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ABSTRACT 

 

 

Martinez, Sergio M., Vibration-Based Machine Learning Models for Condition Monitoring of 

Railroad Rolling Stock. Master of Science in Engineering (MSE), August 2023, 79 pp., 13 

tables, 28 figures, references, 26 titles. 

 One of the primary causes of rolling rail stock derailment is attributed to bearing and axle 

failure. The health of a train bearing is primarily monitored at target locations through wayside 

and Hot Bearing Detectors. This can lead to bearing failure and potential derailments at points in 

between them. To remedy this, the University Transportation Center for Railway Safety 

(UTCRS) has developed an onboard monitoring system that can continuously monitor the 

vibration response, which directly correlates to the health of bearings. This data is used to train 

regression-based machine learning algorithms and long-term prediction neural networks to 

predict bearing health. The models are intended to work in tandem with the onboard monitoring 

sensors as a means of two-way practical validation. The models tested were the Gradient 

Boosting Machine architecture for scheduled predictions and the Informer neural network 

architecture for long-term predictions of ongoing routes. The dataset for these models comes 

from the expansive experiment record data available at the UTCRS. Ultimately, these machine 

learning algorithms will enhance railcars’ safety and save companies money by allowing for 

predictable maintenance periods. 
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CHAPTER I 

 

INTRODUCTION AND MOTIVATION 

 

1.1 Introduction 

 Over the past decade, there have been 1,671 derailments directly attributed to mechanical 

and electrical failures, according to the United States Department of Transportation and the 

Federal Railroad Administration. Of these derailments, the highest percentage, 8.2% (203), were 

caused by journal-bearing defects and failure. (Federal Railroad Administration, n.d.). 

 Derailments pose a severe risk to infrastructure and safety, making it imperative to 

implement preventive measures. To facilitate these preventative measures, this research, 

conducted as part of the University Transportation Center for Railway Safety, implements 

machine learning algorithms and deep neural networks to predict when these bearings will fail. 

1.2 Tapered Roller Bearings Overview 

 Tapered roller bearings comprise multiple subcomponents, the cup, spacer ring, cage, 23 

rollers, a cone, the grease seal, and the wear ring, as seen in Figure 1. 
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Figure 1: Exploded view of a tapered roller bearing (Hernandez, 2020). 

The primary components of a tapered roller bearing are two cone assemblies housed within a 

cup. A cone assembly refers to a set of rollers on the cone held in place by a cage. The spacer 

ring acts as a means to prevent the cone assemblies from grinding against one another. The 

grease seal keeps any outside elements from entering the cone assemblies that would introduce 

impurities to the grease. The wear ring separates bearings from one another to ensure they rotate 

independently, not to expose the components to unnecessary friction. These primary members 

experience the most radial stress and, as such, are the components most in need of monitoring. 

(Hernandez, 2020). 

1.2.1 Types of Defects and Failures 

 There are three major categories of bearing failure: local, distributed, and geometric 

defects. Local defects only encompass a section of the bearing, including pits, cracks, and spalls. 

Distributed defects refer to defects that affect the entire length of the bearing, such as water 

etching. Geometric defects refer to when components are not in tolerance. (Hernandez, 2020). 
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1.3 Wayside Detection Systems 

 The current technologies to monitor the condition of critical components of rolling rail 

stock, such as tapered roller bearings, are referred to as wayside technologies. As the name 

implies, these technologies go mounted on either the side of or directly on the rails as opposed to 

on the actual train. The temperature, vibration, and load profiles are needed to fully describe the 

characteristics of a tapered roller bearing. The three most commonly used wayside technologies 

in North America reflect these profiles being Hot Bearing Detectors (HBDs), Trackside Acoustic 

Detector Systems (TADS™), and Wheel Impact Load Detectors (WILDs). 

1.3.1 Hot Bearing Detectors (HBDs) 

 HBDs measure the temperature profile of critical rolling rail stock components via 

infrared sensors. Specifically, these sensors check to see if the temperature of any service bearing 

is 94.4°C or 170°F above ambient. Companies affiliated with the railway industry construct 

HBDs in areas where the gap between them ranges from 20 to 45 km. There are currently over 

6,000 HBDs in service in North America. Figure 2 shows a diagram of an HBD. (Stewart, Flynn, 

Marquis, & Sharma & Associates, 2020). 
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Figure 2: Hot Bearing Detector (HBD) diagram (Stewart, Flynn, Marquis, & Sharma & 

Associates, 2020). 

HBDs have led to fewer derailments and an increased number of non-verified bearings in the 

railway industry. The biggest shortcoming of HBDs is that temperature is a very reactive 

property, meaning that once a defect is detected, it may be too late to prevent derailment. A 100-

freight car train operating at a speed of 50 miles per hour needs around 3 miles to come to a 

complete stop. This number goes up to approximately 6 miles for a 150-freight car train 

operating at the same speed. (Tarawneh, Aranda, Hernandez, Crown, & Montalvo, 2020). 

1.3.2 Trackside Acoustic Detector Systems (TADS™)  

 Trackside Acoustic Detector Systems (TADS™) are stationary technologies that monitor 

the vibration profile of tapered roller bearings. TADS™ are a form of acoustic bearing detector 

that observe the acoustic response from the tapered roller bearings and classify them as 

“growlers” if severely spalled. If a TADS™ detects a growler, a signal for an immediate stop of 
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the train is sent to the operators. Figure 3 depicts an image of a TADS™. (Stewart, Flynn, 

Marquis, & Sharma & Associates, 2020). 

 

Figure 3: Trackside Acoustic Detector Systems (TADS™) (Stewart, Flynn, Marquis, & Sharma 

& Associates, 2020). 

1.3.3 Wheel Impact Load Detectors (WILDs) 

 Wheel Impact Load Detectors (WILDs) monitor the load profile at fixed points along 

railway routes. To prevent overloading that can lead to potential derailments, companies like 

LBFoster implement these detectors. WILDs are track-mounted strain gauges that measure the 

wheel-to-rail contact force. Figure 4 shows a WILD in service. (LBFoster US, n.d.). 
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Figure 4: Wheel Impact Load Detectors (WILDs) (LBFoster US, n.d.). 

1.4 Derailment Case Studies 

1.4.1 Canadian Pacific Freight Train 220-24 

 Between Sudbury and Mactier, Canada, on January 26, 2011, Canadian Pacific Railway 

freight train 220-24 experienced a twenty-car derailment that leaked non-odorized liquified 

petroleum gas. A spall on the inboard cup raceway led to the seizing of a roller bearing. The 

seized roller bearing overheated and ultimately burnt off the axle journal. This derailment 

occurred after eight separate HBDs failed to flag the train to stop. The derailment happened in a 

location where the gap between the HBDs was more extensive than 25 miles (40 km), as shown 

in the map in Figure 5.  
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Figure 5: Map of the Canadian Pacific freight train 220-24 derailment (CP Freight, 2011). 

As such, in response to this derailment, Canadian Pacific installed more HBDs in these locations 

where the gaps between detectors were as large or larger. (CP Freight, 2011). 

1.4.2 Norfolk Southern Train 32N 

 Norfolk Southern train 32N experienced a 35-car derailment on February 3, 2023, in East 

Palestine, Ohio. Due to the inadequacy of the current condition monitoring technologies and the 

nature of what they detect, the railway industry failed to prevent this derailment. Before the train 

was flagged to stop, the temperature of the bearing that failed read 103°F at an HBD. As 

mentioned in the Hot Bearing Detector section, HBDs flag trains to stop if the temperature 

exceeds 170°F. The bearing then began to fail and was not flagged to stop until the following 

HBD read 253°F. By this point, the defective bearing caught fire for over 20 miles and the train 

ultimately derailed. The overlying issue with the current reliance on HBDs is that temperature is 

a reactive indicator, so it may already be too late to save the train once the temperature profile 
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detects a defect. This derailment also helped further indicate the need for live condition 

monitoring technologies to become more prevalent in the industry. (National Transportation 

Board, 2023). 

1.5 Onboard Wireless Monitoring Systems 

 The current peak of bearing condition monitoring technology are onboard sensors 

capable of live monitoring the three characteristic profiles: temperature, vibration, and load. The 

temperature profile allows for knowledge of imminent failure, while the vibration profiles allow 

for a more proactive response. Finally, the load profile gives insight into the stresses acting on 

the components. The onboard sensors being implemented in the field today reflect these 

parameters.  

1.5.1 UTCRS Wireless Sensor 

The University Transportation Center for Railway Safety (UTCRS) invented a means to 

monitor tapered roller bearing temperature and vibration profiles in a non-intrusive manner using 

the UTCRS wireless sensor, which Figure 6 shows.  
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Figure 6: UTCRS Wireless Sensor labeled display (Cuanang, 2020). 

This sensor was developed and intended for academic and research purposes, with one of its 

most highlighted features being that it goes mounted on the bearing adapter, meaning the 

condition of the actual bearing does not affect the performance of the sensor, making it reusable. 

The UTCRS wireless sensor collects at a rate of 5,120 Hertz for 16 seconds every 10 minutes. 

Once the data is collected, the sensor transmits it to a central monitoring unit via Bluetooth. 

(Cuanang, 2020). 

