

NEAR-OPTIMAL CONTROL OF A QUADCOPTER

USING REINFORCEMENT LEARNING

A Thesis

by

ALBERTO VELAZQUEZ-ESTRADA

Submitted in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE IN ENGINEERING

Major Subject: Mechanical Engineering

The University of Texas Rio Grande Valley

May 2023

NEAR-OPTIMAL CONTROL OF A QUADCOPTER

USING REINFORCEMENT LEARNING

A Thesis

by

ALBERTO VELAZQUEZ-ESTRADA

COMMITTEE MEMBERS

Dr. Tohid Sardarmehni

Co-Chair of Committee

Dr. Constantine Tarawneh

Co-Chair of Committee

Dr. Lei Xu

Committee Member

Dr. Qi Lu

Committee Member

Dr. Horacio Vasquez

Committee Member

May 2023

Copyright 2023 Alberto Velazquez-Estrada

All Rights Reserved

iii

ABSTRACT

Velazquez-Estrada, Alberto, Near-Optimal Control of a Quadcopter Using Reinforcement

Learning. Master of Science in Engineering (MSE), May, 2023, 72 pp., 2 tables, 19 figures,

references, 30 titles.

 This thesis presents a novel control method for quadcopters that achieves near-optimal

tracking control for input-affine nonlinear quadcopter dynamics. The method uses a

reinforcement learning algorithm, called Single Network Adaptive Critics (SNAC), which

approximates a solution to the discrete-time Hamilton-Jacobi-Bellman equation using a single

neural network trained offline. The control method involves two feedback loops, with the outer

loop controlling the position and the inner loop controlling the attitude. The resulting quadcopter

controller provides optimal feedback control and tracks a trajectory for an infinite-horizon, and

its performance is compared with DIDO, a commercial optimal control software. Furthermore,

the closed-loop controller can control the system with any initial conditions within the domain of

training without retraining. This research demonstrates the benefits of using SNAC for nonlinear

control, achieving near-optimal tracking while reducing computational complexity, with

potential applications in various fields such as aerial surveillance, delivery, and search and

rescue.

iv

DEDICATION

 This thesis is dedicated to my loving family who has encouraged me throughout my

education. To my father, Tiburcio Velazquez, and my mother, Celia Velazquez, I am forever

grateful for your love, encouragement, and sacrifices. To my brothers, thank you for always

being there for me.

v

ACKNOWLEDGMENTS

 I am grateful for the financial support I received for this research. The U.S. Department

of Homeland Security partially supported this work under award number 21STSLA00009-01-00

and by the University of Texas Rio Grande Valley's Presidential Research Fellowship.

 I want to express my gratitude to Dr. Tohid Sardarmehni for introducing me to this field

of research and guiding me throughout my master's degree. Your support, guidance, and

mentorship have shaped my academic and professional journey. Your expertise, patience, and

encouragement during the research were critical to my success. Thank you for being a great

mentor and inspiring me to pursue excellence in everything I do.

 I am grateful to Dr. Constantine Tarawneh for the support and availability during my

research. I could not have completed this journey without your help. Your dedication to

excellence and passion for research has been a source of inspiration, and I am thankful for your

positive impact on my academic and personal growth.

 I want to thank my friends who have supported and encouraged me throughout my

research. I am grateful for the time you took to provide feedback, discuss ideas, and help me

better understand complex topics. Your friendship and encouragement have inspired me to reach

for excellence, and I could not have done it without you.

vi

Page

ABSTRACT ... iii

DEDICATION ... iv

ACKNOWLEDGMENTS .. v

TABLE OF CONTENTS ... vi

LIST OF TABLES ... ix

LIST OF FIGURES .. x

CHAPTER I: BACKGROUND AND INTRODUCTION ... 1

1.1 Reinforcement Learning Overview ... 1

1.2 Dynamic Programming ... 4

1.2.1 Curse of Dimensionality ... 4

1.3 Approximate Dynamic Programming ... 5

1.3.1 Online and Offline Training ... 6

1.3.2 Heuristic Dynamic Programming and Dual Heuristic Programming 6

1.3.3 Single Network Adaptive Critic ... 7

1.4 Quadcopter Control ... 7

1.5 Motivation and Contribution ... 9

1.6 Related Work... 10

CHAPTER II: SNAC ALGORITHM AND QUADCOPTER DYNAMICS 13

2.1 Single Network Adaptive Critic (SNAC).. 13

TABLE OF CONTENTS

vii

2.1.2 Discretization and Euler Integration ... 13

2.1.2 Cost Function and Discrete-time Hamilton-Jacobi-Bellmen Equation 14

2.1.3 Optimality Condition and Costate .. 15

2.1.4 Neural Network Approximator ... 16

2.2 Quadcopter Dynamics ... 18

2.2.1 Reference Frames ... 18

2.2.2 Newton and Euler Equations .. 20

2.2.3 State-Space Dynamics .. 21

CHAPTER III: SIMULATION SETUP ... 23

3.1 Control Scheme ... 23

3.1.1 Position Control .. 23

3.1.2 Euler Angle and Thrust Approximation ... 24

3.1.3 Attitude Control .. 25

3.1.4 Quadcopter Control Summary .. 26

3.2 Position Regulator ... 27

3.3 Attitude Regulator ... 29

CHAPTER IV: RESULTS AND DISCUSSION ... 32

4.1 Position Control .. 33

4.2 Attitude Control... 35

4.3 Quadcopter Control Inputs .. 36

4.4 Stabilization ... 37

4.5 SNAC and DIDO Comparison .. 38

4.6 Robustness Evaluation Through Simulations ... 40

viii

CHAPTER V: CONCLUSION... 46

REFERENCES ... 47

APPENDIX ... 47

BIOGRAPHICAL SKETCH .. 52

ix

Page

Table 1: Parameters used to train the position SNAC regulator. .. 29

Table 2: Parameters used to train the attitude SNAC regulator. ... 31

LIST OF TABLES

x

Page

Figure 1: Agent interaction with the environment (Sutton, 2018). ... 2

Figure 2: Principle of optimality. .. 3

Figure 3: SNAC training diagram ... 18

Figure 4: Quadcopter control diagram. ... 27

Figure 5: 3D helix trajectory tracking of the full quadcopter controller. 32

Figure 6: SNAC tracking of the XYZ position in the position control. .. 33

Figure 7: SNAC tracking of the velocity in the position control. ... 34

Figure 8: SNAC tracking angles generated by the approximator NN. ... 35

Figure 9: SNAC tracking angles generated by the approximator NN. ... 36

Figure 10: Quadcopter controls of thrust and torques in the principal axis. 37

Figure 11: Quadcopter controls of thrust and torques in the principal axis. 38

Figure 12: DIDO and SNAC quadcopter controls of thrust and torques in the principal axis. 39

Figure 13: DIDO and SNAC 3D quadcopter trajectory. ... 40

Figure 14: Noisy quadcopter controls of thrust and torques in the principal axis. 41

Figure 15: 3D quadcopter trajectory with noisy inputs. ... 42

Figure 16: Velocity tracking for quadcopter with zero initial conditions and noise. 43

Figure 17: Angle tracking for quadcopter with zero initial conditions and noise. 44

Figure 18: Angular velocity tracking for quadcopter with zero initial conditions and noise. 45

LIST OF FIGURES

xi

Figure 19: Quadcopter applied to various trajectories. (a) 3D trajectory of the quadcopter

tracking a circle trajectory at a fixed altitude. (b) 2D trajectory corresponding to the

circular trajectory. (c) 3D trajectory of the quadcopter tracking a crown shaped trajectory.

(d) 2D trajectory corresponding to the crown shaped trajectory. 51

1

BACKGROUND AND INTRODUCTION

1.1 Reinforcement Learning Overview

Reinforcement learning (RL) is a paradigm of machine learning that focuses on the

learning process of an agent interacting with its environment to achieve a specific objective. RL

aims to train an agent using feedback from the environment to perform actions that maximize a

cumulative reward or minimize a cumulative cost. RL is inspired by the natural learning methods

of humans and animals, where rewards or punishments reinforce good or bad actions. An agent

learns from interaction by exploring the environment and adjusting its behavior based on the

rewards or penalties it receives.

The Markov Decision Process (MDP) is a mathematical framework used in

reinforcement learning that models the agent's decision-making process in a stochastic

environment. At each discrete time step 𝑡, the agent observes the current state 𝑆𝑡 of the

environment and selects an action 𝐴𝑡 based on the observed state. The time step advances, and

the agent receives a numeric reward, 𝑅𝑡+1, and is in the next set of states, 𝑆𝑡+1 , due to the

propagation of the action. Figure 1 shows the discrete-time MDP. The mapping between the state

and action is called the policy. In RL, the objective is to improve the policy to maximize the

cumulative reward or minimize the cumulative cost, called value. This requires the policy to be

CHAPTER I

2

forward-looking such that the agent may receive lower rewards in the short term but higher

rewards in the long term.

Figure 1: Agent interaction with the environment (Sutton, 2018).

