
 

 

 

USING ACTOR-CRITIC REINFORCEMENT LEARNING  

FOR CONTROL OF A QUADROTOR  

DYNAMICS 

 

 

 

 

 

A Thesis 

 

by 

 

EDGAR ADRIAN TORRES 

 

 

 

 

 

 

Submitted in partial fulfillment of the  

Requirements for the degree of  

MASTER OF SCIENCE IN ENGINEERING 

 

 

 

Major Subject: Mechanical Engineering 

 

 

 

 

 

The University of Texas Rio Grande Valley 

 

May 2023 



 

 

 

 



 

 

 

USING ACTOR-CRITIC REINFORCEMENT LEARNING 

FOR CONTROL OF A QUADROTOR 

DYNAMICS 

A Thesis 

by 

EDGAR ADRIAN TORRES 

 

 

COMMITTEE MEMBERS 

 

 

Dr. Tohid Sardarmehni 

Co-Chair of Committee 

 

Dr. Constantine Tarawneh 

Co-Chair of Committee 

 

Dr. Horacio Vasquez 

Committee Member 

 

Dr. Lei Xu 

Committee Member 

 

Dr. Qi Lu 

Committee Member 

 

 

 

 

 

 

 

May 2023 

 



 

 



 

 

 

 

 

 

 

 

 

 

 

Copyright 2023 Edgar Adrian Torres 

All Rights Reserved 

 

 



 

 



 

iii 

 

ABSTRACT 

 

Torres, Edgar A., Using Actor-Critic Reinforcement Learning For Control Of A Quadrotor 

Dynamics. Master of Science in Engineering (MSE), May, 2022, 59 pp., 6 tables, 46 figures, 

references, 21 titles. 

 This paper presents a quadrotor controller using reinforcement learning to generate near-

optimal control signals. Two actor-critic algorithms are trained to control quadrotor dynamics. 

The dynamics are further simplified using small angle approximation. The actor-critic 

algorithm’s control policy is derived from Bellman’s equation providing a sufficient condition to 

optimality. Additionally, a smoother converter is implemented into the trajectory providing more 

reliable results. This paper provides derivations to the quadrotor’s dynamics and explains the 

control using the actor-critic algorithm. The results and simulations are compared to solutions 

from a commercial, optimal control solver, called DIDO. 
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CHAPTER I 

 

INTRODUCTION AND BACKGROUND 

 

1.1 Optimal Control Engineering 

Optimal control is a branch of control engineering focused on solving for a system’s 

optimal control signals. Optimal control problems focus on finding the control signals to 

minimize a cost function. This paper uses an actor-critic algorithm to present an optimal control 

solution to the quadrotor’s model. This introduction is split into the following sections: first, 

explaining the early history of optimal control with the calculus of variation method and then 

discuss Markov Decision Process (MDP) and its relation to optimal control and then explain 

Dynamic Programming (DP), a milestone algorithm proposed by Richard. Then discussing 

Adaptive Dynamic Programming (ADP), a method that uses Reinforcement Learning (RL) to 

overcome the Curse of Dimensionality (CoD). Then discussing the Hamilton-Jacobi-Bellman 

(HJB) equation, a Partial Differential Equation (PDE) equation that provides the necessary and 

sufficient condition for an optimal solution. Then introduce the Actor-Critic algorithm, an RL 

algorithm that uses Bellman’s equation, a discrete form of the HJB equation used in this paper to 

solve for a near-optimal solution. Then an overview of current and upcoming quadrotor 

applications in the current industry. Finally, listing the contributions presented in this paper. 

1.2 Other Methods 

An early example of optimal control is the foundation of the calculus of variations. It 

stems from Newton’s minimal resistance problem and has had many contributions from 
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mathematicians such as Joseph Lagrange, Leonhard Euler, and Carl Jacobi. A method known as 

the Euler-Lagrange equation can solve an optimization problem by solving a function that 

minimizes or maximizes the problem. This method is developed to solve mechanical systems 

with some degree of freedom. The method, however, may get mathematically complicated in the 

presence of nonlinearities in the dynamics of the problem. 

Another method for solving optimal controls of problems is Markov Decision Process. 

Unlike calculus of variation, MDP is a discrete and stochastic method for solving chains of 

probabilistic decisions. It was developed in the 1950s with manufacturing, control, and economic 

applications. As stated, the models are probabilistic models defined by an agent having different 

states and choosing between different actions. A reward function quantizes a value from the 

different options that can be chosen. An MDP aims to create a policy function (π) that finds the 

best action to update the current state while maximizing the reward. A method to solve these 

types of problems is dynamic programming. Dynamic programming was developed by Richard 

Bellman using his principle of optimality. In Bellman. (1957), the principle of optimality defines 

an optimal policy as having the property that from any initial state, the remaining decisions must 

constitute an optimal policy with regard to the state resulting from the first decision. Therefore, 

an optimal solution can be found regardless of previous decisions. Additionally, an optimal 

policy can be broken down into optimal subproblems. DP uses this property to solve discrete 

optimization problems by dividing a significant problem into smaller, simpler ones. The 

recursive method splits the problem into each action and finds the optimal path. 

Furthermore, by working this method backward in time, computational power is saved by 

creating a look-up table to prevent redundant calculations. This technique is known as 

memorization, where the computational cost of the value function is reduced. Despite this, DP is 
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subject to the Curse of Dimensionality. The increase in states and complexity of the problem 

increases the number of subproblems needed to solve exponentially and leads to some problems 

being unfeasible to solve using DP. Next, we will discuss techniques to solve optimality 

problems while avoiding the CoD. 

1.3 Reinforcement Learning 

Reinforcement learning is an area of machine learning where an agent is taught how to 

take optimal actions in an environment. Similar to an MDP, the agent has different states, and the 

machines find the best action to form an optimal path. Unlike other forms of machine learning, 

training occurs by feeding the machine a random policy and random states and iteratively 

improving the policy until it merges with an optimal policy. Since the process is an 

approximation and the policy function is iterated to converge to the optimal solution, the output 

actions are now considered a “near-optimal” solution. One advantage of this trade-off is the 

computational cost reduction. Using neural networks to solve for the controls is much faster, and 

when combined with DP, it can solve solutions in problems considered unfeasible before. The 

application of RL with DP is known as adaptive dynamic programming. ADP is a powerful 

algorithm for solving discrete problems resembling MDP problems. ADP can solve complex and 

nonlinear problems with smaller computational costs and a reasonably accurate solution. Several 

algorithms use ADP, such as actor-critic, Single Network Adaptive Critic (SNAC), and Deep Q-

networks. As mentioned in Frank L. Lewis and Draguna Vrabie (2009), ADP algorithms have 

four basic methods: heuristic, dual heuristic, action-dependent, and Q learning. The heuristic 

dynamic programming trains two networks as actor and critic to approximate the optimal policy 

and optimal value function. Meanwhile, the dual heuristic approximates the costate. 
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Kirk, D. E. (2004) describes the Hamilton-Jacobi-Bellman equation as a nonlinear partial 

differential equation. The solution of this equation is the optimal solution and the partial 

derivative of the value function, the costate. The HJB provides the necessary and sufficient 

condition for optimality of the model. Due to the complexity of the HJB, the PDE cannot be 

solved with analytical or numerical methods when applied to high-complexity models. However, 

a discrete version known as Bellman’s equation can provide a solution through iterations over a 

discrete problem. This paper uses this equation for policy iteration in RL, proving that the policy 

converges to the optimal policy. 