1.5.2 HUM Industrial Technology Boomerang 

The HUM Industrial Technology Boomerang is a field application version of the UTCRS 

wireless sensor developed by the UTCRS and put into production by HUM Industrial 

Technology. Figure 7 depicts a field-tested version of the HUM Boomerang.  
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Figure 7: Mounted HUM Industrial Technology Boomerang (Cantu, 2021). 

This sensor can also monitor the vibration and temperature responses of the tapered roller 

bearings while being mounted to the adapter. The HUM Boomerang can output bearing 

operating temperatures with an accuracy of within eight °C and an accuracy of ±1 g regarding 

the RMS of the vibration profile readings. This sensor collects at a rate of 5,200 Hertz for 1 to 4 

seconds every 10 minutes. (Cantu, 2021). 

1.6 Related Work 

 In July 2022, the University Transportation Center for Railway Safety published a thesis 

by Leonel Villafranca covering their first attempt at implementing machine learning for bearing 

condition monitoring. (Villafranca, 2022). The thesis title is “Predicting the remaining service 

life of railroad bearings: leveraging machine learning and onboard sensor data.” In this work, 

Leonel Villafranca implemented three machine learning models to utilize the data from the 

UTCRS wireless sensors to predict the bearing’s remaining service life. The models 

implemented were a Gradient Boosting Machine, an eXtreme Gradient Boosting Machine, and a 

Federated Learning algorithm. The models used generalized features or input data to predict the 
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vibration response’s root mean square (RMS). Specifically, the features utilized were the 

mileage, the speed in miles per hour, and the loading conditions (as in unloaded, partially loaded, 

or fully loaded) that a bearing experienced.  

 The models used in this research are a Gradient Boosting Machine and the Informer 

neural network.  Where this research differs from Leonel’s implementations is through some 

notable aspects. The first difference is that the models in this research use a larger dataset that 

considers more types of experiments than solely field service tests. These models also are trained 

using features that characterize the data more accurately by considering the effects of each 

combination of generalized features. The Gradient Boosting Machine trained in this research was 

validated by testing on experiments not present in the dataset, proving that the model is 

practically viable rather than solely having theoretical accuracy. Finally, the most significant and 

impactful difference is that this research implements deep learning neural networks, a more 

involved subset of machine learning algorithms.  

1.7 Motivation 

 The ability to predict when critical components will fail provides another step toward 

ensuring safety. As this research is conducted for the University Transportation Center for 

Railway Safety and its partners, these models will be able to work in tandem with their current 

onboard sensors, namely the UTCRS wireless sensor and the HUM Boomerang. Despite safety 

being of the utmost importance, it is hard to invest in it from a business aspect if there is no 

immediate need. Thankfully, there is a driving economic factor to this research as well. In North 

America, private companies own the railcars; however, they do not control when they go into 

maintenance. The railway industry decides the maintenance periods, so private companies must 

endure potential month-long periods of unexpected downtime. This research will allow for 
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means to predict when a bearing fails, enabling the creation of scheduled maintenance periods. 

The implementation of various machine learning models will facilitate this goal. The first 

machine learning model is a Gradient Boosting Machine that estimates the vibration profile 

given details on a route’s mileage, speed, and load conditions. This model will create scheduled 

predictions before the route’s operation. The second model is, more specifically, a deep neural 

network capable of reading time-series-based data. This model is the Informer Neural Network, 

used to make long-term predictions of ongoing routes. These models are discussed more in-depth 

in Chapter II.  
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CHAPTER II  

 

MACHINE LEARNING BACKGROUND AND RELEVANT IMPLEMENTATIONS 

 

2.1 Machine Learning Overview 

Artificial Intelligence (AI) refers to anything that allows a computer to mimic the thought 

processes of human intelligence. A popular subset of AI is Machine Learning (ML) which 

involves algorithms that can improve at a task given a training method and experience. Machine 

learning algorithms utilize defined iteration-based methods to minimize a loss function that 

describes the difference between predicted and experimental values. Machine learning models 

take input data, referred to as features, that describe the predicted variable. There are two major 

tasks for machine learning models: classification and regression. Classification models utilize 

string-based input and output data, while regression models utilize strictly numeric values for a 

form of interpolation to occur. This research utilizes a machine learning model for a regressive 

task to predict the Root Mean Square (RMS) values of the vibration profile of tapered roller 

bearings. The primary requisite for a machine learning algorithm is a dataset to be trained on and 

make a foundation on which predictions can be made. Machine learning algorithms split their 

datasets into three sub-categories: training, validation, and testing. The algorithm operator 

decides the split for the ratio of data; however, it is standard practice to allot the largest portion 

of data to training. (Dhande, 2020).
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2.1.1 Bias and Variance 

 A lack of balance between the bias and variance of a model’s prediction will lead to 

doubt on the validity of said prediction. Bias refers to the systematic errors made during a 

model’s learning. A high bias means that the model is oversimplified or underfitting. If a model 

is underfitting, it will fail to correctly highlight the data’s complexity. Underfitting occurs when 

the features implemented fail to describe the target variable, or the model is too simple to capture 

the complexity needed to make a proper prediction. Variance refers to the model’s ability to 

capture and replicate the fluctuations while training. If the variance is too high, the model will 

fully mimic the exact response from training, resulting in overfitting. Overfitted models will 

likely fail to predict new or unseen data adequately. (Banoula, 2023). Machine learning models 

are ideally optimized to be neither underfit nor overfit. This research balances the bias and 

variance through five-fold cross-validation, an ensemble method built into the Gradient Boosting 

Machine, and iterative testing methods scored on several factors. Cross-validation is an iterative 

process that separates the data into equally sized groups, or folds, to train and validate. The 

details on the ensemble method are discussed in the Gradient Boosting Machine section in this 

chapter. 

2.1.2 Decision Trees  

 Decision trees are another type of machine learning algorithm suitable for regression 

tasks. The first step that the algorithm takes is to choose a feature and define a threshold to split 

the data into two subsets. The data is then split recursively and continuously applied to the 

subsets created in the previous step. This recursive split leads to forming “tree-like” structures, 

hence the name. Figure 8 depicts an example of a decision tree. 
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Figure 8: Decision tree (Lin & Li, 2023). 

 The top of a decision tree is referred to as the root node. The root node poses the initial 

condition before passing it into the following condition. The root node points to the internal 

nodes and each pair of arrows represents a true or false condition. Internal nodes can be 

distinguished by having arrows pointing into and out of them. The internal nodes serve as 

intermediary conditions, or comparisons against the defined threshold, for the current data point 

the algorithm is testing. Continuing down the hierarchical structure, nodes that only have arrows 

pointing to them are termed leaf nodes. These leaf nodes are the final condition on which a data 

point gets tested before the algorithm predicts.  

2.1.3 The I.I.D. Assumption 

The I.I.D. assumption is a generalized assumption that applies to machine learning 

algorithms and statistic-based models. The primary definition of the assumption states that the 

data should be independent and identically distributed. Independent means that the value of a 

data point is not influenced by, nor influences, another data point. This part of the assumption 

allows machine learning models to focus on a single data point at a time rather than on relations 
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between them. If this part of the assumption is invalidated, the predictions could have 

unnecessary correlations. The second half of the assumption, the identically distributed portion, 

states that the data points should be sourced from the same probability distribution. If this section 

of the assumption is invalidated, the model may need help to predict unseen or new data. The 

I.I.D. assumption specifies that each data point must be independent of one another and output 

identical responses if the same features are input. The nature of this research invalidates the 

I.I.D. assumption. The dataset more closely resembles a time series, given that the vibration 

response is unique to each bearing. It is unlikely for the RMS of two separate bearings to be 

equal even if the same values for the features are input. Despite this, this research formats the 

model so that the predictions are more of a practical generalization.  

2.2 Scoring Systems 

 A self-imposed scoring mechanism dictates the performance of a machine learning 

model. The most common forms of scoring systems involve the coefficient of determination and 

evaluation based on the error between the predicted and actual values. 

2.2.1 Coefficient of Determination (R2) 

 The coefficient of determination, R2, value is a parameter that describes the accuracy of a 

line of fit for regressive models. The coefficient of determination measures the amount of 

variation that the model captures. Equation 1 shows the formula for the coefficient of 

determination.  

 𝑅2 = 1 −
𝑅𝑆𝑆

𝑇𝑆𝑆
= 1 −

∑(𝑦𝑖 − 𝑦̂𝑖)2

∑(𝑦𝑖 − 𝑦̅𝑖)2
 

(1) 
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RSS refers to the sum of the squares of residuals, and TSS to the total sum of squares. The 𝑦𝑖 in 

the equation above denotes the observed value at iteration 𝑖, while 𝑦̂𝑖 is the predicted value at 

iteration 𝑖, and 𝑦̅𝑖 is the mean of the observed values. (Chicco, Warrens, & Jurman, 2021). 

It is common practice to plot the actual values versus the predicted values with the ideal 

response to be relatively linear. The values for the coefficient of determination typically range 

between zero and one, with a value of one being able to describe the variance in the model 

entirely. A coefficient of determination ranging from 0.6 to 0.8 is appropriate for a regressive 

task. 

2.2.2 Error Evaluation Methods 

 The three most commonly used error evaluation methods are the mean absolute error 

(MAE), the root mean square error (RMSE), and the mean squared error (MSE). Each method 

utilizes a comparison that measures the difference between the predicted and observed values. 