Reinforcement learning is closely related to optimal control theory (Sutton, 2018). An

agent or controller selects actions or generates controls that maximize or minimize a

performance measure. In optimal control, the objective is to determine an optimal state-action

mapping policy that maximizes or minimizes a performance measure. This optimal policy is

defined using Bellman's optimality principle, which states that an optimal policy must be optimal

for any initial state and all subsequent states (Bellman, 1965). Figure 2 illustrates a simple

system to travel from the starting point, 𝐴, to the endpoint, 𝐸, while minimizing the cost. The

numbers indicate the cost of traveling between the nodes. Path 𝐴𝐵𝐸, in this case, would have a

total cost of 18, path 𝐴𝐶𝐸 has a total cost of 15, and path 𝐴𝐷𝐸 has a total cost of 13. The optimal

policy would be to select the path 𝐴𝐷𝐸, which has a total cost of 13. However, if the starting

point was 𝐵 instead of 𝐴, the optimal policy would select path 𝐵𝐶𝐸, with a total cost of 15. The

principles of optimal control are easily extended to reinforcement learning, with Bellman's

optimality principle serving as the foundation for optimal control and RL algorithms. In control

synthesis, the reinforcement learning terms agent, environment, action, and rewards are

3

interchangeable with the terms controller, plant dynamics, control signal, and cost. The controller

is the agent responsible for making decisions, the plant dynamics represent the environment that

the controller interacts with, the control signal is the action that the controller takes in response

to the current state of the plant dynamics, and the cost is the reward, a performance measure that

is maximized or minimized.

Figure 2: Principle of optimality.

 To understand popular reinforcement learning algorithms, it is helpful to understand the

foundational algorithms of optimal control theory. To find an optimal control, the minimum

principle of Pontryagin or dynamic programming (DP) can be used (Kirk, 2004). Pontryagin's

minimum principle finds the control that optimizes a Hamiltonian using variational calculus,

which is limited by nonlinearities in the dynamics or performance index. DP is a recursive,

backward-in-time method that explicitly calculates and tabulates cost, resulting in a

computationally intensive method. Dynamic programming is vital in understanding popular

reinforcement learning algorithms.

4

1.2 Dynamic Programming

Dynamic programming is a backward-in-time, recursive method that satisfies the

conditions of Bellman's principle of optimality. To apply DP to continuous-time systems, the

system must first be discretized in time, and the states and controls must be quantized between

allowable values. DP then finds the optimal policy by explicitly calculating the immediate cost

of all quantized controls for all quantized states (Kirk, 2004). For each state, the control that

results in the lowest cost, and the cost itself, are stored in a table or cache, as well as the next

state that results from the control propagation along the plant dynamics. This process proceeds

recursively, backward in time, so the future cost is always known.

The optimal policy is the control law that minimizes the cumulative cost at any state and

time. At any step between the final and initial time, dynamic programming solves the immediate

cost by trying all controls at all states and calculating the resulting state using knowledge of the

system's dynamics. If the resulting state falls outside the allowable states, it is discarded. The

optimal control policy is the control law that minimizes the cost-to-go, or the cumulative cost,

from any state in the current time to the final time, so the immediate cost of the current step is

added to the immediate cost of all remaining steps. This information is pulled from memory, or a

table, based on the resulting state and interpolating if necessary. Since the optimal policy is

found for every allowable state, the resulting control law is a robust, closed-loop control method.

If uncertainties or noise in the system push the states off the optimal path, a new optimal path

can be determined from the new states based on saved data.

1.2.1 Curse of Dimensionality

 As the state-space dimensions, which define the allowable range of states, and control-

space dimensions, which define the allowable range of controls, of a dynamic problem grow, the

5

required computation and memory requirements to solve for an optimal policy grow

exponentially. This becomes a significant limitation of dynamic programming known as the

curse of dimensionality (Powell, 2007). To solve for the optimal control of high-dimensional

dynamic systems, function approximations, such as neural networks, can simplify calculations

for the policy and value functions.

1.3 Approximate Dynamic Programming

 The use of function approximation to estimate the optimal policy and value function

without needing to try every possible state and control input is called Adaptive Dynamic

Programming (ADP). In ADP, a dual-network architecture called Adaptive Critic (AC),

consisting of a critic and an actor network, is used to determine the optimal policy using the

Hamiltonian-Jacobi-Bellman (HJB) equation (Konda, 1999). The HJB equation is a nonlinear

partial differential equation fundamental in optimal control and reinforcement learning. The

solution to the HJB is the value function, which represents the expected cumulative rewards an

agent or controller can receive overtime when following an optimal policy. Solutions to the HJB

equation are too complex to solve analytically, so approximations are used. In the AC algorithm,

the actor network approximates the optimal policy, while the critic network estimates the optimal

value function. The AC algorithm has its namesake as the actor networks acts by choosing a

control/action given a set of states, and the critic network then judges the actor's performance by

estimating the expected future value of the states and control variables. In the field of control, the

actor-critic algorithm is referred to interchangeably as the adaptive-critic algorithm. The two

networks are trained and updated iteratively; the actor network updates its policy function

approximation based on the approximated value function in the critic network, which results in

lower costs or increased rewards. The critic network then updates its value function

6

approximation based on the feedback received from the actor network. This continues until the

networks converge, resulting in an approximate solution to the HJB equation, which provides the

necessary and sufficient conditions for a near-optimal solution. Notably, the approximation of

the value function in the critic network allows ADP to solve optimal control problems forward in

time.

1.3.1 Online and Offline Training

ADP and RL algorithms are trainable online or offline. In online training, an agent or

controller interacts with the environment, learning and updating its policy in real time. This

training method is well-suited to applications with changes or uncertainties in the environment or

system dynamics.

Offline training does not require real-time interaction with the environment, as an agent is

trained using a set of sampled state, control, or reward data. If the data is sampled within a

limited domain, the trained agent could operate optimally within that domain. However, if the

sampled data does not accurately represent the real-world environment, the agent may behave

suboptimally in unexpected scenarios. Furthermore, a changing or uncertain real-world

environment can result in suboptimal behavior or failure. Careful consideration must be given to

the domain and environmental representation to ensure that the data accurately reflects the real-

world conditions the agent will encounter.

1.3.2 Heuristic Dynamic Programming and Dual Heuristic Programming

 The AC algorithm described previously is classified as a heuristic dynamic programming

(HDP) algorithm. In the HDP formulation, the actor network maps between the state and control,

while the critic network maps between the state and the value. A similar formulation is the dual-

heuristic programming (DHP) class of algorithms. In this method, the actor network also maps

7

between the state and control while the critic network maps between the state and gradient of the

value function called the costate (Padhi, 2006). By estimating the costate, DHP achieves faster

convergence as the rate of change of the value function is maximized. The costate estimation

requires knowledge of the full plant dynamics, which provides more information about the

system and aids in the convergence and approximation of the policy function (Lewis, 2009).

1.3.3 Single Network Adaptive Critic

 Single Network Adaptive Critics is an improvement to the AC dual network class of

DHP. SNAC uses a single neural network to approximate the next costate as opposed to the

current costate of DHP. This eliminates the need for an actor network, reducing computational

costs and eliminating the approximation error of the action network (Padhi, 2006). Moreover, the

critic network not only approximates the costate but also predicts it for the next time step,

providing more information about the system and aiding in the convergence and approximation

of the policy function. However, to calculate the next costate, knowledge of the full plant

dynamics is, again, necessary (Lewis, 2009). Furthermore, the SNAC algorithm also requires the

optimal control to be explicitly expressible in terms of the current state variable and the

following costate variable, which would occur in input-affine systems with quadratic cost

functions (Heydari, 2014).

1.4 Quadcopter Control

 Small unmanned aerial vehicles (UAVs) have become increasingly popular in recent

years due to their versatility and cost-effectiveness. These aerial drones are used for various

applications such as surveillance, reconnaissance, search and rescue, forestry, flood and fire

tracking, package delivery, and agriculture (Baldazo, 2019; Julian, 2019; Frachtenberg, 2019).

Their small size and expendability make them ideal for missions in dangerous or hard-to-reach

8

areas without risking human life or requiring significant resources. As such, they have become

valuable tools in various industries and have the potential to transform many aspects of modern

life.

 Multirotor UAVs come in several designs. Quadcopters are the most commercially

available and popular type of multirotor drone. They consist of four rotors arranged in a square

configuration at an equal distance from the center of mass, with two rotating clockwise and two

rotating counterclockwise. Generally, quadcopters are limited in their payload capacity and

would become unstable in the event of a rotor failure; however, quadcopters are small,

inexpensive, and readily available. On the other hand, hexacopters use six rotors, with three

rotating clockwise and three rotating counterclockwise. They are typically used for more

complex aerial photography or videography due to their ability to carry heavier loads and

provide better stability. Additionally, a hexacopter could continue operating in the event of a

rotor failure. Finally, octocopters use eight rotors, with four rotating clockwise and four rotating

counterclockwise, making them the largest, most powerful, and most robust type of multirotor

drone. They are commonly used for industrial applications that require heavy lifting.

 Despite quadcopters having relatively simple hardware, they are nonlinear, underactuated

dynamic systems with six degrees of freedom and four inputs. Several control strategies have

been implemented to control quadcopter drones. PID controllers are the most commonly used

controllers in commercially available quadcopter drones. PID and LQR controllers are usually

limited in controlling simplified and linearized dynamics (Argentim, 2013; Bouabdallah, 2004).