1.4 Actor-Critic 

 As mentioned, this paper uses ADP to solve for the optimal control of a system. Actor-

critic comprises two neural networks: a neural network (actor) that learns the optimal policy and 

a second neural network (critic) that approximates the minimum cost-to-go. The critic utilizes a 

cost function to measure the value function with respect to the actor. The actor-critic is 

considered a heuristic method, meaning the algorithm requires a system model, and uses an 

approximator of the value function. Other methods exist, such as deep Q-learning, which 

requires no knowledge of the dynamics for the machine to learn. The actor-critic is a stochastic 

algorithm, meaning all weights begin as randomized data and are fed random sample data, which 

causes the weights to converge to the optimal weights. There are different methods of training an 

actor-critic algorithm. 

An example is finite-horizon and infinite-horizon techniques of training. Training occurs 

during a set final time in the finite horizon and usually learns backward in time. The trained 

weights are a function of time, meaning the weights can only be used for the trained time. In 

infinite horizon, training occurs by iterations only. The training can be forward-in-time and relies 
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on updating the same weights continuously until they converge. In infinite-horizon, the weights 

are not a function of time, allowing them to be used in more general cases in simulations. An 

actor-critic can be made as an offline or online method of training. In offline, all the weights are 

trained beforehand and are then used for simulation. In online training, the training simulations 

co-occur, meaning every simulation may further develop the weights and keep training the 

system.  

1.5 Contributions 

This paper will apply the quadrotor’s dynamics to solve for the rotational speed of the 

rotors. This method is used as the dynamics contain twelve states and nonlinearities, making it 

difficult for previous methods to solve. The ADP algorithm used is known as actor-critic. This 

algorithm combines policy iteration and value, which trains two networks as actor and critic. In 

this paper, the dynamics are split into two sections known as the position and attitude of the 

quadrotor. This simplification helps the actor-critic neural networks learn more efficiently. The 

actor-critic method is chosen as it is flexible enough to allow for nonlinearities. In this paper, the 

actor-critic is an offline, infinite-horizon, forward-in-time algorithm, and it aims to solve for the 

necessary control signals to move the quadrotor across a trajectory. Its applications will now be 

discussed. 

1.6 Applications 

The quadrotor has a compact design and a versatile number of real-world capabilities and 

is rising in popularity among many industries, as described by UAV Commercial (2016). 

Quadrotor's costs have been decreasing, making it an attractive choice in implementation and 

usage. These applications include but are not limited to surveillance, patrolling in Burggräf, P., 

Pérez Martínez, A. R., Roth, H., & Wagner, J. (2019), ground surveying in Schmid, K., 
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Hirschmüller, H., Dömel, A., Grixa, I., Suppa, M., & Hirzinger, G. (2012), and agricultural crop 

maintenance in Van der Merwe, D., Burchfield, D. R., Witt, T. D., Price, K. P., & Sharda, A. (2020). 

Quadrotors can be equipped with various sensors, including cameras, infrared, LiDARs, and 

microphones, combined with onboard computational processing. Quadrotors have potential in 

more applications such as traffic flow analysis in De Bruin, A., & Booysen, T. (2015), structural 

maintenance in Flammini, F., Pragliola, C., & Smarra, G. (2016), and indoor applications in 

Burggräf, P., Pérez Martínez, A. R., Roth, H., & Wagner, J. (2019). 

1.7 Related Work 

 Similar work has been done by Emmanuel Stingu and Frank L. Lewis (2011). In their 

paper, the dynamics are split into three separate actors and a single global critic to learn the 

dynamics' translation, attitude, and rotors. The system has four control inputs and seventeen 

states split into position, attitude, velocities, angular velocities, and rotor speeds. The results 

show it can track a quadrotor. However, weight imbalances and wind may cause significant 

disturbances. Zahra Marvi and Bahare Kiumarsi (2021) paper designed a reinforcement learning 

controller utilizing barrier functions. The paper proves a safe set boundary exists, making control 

barrier functions a viable value function in actor-critic algorithms. In work by Abhijit Das, Frank 

Lewis, and Makesh Subbarao (2009), backstepping was used to control a quadcopter.
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 CHAPTER II 

 

QUADROTOR’S DYNAMICS 

 

2.1 Model Definition 

The dynamics and derivations presented in this chapter are from the paper by Sabatino 

(2015). The following two coordinates space are introduced to establish the dynamics of a 

quadrotor model, as shown in Figure 1. The first coordinate space is a global coordinate space 

known as the earth frame defined by the cardinal directions north, south, east, west, up, and 

down directions. The quadrotor’s position is described by [𝑥 𝑦 𝑧] space, and the roll, pitch, and 

yaw are described as [𝜙 𝜃 𝜓] as shown in Figures 2 and 3. Its velocities and angular velocities 

are then described as [�̇� �̇� �̇� �̇� �̇� �̇�]. The quadrotor uses four motors with variable angular speeds 

to control its movement along the global coordinate system. These angular speeds are described 

as [Ω1 Ω2 Ω3 Ω4]. To define the model, first, its states must be considered. In the global 

coordinate space, the position and velocity are defined as [𝑥 𝑦  𝑧 �̇� �̇� �̇�] and the angular position 

and angular velocity are defined as [𝜙 𝜃 𝜓 �̇� �̇� �̇�]. These states are beneficial when defining a 

wanted trajectory based on the global coordinate space. However, the body coordinates space 

models the forces acting on the quadrotor. In this coordinate system, there is no position and 

angle as the coordinate origin is attached to the quadrotor, meaning the body coordinate space 

moves and rotates alongside the quadrotor. Instead, local velocities [𝑢 𝑣 𝑤] and local angular 

velocities [𝑝 𝑞 𝑟] of the quadrotor are measured. These states are helpful as the forces acting on 

the quadrotor, the thrust, and the torques [𝑓𝑡 𝜏𝑥 𝜏𝑦 𝜏𝑧], directly affect this coordinate space. A 
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method for transforming the body coordinate space into the global coordinate space is created 

based on rotational transformation matrices to create a complete set of dynamics.  

 

Figure 1: Comparison between the global (earth) and local (body) coordinate space. 

 

 

Figure 2: Graphic showing the angular speed of the rotors Ω and XYZ space. 
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Figure 3: Graphic showing the quadrotor's roll as 𝜙, pitch as 𝜃, and yaw as 𝜓. 

2.2 Model Formulation 

For this paper, the position, angles, velocities, and angular velocities are chosen as the 

system states 𝑥 = [𝑥 𝑦 𝑧 �̇� �̇� �̇� 𝜙 𝜃 𝜓 �̇� �̇� �̇�]. The thrust and torques are chosen as the controls 

𝑢 = [𝑓𝑡 𝜏𝑥 𝜏𝑦 𝜏𝑧] as they represent forces actuating on the body. The reason for choosing these 

forces/torques as the control is their convenience in describing acceleration in the body-space 

coordinate system. To further derive the model, the following two derivations are needed. First, a 

set of equations for converting the local forces and velocities of the quadrotor into the global 

coordinate space. Second, a set of equations for converting the rotor speeds [Ω1 Ω2 Ω3 Ω4] to the 

input forces [𝑓𝑡 𝜏𝑥 𝜏𝑦 𝜏𝑧]. These two formulations allow for the simulation of the quadrotor 

dynamics under different controls and conversion into real-world testing and implementation. 