The formulas for each of these methods are formatted based on their namesake. The equations 

for the mean absolute error, root mean square error, and the mean squared error are shown in 

Equations 2, 3, and 4, respectively. (Chicco, Warrens, & Jurman, 2021) 

 𝑀𝐴𝐸 =  
1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

 (2) 

 𝑅𝑀𝑆𝐸 =  √∑
(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑛

𝑖=1

 (3) 

 𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖 )2

𝑛

𝑖=1

 (4) 
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The 𝑛 in the equations above denotes the number of elements, the 𝑦𝑖 is the observed value at 

iteration 𝑖, and the 𝑦̂𝑖 is the predicted value at iteration 𝑖. 

 These models are formatted similarly; however, each has its specialties and excels at their 

intended application. Mean absolute error is used in situations when each error benefits from 

being weighed equally. MAE penalizes large and small errors equally, and as such, this error 

method is less sensitive to outliers in the data. Root mean square error is the most commonly 

used evaluation metric in situations where a normal distribution is expected. In contrast to MAE, 

RMSE is sensitive to outliers in data, giving more weight to larger errors. Mean squared error is 

used in similar situations to root mean squared error with the benefit of being differentiable. This 

error method can be applied to models that iteratively utilize derivatives to minimize their loss 

function. For example, the Gradient Boosting Machine utilizes an iterative Gradient Descent. 

The most notable drawback of using MSE is that it changes the scale of the original inputs, 

making it more difficult to interpret than the other two metrics. (Chicco, Warrens, & Jurman, 

2021). 

2.2.3 Loss Functions 

This loss function is comprised of a known output value based on the current iteration, 𝑦𝑖, 

and a guessed value, ρ. Traditionally for a regression task, the loss function is either the squared 

error or absolute error. These loss functions can be seen in Equations 5 and 6, respectively.  

 𝐿(𝑦, 𝐹) = (𝑦 − 𝐹)2 (5) 

 𝐿(𝑦, 𝐹) = |𝑦 − 𝐹| (6) 

These models fall short in certain aspects, however. The absolute error loss function 

cannot differentiate values at zero, and the squared error loss function is sensitive to outliers in 
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the data. The Huber loss function can alleviate both of these shortcomings, and as such, is the 

loss function implemented in this research. The loss function can be seen in Equation 7.  

 𝐿𝛿(𝑦, 𝑓(𝑥)) = {

1

2
(𝑦 − 𝑓(𝑥))

2
, 𝑓𝑜𝑟 |𝑦 − 𝑓(𝑥)| ≤ 𝛿

𝛿 ∙ (|𝑦 − 𝑓(𝑥)| −
1

2
𝛿) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (7) 

The Huber loss function utilizes a piece-wise approach that implements the squared error and an 

alternate approach to the absolute error loss functions where they are best applicable. The only 

introduced variable in Equation 7 is 𝛿 which denotes the difference between the predicted and 

actual values. Therefore, the Huber loss function is denoted by 𝐿𝛿. (Huber, 1965). 

2.3 Gradient Boosting Machine 

 Gradient Boosting Machine is an ensemble method that utilizes decision trees for 

classification or regression tasks. The procedure of the algorithm begins with the formula in 

Equation 8. 

 𝐹0(𝒙) = 𝑎𝑟𝑔𝑚𝑖𝑛𝜌 ∑ 𝐿(𝑦𝑖 , 𝜌)
𝑁

𝑖=1
 (8) 

Equation 8 specifies that the initial function estimation, an initial predicted value, 𝐹0(𝒙), is 

composed of a function that finds a predicted value that minimizes the sum of a derivable loss 

function, 𝐿. A constant value initializes the model. The loss function is a function of both 

observed, 𝑦𝑖, and predicted, 𝜌, values. (Friedman, Oct., 2001). 

2.3.1 Gradient Boosting Machine For Loop 

 The remainder of the Gradient Boosting Machine algorithm occurs within a for-loop. A 

for-loop specifies how many iterations a process repeats itself. Several procedures and equations 

run in each iteration before outputting a result. In this algorithm, the output is analyzed and 
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compared against the previous iteration’s output. The for-loop portion of the algorithm can be 

seen below.  

 𝐹𝑜𝑟 𝑚 = 1 𝑡𝑜 𝑴 𝑑𝑜:  

 𝑦̃𝑖 = − [
𝜕𝐿(𝑦𝑖, 𝐹(𝒙𝑖))

𝜕𝐹(𝒙𝑖)
]

𝐹(𝒙)=𝐹𝑚−1(𝒙)

, 𝑖 = 1, 𝑁 (9) 

 𝒂𝑚 = 𝑎𝑟𝑔𝑚𝑖𝑛𝒂,𝛽 ∑ [𝑦̃𝑖 − 𝛽ℎ(𝒙𝑖; 𝒂)]2
𝑁

𝑖=1
 (10) 

 𝜌𝑚 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜌 ∑ 𝐿(𝑦𝑖, 𝐹𝑚−1(𝒙𝑖) + 𝜌ℎ(𝒙𝑖; 𝒂𝑚))
𝑁

𝑖=1
 (11) 

 𝐹𝑚(𝒙) = 𝐹𝑚−1(𝒙) + 𝜌𝑚ℎ(𝒙; 𝒂𝑚) (12) 

 

endFor 

end Algorithm 

 

The first line defines the range of the for-loop and, more precisely, defines the number of 

decision trees made. It specifies from an individual tree, 𝑚, to 𝑴 total number of trees. Equation 

9 computes a residual, 𝑦̃𝑖,or the observed values minus the predicted values, by taking a 

derivative of the loss function with respect to the predicted value. This derivative is called a 

gradient, from which the gradient boosting machine gets its namesake. The previous predicted 

value for the gradient is evaluated before comparing it against the samples, 𝑖, being tested. 

(Friedman, Oct., 2001). 

 The algorithm then creates a regression tree with splitting variables, 𝒂𝑚, fitted to the 

residual values, as seen in Equation 10. The other new variables introduced here are the step 

direction, ℎ, and the 𝛽, when in conjunction with the step direction, describe the best greedy 

step. (Friedman, Oct., 2001). 
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 After splitting the residuals into regression trees, the algorithm makes an output value 

based on the current tree, 𝜌𝑚. The output value is determined by finding the argument about the 

predicted value that minimizes the loss function while considering the previous prediction. This 

process is shown in Equation 11. The algorithm then makes a new prediction, 𝐹𝑚(𝒙), using the 

previous prediction, output value, and step direction. (Friedman, Oct., 2001). 

2.4 Deep Learning Overview 

 A further subset of machine learning is Deep Learning (DL). The main difference 

between machine learning and deep learning is that deep learning utilizes a series of hidden 

layers alongside weights and biases to make predictions. Another critical aspect is that deep 

learning introduces nonlinearity into the algorithm. This nonlinearity means that the models 

referred to as Neural Networks (NNs) can exceed the limitations of solely linear models, 

grasping hierarchical representations and capturing interactions between features. The training 

procedure in machine learning models needs to be explicitly defined, as seen in the Gradient 

Boosting Machine; however, the nonlinearity in deep learning neural networks allows for the 

ability to create its own unique training procedure. (Dhande, 2020). 

2.4.1 Multi-layered Perceptrons 

 The most basic unit of a deep learning algorithm is called a perceptron. A perceptron 

comprises of inputs, weights, a weighted sum or input function, and a nonlinear function 

sequentially processed before generating an output. Chaining perceptrons creates a model 

denoted as a Multi-Layered Perceptron (MLP). The most basic of MLPs is a feed-forward 

system in which information is never backpropagated, meaning there is no feedback or 

improvement from the information obtained by the previous iteration. As mentioned previously, 
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the Gradient Boosting Machine invalidates the I.I.D. assumption. Sequence-based neural 

networks needed to be developed to make predictions that previous data can influence or 

reiterate using time-series-based data. (Bento, 2021). 

2.4.2 Recurrent Neural Networks (RNN) 

 Recurrent Neural Networks (RNNs) are the first significant time-series-based neural 

network. Recurrent neural networks build upon multi-layered perceptrons by utilizing the same 

architecture while introducing recurrence. This recurrence means that one perceptron’s result 

directly influences the next’s result in the chain. A recurrent neural network is characterized by 

the formula seen in Equation 13. (Rumelhart, Hinton, & Williams, 1986). 

 𝑦̂𝑡 = 𝑓(𝑥𝑡, ℎ𝑡−1) (13) 

This equation states that the prediction, 𝑦̂𝑡, is a function of the current input, 𝑥𝑡, and the previous 

step’s, ℎ𝑡−1, information. Recurrent neural networks are weak to long-term dependent datasets 

due to a recurring problem in deep learning known as the exploding and vanishing gradient. 

Exploding is when too large of a value is passed into the gradient, which heavily skews the 

prediction to output a significantly larger value. Vanishing refers to the opposite scenario where 

too small of a value is passed, resulting in a prediction heavily skewed by outputs with too small 

of a value. (Rumelhart, Hinton, & Williams, 1986). Figure 9 shows the basic framework for a 

recurrent neural network. 
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Figure 9: Recurrent neural network framework (Rumelhart, Hinton, & Williams, 1986). 