Feedback linearization is one method of deriving linear systems from nonlinear systems. In the

case of a quadcopter with uninvertible control dynamics, feedback linearization requires a small

angle assumption to deal with repeated differentiation resulting in derivative terms that are

9

sensitive to noise (Lee, 2009). Backstepping control is an example of a nonlinear control

technique that can be applied to quadcopters. Backstepping controls divide the dynamic model

into several subsystems that are stabilized using the Lyapunov theorem (Bouabdallah, 2005;

Madani, 2006). These subsystems typically consist of the quadcopter's linear and angular

translations. However, variations in assumptions and derivation of the mathematical model can

result in different subsystems between research. Other nonlinear control techniques, such as

sliding mode control, can be applied to a quadcopter (Bouabdallah, 2005). Sliding mode can

control a system subject to disturbances, uncertainties, or modeling errors, which can help

control uncertain quadcopter dynamics such as the ground effect (Lee, 2009). However, it can

result in high-frequency oscillations in a system's state trajectory. Some studies have effectively

used a combination of subsystems, like those used in backstepping controls, to control the

quadcopter using sliding mode control. (Xu, 2006). Additionally, quadcopter control has been

achieved with a combination of backstepping and feedback linearization to control the nonlinear

quadcopter dynamics (Das, 2009). More recent work in quadcopter control has implemented

popular reinforcement learning algorithms such as Deep Deterministic Policy Gradient (DDPG),

Trust Region Policy Optimization (TRPO), and Proximal Policy Optimization (PPO) to control

the attitude subsystem responsible for stabilization and control (Koch, 2019).

1.5 Motivation and Contribution

 In this thesis, a novel control method for quadcopters that achieves near-optimal tracking

control for input-affine nonlinear quadcopter dynamics is developed. The method uses the

reinforcement learning algorithm called Single Network Adaptive Critics (SNAC), which

approximates a solution to the discrete-time Hamilton-Jacobi-Bellman (DT-HJB) equation using

a single neural network trained offline. Using a linear in-parameter neural network and training it

10

with least squares makes the algorithm computationally inexpensive to train and easy to

implement on commercially available hardware.

 The control method involves two control loops, with the outer loop controlling waypoint

navigation by regulating the linear position and velocities and the inner loop controlling

stabilization by regulating the angular position and velocities. As such, the nonlinear quadcopter

dynamics are divided into position and attitude subsystems. To apply the SNAC algorithm, the

system dynamics need to be input-affine and require a cost function that results in the optimal

control being expressible in terms of the state and costate. The quadcopter controller uses

optimal feedback control to track a reference trajectory for an infinite-horizon, utilizing an

approximated near-optimal policy obtained from the SNAC algorithm. The controller effectively

regulates the error between the quadcopter's actual position and attitude states and the desired

position and attitude states. Furthermore, the SNAC algorithm provides a closed-loop controller

that can control a system with any initial conditions within the domain of training. The controls

generated by the quadcopter controller can be compared with DIDO, a commercial optimal

control software that solves for a near-optimal control using Pontrygarin minimum principle.

 Overall, this research aims to use the benefits of the SNAC algorithm for nonlinear

control, with its ability to achieve near-optimal tracking control while reducing computational

complexity. This thesis provides insights into a new approach for the complete control of

quadcopters, with potential applications in various fields such as aerial surveillance, delivery,

and search and rescue.

1.6 Related Work

The Single Network Adaptive Critic algorithm has demonstrated versatility in solving

various problems across different fields, including control, healthcare, and environmental

11

engineering. SNAC has been utilized to design optimal tracking control for the velocity

subsystem of a hypersonic flight vehicle with uncertain dynamics (Bu, 2020), where fuzzy

approximators were used to estimate the system's behavior and enable the SNAC formulation to

control such systems. SNAC has also been employed to regulate blood glucose levels in diabetic

patients; this required a mathematical model that describes the glucose and insulin interaction in

the blood system (Ali, 2011). Additionally, SNAC has been applied to a quarter-vehicle active

suspension system with parametric uncertainty and time-varying system parameters such as mass

(Fu, 2017). The algorithm has also been utilized in the optimal tracking control of a morphing

aircraft during a pull-up maneuver by modeling significant system uncertainties, such as the lift-

curve slope and static longitudinal stability derivative, as time-varying quantities (Nobleheart,

2013). This highlights SNAC's adaptability compared to traditional controllers like LQR, which

require time-invariant system parameters. Furthermore, the SNAC algorithm has been applied to

manage the beaver population in a given area by utilizing a reduced-order distributed parameter

model, resulting in effective management and maintenance of the population at a desired level

through optimal control policies (Padhi, 2006).

The first use of reinforcement learning for quadcopter control was applied to an altitude

subsystem in 2005 by Waslander. A model-based RL algorithm was used to search for an

optimal control policy capable of handling disturbances, including blade flex, ground effect, and

battery discharge dynamics (Waslander, 2005). Further work into quadcopter control with

reinforcement learning was done by Hwangbo (2017), where a model-free algorithm that forgoes

the need to divide the dynamics into different subsystems was presented. The algorithm was a

deterministic on-policy learning algorithm that outperformed Deep Deterministic Policy

Gradient (DDPG) and Trust Region Policy Optimization (TRPO), popular RL algorithms, in

12

computation time (Hwangbo, 2017). In 2019, Koch implemented several RL algorithms,

including DDPG, TRPO, and Proximal Policy Optimization (PPO), to control the attitude

subsystem responsible for stabilization and control (Koch, 2019).

In this thesis, we propose a novel approach to quadcopter control by utilizing the SNAC

RL algorithm to control both the position and attitude subsystems. This contrasts with other

implementations of RL on quadcopter control, which often focus on controlling only one

subsystem or use alternative algorithms such as sliding mode control for each subsystem.

The thesis is organized as follows: Chapter I presents an overview of quadcopter control

and reinforcement learning and its various forms, including dynamic programming and

approximate dynamic programming. Chapter II delves into the details of the SNAC algorithm

and its application to quadcopter dynamics, explaining the discretization and cost functions used

to solve the discrete-time Hamilton-Jacobi-Bellmen equation. It also provides an overview of the

quadcopter dynamics, including reference frames and state-space dynamics, essential for

developing effective control strategies. Chapter III discusses the control scheme used for position

and attitude control of the quadcopter and the training of position and attitude regulators using

the SNAC algorithm. The chapter provides a comprehensive understanding of the SNAC

algorithm's implementation in quadcopter control. Chapter IV presents the results of applying the

SNAC algorithm to the quadcopter dynamics, including stabilization, comparison with DIDO, a

commercial optimal control software, and the SNAC controller's performance with significant

noise applied to the controls. The results show that the SNAC algorithm effectively controls the

quadcopter, even in the presence of significant noise. Finally, Chapter V concludes the thesis by

summarizing the study's main contributions and suggests future work.

13

SNAC ALGORITHM AND QUADCOPTER DYNAMICS

2.1 Single Network Adaptive Critic (SNAC)

 SNAC is an ADP algorithm introduced by Padhi in 2006. It approximates a DT-HJB

equation to determine the optimal policy and value functions. Using a single neural network, the

SNAC algorithm finds the optimal control by mapping between the current state and the next

costate. Once the SNAC algorithm is trained, it can provide online optimal feedback control to

problems with varying initial conditions and for an infinite-time horizon (Padhi, 2006).

2.1.2 Discretization and Euler Integration

 SNAC requires full knowledge of a system's dynamics and for those dynamics to be

described as a continuous-time input-affine system, shown below

ẋ(𝑡) = 𝑓𝑐(𝑥(𝑡)) + 𝑔𝑐(𝑥(𝑡))𝑢(𝑡) (1)

where 𝑥 𝜖 ℝ𝑛 is the state vector, 𝑢 𝜖 ℝ𝑚 is the control vector, 𝑓𝑐 ∶ ℝ𝑛 → ℝ𝑛 is the continuous-

time drift dynamics of the system, and 𝑔𝑐 ∶ ℝ𝑛 → ℝ𝑛×𝑚 is the continuous-time control

dynamics of the systems. The integers n and m are the number of states and the number of

controls, respectively. The system can be discretized using a small sample time, 𝛥𝑡, to yield the

following equation.

𝑥𝑘+1 = 𝐹(𝑥𝑘) + 𝐺(𝑥𝑘)𝑢𝑘, 𝑘 𝜖 {0,1, … ,𝑁 − 1} (2)

CHAPTER II

14

where 𝑘 represents the discrete time index, 𝑁 =
𝑡𝑓

𝛥𝑡
 is the total number of time steps, 𝑥𝑘 =

𝑥(𝑘𝛥𝑡), 𝑢𝑘 = 𝑢(𝑘𝛥𝑡), and 𝐹(𝑥𝑘) = 𝑥𝑘 + Δ𝑡𝑓𝑐(𝑥𝑘)and 𝐺(𝑥𝑘) = Δ𝑡𝑔𝑐(𝑥𝑘) are derived using

Euler integration.

2.1.2 Cost Function and Discrete-time Hamilton-Jacobi-Bellmen Equation

 For state regulation in SNAC, the following discrete-time cost function is defined.

J =
1

2
∑((𝑥𝑘)

𝑇𝑄(𝑥𝑘) + 𝑢𝑘
𝑇𝑅𝑢𝑘)

∞

𝑘=1

 (3)

where 𝑆 𝜖 ℝ𝑛×𝑛 is the terminal state error penalizing matrix and 𝑄 𝜖 ℝ𝑛×𝑛 is the state error

penalizing matrix. Both 𝑆 𝜖 ℝ𝑛×𝑛 and 𝑄 𝜖 ℝ𝑛×𝑛 are positive semi-definite matrices. 𝑅 𝜖 ℝ𝑚×𝑚 is

a positive definite matrix that penalizes the control input. The cost function represents the

magnitude of the states 𝑥𝑘 and the overall control effort expended with 𝑢𝑘. The magnitude of the

matrices 𝑆, 𝑄, and 𝑅 determine the emphasis of the performance measure. Higher values in the

matrices result in higher costs and vice versa. From the discrete-time cost function, the cost-to-go

function, J(xk, k), at step, 𝑘, can be derived.