The following section derives the equations that relate the body and global coordinate space. 
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2.3 Model Derivation 

 The derivation begins with Newton’s second law. This derivation aims to create a set of 

equations that transform the body-coordinate system into the global-coordinate system. 

Equations (1) and (2) establish this relationship through the 𝑅 and 𝑇 transformation matrix as 

defined in (3) and (4). In these equations, 𝑣 = [�̇� �̇� �̇�] represents the velocities in the global 

coordinates, 𝑣𝐵 = [𝑢 𝑣 𝑤] represents the velocities in the body coordinates, 𝜔 = [�̇� �̇� �̇�] 

represent the angular velocities in the global coordinates, and 𝜔𝐵 = [𝑝 𝑞 𝑟] represent the angular 

velocities in the body coordinate system. Equation (5) completes the derivation of the kinematics 

of the quadrotor. The kinematics define the movement and speeds of the quadrotor as a function 

of the body velocities and angular velocities. To complete the dynamics, the equations 

simulating [𝑢 𝑣 𝑤 𝑝 𝑞 𝑟] are derived using the kinetics of the system. 

𝑣 = 𝑅 · 𝑣𝐵 (1) 

𝜔 = 𝑇 · 𝜔𝐵 (2) 

𝑅 =  [

c(θ)c(ψ)  s(φ)s(θ)c(ψ) − c(φ)s(ψ)   c(φ)s(θ)c(ψ) + s(φ)s(ψ)

c(θ)s(ψ)  s(φ)s(θ)s(ψ) + c(φ)c(ψ)   c(φ)s(θ)s(ψ) − s(φ)c(ψ)

−s(θ)  s(φ)c(θ) c(φ)c(θ)
] (3) 

𝑇 =  

[
 
 
 
1 s(φ)t(θ) c(φ)t(θ)

0 c(φ) −s(φ)

0 
s(φ)

c(θ)
 

c(φ)

c(θ)
  
]
 
 
 

 (4) 
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{
 
 
 
 

 
 
 
 𝑥
˙
 =  𝑢[𝑐(𝜓)𝑐(𝜃)] − 𝑣[𝑐(𝜙)𝑠(𝜓) − 𝑐(𝜓)𝑠(𝜙)𝑠(𝜃)]  + 𝑤[𝑠(𝜙)𝑠(𝜓) + 𝑐(𝜙)𝑐(𝜓)𝑠(𝜃)]

𝑦
˙
 =  𝑢[𝑐(𝜃)𝑐(𝜓)] + 𝑣[𝑐(𝜙)𝑐(𝜓) + 𝑠(𝜙)𝑠(𝜓)𝑠(𝜃)] − 𝑤[𝑐(𝜓)𝑠(𝜙) − 𝑐(𝜙)𝑠(𝜓)𝑠(𝜃)]

𝑧
˙
 = −𝑢[𝑠(𝜃)] + 𝑣[𝑐(𝜃)𝑠(𝜙)] + 𝑤[𝑐(𝜙)𝑐(𝜃)]

�̇�  =  𝑝 +  𝑞[𝑠(𝜑)𝑡(𝜃)] +  𝑟[𝑐(𝜑)𝑡(𝜃)]

�̇�  =  𝑞[𝑐(𝜑)] −  𝑟[𝑠(𝜑)]

�̇�  = 𝑞 [
 𝑠(𝜑) 

𝑐(𝜃)
] +  𝑟 [

 𝑐(𝜑) 

𝑐(𝜃)
]

 (5) 

The kinetics are derived from Newton’s law. First, the total forces, 𝑓𝐵 = [𝑓𝑥 𝑓𝑦 𝑓𝑧] are 

defined in equation (6). This equation represents that the total forces in each axis on the local 

body are equal to the mass times the total acceleration in the axis. Repeating a similar process to 

Euler’s equation results in equation (7). In this case, the total torques 𝑚𝐵 = [𝑚𝑥 𝑚𝑦 𝑚𝑧], are 

equal to the summation of rotational acceleration and angular momentum, where 𝐼𝑥𝑦𝑧 is the 

diagonal inertia matrix, as shown in equation (8). Evaluating the forces and torques results in 

equation (9). This equation describes the kinetics of the quadrotor as a function of generic forces, 

local velocities, and angular velocities. 

𝑓𝐵  =  𝑚(𝜔𝐵 × 𝑣𝐵 + �̇�𝐵) (6) 

𝑚𝐵 = 𝐼𝑥𝑦𝑧 ⋅  𝜔�̇� + 𝜔𝐵 × (𝐼𝑥𝑦𝑧 ⋅ 𝜔𝐵) (7) 

𝐼𝑥𝑦𝑧 = [

𝐼𝑥 0 0
0 𝐼𝑦 0

0 0 𝐼𝑧

] (8) 
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{
  
 

  
 
𝑓𝑥 = 𝑚(�̇� + 𝑞𝑤 − 𝑟𝑣)

𝑓𝑦  = 𝑚(�̇� − 𝑝𝑤 + 𝑟𝑢)

𝑓𝑧  =  𝑚(�̇� + 𝑝𝑣 − 𝑞𝑢)

𝑚𝑥  = �̇�𝐼𝑥 − 𝑞𝑟𝐼𝑦 + 𝑞𝑟𝐼𝑧
𝑚𝑦 = �̇�𝐼𝑦 + 𝑝𝑟𝐼𝑥 − 𝑝𝑟𝐼𝑧
𝑚𝑧 = �̇�𝐼𝑧 − 𝑝𝑞𝐼𝑥 + 𝑝𝑞𝐼𝑦

 (9) 

The external forces of the body must be defined to complete the derivation of the kinetics 

of the body. In this paper, the linear external forces considered are the forces of gravity, thrust 

force, and external wind force. In equation (10), �̂�𝑧 is a unit vector pointing to the inertial z-axis, 

�̂�3 is the unit vector pointing in the body coordinate z-axis, 𝑓𝑤 = [𝑓𝑤𝑥 𝑓𝑤𝑦 𝑓𝑤𝑧 ] are the wind 

forces, and 𝑓𝑡 is the control input thrust force. The moments acting on the quadrotor in equation 

(11) are  𝜏𝜔 = [𝜏𝑤𝑥 𝜏𝑤𝑦 𝜏𝑤𝑧] the torques caused by external wind, 𝑔𝑎, the gyroscopic movement, 

and 𝜏𝐵 are the control input torques. Each rotor's inertia is considered small enough to be 

assumed as zero in this derivation. Therefore, the effect of gyroscopic movement is ignored. 

Evaluating these equations results in equation (12). 