2.4.3 Long-Short Term Memory (LSTM) 

 A neural network specially designed to target some of the shortcomings of a recurrent 

neural network is the long-short term memory NN. The critical difference between the two 

models is the introduction of a memory cell in place of recurrence. This memory cell is capable 

of retaining information and updating an internal state. The internal state is regulated via three 

gates, an input, output, and forget gate. The input gate determines how many datapoints get 

stored in the memory cell. It utilizes a sigmoid activation function along with the current input 

and previous hidden state to output a binary response for each element. As the name implies, the 

forget gate determines how much previous information gets forgotten before the memory is 

updated. The output gate utilizes the same parameters as the input gate but is used to generate 

outputs. (Hochreiter & Schmidhuber, 1997). Figure 10 depicts the framework for the LSTM 

model.  
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Figure 10: Long-short term memory neural network (Hochreiter & Schmidhuber, 1997). 

 While the long-short term memory model can store data, it has shortcomings. The LSTM 

model requires a higher training time and memory usage than recurrent neural networks. The 

other major drawback is that LSTM models are sensitive to initial conditions (Hochreiter & 

Schmidhuber, 1997).  

2.4.4 Encoder-Decoder 

 The next significant evolution in sequence-based neural networks sought to accommodate 

larger datasets by re-contextualizing them. The Encoder-Decoder neural network is the model 

created capable of these feats. The encoder refers to a procedure that can reshape the data to 

create a context matrix, sometimes referred to as a concatenated feature map, using a different 

sequence-based neural network. The most commonly implemented neural networks are recurrent 

neural networks and long short-term memory models, both discussed in this chapter. This 

context matrix gets inputted to the decoder, which utilizes the information to generate an output 

sequence. The decoder usually takes the form of a recurrent neural network. One of the 
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highlighting aspects of decoders is that they utilize an attention mechanism to differentiate 

sections of the input sequence and determine what data gets prioritized. The significant 

drawbacks of the encoder-decoder neural network are that it can struggle with chains of 

dependencies, tend to oversimplify the inputs, and has a relatively long training time (Sutskever, 

Vinyals, & Le, 2014).  

2.4.5 Transformer Architecture  

 Following the encoder-decoder model, the Transformer neural network was developed in 

2017 by Vaswani et. Al. The model adapts the encoder-decoder model, emphasizing the self-

attention mechanism. The first step that the Transformer neural network takes is input 

embedding. Once the inputs are embedded, the model then positionally encodes them. Post-

encoding, a multi-head attention mechanism is activated. This attention mechanism decides the 

most relevant data from the given set of inputs before passing it into a feed-forward network. 

The data is then normalized and passed through an output layer that re-contextualizes it. The 

losses are then calculated. (Vaswani, et al., 2017). Figure 11 shows the framework for the 

Transformer neural network. 
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Figure 11: Transformer neural network architecture (Vaswani, et al., 2017). 

 The Transformer neural network has notable limitations, however. Due to its 

quadratically computing iteration method, the self-attention mechanism maximizes the memory 

usage per layer and the overall time complexity. The model also struggles with longer inputs due 

to this significant memory cost, and outputs are relatively slow when predicting longer sequence 

lengths (Vaswani, et al., 2017).  

2.5 Informer Architecture 

 The Informer neural network was developed to mitigate the limitations of the 

Transformer neural network. The Informer neural network was created in 2020 by Zhou et al. 

and has three notable primary characteristics. These are the: ProbSparse self-attention 

mechanism, self-attention distilling, and a generative style decoder (Zhou, et al., 2021). Figure 

12 depicts the framework for the Informer neural network.  
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Figure 12: Informer neural network framework (Zhou, et al., 2021). 

The model feeds the input data into an encoder where multi-head ProbSparse self-

attention mechanisms get iteratively run before a concatenated feature map gets created. This 

feature map then gets passed into a decoder where more multi-head attention mechanisms are 

utilized. The data is then re-contextualized, and a prediction and calculated losses are output. 

After loss calculation, some data gets backpropagated to train the subsequent iteration. The 

remaining portions are set aside for validation and testing of the trained model (Zhou, et al., 

2021). 

2.5.1 Informer Neural Network: ProbSparse Self-Attention Mechanism 

 The ProbSparse self-attention mechanism is dependent on the i-th query’s attention, 

which is described in Equation 14 (Zhou, et al., 2021). 
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 𝐴(𝒒𝒊, 𝑲, 𝑽) = ∑
𝑘(𝒒𝑖, 𝒌𝑗)

∑ 𝑘(𝒒𝑖 , 𝒌𝑙)𝑙
𝒗𝑗

𝑗

 (14) 

In this equation, 𝒒𝑖 , 𝒌𝑖, 𝒗𝑖 refers to the i-th row in 𝑸, 𝑲, 𝑽, where 𝑸 ∈ ℝ𝐿𝑄×𝑑 , 𝐊 ∈ ℝ𝐿𝐾×𝑑 , 𝐐 ∈

ℝ𝐿𝑉×𝑑. The 𝑑 variable refers to the input dimension. The actual ProbSparse is represented by 

Equation 15 (Zhou, et al., 2021). 

 𝐴(𝑸, 𝑲, 𝑽) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑸̅𝑲𝑇

√𝑑
) 𝑉 (15) 

In this equation, the only variable introduced is the 𝑄̅which denotes the sparse matrix.  

2.5.2 Informer Neural Network: Encoder 

 The encoder of the Informer neural network utilizes a sequence input that is formatted 

into the formula seen in Equation 16 (Zhou, et al., 2021). 

 𝑿𝑒𝑛
𝑡 ∈ ℝ𝐿𝑥×𝑑𝑚𝑜𝑑𝑒𝑙  (16) 

Once the sequence has been input, the self-attention distilling is performed. This procedure is 

represented in Equation 17 (Zhou, et al., 2021). 

 𝑿𝑗+1
𝑡 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐸𝐿𝑈(𝐶𝑜𝑛𝑣1𝑑([𝑿𝑗

𝑡] 
𝐴𝐵

))) (17) 

This process is accomplished by using a one-dimensional convolution passed through the ELU 

activation function. This data is then MaxPool-ed (Zhou, et al., 2021).  

2.5.3 Informer Neural Network: Decoder 

 The decoder for the Informer neural network has its feed contextualized by a start token 

and a placeholder for the target sequence (Zhou, et al., 2021). The equations defining the start 

tone, placeholder and decoder feed are listed in equations 18, 19, and 20 respectively. 
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 𝑿𝑡𝑜𝑘𝑒𝑛
𝑡 ∈ ℝ𝐿𝑡𝑜𝑘𝑒𝑛×𝑑𝑚𝑜𝑑𝑒𝑙  (18) 

 𝑋𝟎
𝑡 ∈ ℝ𝐿𝑡𝑜𝑘𝑒𝑛×𝑑𝑚𝑜𝑑𝑒𝑙  (19) 

 𝑿𝑑𝑒
𝑡 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑿𝑡𝑜𝑘𝑒𝑛

𝑡 , 𝑋𝟎
𝑡) ∈ ℝ(𝐿𝑡𝑜𝑘𝑒𝑛+𝐿𝑦)×𝑑𝑚𝑜𝑑𝑒𝑙  (20) 

The final notable piece of information pertaining to the decoder of the Informer neural network 

is that it utilizes generative inference. This inference means that it can predict the output through 

a simple forward process rather than a more dynamic decoding method (Zhou, et al., 2021).
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CHAPTER III 

 

EXPERIMENTAL SETUP AND PROCEDURES 

 

3.1 Laboratory Overview 

 The University Transportation Center for Railway Safety (UTCRS) has worked to 

replicate freight operating conditions to monitor tapered roller bearings’ condition accurately. 

This replication is facilitated by dynamic bearing test rigs fitted with temperature, vibration, and 

load sensors designed and manufactured by the UTCRS. These sensors go mounted on or built 

into the bearing adapters, named Smart Adapters, that act as a medium to transfer the load to the 

tapered roller bearings. The operating ranges tested reflect service conditions. The two most 

common load conditions are unloaded and fully loaded, where each bearing is subjected to 17% 

(5,848 lbs.) and 100% (34,400 lbs.) of the total load, respectively. The operating speeds range 

from 25 to 85 mph.   

3.1.1 Class and Specifications of Bearings 

 The University Transportation Center for Railway Safety (UTCRS) primarily tests the 

two most commonly used classes of bearing for freight rail tracks in North America, class F, and 

K. However, the dynamic bearing test rigs at the UTCRS can test classes K, F, E, and G. The 

dimensions and load capabilities according to the Association of American Railroads (AAR) 

standards of these bearings are listed in Table 1.
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Table 1: AAR standards: bearing classes. 

Class Size [mm] Size [in] Load [kN] Load [lbf.] 

Class F 165x305 6.5x12 153 34,400 

Class K 165x229 6.5x9 153 34,400 

 

3.1.2 Bearing-Axle Assembly 

 The bearing assembly process first begins with component selection. Depending on the 

parameters of the test, the components are selected based on whether the parts meet the AAR 

standard tolerances. The one parameter that stays consistent amongst every type of experiment 

conducted is that the diameter of the inner ring of the bearing assembly must be ±6.1875 inches 

for class K and F bearings. This tolerance ensures that the bearings can be properly press-fit due 

to the diameter of both correlating axles being 6.1915 inches. Inner rings out of tolerance can 

result in the bearings spinning independently of the axle during the testing process. The assembly 

process remains the same between classes of bearings; however, the height of the components 

differs, and the amount of packed grease gets scaled to the appropriate volume. Once an inner 

ring with an acceptable inner diameter has been selected, the rollers and raceway get inspected 

for defects. Post inspection, the rollers are inserted into the cage, ensuring that the tapered end 

falls into the appropriate location, as shown in Figure 13. 
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Figure 13: Tapered rollers in a post-experiment cage assembly. 

