increasing.
For given Mi > 0 (1 ≤ i ≤ 3), the smooth function

σ(s) with Mi is denoted as σi(s). If s = [s1, . . . , sn]>,
σi(s) = [σi(s1), . . . , σi(sn)]> for 1 ≤ i ≤ 3.

III. CONTROLLER DESIGN WITH UNCERTAINTY

We design a controller such that (5)-(6) hold when there
is uncertainty. Considering the structure of the system in (1)-
(4), a modified backstepping approach will be proposed as
follows:

Step 1: Let ep = p− pd and ev = v − ṗd, we have

ėp = ev (11)

ėv = −ge3 − p̈d +
1

m
fRe3 + d1. (12)

Consider fRe3 as a virtual control input, we design it such
that (5) is satisfied. Noting the special structure of the system
in (11)-(12), we choose a Lyapunov function

V1(Λ1,Λ2, β̃) =

∫ Λ1

0

σ1(s)>ds+

∫ Λ2

0

σ2(s)>ds

+
k1

2
e>v ev +

γ−1
1

2
β̃2



where 0 = [0, 0, 0]>, k1 > 0, k2 > 0, γ1 is a positive
constant, and

Λ1 = k1ep + k2ev, Λ2 = k2ev, β̃ =
1

m
− β

where β is an estimate of 1
m . It can be proved that V1 is

a positive definite function of ep, ev , and β̃. Furthermore,
V1 = 0 if ep = 0, ev = 0, and β̃ = 0. The derivative of V1

is

V̇1 = k1σ1(Λ1)>ev + (k2σ1(Λ1) + k2σ2(Λ2) + k1ev)
> ×

(−ge3 − p̈d + βfRe3 + d1)− γ−1
1

(
1

m
− β

)
(β̇

−γ1(k2σ1(Λ1) + k2σ2(Λ2) + k1ev)
>fRe3).

To make V̇1 as small as possible, we choose the virtual
control input for fRe3 and update law of β as

α = [α1, α2, α3]> =
1

β
(−σ1(Λ1)− σ2(Λ2)−D1h(G, δ)

+ge3 + p̈d) (13)
β̇ = ProjΩm

(
γ1G

>fRe3

)
= ProjΩm (H)

=

 H,

if β ∈ ( 1
m̄ ,

1
m ),

or if β = 1
m̄ and H > 0,

or if β = 1
m and H < 0

0, otherwise

(14)

where

Ωm =

[
1

m̄
,

1

m

]
H = γ1G

>fRe3 (15)
G = [G1, G2, G3]> = k2σ1(Λ1) + k2σ2(Λ2)

+k1ev (16)

h(G, δ) =
[

G1√
G2

1+δ(t)2
, G2√

G2
2+δ(t)2

, G3√
G2

3+δ(t)2

]>
(17)

δ(t) = e−δ1t and δ1 > 0. Then, if fRe3 = α, we have

V̇1 ≤ −k2(σ1(Λ1) + σ2(Λ2))>(σ1(Λ1) + σ2(Λ2))

−k1

k2
σ2(Λ2)>σ2(Λ2) + 3D1δ(t). (18)

It should be noted that α is well defined since β ≥ 1
m̄ .

For the defined α, we have the following lemma by simple
calculation.

Lemma 1: If M1 and M2 are chosen such that

g −Mp −M1 −M2 −D1 > 0 (19)

then ‖α‖ > 0 and

‖α‖ ≤
√

3(M1 +M2 +D1 +Mp) + g

m
. (20)

Step 2: We find f and a virtual control input qd for the
unit quaternion q. We choose

f = ‖α‖. (21)

It is obvious that f > 0 for any time with the aid of Lemma
1.

Let r3 = α
‖α‖ , we define

r2 =
(r>3 b

d
3)bd2 − (r>3 b

d
2)bd3

‖(r>3 bd3)bd2 − (r>3 b
d
2)bd3‖

(22)

r1 =
r2 × r3

‖r2 × r3‖
. (23)

The desired attitude of R is chosen as

Rd = [r1, r2, r3] (24)

and the desired quaternion qd = [ηd, ε
>
d ]> of q is calculated

from (24) by the equations (166)-(168) in [36] which are
omitted here. The desired angular velocity is calculated by

ωd = 2A(qd)
> dqd
dt
. (25)

It should be noted that qd and ωd are well defined because
f is always positive.