J(xk, k) =
1

2
∑((𝑥𝜅)

𝑇𝑄(𝑥𝜅) + 𝑢𝜅
𝑇𝑅𝑢𝜅)

∞

𝜅=𝑘

 (4)

The equation shows the cost at the final time and each step before the final time. This allows us

to derive the following recursive equation.

J(xk, k) =
1

2
((𝑥𝑘)

𝑇𝑄(𝑥𝑘) + 𝑢𝑘
𝑇𝑅𝑢𝑘) + 𝐽(𝑥𝑘+1, 𝑘 + 1), 𝑘 𝜖 {0,1, … ,∞} (5)

This equation shows that the cost-to-go at any time step is the cost of the current time step plus

the cost of all future time steps. Once the cost function is in a recursive notation, the following

discrete-time HJB can be derived.

15

J∗(xk, k) = min
𝑢𝑘

(
1

2
((𝑥𝑘)

𝑇𝑄(𝑥𝑘) + 𝑢𝑘
𝑇𝑅𝑢𝑘) + 𝐽(𝑥𝑘+1, 𝑘 + 1)) , 𝑘 𝜖 {0,1, … ,∞} (6)

J∗(xk, k) is the optimal cost-to-go, which minimizes the recursive cost-to-go equation.

2.1.3 Optimality Condition and Costate

 To find the optimal control, the optimality condition must be met.

𝜕𝐽(𝑥𝑘, 𝑘)

𝜕𝑢𝑘
= 0 (7)

Taking the partial derivative of the cost-to-go function with respect to the control results in the

following equation.

𝑅𝑢𝜅 +
𝜕𝐽(𝑥𝑘+1, 𝑘 + 1)

𝜕𝑢𝑘
= 𝑅𝑢𝜅 +

𝜕𝑥𝑘+1

𝜕𝑢𝑘

𝜕𝐽(𝑥𝑘+1, 𝑘 + 1)

𝜕𝑥𝑘+1

= 𝑅𝑢𝜅 + 𝐺(𝑥𝑘)
𝑇
𝜕𝐽(𝑥𝑘+1, 𝑘 + 1)

𝜕𝑥𝑘+1
= 0

(8)

The partial derivative, or gradient, of the cost-to-go function with respect to the state vector is

called the costate.

𝜆𝑘+1 =
𝜕𝐽(𝑥𝑘+1, 𝑘 + 1)

𝜕𝑥𝑘+1
 (9)

The costate expands into the following

𝜆𝑘 =
𝜕𝐽(𝑥𝑘, 𝑘)

𝜕𝑥𝑘
= 𝑄𝑥𝑘 +

𝜕𝐽(𝑥𝑘+1, 𝑘 + 1)

𝜕𝑥𝑘
= 𝑄𝑥𝑘 +

𝜕𝑥𝑘+1

𝜕𝑥𝑘

𝜕𝐽(𝑥𝑘+1, 𝑘 + 1)

𝜕𝑥𝑘+1

= 𝑄𝑥𝑘 +
𝜕𝑥𝑘+1

𝜕𝑥𝑘
𝜆𝑘+1

(10)

where the gradient of the following states with respect to the current state is 𝐴𝑘 =
𝜕𝑥𝑘+1

𝜕𝑥𝑘
.

 By combining the above equations, the optimality condition in Equation 8 can be written

as the following:

16

𝑅𝑢𝜅 + 𝜆𝑘+1𝐺(𝑥𝑘) = 0 (11)

from which the optimal control can be derived as:

𝑢𝑘
∗ = −𝑅−1𝐺(𝑥𝑘)

𝑇𝜆𝑘+1 (12)

The target costate, from Equation 9, at step 𝑘 + 1 can similarly be written as:

𝜆𝑘+1
𝑡 = 𝑄(𝑥𝑘+1) + 𝐴𝑘+1

𝑇 𝜆𝑘+2 (13)

 To train a SNAC controller effectively, it is crucial to use Equations 12 and 13 as they

form the core equations for the controller.

2.1.4 Neural Network Approximator

 SNAC uses a neural network (NN) that outputs the approximate costate vector 𝜆𝑘+1
𝑎

given the current state vector 𝑥𝑘. The NN form is shown below

𝜆𝑘+1
𝑎 = 𝑊𝑇𝜙(𝑥𝑘), 𝑘 𝜖 {0,1, … ,𝑁 − 1} (14)

where 𝑊𝑘 𝜖 ℝ
𝑚×𝑛 are the time-dependent weight matrix and 𝜙 ∶ ℝ𝑛 → ℝ𝑚 is a vector of

smooth linearly-independent scalar basis functions.

 To train the neural network's weights, least squares is used, as shown below.

𝑊𝑖+1 = (𝜙𝜙𝑇)−1𝜙𝜆𝑡𝑇 (15)

Notably, the training is iterative, with 𝑖 showing the current iteration. The target costate, found

with the costate equations, is a function of the previous iteration of the weights, with the first

iteration being randomly initialized weights. During each iteration, the algorithm updates the

weights to minimize the difference between the estimated and target costs. The training process

continues iteratively until the error between the target costate and the estimated costate falls

below a preselected tolerance. This ensures that the neural network converges to an optimal

solution for the control problem.

17

𝑒𝑘(𝑥𝑘) = 𝜆𝑘+1
𝑎 − 𝜆𝑘+1

𝑡 = 𝑊𝑇𝜙(𝑥𝑘) − 𝜆𝑘+1
𝑡 (16)

 To train the neural network, the procedure is as follows (Padhi, 2006):

1. Randomly generate 𝑊

2. Randomly generate 𝑥𝑘 𝜖 Ω where Ω ⊂ ℝ𝑛 is the domain of interest.

a. Input 𝑥𝑘 into the neural network, Equation 14, to generate 𝜆𝑘+1.

b. Calculate 𝑢𝑘 using Equation 14, the optimal control equation.

c. Calculate 𝑥𝑘+1 from Equation 2, the state equation.

d. Input 𝑥𝑘+1 into the neural network, Equation 14, to generate 𝜆𝑘+2.

e. Calculate 𝑢𝑘+1 using Equation 14, the optimal control equation.

f. Use 𝑥𝑘+1, 𝑟𝑘+1, and 𝜆𝑘+2 in Equation 13, the costate equation, to find the target

costate 𝜆𝑘+1
𝑡 .

3. Train the neural network weights 𝑊 using Equation 15, the least square equation, and

input-target pair {𝑥𝑘, 𝜆𝑘+1
𝑡 }.

4. Calculate the training error 𝑒𝑘(𝑥𝑘) using Equation 16.

5. Iteratively repeat steps 2 to 4 until the weights 𝑊 converge.

This process can be seen in Figure 3 below.

18

Figure 3: SNAC training diagram

2.2 Quadcopter Dynamics

2.2.1 Reference Frames

 Two reference systems need to be related to describe the mathematical model of the

quadcopter: the fixed earth frame and the mobile aircraft body frame. The fixed Earth frame uses

the North-East-Down (𝑂𝑁𝐸𝐷) coordinate system, while the mobile aircraft body frame describes

the Aircraft-Body-Center (𝑂𝐴𝐵𝐶) coordinate system. Linear and angular positions are defined in

the earth frame as the following vector: [𝑥 𝑦 𝑧 𝜙 𝜃 𝜓]𝑇. Euler angles are used to describe the

orientating of the quadcopter: 𝜙 describes the pitch, 𝜃 describes the roll, and 𝜓 describes the

yaw. In the aircraft body frame, linear and angular velocities are defined as: [𝑢 𝑣 𝑤 𝑝 𝑞 𝑟]𝑇.

 To relate the mobile aircraft body reference frame to the fixed earth reference frame, a

combination of the following rotational matrices is used:

19

𝑅𝑥(𝜙) = [

1 0 0
0 cos(𝜙) − sin(𝜙)

0 sin(𝜙) cos(𝜙)
] (17)

𝑅𝑥(𝜃) = [
cos(𝜃) 0 sin(𝜃)

0 1 0
− sin(𝜃) 0 cos(𝜃)

] (18)

𝑅𝑥(𝜓) = [
cos(𝜓) − sin(𝜓) 0

sin(𝜓) cos(𝜓) 0
0 0 1

] (19)

 Different combinations of rotational matrices can result in greatly simplified dynamics

that omit the yaw 𝜓, such as 𝑅𝑥𝑦𝑧(𝜙, 𝜃, 𝜓). The 𝑅𝑧𝑦𝑥(𝜙, 𝜃, 𝜓) combination is used in this thesis.

𝑅𝑧𝑦𝑥(𝜙, 𝜃, 𝜓)

= [

c(θ)c(𝜓) 𝑠(𝜙)𝑠(𝜃) c(𝜓) − 𝑐(𝜙)𝑠(𝜓) 𝑐(𝜙)𝑠(𝜃) c(𝜓) + 𝑠(𝜙)𝑠(𝜓)

c(θ)s(𝜓) 𝑠(𝜙)𝑠(𝜃) s(𝜓) + 𝑐(𝜙)𝑐(𝜓) 𝑐(𝜙)𝑠(𝜃) s(𝜓) − 𝑠(𝜙)𝑐(𝜓)

−𝑠(𝜃) 𝑠(𝜙)𝑐(𝜃) 𝑐(𝜙)𝑐(𝜃)
]

(20)

Here 𝑐(.) = cos(.) and 𝑠(.) = sin(.).

 The rotational matrix will be used to relate the derivative of the linear position and the

linear velocities between the two reference frames. The following angular transformation matrix

can be used to relate the derivative of the angular positions to the angular velocities in a similar

manner.