𝑓𝐵 = 𝑚𝑔𝑅𝑇 ⋅  �̂�𝑧 + 𝑓𝑤 − 𝑓𝑡�̂�3 (10) 

𝑚𝐵 = 𝜏𝜔 − 𝑔𝑎 + 𝜏𝐵 (11) 

{
  
 

  
 
−𝑚𝑔[𝑠(𝜃)] + 𝑓𝑤𝑥 = 𝑚(�̇� + 𝑞𝑤 − 𝑟𝑣)

𝑚𝑔[𝑐(𝜃)𝑠(𝜙)] + 𝑓𝑤𝑦 = 𝑚(�̇� − 𝑝𝑤 + 𝑟𝑢)

𝑚𝑔[𝑐(𝜃)𝑐(𝜙)] + 𝑓𝑤𝑧 − 𝑓𝑡 = 𝑚(�̇� + 𝑝𝑣 − 𝑞𝑢)

𝜏𝑥 + 𝜏𝑤𝑥 = �̇�𝐼𝑥 − 𝑞𝑟𝐼𝑦 + 𝑞𝑟𝐼𝑧
𝜏𝑦 + 𝜏𝑤𝑦 = �̇�𝐼𝑥 + 𝑝𝑟𝐼𝑥 − 𝑝𝑟𝐼𝑧
𝜏𝑧 + 𝜏𝑤𝑧 = �̇�𝐼𝑧 − 𝑝𝑞𝐼𝑥 + 𝑝𝑞𝐼𝑦

 (12) 

Up to this point, the kinetics and kinematics have been fully defined for the system. The 

derivation will now define the inputs as the force thrust and control torques 𝑢 = [𝑓𝑡 𝜏𝑥 𝜏𝑦 𝜏𝑧]. 

Recall that the original inputs defined for the system are the angular speed of the motors Ω𝑖. 

Using equation (13), the angular speeds and control forces can be algebraically solved. For the 
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remainder of this paper, the forces are treated as the control signals of the system. However, the 

speeds of the rotors must be algebraically solved if any quadrotor flight simulation or real-world 

testing is performed, as shown in equation (14). The next step in deriving the equations is 

formatting them into a state space format.  

{
 
 

 
 𝑓𝑡 = 𝑏(Ω1

2 + Ω2
2 + Ω3

2 + Ω4
2)

𝜏𝑥 = 𝑏𝑙(Ω3
2 − Ω1

2)

𝜏𝑦 = 𝑏𝑙(Ω4
2 − Ω2

2)

𝜏𝑧 = 𝑑(−Ω1
2 + Ω2

2 − Ω3
2 + Ω4

2)

 (13) 

{
 
 
 
 

 
 
 
 𝑂1 = Ω1

2 = −
2𝜏𝑥𝑑 − 𝑓𝑡𝑑𝑙 + 𝜏𝑧𝑏𝑙

4𝑏𝑑𝑙

𝑂2 = Ω2
2 = −

2𝜏𝑦𝑑 − 𝑓𝑡𝑑𝑙 − 𝜏𝑧𝑏𝑙

4𝑏𝑑𝑙

𝑂3 = Ω3
2 =    

2𝜏𝑥𝑑 + 𝑓𝑡𝑑𝑙 − 𝜏𝑧𝑏𝑙

4𝑏𝑑𝑙

𝑂4 = Ω4
2 =    

2𝜏𝑦𝑑 + 𝑓𝑡𝑑𝑙 + 𝜏𝑧𝑏𝑙

4𝑏𝑑𝑙

 (14) 

2.4 Model’s Dynamic Equations 

 To complete the derivation of the dynamic, equations (5) and (12) are reorganized into 

equations (15) and (16). Equation (15) describes the position of the quadrotor where the states 

are a function of the attitudes and thrust force. Equation (16) describes the attitude where the 

states are a function of the torques. Additionally, both equations take into account the external 

wind forces and torques. In this paper, the wind is assumed to be zero.  
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{
 
 
 
 

 
 
 
 

 

�̇�  = 𝑢[𝑐(𝜓)𝑐(𝜃)] −  𝑣[𝑐(𝜑)𝑠(𝜓) −  𝑐(𝜓)𝑠(𝜑)𝑠(𝜃)] +  𝑤[𝑠(𝜑)𝑠(𝜓) +  𝑐(𝜑)𝑐(𝜓)𝑠(𝜃)]  

�̇�  = 𝑢[𝑐(𝜃)𝑠(𝜓)] +  𝑣[𝑐(𝜑)𝑐(𝜓) +  𝑠(𝜑)𝑠(𝜓)𝑠(𝜃)] −  𝑤[𝑐(𝜓)𝑠(𝜑) −  𝑐(𝜑)𝑠(𝜓)𝑠(𝜃)]

�̇�  =  −𝑢[𝑠(𝜃)] +  𝑣[𝑐(𝜃)𝑠(𝜑)] +  𝑤[𝑐(𝜑)𝑐(𝜃)]

�̇�  =  𝑟𝑣 −  𝑞𝑤 −  𝑔[𝑠(𝜃)] +
𝑓𝑤𝑥
𝑚
   

�̇�  = 𝑝𝑤 − 𝑟𝑢 + 𝑔[𝑠(𝜙)𝑐(𝜃)] +
𝑓𝑤𝑦

𝑚

�̇�  =  𝑞𝑢 −  𝑝𝑣 +  𝑔[𝑐(𝜃)𝑐(𝜑)] −
𝑓𝑤𝑧 − 𝑓𝑡   

𝑚

 
(15) 

{
 
 
 
 
 

 
 
 
 
 𝜓
˙

 = 𝑞 [
 𝑠(𝜑) 

𝑐(𝜃)
] +  𝑟 [

 𝑐(𝜑) 

𝑐(𝜃)
] 

�̇� =  𝑞[𝑐(𝜙)] − 𝑟[𝑠(𝜙)]

𝜑
˙
 =  𝑝 +  𝑞[𝑠(𝜑)𝑡(𝜃)] +  𝑟[𝑐(𝜑)𝑡(𝜃)]

𝑝
˙
 =  𝑟𝑞

𝐼𝑦 − 𝐼𝑧   

𝐼𝑥
+
 𝜏𝑥 + 𝜏𝜔𝑥  

𝐼𝑥

𝑞
˙
 =  𝑝𝑟

𝐼𝑧 − 𝐼𝑥   

𝐼𝑦
 +
  𝜏𝑦 + 𝜏𝜔𝑦  

𝐼𝑦

𝑟
˙
 =  𝑝𝑞

𝐼𝑥 − 𝐼𝑦   

𝐼𝑧
 +
  𝜏𝑧 + 𝜏𝜔𝑧 

𝐼𝑧
 

            (16) 

The dynamics are split into two sections, position and attitude. As a whole, the quadrotor 

is a twelve-state and four-control system. The system is underactuated and, combined with the 

complex nonlinearities, increases the complexity of the problem. By splitting the equations into 

these two sections, two separate neural networks can be trained to solve each individually, 

converting the problem into two simpler subproblems.   

Additionally, a small angle approximation is implemented to simplify the dynamics 

further. With the assumption that the angles are small enough, the system is further simplified, as 

shown in equations (17) and (18). The accelerations can also be estimated, as shown in equation 

(19). These accelerations provide an algebraic way to convert accelerations from a trajectory into 

the necessary angles and thrust force. In this paper, 𝜓 is assumed to be small enough to be 
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approximated as zero. Therefore, the algebraic solution is shown in equations (20). This system 

is used as an intermediate step between position and attitude.    