With the aid of the virtual control input qd,

fRde3 = α

and equation (12) can be written as

ėv = −σ(Λ1)− σ(Λ2)−D1h+ d1 +

(
1

m
− β

)
fRe3

+β‖α‖Rd(R>d R− I3)e3. (26)

Step 3: We assume ω is a virtual control input and design
a virtual controller for ω such that (5)-(6) satisfied. Let the
difference between q and qd be

q̃ = q−1
d ⊗ q = [η̃, ε̃>]>, (27)

The derivative of q̃ is

˙̃q =
1

2
A(q̃)(ω − R̃>ωd) (28)

where R̃ = R>d R. (26) can be written as

ėv = −σ1(Λ1)− σ2(Λ2)−D1h+ d1 +

(
1

m
− β

)
fRe3

−2β‖α‖Rd(η̃I3 + S(ε̃))S(e3)ε̃. (29)

Choose a Lyapunov function

V2 = V1 + 2(1− η̃) = V1 + ε̃>ε̃+ (1− η̃)2 (30)

It can be proved that V2 is a positive definite function of
(Λ1,Λ2, β̃, 1 − η̃) and V2 = 0 if (Λ1,Λ2, β̃, 1 − η̃) =
(0, 0, 0, 0). The derivative of V2 is

V̇2 ≤ −k2(σ1(Λ1) + σ2(Λ2))>(σ1(Λ1) + σ2(Λ2))

−k1

k2
σ2(Λ2)>σ2(Λ2)δ + 3D1 + ε̃>(ω − R̃>ωd

−2β‖α‖S(e3)>(η̃I3 + S(ε̃))>R>d G)

To make V̇2 as small as possible, a virtual controller µ for
ω can be chosen as

µ = −k3ε̃+ R̃>ωd + 2β‖α‖S(e3)>(η̃I3 + S(ε̃))>R>d G (31)



where k3 is a positive constant. If ω were a real control input,
i.e., ω = µ, then

V̇2 ≤ −k2(σ1(Λ1) + σ2(Λ2))>(σ1(Λ1) + σ2(Λ2))

−k1

k2
σ2(Λ2)>σ2(Λ2) + 3D1δ − k3ε̃

>ε̃.

Step 4: Since ω is not a real control input, ω cannot be
µ. Let

ω̃ = [ω̃1, ω̃2, ω̃3]> = ω − µ,

then,

˙̃q =
1

2
A(η̃, ε̃)(−k3ε̃+ ω̃ + 2β‖α‖S(e3)>(η̃I3

+S(ε̃))>R>d G) (32)
J ˙̃ω = τ − (S(ω)Γ(ω) + Γ(µ̇))a+ d2 (33)

where Γ(ω) denotes a diagonal matrix with its diagonal
elements being the vector ω and

a = [a1, a2, a3]> = [J1, J2, J3]>.

Since a and d2 are unknown, an adaptive robust control
law will be proposed such that (5)-(6) are satisfied. To this
end, we choose a Lyapunov function

V3 = V2 +
1

2
ω̃>Jω̃ +

γ−1
2

2
(a− â)>(a− â)

where γ2 is a positive constant and â is an estimate of a
which will be designed later. The derivative of V3 along the
solution of (29), (32) and (33) is

V̇3 ≤ −k2(σ1(Λ1) + σ2(Λ2))>(σ1(Λ1) + σ2(Λ2))

−k1

k2
σ2(Λ2)>σ2(Λ2) + 3D1δ − k3ε̃

>ε̃+ ε̃>ω̃

+ω̃>(τ − (S(ω)Γ(ω) + Γ(µ̇))â+ d2)

−γ−1
2 (a− â)>

(
˙̂a+ γ2(S(ω)Γ(ω) + Γ(µ̇))>ω̃

)
.

To make V̇3 as small as possible, we choose the control law
τ and the update law â as follows:

τ = −k4ω̃ − ε̃+ (S(ω)Γ(ω) + Γ(µ̇))â−D2h(ω̃, δ) (34)
˙̂a = ProjΩa(−γ2(S(ω)Γ(ω) + Γ(µ̇))>ω̃) (35)

where Ωa =
[
J, J̄

]
and k4 is a positive constant. Then,

V̇3 ≤ −k2(σ1(Λ1) + σ2(Λ2))>(σ1(Λ1) + σ2(Λ2))

−k1

k2
σ2(Λ2)>σ2(Λ2) + 3D1δ+3D2δ − k3ε̃

>ε̃

−k4ω̃
>ω̃. (36)

Based on the above controller design procedure, we have
the following results.