𝑇(𝜙, 𝜃) =

[

1 sin(𝜙) tan(θ) cos(𝜙) tan(𝜃)

0 cos(𝜙) − sin(𝜙)

0
sin(𝜙)

cos(𝜃)

cos(𝜙)

cos(𝜃)]

 (21)

 The rotational matrix 𝑅𝑧𝑦𝑥(𝜙, 𝜃, 𝜓) and the translational matrix 𝑇(𝜙, 𝜃) are used to relate

the fixed Earth and the mobile aircraft body frame. This can be done using the following

20

relations 𝑣 = 𝑅𝑣𝐵 and 𝑤 = 𝑇𝑤𝐵. Where 𝑣 = [𝑥̇ 𝑦̇ 𝑧̇]𝑇, 𝑣𝐵 = [𝑢 𝑣 𝑤]𝑇, 𝑤 =

[𝜙̇ 𝜃̇ 𝜓̇]𝑇, and 𝑤𝐵 = [𝑝 𝑞 𝑟]𝑇 (Sabatino, 2015).

2.2.2 Newton and Euler Equations

 The following process was outlined by Sabatino (2015). Newton's law can be used to find

the total force applied to the quadcopter:

𝑓𝐵 = 𝑚(𝑤𝐵 × 𝑣𝐵 + 𝑣̇𝑏) (22)

where m is the mass and 𝑓𝐵 = [𝑓𝑥 𝑓𝑦 𝑓𝑧] is the total force. The total external force acting on

the body frame can be given by:

𝑓𝐵 = 𝑚𝑔𝑅𝑇𝑒̂𝑍 − 𝑓𝑡𝑒̂3 (23)

where 𝑔 is the acceleration due to gravity, 𝑒̂𝑍 is a unit vector along the global z-axis, 𝑒̂3 is a unit

vector in the body-frame relative z-axis, and 𝑓𝑡 is the total thrust.

 Euler equations can be used to find the total torque acting on the quadcopter

𝑚𝐵 = 𝐼𝑤̇𝐵 + 𝑤𝐵 × (𝐼𝑤𝐵) (24)

where 𝐼 is a diagonal inertia matrix and 𝑚𝐵 = [𝑚𝑥 𝑚𝑦 𝑚𝑧] is the total torque. The total

external moments acting on the body frame are given by

𝑚𝐵 = 𝜏𝐵 − 𝑔𝑎 (25)

where 𝜏𝐵 = [𝜏𝑥 𝜏𝑦 𝜏𝑧] is the control torques generated by the quadcopter rotors, and 𝑔𝑎 is the

gyroscopic moments due to the rotors on the quadcopter.

 The total thrust, 𝑓𝑡, and the control torques, [𝜏𝑥 𝜏𝑦 𝜏𝑧], can be defined as proportional

to the squared speeds of the rotors (Bresciani, 2008, as cited in Sabatino, 2015).

𝑓𝑡 = 𝑏(Ω1
2 + Ω2

2 + Ω3
2 + Ω4

2)

𝜏𝑥 = 𝑏𝑙(Ω3
2 − Ω1

2)

𝜏𝑦 = 𝑏𝑙(Ω4
2 + Ω2

2)

𝜏𝑧 = 𝑑(Ω2
2 + Ω4

2 − Ω1
2 − Ω3

2)

 (26)

21

where 𝑏 is the thrust factor, 𝑙 is the distance between the center of the drone and a rotor, 𝑑 is the

drag factor, and Ω is the angular speed of the quadcopter's rotors. These factors are specific to the

quadcopter and rotors.

 By rewriting Newton's law as

𝑚𝑣̇ = 𝑅𝑓𝐵 = 𝑚𝑔𝑒̂𝑍 − 𝑓𝑡𝑅𝑒̂3 (27)

and setting [𝜙̇ 𝜃̇ 𝜓̇]𝑇 = [𝑝 𝑞 𝑟]𝑇, an assumption that is true for small angles of

movements (Das, 2009, as cited in Sabatino, 2015), the dynamics model of the quadcopter can

be written as

𝑥̈ = −
𝑓𝑡
𝑚

[𝑠(𝜙)𝑠(𝜓) + 𝑐(𝜙)𝑐(𝜓)𝑠(𝜃)]

𝑦̈ = −
𝑓𝑡
𝑚

[𝑐(𝜙)𝑠(𝜓)𝑠(𝜃) − 𝑐(𝜓)𝑠(𝜙)]

𝑧̈ = 𝑔 −
𝑓𝑡
𝑚

[𝑐(𝜙)𝑐(𝜃)]

𝜙̈ =
𝐼𝑦 − 𝐼𝑧

𝐼𝑥
𝑞𝑟 +

𝜏𝑥

𝐼𝑥

𝜃̈ =
𝐼𝑧 − 𝐼𝑥

𝐼𝑦
𝑝𝑟 +

𝜏𝑦

𝐼𝑦

𝜓̈ =
𝐼𝑥 − 𝐼𝑦

𝐼𝑧
𝑝𝑞 +

𝜏𝑧

𝐼𝑧

 (28)

2.2.3 State-space Dynamics

 The dynamic model of the quadcopter can be written in the state-space form to yield the

following equation:

𝑥̇ = 𝑓(𝑥) + 𝑔(𝑥)𝑢 (29)

𝑥̇ = [𝑥̇ 𝑦̇ 𝑧̇ 𝑢̇ 𝑣̇ 𝑤̇ 𝜙̇ 𝜃̇ 𝜓̇ 𝑝̇ 𝑞̇ 𝑟̇]𝑇 (30)

22

𝑓(𝑥) =

[

𝑢
𝑣
𝑤
0
0
𝑔

𝑝 + 𝑞(𝑠(𝜙)𝑡(𝜃)) + 𝑟(𝑐(𝜙)𝑡(𝜃))

𝑞(𝑐(𝜙)) − 𝑟(𝑠(𝜙))

𝑞
𝑠(𝜙)

𝑐(𝜃)
+ 𝑟

c(𝜙)

𝑐(𝜃)
𝐼𝑦 − 𝐼𝑧

𝐼𝑥
𝑞𝑟

𝐼𝑧 − 𝐼𝑥
𝐼𝑦

𝑝𝑟

𝐼𝑥 − 𝐼𝑦

𝐼𝑧
𝑝𝑞

]

 (31)

𝑔(𝑥) =

[

0 0 0 0
0 0 0 0
0 0 0 0

−1/𝑚(𝑠(𝜙)𝑠(𝜓) + 𝑐(𝜙)𝑐(𝜓)𝑠(𝜃) 0 0 0

−1/𝑚(𝑐(𝜓)𝑠(𝜙) − 𝑐(𝜙)𝑠(𝜓)𝑠(𝜃) 0 0 0

−1/𝑚(𝑐(𝜙)𝑠(𝜃)) 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 1/𝐼𝑥 0 0
0 0 1/𝐼𝑦 0

0 0 0 1/𝐼𝑧]

 (32)

𝑢 = [𝑓𝑡 𝜏𝑥 𝜏𝑦 𝜏𝑧]𝑇 (33)

 These state-space dynamics represent the drift and control dynamics that can be

controlled by reinforcement learning algorithms such as SNAC.

23

SIMULATION SETUP

3.1 Control Scheme

 To effectively control the underactuated and nonlinear dynamics of a quadcopter, two

SNAC controllers are required. This is because the quadcopter's dynamics are highly coupled

and nonlinear, making it difficult to control. To control the linear position [𝑥 𝑦 𝑧]𝑇, it is

necessary to solve for the corresponding linear velocities [𝑢 𝑣 𝑤]𝑇, simultaneously. This

requires the determination of the total thrust produced by the quadcopter, 𝑓𝑡, and the angular

position [𝜙 𝜃 𝜓]𝑇, which is in turn determined by the angular velocities [𝑝 𝑞 𝑟]𝑇. The

control torques [𝜏𝑥 𝜏𝑦 𝜏𝑧]𝑇 produced by the quadcopter's rotors are necessary to determine

the angular velocities. The highly coupled angle dynamics make quadcopter control with a single

control loop challenging. However, splitting the dynamics into a position loop and an attitude

(angle) loop allows for the successful control of the quadcopter system.

3.1.1 Position Control

 The position control splits the dynamics into the linear position, [𝑥 𝑦 𝑧]𝑇, and linear

velocities, [𝑢 𝑣 𝑤]𝑇, resulting in simple, easily controllable dynamics, as shown below.

𝑥̇𝑝 = 𝑓𝑝(𝑥𝑝) + 𝑔𝑝(𝑥𝑝)𝑢𝑝 (34)

𝑥̇𝑝 = [𝑥̇ 𝑦̇ 𝑧̇ 𝑢̇ 𝑣̇ 𝑤̇]𝑇 (35)

CHAPTER III

24

𝑓𝑝(𝑥𝑝) =

[

𝑢
𝑣
𝑤
0
0
𝑔]

 (36)

𝑔𝑝(𝑥𝑝) = [
1 0 0
0 1 0
0 0 1

] (37)

𝑢𝑝 = [𝑢𝑥 𝑢𝑦 𝑢𝑧]𝑇 (38)

where

𝑢𝑥 = −
𝑓𝑡
𝑚

(𝑠(𝜙)𝑠(𝜓) + 𝑐(𝜙)𝑐(𝜓)𝑠(𝜃)

𝑢𝑦 = −
𝑓𝑡
𝑚

(𝑐(𝜓)𝑠(𝜙) − 𝑐(𝜙)𝑠(𝜓)𝑠(𝜃)

𝑢𝑧 = −
𝑓𝑡

𝑚(𝑐(𝜙)𝑠(𝜃))

 (39)

 The SNAC algorithm will control the position dynamics by regulating the states to zero,

as defined by the cost function. By defining a reference trajectory, [𝑟𝑥 𝑟𝑦 𝑟𝑧]𝑇, the difference

between the current states and the reference states also be regulated, resulting in trajectory

tracking. The controller will generate the inputs [𝑢𝑥 𝑢𝑦 𝑢𝑧]𝑇, which are a function of the total

thrust and the Euler angles [𝑓𝑡 𝜙 𝜃 𝜓]. The control inputs represent a 3-equation, 4-

unknown system.