{
 
 

 
 
�̇�  = 𝑢  
�̇�  = 𝑣
�̇�  =  𝑤
�̇�  =  �̈�   
�̇�  =  �̈�
�̇� =  �̈� + 𝑔

 (17) 

{
 
 
 
 
 
 

 
 
 
 
 
 
�̇� = 𝑝 +  𝑞[𝑠(𝜑)𝑡(𝜃)]+  𝑟[𝑐(𝜑)𝑡(𝜃)]  
�̇�  = 𝑞[𝑐(𝜙)] − 𝑟[𝑠(𝜙)]

�̇�  =  𝑞 [
 𝑠(𝜑) 
𝑐(𝜃)

]+  𝑟 [
 𝑐(𝜑) 
𝑐(𝜃)

]

�̇�  =  𝑟𝑞
𝐼𝑦− 𝐼𝑧   

𝐼𝑥
+
 𝜏𝑥  
𝐼𝑥

  

�̇�  =  𝑝𝑟
𝐼𝑧− 𝐼𝑥   
𝐼𝑦

 +
  𝜏𝑦 

𝐼𝑦

�̇� =  𝑝𝑞
𝐼𝑥− 𝐼𝑦   

𝐼𝑧
 +
  𝜏𝑧 
𝐼𝑧

 (18) 

{
  
 

  
 �̈� =  −

𝑓𝑡
𝑚
[𝑠(𝜙)𝑠(𝜓)+ 𝑐(𝜙)𝑐(𝜓)𝑠(𝜃)]

�̈� = −
𝑓𝑡
𝑚
[𝑐(𝜙)𝑠(𝜓)𝑠(𝜃)− 𝑐(𝜓)𝑠(𝜙)]

�̈�  =  𝑔−
𝑓𝑡
𝑚
[𝑐(𝜙)𝑐(𝜃)]

 (19) 

{
 
 
 
 

 
 
 
 

 

𝑓𝑡 =  𝑚 ∗ (𝑔
2−2𝑔�̈� + �̈�2+ �̈�2+ �̈�2)

𝜙 = arcsin (
𝑚�̈�
𝑓𝑡
)

𝜃 = arcsin(
−𝑚�̈�
𝑓𝑡𝑐(𝜙)

)

𝜓 = 0

 (20) 

 To transform the system of equations into a state space model, the dynamics are defined 

as a system of �̇� = 𝑓(𝑥) + 𝑔(𝑥)𝑢, where 𝑓(𝑥) and 𝑔(𝑥) represents the state and control. A 

discretized version is defined as 𝑥𝑘+1 = 𝑓(̅𝑥𝑘) + �̅�(𝑥𝑘)𝑢𝑘 where k represents the current 

discrete time, 𝑓(̅𝑥𝑘) = 𝑥𝑘 + Δ𝑡𝑓(𝑥𝑘), and �̅�(𝑥𝑘) = Δ𝑡𝑔(𝑥𝑘). Tables 1 and 2 summarize the 

states, controls, and dynamics for the position and attitude model of the quadrotor.  
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Table 1: State-space definition for the position 

Variables: 

 

𝑥 = [𝑥 𝑦 𝑧 𝑢 𝑣 𝑤], 𝑢 = [�̈� �̈� �̈�] 
 

State Dynamics: 

 

𝑓(𝑥) =  

[
 
 
 
 
 
𝑢
𝑣
𝑤
0
0
𝑔]
 
 
 
 
 

  

 

Control Dynamics: 

 

𝑔(𝑥) =  [
1 0 0
0 1 0
0 0 1

] 

 

 

Table 2: State-space definition for the attitude 

Variables: 

 

𝑥 = [𝜙 𝜃 𝜓 𝑝 𝑞 𝑟], 𝑢 = [𝜏𝑥 𝜏𝑦 𝜏𝑧] 

 

State Dynamics: 

 

𝑓(𝑥) =  

[
 
 
 
 
 
 
 
 
 
 
 
𝑝 +  𝑞[𝑠(𝜑)𝑡(𝜃)] +  𝑟[𝑐(𝜑)𝑡(𝜃)]

𝑞[𝑐(𝜙)] − 𝑟[𝑠(𝜙)]

𝑞 [
 𝑠(𝜑) 

𝑐(𝜃)
] +  𝑟 [

 𝑐(𝜑) 

𝑐(𝜃)
]

𝑟𝑞
𝐼𝑦 − 𝐼𝑧   

𝐼𝑥

 𝑝𝑟
𝐼𝑧 − 𝐼𝑥   

𝐼𝑦

 𝑝𝑞
𝐼𝑥 − 𝐼𝑦   

𝐼𝑧 ]
 
 
 
 
 
 
 
 
 
 
 

  

 

Control Dynamics: 

 

𝑔(𝑥) =  

[
 
 
 
 
 
 
1

𝐼𝑥
0 0

0
1

𝐼𝑦
0

0 0
1

𝐼𝑧]
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CHAPTER III 
 

ACTOR-CRITIC ALGORITHM 

 

3.1 Background 

An actor-critic algorithm is used to learn and solve for the quadrotor's control signals for 

the near-optimal solution. The actor-critic algorithm is an ADP solution that approximates the 

optimal control solution using two separate neural networks. These two networks are named the 

actor and critic. The actor and critic are trained using reinforcement learning methods. There is a 

large variety of actor-critic algorithms available, each with different traits and advantages.  

There are different ways to set up the actor-critic algorithm. For example, the algorithm 

can have offline or online training. In offline training, all the training occurs beforehand, leaving 

the weights static during use. The weights update after every simulation in online training, 

meaning the system is always learning. Online training is useful in applications where learning 

new samples may be necessary, especially in systems with unstable or unpredictable states. 

Offline training performs its training before use, which is helpful for applications in which the 

system is more consistent and is not likely to face new scenarios. Additionally, offline training 

requires fewer computation resources as no training is involved in running the simulation. 

A different style for actor-critic algorithms is in finite-horizon or infinite-horizon 

training. In finite-horizon, the training happens under a set training time with a predefined 

trajectory and simulation time. Additionally, a set of weights can be saved for each discrete time 
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step, and training occurs backward in time. Otherwise, training may happen as an infinite 

horizon in which training is iterative forward-in-time. Finite-horizon is ideal for high complexity 

systems in which a different set of weights are necessary for every time step. 

Finally, the actor-critic algorithm can be implemented in two methods, hard-terminal or 

soft-terminal constraints. The terminal constraint refers to the endpoint the system reaches. In a 

regulation simulation, the controller's objective is to move the states and controls of the system 

to zero. In hard-terminal constraints, the system is trained to guarantee the final state reaches the 

exact desired final state, in the case of a regulator, reaches zero. In soft-terminal constraints, the 

system is trained to approach the desired final state without necessarily reaching the exact 

desired final state. In this paper, the soft-terminal constraints method is used. The remainder of 

this chapter explains a basic formulation for the actor and critic neural networks and the 

algorithm. 