Theorem 1: For the system in (1)-(4) and given desired
trajectories pd and bd2, the control inputs (f, τ) in (21) and
(34) with the update laws in (14) and (35) ensure that (5)-(6)
are satisfied and (β, â) are bounded. Furthermore, the thrust
force f is larger than zero at any time and is bounded.

Proof: With the aid of the Lyapunov function V3,
its derivative satisfies (36). Integrating both sides of (36),

we can show that V3 is bounded. So, (η̃, ε̃, ω̃, β, â) are
bounded. Integrating both sides of (36), we can also show
that (σ(Λ1) + σ(Λ2), σ(Λ2), ε̃, ω̃) are square-integrable. By
Barbalat’s lemma, (σ(Λ1) + σ(Λ2), σ(Λ2), ε̃, ω̃) converge
to zero. So, Λ1 and Λ2 converge to zero, respectively.
Therefore, ep and ev converge to zero, respectively. So, (5)-
(6) are satisfied. Noting f = ‖α‖, the boundedness of f is
obvious from Lemma 1.

The proposed controller in Theorem 1 is a robust adaptive
control law. It has the following features: 1) the proposed
controller f is positive and bounded for any time and qd is
well defined; 2) the proposed controller can deal with the
parametric uncertainty, i.e., m and J ; and 3) the proposed
controller can also deal with the non-parametric uncertainty
d1 and d2.

In (17), h(G, δ) is an approximation of the sign function
sign(G). δ is used to make function h differentiable. The
approximation error between h and the sign function sign(G)
is small if δ is small.

IV. CONTROLLER DESIGN WITH UNCERTAINTY AND
INPUT SATURATION

Assume the input τ is subject to a saturation constraint,
i.e.,

τ = σ3(τd) (37)

where τd ∈ R3 is a new control input without constraint
and will be designed later. In order to compensate the effect
of the input saturation, the following auxiliary compensated
system is defined:

q̇a =
1

2
A(qa)

(
R̃aωa − k5εa

)
(38)

ω̇a = −k4ωa + Γ(θ̂)(τ − τd) (39)

where qa = [ηa, ε
>
a ]> is an auxiliary unit quaternion, ωa ∈

R3 is an auxiliary angular velocity, θ̂ = [θ̂j , θ̂2, θ̂3]> is an
estimate of

θ = [θ1, θ2, θ3]> =

[
1

J1
,

1

J2
,

1

J3

]>
and will be designed later, k4 and k5 are positive constants,
and

Ra = I + 2ηaS(εa) + 2S2(εa) (40)
R̃a = R>a R. (41)

Define

q̃a = q−1
a ⊗ q (42)

then,

˙̃qa =
1

2
A(q̃a)

(
ω − ωa + k5R̃

>
a εa

)
. (43)

Let r2 and r1 be defined as in (22) and (23) and

ᾱ = R>a α (44)

r3 =
ᾱ

‖ᾱ‖
(45)



where α is defined in (13). Define Rd as in (24). The unit
quaternion corresponding to Rd is denoted as qd. By (25),
we can calculate ωd.

Define

q̃ = [η̃, ε̃>]> = q−1
d ⊗ q̃a (46)

then,

˙̃q =
1

2
A(q̃)(ω − ωa − R̃>ωd + k5R̃

>
a εa) (47)

where R̃ = R>d R
>
a R. We choose f as in (21). It can be

shown that
f = ‖ᾱ‖.

So,
fRde3 = ᾱ = R>a α

and equation (12) can be written as

ėv = −σ(Λ1)− σ(Λ2)−D1h+ d1 +

(
1

m
− β

)
fRe3

−2β‖ᾱ‖RaRd(η̃I3 + S(ε̃))S(e3)ε̃. (48)

Choose a Lyapunov function

V4 = V1 + 2(1− η̃).

It can be proved that V4 is a nonnegative function of Λ1, Λ2,
and η̃. The derivative of V4 is

V̇4 ≤ −k2(σ1(Λ1) + σ2(Λ2))>(σ1(Λ1) + σ2(Λ2))

−k1

k2
σ2(Λ2)>σ2(Λ2) + 3D1δ + ε̃>(ω − R̃>ωd

−ωa − 2β‖α‖S(e3)>(η̃I3 + S(ε̃))>(RaRd)
>G

+k5R̃
>
a εa).