3.1.2 Euler Angle and Thrust Approximation

 To solve this system of equations, an additional variable is required. The yaw angle, 𝜓, is

selected as a reference input as it allows the quadcopter to face any direction. The system can be

25

solved using any number of system solvers. Numerically solving the system is the most accurate

approach, with a function such as MATLAB's 'fsolve' iterating upon an initial guess until

convergence. This approach is time-consuming in systems discretized by a small sample time,

but it can account for nonlinearities in the equations. Analytically solving for the Euler angles is

possible but can be prohibitively complex and computationally expensive. The equations are

nonlinear and sinusoidal, requiring significant time and computational resources to find

analytical solutions to the system. Furthermore, MATLAB functions such as 'solve' return

possibly spurious solutions that lack the accuracy of the numerical solutions due to

approximations and assumptions in their derivations. Finally, neural networks can also be used to

map between the inputs [𝑢𝑥 𝑢𝑦 𝑢𝑧 𝜓] and the outputs [𝑓𝑡 𝜙 𝜃]. While the neural

network is simple and computationally inexpensive to use once trained, it may not be as accurate

as numerical or analytical solutions to systems of equations.

 Solving the system of equations yields the total thrust, 𝑓𝑡, and the Euler angles 𝜙, and 𝜃.

The Euler angles are used as a reference trajectory [𝑟𝜙 𝑟𝜃 𝑟𝜓]𝑇 in the attitude control.

3.1.3 Attitude Control

 Once a reference signal for the attitude control has been generated, they are passed into a

SNAC regulator trained on the following attitude dynamics.

𝑥𝑎̇ = 𝑓𝑎(𝑥𝑎) + 𝑔𝑎(𝑥𝑎)𝑢𝑎 (40)

𝑥̇𝑎 = [𝜙̇ 𝜃̇ 𝜓̇ 𝑝̇ 𝑞̇ 𝑟̇]𝑇 (41)

26

𝑓𝑎(𝑥𝑎) =

[

𝑝 + 𝑞(𝑠(𝜙)𝑡(𝜃)) + 𝑟(𝑐(𝜙)𝑡(𝜃))

𝑞(𝑐(𝜙)) − 𝑟(𝑠(𝜙))

𝑞
𝑠(𝜙)

𝑐(𝜃)
+ 𝑟

c(𝜙)

𝑐(𝜃)
𝐼𝑦 − 𝐼𝑧

𝐼𝑥
𝑞𝑟

𝐼𝑧 − 𝐼𝑥
𝐼𝑦

𝑝𝑟

𝐼𝑥 − 𝐼𝑦

𝐼𝑧
𝑝𝑞

]

 (42)

𝑔𝑎(𝑥𝑎) = [

1/𝐼𝑥 0 0
0 1/𝐼𝑦 0

0 0 1/𝐼𝑧

] (43)

𝑢𝑎 = [𝜏𝑥 𝜏𝑦 𝜏𝑧]𝑇 (44)

 The SNAC algorithm will regulate the Euler angle and angular velocities. Angle tracking

can be achieved using the angle reference signal generated by the system solver.

3.1.4 Quadcopter Control Summary

 Once the position and attitude controllers are trained, they can be used to control the

quadcopter. First, reference inputs for the position and yaw are required. The difference between

the current and desired positions is passed into the SNAC position regulator. This controller

generates the necessary acceleration. These accelerations are a function of thrust, roll, pitch, and

yaw. To determine these variables, a system solver in the form of a neural network or a

numerical solver takes the acceleration and reference yaw as input and generates the resulting

thrust, roll, and pitch. The roll, pitch, and yaw represent the required angles that allow the

quadcopter to move from its current position to the desired one. These reference angles are then

compared with the current angles, and the error is passed into the trained SNAC attitude

27

regulator. The regulator outputs the torques required to reach the angular rates corresponding to

the desired angles. Figure 4 summarizes the control scheme used to control a quadcopter.

Figure 4: Quadcopter control diagram.

 In the reinforcement learning framework, the position and attitude regulators are two

agents that interact with the quadcopter dynamics environment and minimize a cost function.

These agents are trained by sampling a state-space within a domain where the quadcopter is

expected to operate. Within this domain, the agents can effectively generate actions that would

regulate the states to zero, as determined by the reward function. As the error is fed into these

agents, the error is regulated to zero, resulting in trajectory tracking.

3.2 Position Regulator

The position SNAC regulator was trained with the parameters outlined in Table 1. The

number of basis functions was selected to reduce approximation errors in the neural network.

The neurons were selected by trail and error of 84 linearly independent polynomials comprised

of the states up to a power of three.

Given the simplicity of the position dynamics, the number of basis functions can be as

low as seven consisting of the states. This can be determined by the value at which the weights

converge. If the value is near zero, the weight has little impact on the overall network accuracy.

28

Despite this, there was little incentive to lower the number of basis functions for the position

dynamics as the SNAC algorithm requires insignificant amounts of computation, with the

network converging within 3.5 seconds using an Intel® Core™ i7-10700K CPU. Furthermore,

the resulting storage size of the neural network weights was small at 4 KB. As the neural

network was trained using least squares, the number of patterns must be equal to or greater than

the number of basis functions and be linearly independent such that the inverse matrix of

Equation 15 exists. The max training loop was arbitrarily selected as 40,000 iterations. This

would allow the controller ample time to converge or otherwise train for a sufficiently long time

so that the resulting neural network would be effective. The maximum training loop can be

increased if the network does not converge. Similarly, the convergence threshold was selected so

that the error between the target and actual neural network output, the costate, would be

sufficiently low at convergence.

For the position regulator, a time step of 1 millisecond was selected to achieve high-

frequency sampling and generate controls quickly, resulting in smooth trajectory tracking.

Although this works well in a simulation environment, sensor readings may have a higher

frequency than one millisecond in practical applications, such as 2.5 milliseconds. However, due

to the simplicity of the position dynamics, the position SNAC algorithm can have a higher time

step, even up to 10 milliseconds, without significant loss of accuracy. The state penalizing matrix

emphasizes tracking the trajectory in the xy-direction over the z-direction and velocities. This

was selected as the SNAC controller prefers tracking in the z-direction over the xy-directions.

The control penalizing matrix was selected to keep the controls sufficiently smooth while

allowing for tracking. Finally, the domain of training for the position regulator was selected to be

within a range of -100 meters to 100 meters for position and a range of -100 m/s to 100 m/s for

29

velocity. This gives the algorithm significant leeway in tracking a trajectory, as the input to the

position regulator is the tracking error.

Table 1: Parameters used to train the position SNAC regulator.

Position Regulator Parameters

Number of Patterns 100

Number of Basis Functions/Neurons 84

Max Training Loop 40000

Convergence Threshold 1𝑥10−5

Time Step Δ𝑡 0.001 seconds

State Penalizing Matrix 𝑄

[

1𝑥106 0 0 0 0 0

0 1𝑥106 0 0 0 0
0 0 1𝑥105 0 0 0
0 0 0 1𝑥105 0 0
0 0 0 0 1𝑥105 0
0 0 0 0 0 1𝑥105]

Control Penalizing Matrix 𝑅 [

0.5𝑥104 0 0 0
0 0.5𝑥104 0 0
0 0 0.5𝑥104 0
0 0 0 0.5𝑥104

]

Domain of Training

Position (x,y,z) range: [-100 100] (m)

Velocity (u,v,w) range: [-100 100] (m/s)

3.3 Attitude Regulator

 The attitude SNAC regulator was trained with the parameters outlined in Table 2. As the

attitude dynamics are more intensive, the number of basis functions was selected to reduce

inaccuracies in the trained network; however, inspecting the weights shows that no weights

converged near zero. This indicates the need for additional basis functions to accurately map

30

between the input states and the next constates. The number of patterns was selected for the same

reasons outlined in the position regulator parameters. The max training loop was also selected as

40,000 iterations, and the convergence threshold was selected to reduce network error. Given the

complexity of the attitude dynamics, the SNAC algorithm required more time to train than the

position controller, with the algorithm reaching the max training loop before convergence. The

current domain of training was selected with those reasons in mind.

The attitude SNAC regulator was trained with a time step of 1 millisecond. The same

sensor sampling frequency issues would arise with the attitude regulator as those outlined in the

position regulator. As opposed to the position regulator, the attitude regulator contains dynamics

responsible for the quadcopter's stability. The frequency of sampling can have a significant effect

on the stability and controllability of a quadcopter. Low-frequency sampling would result in

slower control generation and instability; therefore, training and simulating the attitude regulator

to the base frequency of sensors would provide more realistic values. With this in mind, the

SNAC regulator was trained successfully with a 2.5-millisecond timestep. With a training time

step of 10 milliseconds position regulator and a time step of 2.5 milliseconds in the attitude

regulator, it would be possible to create a new control scheme with a slow navigation outer loop

and a fast stabilization inner loop.