3.2 Actor-Critic Derivation 

The derivation is presented in this chapter is by Heydari, A., & Balakrishnan, S. N. 

(2013). The paper presents the following equations for a discrete-time HJB equation as equations 

(21) and (22).  

𝐽𝑘
∗(𝑥𝑘) =

1

2
(�̅�(𝑥𝑘) + 𝑢(𝑥𝑘)

𝑇�̅�𝑢(𝑥𝑘) + 𝐽𝑘+1
∗ (𝑥𝑘+1

∗ ) 
(21) 

𝑢𝑘
∗(𝑥𝑘) = −�̅��̅�(𝑥𝑘)

𝜕𝐽𝑘+1
∗

𝜕𝑥𝑘+1
|𝑥𝑘+1
∗  

(22) 

Where 𝐽𝑘
∗ is the optimal cost, 𝑢𝑘

∗  is the optimal control, �̅�(𝑥𝑘) = Δ𝑡𝑥𝑘
𝑇𝑄𝑥𝑘, Q ∈ ℝ𝑁𝑠 →

 ℝ is the penalizing state matrix, �̅� = Δt𝑅, R ∈ ℝ𝑁𝑖 →  ℝ is the penalizing control matrix, 

𝑥𝑘+1
∗ = 𝑓(̅𝑥𝑘) + �̅�(𝑥𝑘)𝑢𝑘

∗(𝑥𝑘), 𝑓(̅𝑥𝑘) = Δ𝑡𝑓(𝑥𝑘), and �̅�(𝑥𝑘) = Δ𝑡𝑔(𝑥𝑘). Then the actor and 
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critic are defined in equations (23) and (24). Where 𝜆(𝑥𝑘) is the actor’s basis functions, 𝜅(𝑥𝑘) is 

the critic’s basis functions, 𝑥𝑘+1 = 𝑓(̅𝑥𝑘) + �̅�(𝑥𝑘)𝑉𝑘
𝑖𝑇𝜆(𝑥𝑘), and i refers to an iteration counter 

for the actor. 

 

𝑊𝑘
𝑇𝜅(𝑥𝑘) = 𝐽𝑘(𝑥𝑘) =

1

2
(�̅�(𝑥𝑘) + 𝑢(𝑥𝑘)

𝑇�̅�𝑢(𝑥𝑘)) +𝑊𝑘+1
𝑇 𝜅(𝑥𝑘+1) (23) 

𝑉𝑘
𝑖+1𝑇𝜆(𝑥𝑘) = 𝑢𝑘

𝑖+1 ≅ −�̅�−1�̅�(𝑥𝑘)
𝑇𝛻𝜅(𝑥𝑛)

𝑇𝑊𝑘+1 (24) 

 

 Equations (23) and (24) represent a finite horizon, backward-in-time actor-critic 

algorithm. These equations are now modified to be an infinite-horizon algorithm in equation (25) 

and (26). The weights no longer require to be time-dependent and instead update the same set of 

weights.  

𝑊𝑇𝜅(𝑥𝑘) = 𝐽(𝑥𝑘) =
1

2
(�̅�(𝑥𝑘) + 𝑢(𝑥𝑘)

𝑇�̅�𝑢(𝑥𝑘)) +𝑊
𝑇𝜅(𝑥𝑘+1) (25) 

𝑉𝑖+1
𝑇
𝜆(𝑥𝑘) = 𝑢𝑖+1 ≅ −�̅�−1�̅�(𝑥𝑘)

𝑇𝛻𝜅(𝑥𝑛)
𝑇𝑊 (26) 

3.3 Algorithm 

 To summarize the actor-critic algorithm, four figures are given to clarify how the actor-

critic algorithm functions. First, Table 3 lists the main parameters and values of the algorithm. 

These include names for parameters such as 𝑁𝑠 and 𝑁𝑖 count the total number of states and 

inputs. Table 4 summarizes the differences between the actor and the critic. Each neural network 

has an independent set of weights and basis functions. For the actor, they are referred to as 𝑉 and 

𝜆(𝑥),  and for the critic, they are referred to as 𝑊 and 𝜅(𝑥). 
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Table 3: List of different properties and variables in the actor-critic algorithm 

Property Description 

𝑁 Total training iterations 

𝑁𝑠 System number of states 

𝑁𝑖 System number of inputs 

𝑁𝜆 Actor’s number of neurons 

𝑁𝜅 Critic’s number of neurons 

𝑁𝑝 Total number of patterns in training 

Ω Domain of training 

𝛿 Actor’s convergence threshold 

𝑅, 𝑄,𝐻 State penalizing matrices 

�̅�, �̅�, �̅� Discrete penalizing matrices e.g. �̅� = Δ𝑡𝑄 

𝑓(𝑥), 𝑔(𝑥) State-space form dynamics 

𝑓(̅𝑥), �̅�(𝑥) 
Discrete form of dynamics e.g.  
𝑓(̅𝑥𝑘) = 𝑥𝑘 + Δ𝑡𝑓(𝑥𝑘), �̅�(𝑥) = Δ𝑡𝑔(𝑥𝑘) 

𝜆(𝑥), 𝜅(𝑥) Actor and critic’s set of basis functions 

 

Table 4: Summary of differences between the actor and critic 

 Actor Critic 

Weights: 𝑉:→ ℝ𝑁𝜆×𝑁𝑖 𝑊:→ ℝ𝑁𝜅 

Basis: 𝜆(𝑥) 𝜅(𝑥) 

 

The final actor-critic algorithm is now outlined below. The result is a soft-terminal 

infinite horizon algorithm. The algorithm is defined across eight steps. Additionally, Figure 4 

outlines the algorithm as a flowchart. The flowchart highlights the difference between what is 

referred to as the inner loop and the outer loop. To train the actor, the updated policy is iterated 
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by the inner loop to ensure the actor converges to its optimal value. The outer loop runs for 𝑁 

number of iterations. 𝑁 should be chosen to be a high enough number to train the system fully. 

The number depends on the complexity of the system.  

Actor-Critic Training Algorithm  

Step 1: Set 𝑉 to a randomly selected matrix of ℝ𝜎 × ℝ𝑖 and set 𝑊 = 𝐿𝑆𝑅(𝜅(𝑥𝑘), 𝐽)  

for randomly selected 𝑥𝑘 ∈ Ω 

Step 2: Set 𝑘 =  0 

Step 3: Set 𝑖 =  0 

Step 4: Train 𝑉𝑖+1 such that 

𝑉𝑖+1𝜎(𝑥𝑘) = 𝑢 ≅  −�̅�−1�̅�(𝑥𝑘)
𝑇𝛻𝜌(𝑓(̅𝑥𝑘) + �̅�(𝑥𝑘)𝑢𝑘)

𝑇
𝑊  

where 𝑢𝑘 = 𝑉
𝑇𝜎(𝑥𝑘), for randomly selected 𝑥𝑘 ∈ Ω 

Step 5: Set 𝑖 = 𝑖 + 1. Repeat until |𝑉𝑖+1 − 𝑉𝑖| converges to some small value 𝛿 

Step 6: Update 𝑉 to 𝑉𝑖 

Step 7: Train 𝑊 such that 

𝑊𝜅(𝑥𝑘) = 𝐽 =  0.5𝑥𝑘
𝑇�̅�𝑥𝑘 + 0.5𝑢𝑘

𝑇�̅�𝑢𝑘 +𝑊
𝑇𝜅(𝑓(̅𝑥𝑘) + �̅�(𝑥𝑘)𝑢𝑘),  

where 𝑢𝑘 = 𝑉
𝑇𝜆(𝑥𝑘), for randomly selected 𝑥𝑘 ∈ Ω 

Step 8: Set k = k + 1. Repeat until k = N 
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Figure 4: Generic actor-critic algorithm 
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CHAPTER IV 

  

RESULTS 

 

4.1 Actor-Critic Implementation 

 To implement the algorithm in chapter three, a MATLAB program is created to train two 

separate neural networks and run a controller. The program is meant to complete two separate 

objectives. First, it implements an actor-critic algorithm to train two separate neural networks. 