To make V̇4 as small as possible, a virtual controller µ for
ω can be chosen as

µ = 2β‖α‖S(e3)>(η̃I3 + S(ε̃))>(RaRd)
>G− k3ε̃

+R̃>ωd − k5R̃
>
a εa (49)

where k3 is a positive constant. If ω were the real control
input, i.e., ω = µ, then

V̇4 ≤ −k2(σ1(Λ1) + σ2(Λ2))>(σ1(Λ1) + σ2(Λ2))

−k1

k2
σ2(Λ2)>σ2(Λ2) + 3D1δ + ε̃>(−k3ε̃− ωa).

Since ω is not the real control input, ω cannot be µ. Let

ω̃ = [ω̃1, ω̃2, ω̃3]> = ω − µ− ωa

then,

˙̃q =
1

2
A(q̃)(−k3ε̃+ ω̃ + 2β‖α‖S(e3)>(η̃I3

+S(ε̃))>(RaRd)
>G)

˙̃ω = Γ(Π)B + Γ(θ)(τ + d2)− µ̇+ k4ωa − Γ(θ̂)(τ − τd)
= Γ(θ̂)τd + Γ(θ − θ̂)τ + k4ωa + Γ(Π)B + Γ(θ)d2 − µ̇

where

B =
[
B1, B2, B3

]>
=
[
ω2ω3, ω1ω3, ω1ω2

]>
Π =

[
Π1,Π2,Π3

]>
=

[
J−1

1 (J2 − J3), J−1
2 (J3 − J1), J−1

3 (J1 − J2)
]>
.

To make q̃ converge to the identity quaternion and ω̃
converge to zero, we choose a Lyapunov function

V5 = V4 +
1

2
ω̃>ω̃ +

γ−1
2

2
(θ − θ̂)>(θ − θ̂)

+
γ−1

3

2
(Π− Π̂)>(Π− Π̂)

where Π̂ = [Π̂1, Π̂2, Π̂3]> is an estimate of Π, γ2 and γ3 are
positive constants. The derivative of V5 is

V̇5 ≤ −k2(σ1(Λ1) + σ2(Λ2))>(σ1(Λ1) + σ2(Λ2))

−k1

k2
σ2(Λ2)>σ2(Λ2) + 3D1δ − k3ε̃

>ε̃+ ω̃>(Γ(θ̂)τd

+ε̃+ Γ(Π̂)B + k4ωa + Γ(θ)d2 − µ̇)

−γ−1
2 (θ − θ̂)>

(
˙̂
θ − γ2Γ(τ)ω̃

)
−γ−1

3 (Π− Π̂)>
(

˙̂
Π− γ3Γ(B)ω̃

)
.

To make V̇5 as small as possible, we choose

τd = Γ−1(θ̂)(−k4(ω − µ)− ε̃− Γ(Π̂)B + µ̇

−D2

J
h(ω̃, δ)) (50)

˙̂
θj = ProjΩθ (γ2τjω̃j), j = 1, 2, 3 (51)
˙̂
Πj = γ3Bjω̃j , j = 1, 2, 3 (52)

where Ωθ =
[

1
J̄
, 1
J

]
. Then,

V̇5 ≤ −k2(σ1(Λ1) + σ2(Λ2))>(σ1(Λ1) + σ2(Λ2))

−k1

k2
σ2(Λ2)>σ2(Λ2) + 3D1δ − k3ε̃

>ε̃

−k4ω̃
>ω̃+

3D2δ

J
. (53)

With the aid of the above procedure, we have the following
results.

Theorem 2: For the system in (1)-(4) and given desired
trajectories pd and bd2, the control inputs (f, τ) in (21) and
(37) with τd in (50) and the update laws in (14) and (51)-(52)
ensure that

1) β, Π̂, and θ̂ are bounded,
2) ep, ev , ε̃, and ω̃ converge to zero, and
3) b2 − bd2 is uniformly ultimate boundedness (UUB).