The state penalizing matrix was selected to track the roll, pitch, and yaw equally. Figure 8

shows the SNAC tracking of the angles. The algorithm tracks 𝜙 and 𝜓 well, but the tracking of 𝜃

can be improve. Modifying the state penalizing matrix to emphasize the tracking on 𝜃 would

improve the results; however, a different reference signal might produce different results in

tracking. The control penalizing matrix limits the magnitude of the regulator and ensures smooth

31

signals. If these values were sufficiently high, the regulator would prioritize minimizing control

signals rather than tracking.

Table 2: Parameters used to train the attitude SNAC regulator.

Attitude Regulator Parameters

Number of Patterns 100

Number of Basis Functions/Neurons 84

Max Training Loop 40000

Convergence Threshold 1𝑥10−5

Time Step dt 0.001 seconds

State Penalizing Matrix Q

[

1𝑥106 0 0 0 0 0

0 1𝑥106 0 0 0 0
0 0 1𝑥106 0 0 0
0 0 0 1𝑥105 0 0
0 0 0 0 1𝑥105 0
0 0 0 0 0 1𝑥105]

Control Penalizing Matrix R [

0.5𝑥104 0 0 0
0 0.5𝑥104 0 0
0 0 0.5𝑥104 0
0 0 0 0.5𝑥104

]

Domain of Training

Euler Angle (𝜙, 𝜃, 𝜓) range: [-1 1] (rad)

Angular Velocity (p,q,r) range: [-1 1] (rad/s)

32

RESULTS AND DISCUSSION

 The SNAC regulator is a closed-loop control method that enables feedback control and

allows for controlling a system with any initial condition within the defined domain of training.

Additionally, SNAC is an infinite-horizon algorithm capable of controlling systems for any

length of time and defined reference signal. This would allow two individual regulators to

effectively track a trajectory, with one regulator focused on waypoint navigation and the other on

quadcopter stabilization.

Figure 5: 3D helix trajectory tracking of the full quadcopter controller.

 An example of the SNAC quadcopter controllers tracking a trajectory over 50 seconds

with several initial conditions can be seen in Figure 5. The trajectory is a helix with an initial

CHAPTER IV

33

starting point at zero. The initial conditions of all the quadcopter paths assume an initial velocity,

initial angular position, and initial angular velocity of zero for all directions. The initial position

in the xy-plane is arbitrarily chosen; however, the limiting factor is the domain of training of the

linear position and velocities.

4.1 Position Control

Figure 6: SNAC tracking of the XYZ position in the position control.

The simulation results for the position and velocity tracking are presented in Figure 6 and

Figure 7, respectively. Figure 6 displays the position tracking of the helical trajectory with

various initial conditions in the xy-coordinates while the remaining states had initial values of

zero. The paths converge to the trajectory after 18 seconds, with the delay attributed to the

quadcopter's initial takeoff, during which it stabilizes. Afterward, the quadcopter path closely

follows the helical trajectory. The reference trajectory was generated as a parametric function

34

with time as the input to provide a reference signal for the quadcopter to track at each time step.

Another approach would be to generate waypoints, have the controller guide the quadcopter to

each point, and maintain it until a new waypoint is provided.

Figure 7: SNAC tracking of the velocity in the position control.

Figure 7 displays the velocity tracking of the quadcopter path, where the reference signal

for velocity was generated by taking the numeric derivative of the position. The quadcopter

started with zero initial conditions, and the velocity trajectory shows the quadcopter increasing

its climbing rate initially to catch up with the reference trajectory. The climbing rate, 𝑤, then

stabilizes as the quadcopter tracks the reference trajectory.

35

4.2 Attitude Control

The simulation results for the position and velocity tracking are presented in Figure 8 and

Figure 9, respectively. Figure 8 displays the Euler angle tracking of the angular trajectory

generated by the system solver. The initial conditions for the angles and angular velocities were

selected as zero. The angles are tracked effectively with a more significant error in the roll, 𝜃,

due to the state penalizing matrix. The small angles are due to the large and smooth diameter of

the trajectory and the small angle approximation in the dynamics. Different trajectories can be

simulated to show more significant and more demanding angular positions. The yaw, 𝜓, is

selected as zero. This keeps the quadcopter facing a single direction throughout the duration of

the flight. This value was selected for simplicity, with the yaw being a reference input.

Figure 8: SNAC tracking angles generated by the approximator NN.

36

Figure 8 displays the angular velocity tracking, where the reference signal for velocity

was generated by taking the numeric derivative of the angular reference signal generated by the

system solver. The small magnitude of the angular velocities is also due to the low angular

change demanded by the selected trajectory. Notably, the initial second of the angular velocity

tracking shows the section responsible for the stabilization of the quadcopter during initial

takeoff. A close look at these sections of the angular velocities can be seen in Figure 11.

Figure 9: SNAC tracking angles generated by the approximator NN.

4.3 Quadcopter Control Inputs

Figure 10 shows the quadcopter inputs of the trust and torques in the principle axis. The

thrust stabilizes slightly above 9.81 N, which is the force required to keep the 1 kg simulated

quadcopter climbing at the desired rate. The input torques have a small magnitude corresponding

to the small angular rates and angles demanded by the trajectory. The initial seconds of the

37

simulation shows the stabilization of the angular velocities. A more detailed look can be seen in

Figure 11.

Figure 10: Quadcopter controls of thrust and torques in the principal axis.

4.4 Stabilization

Quadcopter performance is directly linked to its ability to maintain stability, which is

crucial for the drone's maneuverability and robustness. A stable quadcopter is more flyable and

resilient to external disturbances like wind or gusts, allowing it to maintain its position and

orientation accurately. As the SNAC algorithm is a closed-loop feedback controller, it can handle

noise and aid in stabilization. Figure 11 shows the angular velocities and corresponding

stabilizing torque controls.

38

Figure 11: Quadcopter controls of thrust and torques in the principal axis.

4.5 SNAC and DIDO Comparison

DIDO is a commercial MATLAB optimal control software that finds the optimal control

using Pontryagin minimum principle (Ross, 2012, 2015). DIDO can achieve optimal tracking

control given the full quadcopter dynamics with no subsystem divisions. However, the result is

an open-loop control that tracks a fixed trajectory, with fixed initial conditions, and within a

selection time-horizon, requiring recalculations for each scenario. DIDO's solutions are known as

extremal solutions, representing high-quality solutions that may not necessarily be optimal.

However, an optimal solution must also be an extremal solution. The results DIDO produces can

be used to validate the effectiveness of the SNAC quadcopter optimal controllers.

39

Figure 12: DIDO and SNAC quadcopter controls of thrust and torques in the principal axis.

 Figure 12 shows the DIDO controls overlaid with the SNAC controls. As DIDO finds an

extremal solution that can be optimal, the results of the SNAC controllers can be compared to

determine its efficiency. Notably, the DIDO controller was trained with parameters similar to the

parameters seen in Table 1 and Table 2 used to train the SNAC controls. The same dynamics

were used to train both systems, with the dynamic model provided to DIDO being the full,

undivided dynamics of the quadcopter. The result in Figure 12 serves to validate the magnitude

and trend of the SNAC controls with those of the DIDO control. Variations in the controls exist

due to differences in how DIDO is trained and discretized with respect to the SNAC controllers.

For example, DIDO discretizes dynamics with various time steps resulting in dense, rapid

sampling during the first few iterations of the simulation. The time steps then increase during the

middle of the training time.

40

Figure 13: DIDO and SNAC 3D quadcopter trajectory.

 Figure 13 shows a comparison of the 3D trajectory of the SNAC and DIDO controllers.

Both converge to the desired reference signal with the DIDO path converging almost

immediately. Notably, the SNAC path converges soon after. Once both converge, the tracking is

nearly identical, with variations in the DIDO path present due to the variable time steps.

4.6 Robustness Evaluation Through Simulations

The quadcopter control was additionally tested with varying levels of noise applied to the

quadcopter thrust and torque inputs. Figure 14 shows up to 600% noise was added to the inputs

with the quadcopter controller being able to control the system and track a trajectory. The

quadcopter was able to continue tracking the helical trajectory with various initial conditions as

seen in Figure 15 and at higher levels of noise. This type of simulated dynamic disturbance is

limited in its realism, and does not accurately represent disturbances such as wind, gusts, or

41

uncertainties in the dynamic model. In the case of wind, additional forces would be applied in the

three position directions with the force of the wind corresponding to the cross-sectional area of

the quadcopter, the quadcopter's coefficient of drag, and the wind's speed and heading.

Figure 14: Noisy quadcopter controls of thrust and torques in the principal axis.

 Figure 14 depicts the effects of noise on the control signal when the system has zero

initial conditions. The noise was introduced by multiplying the current control by up to 600%.

Since the quadcopter's rotors can only produce positive thrust, the maximum possible thrust is

limited to zero. While the magnitude of torques is generally small, the accumulation of noise

over time requires increasingly significant spikes of torques to stabilize the system.

42

Figure 15: 3D quadcopter trajectory with noisy inputs.

 Figure 15 demonstrates the robustness of the developed SNAC controllers by showing

paths with different initial conditions tracking the helical trajectory defined earlier. To test the

controllers for significant noise, each path has up to 600% noise added to its controls. Despite the

noise, the controllers maintain their ability to control systems with various initial conditions and

effectively track the reference trajectory. The altitude tracking shows a small, constant offset,

that can be alleviated by retraining the controller with greater emphasis on the altitude parameter

𝑧. Overall, the controllers perform well and prove to be robust against noise.

43

Figure 16: Velocity tracking for quadcopter with zero initial conditions and noise.