The inner ring is then manually placed into the cage assembly. This results in what is termed as a 

cone assembly. The roller spacing then gets measured via a feeler gauge with the tolerance being 

0.060 thousandths of an inch. This process gets repeated to make a second cone assembly. An 

appropriate cup is then selected to suit the testing parameters. It is common for spalled cups to be 

chosen for experiments to determine their effects. The cup is then placed into a 20-ton 

professional hydraulic jack, where a pre-assembled cone assembly gets inserted tapered side 

down. The placement in such a manner ensures contact between the inner ring raceway, the 

tapered rollers, and the outer ring raceway. Once the cone assembly is seated, the grease is 

packed based on a grease squirt chart shown in Table 2. 

Table 2: Bearing grease squirt chart. 

Bearing Grease Squirt Chart 

Bearing 

Class 

Top Center Bottom Total 

 OZ Squirts OZ Squirts OZ Squirts OZ Squirts 
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D         

E 7 9/Slot+10  0 0 7 9/Slot+10 14 434 

F 6.5 8/Slot+18 9 279 6.5 8/Slot+18 22 682 

G 6 8/Slot+2 0 0 6 8/Slot+2 12 372 

K 6.5 8/Slot+17 0 0 6.5 8/Slot+17 13 403 

*Assuming: 31 squirts = 1 oz & 23 slots/cone assembly 

The bearing is then sealed via the hydraulic jack using a pressure of 1,000 psi. The bearing is 

then re-inspected, checking for a firm seal to ensure no leakages. Finally, a wear ring gets 

inserted into the sealed portion with the tapered side facing outwards. The entire assembly then 

gets flipped, and the process gets repeated for the second cone assembly, with a spacer ring 

placed within the two cone assemblies. This process is repeated per bearing tested. 

Once the bearings are assembled, they are pressed onto the axle using a Tinius Olsen 

Super L 300-ton hydraulic press. The bearings are press fit to the axle with forces ranging from 

150,000 to 250,000 lbs. across the four bearings. The hydraulic press is controlled via software 

called MTEST QUATTRO. MTEST QUATTRO can dictate the bearing’s step size, or 

displacement per minute and records the force output throughout the process. The maximum 

force is logged for comparison to the AAR standards to ensure that the bearings are correctly 

press fit. The order in which the bearings get pressed onto the axle is determined by whether they 

are control bearings or the focus of the particular experiment. The control bearings are placed in 

the outermost sections of the axle, labeled positions 1 and 4. The bearings to be observed 

throughout the experiment are placed in the two center positions labeled 2 and 3 to simulate top 

loading conditions experienced in the field. Figure 14 shows the positions of the bearings.  
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Figure 14: Bearing placement and instrumentation diagram. 

3.1.3 Bearing Instrumentation 

 The vibration profile is recorded using two separate accelerometers labeled ADXL and 

PCB. The ADXL accelerometers go mounted on both the Smart Adapter™ (SA) and Mote (M) 

locations, with the PCB on the adapter flange. These accelerometers and their mounting 

locations can be seen in Figure 15. 
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Figure 15: Mounted accelerometers. 

The accelerometers record data at a frequency of 5,120 Hertz for 16 seconds every 10 minutes 

throughout the experiment.  

 The temperature profiles of the bearings are recorded using two spring-loaded bayonet-

type thermocouples per bearing and eight K-type thermocouples on the dynamic test rig. The 

bayonet-type thermocouples are inserted into the bearing to touch the inboard and outboard 

raceways. The K-type thermocouples get placed between these two bayonets on the B2 and B3 

adapters, and two are designated to measure the ambient temperature before and after the wind 

has reached the bearings. These locations can be seen in Figure 14. The thermocouples record 

data every twenty seconds at a sampling rate of 128 Hertz. 
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3.1.4 Dynamic Bearing Test Rigs 

 Two main configurations for the dynamic bearing test rigs at the UTCRS are Single 

Bearing Tester (SBT) and Four Bearing Testers (4BTs). The primary difference between these 

testers is, as their names imply, the number of bearings they can test. The SBT most accurately 

replicates a field wheelset because it acts as a cantilevered beam. It can also replicate impact 

data, which mimics the wheel-to-rail contact of a wheelset experiencing a flat. As the name 

suggests, a flat is when a portion of a wheel flattens due to sudden braking or rail obstructions. 

The two outer bearings on the 4BT are subject to bottom loading and compared to the top loaded 

conditions on the two center bearings. One of the 4BT is located within an environmentally 

controlled chamber, where the temperature can be manipulated between -40°F to 120°F. The 

dynamic bearing test rigs utilize a variable frequency driver (VFD) for regulating the output of a 

ten-hp motor that drives the bearing-axle assembly. The speed of the axle ranges from 234 to 796 

rpm, which correlates to track speeds of 25 to 85 mph. Table 3 shows the axle speed to 

equivalent track speed conversion.  

Table 3: Axle speed to equivalent track speed. 

Axle Speed [rpm] 

Equivalent Track Speed 

[mph] 

Equivalent Track Speed 

[km/h] 

234 25 40 

280 30 48 

327 35 56 

374 40 64 

420 45 72 
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467 50 80 

498 53 85 

514 55 89 

560 60 97 

618 66 106 

700 75 121 

796 85 137 

 The dynamic bearing test rigs can apply up to 150% of the AAR standard operating load 

of any bearing class they test. A load controller handles this operation by regulating the pressure 

entering a hydraulic cylinder. The load controller is capable of accuracies within 1% of the 

desired load. It collects 52 samples every second and corrects for deviations. As mentioned, the 

bearings are most commonly tested at either unloaded (17% full load) or fully loaded (100% full 

load) conditions. Figure 16 depicts the dynamic bearing test rigs. 
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Figure 16: A. Single bearing test rig., B. 4-bearing test rig. 

3.2 Data Overview 

  The University Transportation Center for Railway Safety has collected and analyzed 

various forms of data through various instruments. The data obtained by the sensors is collected 

by a data acquisition board and then analyzed after being sent to a central processing unit. As 

mentioned, a combination of vibration, temperature, and load profiles best characterizes tapered 

roller bearing condition monitoring. As such, the data primarily acquired by the previously 

mentioned sensors reflect these profiles. More specifically, the UTCRS collects and processes: 

accelerometer data measured in g, harvesting voltage, PCB data measured in g, temperature data 

measured in Celsius, VFD voltage, and load cell data in lbs. 
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3.2.1 Data Acquisition 

 The data is passed through and recorded by a National Instruments (NI) PXIe-1062Q data 

acquisition system (DAQ). The data gets written to text-based files using a software known as 

LabVIEW™. Specifically, the temperature and vibration data are recorded on a NI TB-2627 and 

an 8-channel NI PXI-4472B card, respectively. As mentioned in their respective sections, the 

vibration and temperature responses are obtained at a sampling rate of 5.12 kHz for 16 seconds 

every 10 minutes and 128 Hz every 20 seconds, respectively. The load cell data is recorded 

straight from the DAQ at the same rate as the temperature profile. Once the data is collected, it 

gets transmitted to a central processing unit for analysis. 

3.2.2 Data Processing 

 The analysis of the data is conducted through a software known as MATLAB. Three 

different levels of analysis are conducted at the UTCRS for condition monitoring of bearings. 

The first are plots that compare the vibration and temperature profiles to statistically determined 

thresholds and correlations. Level 1 analysis intends to detect a defect within the bearing. Figure 

17 shows an example of these plots. 
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Figure 17: UTCRS level 1 analysis. 

The vibration plot depicts the root mean square (RMS) of the vibration profile plotted 

against a preliminary and maximum threshold. The thresholds get defined by equations dictated 

by a first-order line of fit with a 95% confidence preliminary interval and a 45% confidence 

maximum interval. When the vibration responses are under the preliminary threshold, the 

bearing is statistically healthy and, therefore, in ideal operating conditions. When the response is 

between the two thresholds, the bearing is no longer considered ideal; however, it is still within 

operable conditions with the potential for defects to develop. A response above the maximum 

threshold for a prolonged period (at least five hours) heavily implies the existence of a defect. It 

should be further analyzed with the next level of analysis. The temperature plot is read similarly 

by comparing the current temperature of the bearings to a control bearing correlation rather than 

a statistically generated threshold. The experiment depicted in Figure 17 exemplifies the primary 

reason for this research’s focus on vibration. The vibration profile detected a bearing defect, 

while the temperature profile had yet to.  
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 Once a defect gets detected using level 1 analysis, level 2 analysis can be conducted to 

determine what component within the bearing has developed a defect. Level 2 analysis consists 

of an algorithm that uses a power spectral density (PSD) plot. The plot uses six rotation 

frequencies that describe an overall square of the frequency domain’s magnitudes and the 

tapered roller bearing’s subcomponents. Interpreting these plots allows for the detailing of which 

component is defective. Figure 18 shows PSD plots depicting the four different signal patterns 

representing the different defect locations. 

 

Figure 18: PSD plot detailing: a. defect-free bearing, b. cup defect, c. cone defect, and d. roller 

defect. 

 The final level of analysis conducted for the condition monitoring of a bearing at the 

UTCRS is level 3, where the size of the defect gets estimated without the need to seize operation. 
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This process is done by estimating the correlation between the RMS of the vibration profile to 

statistically generated curves. These statistically generated curves exist for the cup and the 

tapered roller bearing assembly components and can be visualized in Figure 19 and Figure 20. 