Furthermore, f is larger than zero at any time and (7)-(8)
are satisfied if M1, M2, and M3 are chosen such that

M1 +M2 <
mMf − g√

3
−D1 −Mp (54)

M3 = Mτ . (55)



Proof: With the aid of the proposed control laws and
the Lyapunov function V5, we have (53). By integrating both
sides and applying Barbalat’s lemma, it can be shown that
σ2(Λ2), σ1(Λ1) + σ2(Λ2), ε̃, and ω̃ converge to zero and
(β, Π̂, â) are bounded. Furthermore, it can be shown that ep
and ev converge to zero.

The system in (39) is a stable linear system subject to
the saturation error (τ − τd). If Mτ is large enough, there
exists an input τ such that the tracking problem is solved
and ‖τ − τd‖ is bounded. Then, ωa and qa are bounded. So,
b2 − bd2 is bounded. Furthermore, if the control parameters
are chosen large, ‖b2 − bd2‖ can be made small. Therefore,
b2 − bd2 is uniformly ultimate boundedness (UUB).

The boundedness of τ is obvious and (8) is satisfied. f is
larger than zero and (7) is satisfied due to Lemma 1.

In the auxiliary compensated system (38)-(39), we choose
the initial conditions qa(0) = [1, 0, 0, 0]> and ωa =
[0, 0, 0]>. With these initial conditions qa(t) = qa(0) and
ωa(t) = ω(0) for any time if |τj | ≤Mτ (1 ≤ j ≤ 3) for any
time.

V. SIMULATION

Simulation results are presented to illustrate the effective-
ness of the proposed controllers. We consider a VTOL UAV
modeled as a rigid body with mass m = 0.85kg and inertia
tensor J = diag([4.856, 4.856, 9.801])−2kg m2 (see [15]).
In the controllers, m and J are unknown. However, it is
known that m ∈ [0.7, 1]kg, i.e., m = 0.7kg and m̄ = 1kg.
For disturbance, it is assumed that d1 and d2 are white noise
with magnitudes D1 = D2 = 0.05.

In the simulation, the desired trajectory pd and bd2 are
chosen as

pd(t) =

 100 cos(0.05t)
100 sin(0.05t)

10− 10 exp(−0.1t)


bd2 = [sin(0.05t),− cos(0.05t), 0]

>
.

If there is no input constraint, the robust adaptive controller
is (21) and (34) with the aid of Theorem 1. In the control
law, we chose σi(x) = Mi tanh(x) where Mi = 4. It
can be verified that (19) is satisfied. Simulation was done
for one group of control parameters. The time response of
the tracking errors of p1 − pd1, p2 − pd2, and p3 − pd3 are
shown in Fig. 1 which shows they converge to zero. Fig.
2 depicts the response of the tracking error q̃. It shows
that η̃ asymptotically converge to one and ε̃ asymptotically
converges to zero. Fig. 3 shows the total force f . It shows
that f is bounded and is larger than zero at any time. Fig.
4 shows the input torque τ . The simulation results show the
effectiveness of the results in Theorem 1.

If there are uncertainty and input constraints. The control
laws can be obtained in (21) and (37) with the aid of
Theorem 2. In the simulation, the bounds on the force and
the toque are chosen as Mf = 12 N and Mτ = 0.05. It
can be shown that Assumption 6 is satisfied. Simulation
was done for a set of chosen control parameters. The time
response of the tracking errors of p1 − pd1, p2 − pd2, and

Fig. 1. Time response of p− pd

Fig. 2. Time response of q̃

Fig. 3. Time response of f

Fig. 4. Time response of τ



Fig. 5. Time response of p− pd

Fig. 6. Time response of q̃

p3 − pd3 are shown in Fig. 5. Fig. 6 shows the response of
the tracking error q−1

d ⊗ q. Fig. 7 shows the total force f . It
is obvious that f is bounded and is larger than zero at any
time. Fig. 8 shows the input torque τ . It is bounded by 0.05.
The simulation results show the effectiveness of the results
in Theorem 2.

VI. CONCLUSION

This paper considered the tracking control problems of a
VTOL UAV with uncertainty and input constraints. Consid-
ering the uncertainty in the dynamics of the system, a robust
adaptive tracking controller was proposed such that the
position and the attitude of a VTOL UAV asymptotically con-
verge to their desired value with the aid of the backstepping
technique. Considering the uncertainty and input constraints,
a saturation robust adaptive controller was proposed with the
aid of an auxiliary compensated system. Simulation results

Fig. 7. Time response of f

Fig. 8. Time response of τ

show the effectiveness of the proposed controllers.
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