Second, a controller must be designed and uses the trained neural networks. The implemented 

neural networks use the actor-critic algorithm as specified in Figure 5. Since the quadrotor 

dynamics are split into two sections, the position, and attitude, each portion has a separate neural 

network created. These are the alpha neural network (position) and beta neural network 

(attitude). Each network is trained separately with its portion of the quadrotor dynamics. The 

alpha network is trained to learn the position dynamics of the quadrotor shown in Table 1, while 

the beta network is trained to learn the attitude dynamics in Table 2. Each network has similar 

structures in its MATLAB implementation. In this section, a detailed explanation of the 

implementation of the actor-critic algorithm is given.  
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Figure 5: Actor-critic training MATLAB implementation 

First, each network is set up with the following programs as specified in Table 5. Each 

file does a separate part of the program. The alpha and beta neural networks are designed in the 

same format, with the main significant difference being in the dynamic’s programs. Each neural 
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network uses its appropriate set of dynamics. The trainer file runs the actor-critic learning 

algorithm. After finishing training, this program loads the networks' dynamics and outputs the 

resultant weights. The performer can load the weights anytime, which runs an offline control. 

The file needs a reference path and initial conditions and outputs the states and generated control 

signals for the simulation. 

Table 5: Program list for the actor-critic algorithm  

Program Name Description 

Dynamics 

Contains the position or attitude dynamics as 

specified in Tables 1 and Table 2. 

Trainer 

Runs an actor-critic algorithm with the 

specified dynamics. Outputs the trained actor 

weights. 

Weights Trained matrix set data 𝑁𝜆 × 𝑁𝑖 

Performer 

Loads the trained weights to estimate the 

near-optimal control signals in some given 

initial conditions and trajectory path. 

 

 The actor-critic algorithm requires tuned hyperparameters for each trainer program. 

These parameters are specified in Table 6. The No. Iterations is the number of outer loop 

iterations performed to train the system. This number is manually chosen and should be high 

enough for the critic to converge. R is the control penalizing matrix, Q is the state penalizing 

diagonal matrix, and H is the initial-state penalizing matrix. These three matrices affect each 
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control or state's priority when performing regression. Therefore, a carefully chosen balance 

should be searched for and experimented with. δ, represent the convergence check for the inner 

loop. This value should be the smallest without interfering with the actor’s weight convergence. 

A similar note is for No. of Patterns, increasing this value helps in learning more complex 

dynamics with the downside of increasing computational cost. Ω is the domain of training for 

each state. This domain needs to be set up in the range the states may reach.  

Table 6: Hyper-parameters for alpha neural network 

Hyper-parameter Value 

No. Iterations 5000 

R 105 ∗ [0.5 0.5 0.5] 

Q 105[1 1 1 1 1 1] 

H 105[1 1 1 1 1 1]  

δ 0.001 

Max Actor Iterations 10 

No. of Patterns 100 

Ω [1 1 1 1 1 1]  

 

 The MATLAB implementation script ran for both the alpha and beta networks. Below is 

an overview of the convergence of weights across training. It is expected to see the actor’s 

weights converge to some final value. Figures 6 and Figure 8 show the actor's weight, The error 

during training is also shown in Figure 7. 
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Figure 6: Alpha’s NN Actor Weight Convergence 

 

Figure 7: Training runtime error for beta NN 
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Figure 8: Beta’s NN actor weight convergance 

 

 After training the alpha and beta neural network weights, the offline control is run 

through the performer file. The performer loads in the dynamics and trained weights and 

simulates the system under a given trajectory and initial conditions. Figure 9 shows a diagram of 

the structure of the file. Figures 10 through 19 show performer tests in the cases for regression 

and following a trajectory for both alpha and beta neural networks. 
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Figure 9: Actor-critic offline control MATLAB implementation 

 

 

 

Figure 10: State performance demonstration on regression (alpha) 



 

30 

 

 

 

 

Figure 11: Solved thrust force from demonstration on regression (alpha) 

 

Figure 12: Solved attitude from demonstration on regression (alpha) 
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Figure 13: State performance demonstration on regression (beta) 

 

 

 

Figure 14: State performance demonstration on regression (beta) 
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Figure 15: State performance demonstration on tracking (alpha) 

 

Figure 16: Solved thrust force from demonstration on tracking (alpha) 
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Figure 17: Solved attitude from demonstration on tracking (alpha) 

 

Figure 18: State performance demonstration on tracking (beta) 
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Figure 19: Control performance demonstration on tracking (beta) 

4.2 Controller Implementation 

 The proposed controller aims to combine the alpha and beta neural networks into one 

cohesive program. The program must find the optimal control signals given some initial position, 

initial velocity, and trajectory. The proposed controller is outlined in Figure 20.  
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Figure 20: Flowchart of proposed diagram controller 

 

The controller contains the two previously mentioned alpha and beta neural networks. 

Additionally contains a smoother and attitude solver function. These files generate the entire 

states and control signal during the complete simulation. The only necessary inputs are the 

trajectory functions [𝑓𝑥(𝑡) 𝑓𝑦(𝑡) 𝑓𝑧(𝑡)], the initial position, and initial velocities. In this section, a 

detailed explanation of the implementation of the controller is given. 
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The first step is to smooth out the reference trajectory. The smoother function does two 

critical steps. First, it considers the case in which the initial position does not match the starting 

point of the trajectory. Second, it considers the initial velocity and modifies the beginning of the 

trajectory to accommodate. These two changes create a more realistic path for the quadrotor, 

resulting in smoother and more stable results. The equations used to parse the trajectory 

guarantee mathematical smoothness, and all deviations from the original trajectory are 

guaranteed to converge back to the original reference path. An example of this smoothness effect 

is shown in Figure 21, and the equations are shown in (27).  