 

Figure 19: Level 3 analysis for a cup. 

 

Figure 20: Level 3 analysis for a cone. 
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CHAPTER IV 

 

METHODOLOGY AND MODEL SPECIFICATIONS 

 

4.1 Gradient Boosting Machine Specifications 

 This implementation of the Gradient Boosting Machine aims to make a scheduled 

prediction of the RMS of the vibration profile. To accomplish this, an expansive dataset was 

created, input features were defined, and hyperparameters were optimized. 

4.1.1 Gradient Boosting Machine Dataset 

 The University Transportation Center for Railway Safety (UTCRS) sorted the data for 

their experiments into folders labeled by their chronological experiment number and potentially a 

letter defining the experiment’s iteration. For example, if it is the second iteration of experiment 

250, the folder holding its data would be labeled 250B. Experiments are split into iterations when 

the same components are utilized but split into different experiments based on either passing a 

mileage threshold or implementing varying testing conditions. The data recorded in these folders 

are the following: accelerometer, temperature, motor power, harvesting voltage, VFD voltage, 

and load cell data that the instrumentation detailed in Chapter 3 records.  

 The current dataset utilizes 74 of the most recent experiments that originally span 

211,430 data points, with the dataset utilizing 196,537 of those data points. As mentioned, the 
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dataset was refined to remove outliers that could skew the prediction. Table 4 details the 

experiments utilized for the dataset. 

Table 4: Dataset detailing experiments used. 

Experiment ID 

264A 250C 229C 222 214C 

262D 250D 228 221 214D 

261A 249 227A 220 214E 

259A 236 227B 219 213 

259B 235 227C 219B 213B 

259C 234 227D 218 212 

258A 232 227E 217 212B 

256A 231 227F 217B 211 

252 230A 226A 216 211B 

251A 230B 226B 216B 211C 

251B 230C 226C 216C 210 

251C 230D 226D 215 209 

251E 230E 225 215B 209B 

250A 229A 224 214 209C 

250B 229B 223 214B  

Current Dataset 

 

These predictions aim to have a generalized output capable of predicting when defects are likely 

to occur and not necessarily replicate every oscillation that an actual vibration profile would 
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experience. To this end, the dataset was refined to filter out any notable spikes and outliers in the 

vibration RMS profile that could skew the predictions. This dataset was utilized for every model; 

however, generalizations and features varied depending on the model. 

4.1.2 Gradient Boosting Machine Feature Set 

 The features, or set of inputs, for the Gradient Boosting Machine implemented for this 

research focus on improving from the project’s predecessor. As mentioned, the previous attempt 

to implement machine learning to predict condition monitoring of bearings conducted by Leonel 

Villafranca utilized only the mileage, speed, and load condition as input features. (Villafranca, 

2022). This research implemented a more comprehensive set of input features that considers the 

interplay between the individual features. Table 5 details the features utilized for the Gradient 

Boosting Machine in this research. 

Table 5: Gradient Boosting Machine feature set. 

Feature Set 

Miles ran Unloaded at Low Speeds (MULS) 

Miles ran Unloaded at Common Speeds (MUCS) 

Miles ran Unloaded at High Speeds (MUHS) 

Miles ran Fully Loaded at Low Speeds (MFLS) 

Miles ran Fully Loaded at Common Speeds (MFCS) 

Miles ran Fully Loaded at High Speeds (MFHS) 

Mile ran Overloaded at Low Speeds (MOLS) 

Miles ran Overloaded at Common Speeds (MOCS) 

Miles ran Overloaded at High Speeds (MOHS) 
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Gradient Boosting Machine 

Unloaded conditions refer to when 5,848 lbs. or 17% of the weight of a fully loaded rail 

car gets applied to the tester. A fully loaded rail car experiences 34,400 lbs. is called 100% load. 

Overloaded conditions occur when the force exceeds the 100% load condition. The range for low 

speed in this feature set is below 40 miles per hour. Common speeds range from 40 to 60 miles 

per hour, and high speeds are anything exceeding 60 miles per hour.  

4.1.3 Gradient Boosting Machine Hyperparameters and Optimization 

 Hyperparameters are the variables used to train machine learning algorithms. Common 

hyperparameters for machine learning models include learning rate, gamma, maximum depth, 

number of estimators, regularization lambda, and minimum samples per leaf. The learning rate 

dictates the rate at which the model learns; the higher the variable, the faster it learns. High 

learning rates run the risk of skipping past minima that can outperform the one it selects. The 

gamma acts as a cut-off variable. If an internally defined scoring system passes the gamma 

value, the data will not contribute to training the model. The maximum depth variable determines 

the number of branches, or level of specificity in a way, that the model will have. The number of 

estimators is, as the name implies, and the regularization lambda is a parameter that intentionally 

lowers the accuracy of the training dataset to obtain a higher accuracy in the testing dataset. 

Regularization is a means to prevent overfitting, in other words.  

The hyperparameters used in this research are the: number of estimators, learning rate, 

maximum depth, minimum samples per leaf, minimum samples split, and subsample. The values 

for these hyperparameters were identified and optimized via the use of RandomSearchCV. 

(Buitinck, et al., 2013). RandomSearchCV is a means to iteratively test a random set of 

parameters in a defined range to output the combination that generates the highest score. The 
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parameter distribution is shown in Table 6. The RandomSearchCV in this research was run with 

fifty iterations to further ensure the efficacy of the combination output. 

Table 6: Parameter distribution for RandomSearchCV. 

Number of Estimators randint(100, 1000) 

Learning Rate 0.001 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Maximum Depth randint(3, 35) 

Minimum Samples per Leaf randint(1, 35) 

Minimum Samples Split randint(2, 35) 

Subsample 0.6 0.7 0.8 0.9 1.0 

Parameter Distribution 

The scoring method used in this research was the coefficient of determination. This was 

done to ensure the model lowers the variation between the predicted and actual values. Table 7 

shows the optimized hyperparameters for the Gradient Boosting Machine. 

Table 7: Gradient Boosting Machine optimized hyperparameters. 

Optimized Hyperparameters 

Number of Estimators 694 

Learning Rate 0.1 

Maximum Depth 6 

Minimum Samples per Leaf 10 

Minimum Samples Split 3 

Subsample 1.0 
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Gradient Boosting Machine 

 

4.2 Informer Neural Network Specifications 

 The target variable for this implementation of the Informer neural network is the same as 

the Gradient Boosting Machine implementation, being the RMS of the vibration profile of 

tapered-roller bearings. Similarly, to facilitate this prediction, a dataset, and feature set were 

prepared, and hyperparameters were optimized. 

4.2.1 Informer NN Dataset 

 The Informer neural network can support training on an expansive dataset and on an 

individual case-by-case basis. The purpose of this model implementation is to predict ongoing 

routes, and as such, this research utilizes a case-by-case dataset. Specifically, the model is trained 

using the data from the most recent experiment at the time of writing this, experiment 265A. This 

dataset consists of 5,434 data points. This is over 37 days’ worth of data as a frame of reference. 

The Informer neural network takes time series data as its inputs, so the time history of the 

experiment per data point had to be included, unlike the Gradient Boosting Machine.  

The data was preprocessed before being input into the model. The data preprocessing was 

done by normalizing the target variable and all features individually and Winsorization for just 

the target variable, the RMS of the vibration profile. Equation 21 details the formula used for 

normalizing the data. In that equation, the 𝑍 refers to the normalized data, 𝑥 refers to the current 

data point, 𝜇 is the mean of the data, and 𝜎 is the standard deviation. Winsorization refers to 

setting values below the 5th percentile to the 5th percentile and above the 95th percentile to the 

95th percentile. Winsorization benefits the model’s performance, given that it addresses the 
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nature of the vibration profile to spike in data whenever it generates a defect. The overall trend of 

the data is more critical to the prediction than the amplitude of the response. The standard 

deviation for experiment 265A was 2.01653, and the mean was 5.83447. 

 𝑍 =
𝑥 − 𝜇

𝜎
 (21) 

 

4.2.2 Informer NN Feature Set 

 The Informer neural network utilizes the basic forms of the feature set that the Gradient 

Boosting Machine uses. This is because the model struggles to handle trailing zero values, which 

occurs frequently due to the comprehensive description of each possible scenario when using the 

previous feature set. The Informer neural network is also capable of utilizing the target variable 

as one of the inputs for making the prediction. The actual features being utilized for this 

implementation of the Informer neural network can be seen in Table 8. 

Table 8: Informer NN feature set. 

Feature Set 

RMS of the Vibration Profile 

Mileage 

Speed (MPH) 

Load (%) 

Informer Neural Network 
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4.2.3 Informer NN Hyperparameters and Optimization 

The hyperparameters utilized in time series based neural networks vary depending on the 

complexity of the model. The hyperparameters utilized by the Informer neural network are the 

following: input sequence length, label length, prediction sequence length, encoder input size, 

decoder input size, output size, ProbSparse attention factor, dimension of the model, number of 

encoder heads, number of encoder layers, number of decoder layers, number of stacked layers, 

dimension of the feed-forward network, attention dropout, attention type, time feature embed 

type, activation function, whether to use distilling, whether to use output attention, mixing, 

padding, argument frequency, batch size, learning rate, loss, lradj, whether to use automatic 

mixed precision training, number of workers, number of iterations, whether to inverse the data, 

whether to scale the data, number of training epochs, number of patience epochs, and a 

description of the model’s function. The values for these hyperparameters were manually 

optimized, the process of which can be seen in the Appendix. Table 9 shows the final 

configuration for these hyperparameters.  