Figure 16 displays the velocity tracking of the quadcopter for the zero initial condition

path. The SNAC controllers were designed to prioritize tracking in the x and y directions, as

highlighted by the state penalizing matrix in Table 1, resulting in accurate and smooth tracking

of the corresponding velocities. However, the training emphasis on x and y tracking leads to

increased noise in the velocity of the quadcopter in the z direction, 𝑤. Despite the noise, the

SNAC controllers are able to effectively track the velocity trajectories that correspond to the

desired position.

44

Figure 17: Angle tracking for quadcopter with zero initial conditions and noise.

 Figure 17 shows the angle tracking of the quadcopter for the zero initial condition path.

For the 𝜙 and the 𝜃, notable spikes appear near 12 seconds. This occurred as the quadcopter

needed to adjust angles due to the unpredictable noise inputs rapidly. For the yaw, 𝜓, a constant

offset of 0.002 rad is present. This offset is of a sufficiently low magnitude that the attitude

regulator prioritizes tracking for the pitch and roll. The yaw, 𝜓, reference is an input variable

selected as zero, so there is no noise in the reference signal. However, the pitch and roll

references are both outputs based on the control received from the position regulator.

45

Figure 18: Angular velocity tracking for quadcopter with zero initial conditions and noise.

 Figure 18 shows the noisy angular velocity tracking for the path with zero initial

conditions. Small angular velocities are necessary due to the small angle requirements of the

large-diameter helical trajectory.

The SNAC controller's ability to maintain the reference position with large percentages

of noise in the controls demonstrates its robustness and versatility in dealing with varying control

and dynamic inputs. To model the effect of environmental conditions more accurately, additional

forces should be added to the three position directions corresponding to the wind force. Overall,

the results demonstrate the effectiveness of the SNAC controllers in tracking complex reference

trajectories with varying initial conditions and significant noise.

46

CHAPTER V

CONCLUSION

 In this thesis, the use of Single Network Adaptive Critics control for regulating the

position and attitude of a quadcopter is presented. The SNAC algorithm was trained offline and

applied to both subsystems, achieving state regulation for an infinite-horizon. The resulting

controllers were compared with DIDO to validate the solution, demonstrating the effectiveness

of SNAC in controlling quadcopter dynamics. The robustness of the closed-loop SNAC

controller was also tested by adding substantial noise, showing its ability to maintain control in

the presence of significant disturbances. The successful application of the SNAC controller

highlights the potential of reinforcement learning techniques for controlling complex systems in

real-world scenarios. However, future work in quadcopter control using SNAC should consider

more sophisticated environments that account for sensor sampling frequency, control output to

rotor speeds, and more realistic external disturbances. Overall, this research demonstrates the

benefits of using SNAC for nonlinear control, showing its ability to achieve near-optimal

tracking control while reducing computational complexity. With the increasing demand for

autonomous vehicles and drones, this work contributes to the development of more efficient and

effective control strategies for these complex systems.

47

REFERENCES

Ali, S. F., & Padhi, R. (2011). Optimal blood glucose regulation of diabetic patients using single

network adaptive critics. Optimal Control Applications and Methods, 32(2), 196-214.

Argentim, L. M., Rezende, W. C., Santos, P. E., & Aguiar, R. A. (2013, May). PID, LQR and

LQR-PID on a quadcopter platform. In 2013 International Conference on Informatics,

Electronics and Vision (ICIEV) (pp. 1-6). IEEE.

Baldazo, D., Parras, J., & Zazo, S. (2019, September). Decentralized multi-agent deep

reinforcement learning in swarms of drones for flood monitoring. In 2019 27th European

Signal Processing Conference (EUSIPCO) (pp. 1-5). IEEE.

Bellman, R., & Kalaba, R. E. (1965). Dynamic programming and modern control theory (Vol.

81). New York: Academic Press.

Bouabdallah, S., Noth, A., & Siegwart, R. (2004, September). PID vs LQ control techniques

applied to an indoor micro quadrotor. In 2004 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566) (Vol. 3, pp. 2451-

2456). IEEE.

Bouabdallah, S., & Siegwart, R. (2005, April). Backstepping and sliding-mode techniques

applied to an indoor micro quadrotor. In Proceedings of the 2005 IEEE international

conference on robotics and automation (pp. 2247-2252). IEEE.

Bresciani, T. (2008). Modeling, identification, and control of a quadrotor helicopter. MSc theses.

Bu, X., & Qi, Q. (2020). Fuzzy optimal tracking control of hypersonic flight vehicles via single-

network adaptive critic design. IEEE Transactions on Fuzzy Systems, 30(1), 270-278.

Das, A., Subbarao, K., & Lewis, F. (2009). Dynamic inversion with zero-dynamics stabilisation

for quadrotor control. IET control theory & applications, 3(3), 303-314.

Frachtenberg, E. (2019). Practical drone delivery. Computer, 52(12), 53-57.

Fu, Z. J., Li, B., Ning, X. B., & Xie, W. D. (2017). Online adaptive optimal control of vehicle

active suspension systems using single-network approximate dynamic programming.

Mathematical Problems in Engineering, 2017.

Heydari, A., & Balakrishnan, S. N. (2014). Fixed-final-time optimal tracking control of input-

affine nonlinear systems. Neurocomputing, 129, 528-539.

Hwangbo, J., Sa, I., Siegwart, R., & Hutter, M. (2017). Control of a quadrotor with

reinforcement learning. IEEE Robotics and Automation Letters, 2(4), 2096-2103.

48

Julian, K. D., & Kochenderfer, M. J. (2019). Distributed wildfire surveillance with autonomous

aircraft using deep reinforcement learning. Journal of Guidance, Control, and Dynamics,

42(8), 1768-1778.

Kirk, D. E. (2004). Optimal control theory: an introduction. Courier Corporation.

Koch, W., Mancuso, R., West, R., & Bestavros, A. (2019). Reinforcement learning for UAV

attitude control. ACM Transactions on Cyber-Physical Systems, 3(2), 1-21.

Konda, V., & Tsitsiklis, J. (1999). Actor-critic algorithms. Advances in neural information

processing systems, 12.

Lee, D., Jin Kim, H., & Sastry, S. (2009). Feedback linearization vs. adaptive sliding mode

control for a quadrotor helicopter. International Journal of control, Automation and

systems, 7, 419-428.

Lewis, F. L., & Vrabie, D. (2009). Reinforcement learning and adaptive dynamic programming

for feedback control. IEEE circuits and systems magazine, 9(3), 32-50.

Madani, T., & Benallegue, A. (2006, October). Backstepping control for a quadrotor helicopter.

In 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 3255-

3260). IEEE.

Nobleheart, W., Shivanapura Lakshmikanth, G., Chakravarthy, A., & Steck, J. E. (2013). Single

network adaptive critic (SNAC) architecture for optimal tracking control of a morphing

aircraft during a pull-up maneuver. In AIAA Guidance, Navigation, and Control (GNC)

Conference (p. 5003).

Padhi, R., & Balakrishnan, S. N. (2006). Optimal management of beaver population using a

reduced-order distributed parameter model and single network adaptive critics. IEEE

transactions on control systems technology, 14(4), 628-640.

Padhi, R., Unnikrishnan, N., Wang, X., & Balakrishnan, S. N. (2006). A single network adaptive

critic (SNAC) architecture for optimal control synthesis for a class of nonlinear systems.

Neural Networks, 19(10), 1648-1660.

Powell, W. B. (2007). Approximate Dynamic Programming: Solving the curses of

dimensionality (Vol. 703). John Wiley & Sons.

Ross, I. M., A Primer on Pontryagin's Principle in Optimal Control, Second Edition, Collegiate

Publishers, San Francisco, 2015.

Ross, I. M. and Karpenko, M., "A Review of Pseudospectral Optimal Control: From Theory to

Flight," Annual Reviews in Control, Vol.36, 2012, pp.182-197.

Sabatino, F. (2015). Quadrotor control: modeling, nonlinear control design, and simulation.

49

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Waslander, S. L., Hoffmann, G. M., Jang, J. S., & Tomlin, C. J. (2005, August). Multi-agent

quadrotor testbed control design: Integral sliding mode vs. reinforcement learning. In

2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 3712-

3717). IEEE.

Xu, R., & Ozguner, U. (2006, December). Sliding mode control of a quadrotor helicopter. In

Proceedings of the 45th IEEE Conference on Decision and Control (pp. 4957-4962).

IEEE.

50

APPENDIX

51

APPENDIX

Figures show the controller tracking various trajectories.

(a) (b)

(c) (d)

Figure 19: Quadcopter applied to various trajectories. (a) 3D trajectory of the quadcopter

tracking a circle trajectory at a fixed altitude. (b) 2D trajectory corresponding to the circular

trajectory. (c) 3D trajectory of the quadcopter tracking a crown shaped trajectory. (d) 2D

trajectory corresponding to the crown shaped trajectory.

52

BIOGRAPHICAL SKETCH

 Alberto Velazquez-Estrada attended Vanguard Academy Rembrandt and graduated in

2018. He pursued his educational career as an undergraduate student at the University of Texas

Rio Grande Valley, where he graduated Summa Cum Laude with a bachelor's degree in

Mechanical Engineering in May 2021. Alberto continued his education at the University of

Texas Rio Grande Valley and was awarded the Presidential Research Fellowship in the Spring of

2022. Alberto served as the Co-Captain and Design Lead for the RGV Baja Racing at UTRGV

team from 2020 to 2023, designing, manufacturing, and testing an off-road 4x4 mini-Baja

vehicle. Alberto completed his Master of Science in Engineering degree in Mechanical

Engineering in May 2023. Alberto Velazquez-Estrada can be reached at

albertovelazquez387@gmail.com.