 

Figure 21: Demonstration of the smoother function 

{
 
 
 
 
 

 
 
 
 
 𝑅𝑥𝑦𝑧

′ (𝑡) = [1 − 𝜙(𝑡∗)]𝑉0
′ (𝑡)+𝜙(𝑡∗)𝑅𝑥𝑦𝑧(𝑡)

�̅� =
𝑡

𝑇
,   𝑉0̅̅̅̅ =

𝑉0
|𝑉0|

 𝑓𝑜𝑟 𝑉0 ≠ 0

𝑡∗ = 
𝑒−𝑎�̅�  −  1

𝑒−𝑎  −  1

𝑉0
′ (𝑡) = �̅��̅� + 𝑥0

𝜙(𝑡) =
𝜓(𝑡)

𝜓(𝑡)+𝜓(1 − 𝑡)

𝜓(𝑡) = 𝑒−
1
𝑡

 (27) 
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 After smoothing the reference trajectory, it is considered that the positional reference 

path is given to the alpha performer. Additionally, the path is discretely derived to find the 

velocity reference path. These six references provide the complete state reference for the alpha 

performer. The reference alongside the initial conditions is given to the alpha neural network to 

approximate the near-optimal accelerations [�̈� �̈� �̈�].  

 With the accelerations approximated, equation (20) is used to solve for the thrust force 

and the attitude. To simplify the model, the assumption 𝜓 = 0 is made. With the angles solved, 

the angular velocities are calculated by discretely deriving. The states are sent to the beta 

performer with the angle and angular velocities solved. 

The control signals generated from the beta neural network are the torque control signals 

required for the simulation. The required rotor speeds are solved with the four control signals 

solved. Figures 22 through 26 show example simulations of the controller. Each simulation has 

an identical trajectory with different initial positions. All simulations converge to the trajectory 

displaying the system's effectiveness in accurately learning the system's dynamics. 
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Figure 22: Example of positional controller states 

 

Figure 23: Example of attitude controller states 
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Figure 24: Example of generated control signals 

 

Figure 25: Example of generated rotor speeds 
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Figure 26: Example of generated simulation paths 
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CHAPTER V 

 

CONCLUSION 

 

5.1 Controller Results and Analysis  

Figures 27 through 29 show the entire simulation data performed under the proposed 

quadrotor controller. The quadrotor was simulated for 50 seconds to follow a helix-shaped 

trajectory. The entire dataset is composed of the states: [𝑥 𝑦 𝑧 𝜙 𝜃 𝜓 𝑢 𝑣 𝑤 𝑝 𝑞 𝑟], controls: 

[𝑓𝑡 𝜏𝑥 𝜏𝑦 𝜏𝑧], the rotor speeds [Ω1 Ω2 Ω3 Ω4], and the references for alpha and beta performers. 

Figure 32 shows a 3D plot of the simulated trajectory. It also shows a comparison of the smooth 

trajectory versus the raw trajectory. The red dashed line represents the input trajectory, and the 

red star represents the initial starting position. The green dashed line is the modified trajectory 

applied with the smoother function. The green line smooths out the starting position with the 

given trajectory and is guaranteed to converge with the red dashed line. The yellow line is the 

simulated trajectory aiming to follow the modified trajectory. Figure 33 shows the results from 

the alpha neural network. The green dashed line is the reference path generated from the 

modified trajectory and by numerically deriving the speeds. The alpha neural network then 

outputs the optimal control solution shown in Figure 29.                                                                                                                           
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Figure 27: Simulated 3D plot comparing the original and modified trajectories 
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Figure 28: State simulation done by the alpha neural network 

 

 

Figure 29: Optimal control solution found by the alpha neural network 
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The solution is passed to an attitude solver, which uses equation (20) to solve for the 

angles, angular speeds, and required thrust of the system. This data is then used as a reference for 

the beta neural network. In Figure 30, the green dashed line represents the calculated data from 

the attitude solver. The beta neural network then tracks the necessary attitude and solves the 

necessary torques for the system. Figure 30 and Figure 31 shows the simulated states and 

controls from the neural network. Combining the calculated thrust from the alpha neural network 

and the torques from the beta neural network, the required motor speeds can be found and are 

shown in Figure 32.  

 

 

Figure 30: Simulation results from the beta neural network 
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Figure 31: Optimal control solution found by the beta neural network 

 

 

Figure 32: The angular speeds of the motor solved by the controller 
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From the total 50 seconds of the quadrotor, as simulated, it took the system 20 seconds to 

stabilize and converge to the given reference path. This can be best noticed in the plot for the 

simulated 𝑊 speeds. The velocity overshoots to a max of 0.11 [m/s] and then to the optimal 0.1 

[m/s].  

5.2 Results Comparison (Modified trajectory) 

From the total 50 seconds of the quadrotor, as simulated, it took the system 10 seconds to 

stabilize and converge to the given reference path. Figures 33 and 34 show an identical path 

traveled as Figures  27 and 28. The difference is in the overshoot caused by the initial position 

mismatching the reference path. Removing the smooth function raises the overshoot to 1.65 

[m/s], 2.54 [m/s], and -0.19 [m/s]. 

 

Figure 33: Control simulation with no modified trajectory 
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Figure 34: Alpha simulation with no smoother function 

5.3 Results Comparison (Noise) 

 To test the robustness of the controller, noise is added to the simulation. The generated 

controls were multiplied by random noise with coefficients of 5%, 25%, and 100%. Figures 35 

through 37 show the controller with 5% added noise, Figures 38 through 41 show 25% noise and 

Figures 41 through 43 show 100% noise. The critical points of these are the increase in the 

amplitude of the control signals generated. The increase in noise creates unstable paths through 

the trajectory, as seen with 100% noise. It also has a significant impact on the amplitude of the 

control signal reach. However, these major peaks do not create peaks in the position or attitude 

of the simulation. In all noise cases, the attitude never reaches an impossible or dangerous angle 
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and, in general, appears primarily unaffected. In practice, it appears the controller is robust 

against noise in its data. The controller is still able to manage to track the trajectory. 

 

 

Figure 35: Control simulation with 5% Noise 

 

 

Figure 36: Alpha simulation with 5% Noise 
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Figure 37: Beta simulation with 5% Noise 

 

Figure 38: Control simulation with 50% Noise 
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Figure 39: Alpha simulation with 50% Noise 

 

Figure 40: Beta simulation with 50% Noise 
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Figure 41: Contol simulation with 100% Noise 

 

Figure 42: Alpha simulation with 100% Noise 
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Figure 43: Beta simulation with 100% Noise 

5.4 DIDO Comparison 

 DIDO is proprietary software for solving optimal control solutions. The system finds an 

open loop solution meaning the system uses no feedback when formulating its solution. DIDO 

finds this solution using Pontryagin's maximum principle. DIDO is a powerful program being 

able to find solutions along a set state boundary. In Figure 44 and Figure 45, the alpha dynamics 

are implemented into DIDO. As seen in Figure 45, DIDO creates large spikes in the velocity 

simulation, unlike the actor-critic solutions that show smoother and more realistic velocity 

samples.  
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Figure 44: DIDO Alpha Control Output 
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Figure 45: DIDO alpha state output 

 

5.5 Future work 

 For future work, the controller needs robustness implemented at the dynamic levels. 

Currently, some robustness is possible due to the neural network's effectiveness in handling large 

noise samples. However, implementing the wind forces and torques [ 𝑓𝑤𝑥 𝑓𝑤𝑦  𝑓𝑤𝑧 𝜏𝑤𝑥 𝜏𝑤𝑦 𝜏𝑤𝑧] 

into the state, dynamics may yield improved results. Additionally, the controller can be improved 

by removing the small angle approximation implemented into the dynamics. 
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Figure 46: Sample quadrotor simulation 
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