The input sequence length, label length, and prediction sequence length are the 

hyperparameters that describe the scenario for what is being predicted. The input sequence 

length dictates how much data is utilized to train the model. This research sets the argument 

frequency to 10T, meaning a ten-minute interval separates each data point. Therefore, the 

prediction sequence length values are interpreted with this frequency considered. For example, 

one of the input sequence lengths tested is 288, which refers to 2,880 minutes (48 hours or two 

days) worth of data used to train the model. The label length dictates the duration for which the 

predictions should be accurate. This research has a value set to 144, meaning that there are 1,440 

minutes (24 hours or one day) worth of data used to compare the loss of the predicted values. 
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The prediction sequence length defines how many time steps into the future the model predicts. 

This parameter is also set to 144, meaning that the model predicts 1,440 minutes (24 hours or 

one day) into the future. This research keeps the sequence length to 288 and varies the label and 

prediction sequence lengths to 36, 72, and 144. These lengths correspond to six, twelve, and 

twenty-four hours.  

The number of features dictates the encoder and decoder input sizes this implementation 

of the neural network utilizes to make a prediction. This research has it set to 4 as it uses the 

RMS of the vibration profile, the mileage, the speed, and the load condition to make its 

prediction. The output size refers to how many target variables there are. In this implementation, 

there is only one, the RMS of the vibration profile. The ProbSparse attention factor refers to the 

width of the model’s attention. The dimension of the model refers to the shape of the tensors that 

represent the learnable parameters within the model. The number of heads refers to the number 

of parallel attention mechanisms the model runs. The number of encoder and decoder layers 

describe the complexity of the model through the number of layers the data gets passed through 

and then out of, respectively. The dimensions of the feed-forward network are similar to the 

dimensions of the model; however, they describe solely the portion that the feed-forward 

network makes up. The dropout variable is a means to regularize the data by establishing a 

probability for the data to be dropped out a unit or set to zero. The attention type dictates whether 

the ProbSparse attention mechanism is utilized. If it is set to full attention, the model acts as the 

Transformer neural network and considers the entire range of data in its attention mechanism.  

The feature embed type refers to how the Informer neural network should interpret the 

time history of the data. It is set to fixed in this research, meaning that the model will not look 

into the times specified to try to generate a trend from that history and will only consider that 
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there is a fixed interval of time between data points. As mentioned, the frequency is set to 10T, 

meaning the fixed interval is set to 10 minutes between each data point. The GELU activation 

function is utilized in this model. This activation function incorporates portions of the sigmoid 

function and the Gaussian cumulative distribution function. The following three parameters take 

true or false inputs to dictate whether they are enabled. Distilling refers to a method the informer 

neural network implements to pass the data from a complex learning algorithm to a simpler one 

if applicable. Output attention refers to applying an attention mechanism in the decoding process. 

This research has it set to false as it would add complexity to the model, increasing the 

processing time and computational demand. The mixing parameter allows the model to learn 

from information between different parallel learning operations. Padding would add elements to 

preserve the model’s dimension during the encoding process; this research leaves it as zero 

padding as it interprets it one-to-one. The batch size determines how many data points the model 

interprets at any given moment. The learning rate is as the name implies. The loss specified 

represents the evaluation method. In this research, the loss selected to be minimized was the 

mean absolute error as the effects of doing so influenced the predictions more significantly than 

mean squared error. This model also considers the mean absolute error despite not needing to be 

explicitly stated in the hyperparameters.  

The documentation states that lradj refers to adjusting the learning rate, with the default 

being type1. Automatic mixed precision (AMP) is a technique that accelerates training and 

reduces memory requirements by combining different numerical precisions. The number of 

workers refers to the number of central processing unit (CPU) cores utilized to perform parallel 

learning. Iterations refer to the number of times the model conducts the training, testing, and 

predicting process. In this research, multiple iterations are run and evaluated manually; as such, 
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the iterations are set to one to get to the interpretation of the results quicker. The scale and 

inverse parameters change the data structure before and after the training, testing, and predicting 

procedure. The number of training epochs denotes the maximum number of sets of training and 

testing iterations the model will run before making a final prediction. The patience specified is 

the reason for the number of training epochs to denote the maximum number as it states the 

number of epochs without significant change needed before being able to stop the process early. 

Finally, the model’s description is set to exp, or experiment, in this research. This setting allows 

for training, testing, and predictions to be conducted and validated.  

Table 9: Informer NN optimized hyperparameters. 

Optimized Hyperparameters 

Input Sequence Length 288 

Label Length 288 

Prediction Sequence Length 36, 72, 144 

Encoder Input Size 4 

Decoder Input Size 4 

Output Size 1 

ProbSparse Attention Factor 5 

Dimension of Model 1024 

Number of Heads 16 

Number of Encoder Layers 8 

Number of Decoder Layers 6 

Dimension of the Feed-Forward Network 2048 
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Dropout 0 

Attention Type Prob 

Feature Embed Type Fixed 

Activation Function GELU 

Distilling True 

Output Attention False 

Mixing False 

Padding 0 

Frequency 10T 

Batch Size 80 

Learning Rate 0.0001 

Loss MAE 

lradj Type1 

Automatic Mixed Precision False 

Number of Workers 0 

Iterations 1 

Inverse False 

Scale False 

Number of Training Epochs 10 

Epoch Patience 3 

Description Exp 

Informer Neural Network 
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CHAPTER V  

RESULTS AND DISCUSSION 

5.1 Processing Times and Computer Specifications 

 The Gradient Boosting Machine takes two minutes and twenty-five seconds to train the 

dataset with the hyperparameters used in this research. RandomSearchCV was iteratively run 

with the processing time varying from twenty-five to fifty minutes, depending on the complexity 

of the hyperparameters selected from the parameter distribution. The Informer neural network 

trains and outputs predictions in thirty-five minutes when using the data from experiment 265A 

and the hyperparameters specified in Chapter IV. These predictions were made using a Dell 

Precision 7920. The Dell Precision 7920 has an Intel® Xeon® Gold 5217 central processing unit 

(CPU) @ 3.00 GHz processor and a second 2.99 GHz processor. This computer has 192 GB of 

random allocated memory (RAM). The computer uses the Windows 10 Enterprise operating 

system (OS). The bulk of the processing was conducted on the graphic processing unit (GPU), of 

which this computer has a dedicated 48 GB of video RAM on its NVIDIA Quadro RTX 8000. 
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5.2 Gradient Boosting Machine Results 

5.2.1 Gradient Boosting Machine Dataset Prediction 

 The Gradient Boosting Machine gets optimized to predict against the entire dataset rather 

than the individual experiments. An appropriate scoring method, the coefficient of determination, 

was implemented to ensure the model predicted correctly when using the RandomSearchCV to 

evaluate the hyperparameters. Figure 21 shows the prediction against the dataset alongside the 

values outputted for the coefficient of determination and the root mean squared error. The values 

in Figure 21 are the model’s outputs for the testing split of the dataset. The results for the 

training, validation, and testing splits are shown in Figure 22. The coefficient of determination 

output by the prediction of the dataset, which serves as the model’s highest level of accuracy, 

was 0.95. As mentioned, appropriate values for the coefficient of determination range from 0.6 to 

0.8. The root mean squared error was output to be 0.46. This error is due to the nature of tapered 

roller bearings to have an impulse in the vibration profile when a defect generates or propagates. 

These impulses were mostly filtered out when refining the data as the amplitude of these 

impulses is less pivotal to predicting when a bearing will become defective than the overall 

trend. Other than impulses due to defect propagation, sudden changes in loading or speed 

conditions leave the model needing to catch up to the appropriate response. The data collected by 

the UTCRS does not currently depict a gradual change in the loading or speed scenario tested. 

As such, the model is fed information that implies an immediate change.  
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Figure 21: Gradient Boosting Machine dataset prediction. 

 

Figure 22: Gradient Boosting Machine dataset information. 

5.2.2 Gradient Boosting Machine Blind Experiment Prediction 

 After the Gradient Boosting Machine has been trained and has a prediction against the 

dataset output, predictions against individual experiments can be made. It is crucial to predict 

against a blind experiment to ensure that the model’s predictions are practically viable. As 

mentioned in Chapter II, predicting against an experiment within the dataset will result in a 

prediction that shows the model’s theoretical highest level of accuracy but does not exemplify 
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how the model will perform with unseen data. Figure 23 shows the prediction made by the 

Gradient Boosting Machine on an experiment not present in the dataset. The coefficient of 

determination was output to be 0.61, and the root mean squared error was 1.84. The coefficient 

of determination lies within the acceptable range; however, there is a relatively high level of 

error. This is likely due to the model predicting the wrong trend between the 10,000 and 20,000- 

mile mark. A graph depicting the actual and predicted values plotted against each other and a 

linear line of fit is presented in Figure 24. 
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Figure 23: Gradient Boosting Machine experiment 265A prediction. 

 

Figure 24: Gradient Boosting Machine experiment 265A information. 

5.2.3 Gradient Boosting Machine Practical Application via Threshold Comparison 

 The practical application of the prediction generated by the Gradient Boosting Machine is 

a comparison to the statistically defined thresholds introduced in Chapter III. The response 
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shown in Figure 25 displays how the model predicts relative to these thresholds. The model 

generalizes the response of the vibration of the bearing while correctly matching the trend of 

staying within the preliminary and maximum thresholds aside from when the load or speed 

conditions suddenly drop. As mentioned, there currently is no data showing a gradual decrease in 

either of these features, and as such, the model interprets it as occurring instantaneously. This 

leaves the model needing to readjust drastically. 

 

Figure 25: Gradient Boosting Machine prediction plotted against the thresholds. 

5.3 Informer Architecture Results 

5.3.1 Informer Neural Network Predictions 

 The first combination of input sequence length, label length, and prediction sequence 

length tested on this implementation of the Informer neural network was 288, 288, and 36, 

respectively. This can be interpreted as utilizing two days’ worth of data to predict six hours of 

data, with there being a validation of two days’ worth of data being interpreted by the decoder. 

Figure 26 (a) displays the prediction generated and the associated errors output directly from the 

Informer neural network. It should be noted that the y-axis consists of normalized values and the 

x-axis is in time steps. This output from the Informer neural network helps determine the 
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model’s efficacy. In this scenario, the model output a mean square error of 0.0210710 and a 

mean absolute error of 0.1317983. Figure 26 (b) reverts the normalization done on the target 

variable and interprets what the time steps represent, making this figure more suitable for 

practical application. The two graphs represent the same prediction, phrased in a context more 

suitable for the neural network or the user. The predicted values deviate by no more than 

0.1660857 RMS.  

  

(a) Six-hour prediction normalized values (b) Six-hour prediction RMS values 

Figure 26: Informer NN experiment 265A prediction: input sequence length = 288, label length = 

36, & prediction sequence length = 36 

The second tested combination of input, label, and prediction sequence length was 288, 

288, and 72, respectively. The input sequence length and label lengths are the same throughout 

each scenario tested, with solely the prediction sequence length being altered. This prediction 

sequence length denotes a prediction twelve hours into the future. Figure 27 shows the prediction 

made for this prediction sequence length. Once more, the graph on the left represents the form 

directly output by the Informer neural network, which is suitable for highlighting the level of 

error produced. In contrast, the other graph displays a practically applicable version of the same 

prediction with context given to what the normalization means relative to the inputted data. The 
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mean square error output by the model was 0.0369867, and the mean absolute error was 

0.1784802. The maximum deviation for the RMS in this prediction was 0.2257067 RMS. 

  

(a) Twelve-hour prediction normalized values (b) Twelve-hour prediction RMS values 

Figure 27: Informer NN experiment 265A prediction: input sequence length = 288, label length = 

72, & prediction sequence length = 72 

 The final prediction sequence length tested in this research was 144. This corresponds to 

a prediction made twenty-four hours into the future. The input sequence length and label length 

both represent two days’ worth of data, the same as the previous two prediction sequence lengths 

tested. Figure 28 shows the prediction output by the Informer neural network for a one-day 

prediction. The mean square error generated by the model was 0.0306342, and the mean absolute 

error was 0.1624286. The maximum deviation between the actual and predicted values of the 

vibration profile experienced in this scenario was 0.2999828 RMS. 
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(a) Twenty-four-hour prediction normalized values (b) Twenty-four-hour prediction RMS values 

Figure 28: Informer NN experiment 265A prediction: input sequence length = 288, label length = 

144, & prediction sequence length = 144 

5.3.2 Informer Neural Network Prediction Comparison 

 Table 10 displays the results of the different prediction sequence lengths for easy 

comparison. The value of the prediction sequence length doubled in each iteration tested. Despite 

this, the performance of the model remained consistent. The error and loss values output show 

that the model struggled to predict the twelve-hour prediction more so than the twenty-four hour 

one. The deviation of the target variable increased as expected, with the value increasing by 

0.1338971 RMS over the eighteen-hour increase in prediction time.  

Table 10: Informer NN prediction comparison. 

 Error Losses Deviation 

ISL_LL_PSL MSE MAE Training Validation Testing  

288_288_36 0.0353973 0.1766557 0.0287500 0.0621888 0.0062551 0.1660857 

288_288_72 0.0369867 0.1784802 0.0287544 0.0566322 0.0165787 0.2257067 

288_288_144 0.0306342 0.1624286 0.0382671 0.0667856 0.0123429 0.2999828 
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Informer NN Prediction Comparison 

 

 

 

 



  

65 

 

 

CHAPTER VI  

 

CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions and Future Work 

 A Gradient Boosting Machine was implemented capable of approximating when a defect 

can occur, given solely information about the route ahead of time. The prediction mimics a 

generalized profile of the RMS of the vibration profile of a tapered roller bearing. This prediction 

is then compared to statistically determined thresholds to determine whether a defect has 

propagated. The model implemented in this research was capable of outputting a prediction with 

a coefficient of determination of 0.61 on a blind experiment that generally followed the trend of 

the actual data relative to the thresholds.  

 A time-series sequence-based deep neural network in the form of the Informer neural 

network was implemented to predict the condition of tapered roller bearings on ongoing routes. 

This deep neural network was capable of outputting significantly more accurate data at the 

expense of a much higher computational demand. The implementation in this research was 

capable of predicting a day, or 144-time steps, into the future with a mean square error and mean 

absolute error as low as 0.0306 and 0.1624, respectively. Once the normalized data is reverted, 

the condition of the tapered roller bearing can be determined by comparing the RMS value to the 

defined thresholds as they were for the Gradient Boosting Machine. The model would likely 

continue to perform adequately for more extensive prediction sequence lengths; however, this 

was the extent that the computer this research was conducted on could handle.  
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While time-series sequence-based neural networks are suitable for predicting the 

condition of a tapered roller bearing, other neural network types should be explored and have 

their efficacies compared against the results present in this research. In particular, supervised 

reinforcement and inverse reinforcement learning neural networks, in theory, should be suitable 

for making similar predictions. Reinforcement learning utilizes an agent interacting with the 

defined environment to maximize a reward function. Supervised refers to the model being 

supplied with data for the input and output it will train on and eventually predict. Supervised 

reinforcement learning means that the labeled data gets tied to state-action pairs and associated 

with rewards. This way, the agent in the model uses this data to learn a policy that will output a 

maximized reward. Utilizing a reinforcement learning neural network is difficult because the 

reward function must be explicitly defined. Inverse reinforcement learning remedies this, 

however, given that that type of neural network generates an underlying reward function given 

data from an expert. A reinforcement learning neural network should be implemented if a reward 

function is adequately defined. Inverse reinforcement learning seems to be a more appropriate 

starting point, however.  

 Aside from delving into other neural network types, this project can continue to improve 

by further refining the dataset and testing parameters. The current dataset for the Gradient 

Boosting Machine is extensive, spanning 74 experiments; however, data on new types of 

bearings and experiments targeting specific defect types are continuously being obtained by the 

University Transportation Center for Railway Safety. It is critical to update these models to 

maintain relevance and be practically applicable in the ever-changing railway industry. The 

Gradient Boosting Machine’s performance can be enhanced by implementing external ensemble 

methods such as bagging or nested regressors. Computational demand rises when adding these to 
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the model. However, it should output a model more capable of capturing the underlying trends 

presented without necessarily divulging into neural networks. One other area of potential 

improvement lies in the processing capabilities of the computers used to train these models. The 

hyperparameters specified for the Informer neural network pushed the computer to its 

computational limits. The performance of these models is limited by what the computer can 

process. The computer used was computationally impressive; however, this model can further 

improve if there was access to a supercomputer.  
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APPENDIX 

 

INFORMER NEURAL NETWORK OPTIMIZATION 

 

Table 11: Prediction Sequence Length = 36 Hyperparameter Optimization 

  A B C 

seq_len 288 288 288 

label_len 288 288 288 

pred_len 36 36 36 

enc_in 4 4 4 

dec_in 4 4 4 

c_out 1 1 1 

factor 5 5 5 

d_model 2048 2048 1024 

n_heads 16 16 16 

e_layers 8 8 8 

d_layers 6 6 6 

s_layers 3,2,1 3,2,1 3,2,1 

d_ff 2048 2048 2048 

dropout 0 0 0 

attn prob prob prob 

embed fixed fixed fixed 

activation gelu gelu gelu 

distil TRUE TRUE TRUE 

output_attention TRUE TRUE FALSE 

mix TRUE TRUE FALSE 

padding 0 0 0 

freq 10T 10T 10T 

batch_size 32 64 80 

learning rate 0.0001 0.0001 0.0001 

loss mae mse mse 

lradj type1 type1 type1 
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use_amp FALSE FALSE FALSE 

num_workers 0 0 0 

itr 1 1 1 

inverse FALSE FALSE FALSE 

scale FALSE FALSE FALSE 

train_epochs 10 10 10 

patience 3 3 3 

des exp exp exp 

Table 12: Prediction Sequence Length = 36 Results 

  mse mae Train Vali Test 

A 0.02820841 0.155339 0.023539 0.0689807 0.0192879 

B 0.057836667 0.227328226 0.031426 0.0540676 0.0266259 

C 0.03539734 0.17665574 0.02875 0.0621888 0.0062551 

288_288_36 Results 

 

Table 13: Iterations ran to understand the trend prior to honing in. 
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