
  

 

 

NEAR-OPTIMAL CONTROL OF A QUADCOPTER  

USING REINFORCEMENT LEARNING 

 

 

 

A Thesis 

by 

ALBERTO VELAZQUEZ-ESTRADA 

 

 

 

Submitted in Partial Fulfillment of the 

Requirements for the Degree of 

MASTER OF SCIENCE IN ENGINEERING 

 

Major Subject: Mechanical Engineering 

 

 

 

 

 

The University of Texas Rio Grande Valley 

May 2023 



 

 

  



 

 

NEAR-OPTIMAL CONTROL OF A QUADCOPTER 

USING REINFORCEMENT LEARNING 

 

A Thesis 

by 

ALBERTO VELAZQUEZ-ESTRADA 

 

 

 

 

 

COMMITTEE MEMBERS 

 

 

 

Dr. Tohid Sardarmehni 

Co-Chair of Committee 

 

 

Dr. Constantine Tarawneh 

Co-Chair of Committee  

 

 

Dr. Lei Xu 

Committee Member 

 

 

Dr. Qi Lu 

Committee Member 

 

 

Dr. Horacio Vasquez 

Committee Member 

 

 

May 2023 

  



  

 

 

 

  



 

 

Copyright 2023 Alberto Velazquez-Estrada 

All Rights Reserved 

  



 

 

 



  

iii 

 

ABSTRACT 

 

 

Velazquez-Estrada, Alberto, Near-Optimal Control of a Quadcopter Using Reinforcement 

Learning. Master of Science in Engineering (MSE), May, 2023, 72 pp., 2 tables, 19 figures, 

references, 30 titles. 

 This thesis presents a novel control method for quadcopters that achieves near-optimal 

tracking control for input-affine nonlinear quadcopter dynamics. The method uses a 

reinforcement learning algorithm, called Single Network Adaptive Critics (SNAC), which 

approximates a solution to the discrete-time Hamilton-Jacobi-Bellman equation using a single 

neural network trained offline. The control method involves two feedback loops, with the outer 

loop controlling the position and the inner loop controlling the attitude. The resulting quadcopter 

controller provides optimal feedback control and tracks a trajectory for an infinite-horizon, and 

its performance is compared with DIDO, a commercial optimal control software. Furthermore, 

the closed-loop controller can control the system with any initial conditions within the domain of 

training without retraining. This research demonstrates the benefits of using SNAC for nonlinear 

control, achieving near-optimal tracking while reducing computational complexity, with 

potential applications in various fields such as aerial surveillance, delivery, and search and 

rescue.  
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BACKGROUND AND INTRODUCTION 

 

 

1.1 Reinforcement Learning Overview 

Reinforcement learning (RL) is a paradigm of machine learning that focuses on the 

learning process of an agent interacting with its environment to achieve a specific objective. RL 

aims to train an agent using feedback from the environment to perform actions that maximize a 

cumulative reward or minimize a cumulative cost. RL is inspired by the natural learning methods 

of humans and animals, where rewards or punishments reinforce good or bad actions. An agent 

learns from interaction by exploring the environment and adjusting its behavior based on the 

rewards or penalties it receives. 

The Markov Decision Process (MDP) is a mathematical framework used in 

reinforcement learning that models the agent's decision-making process in a stochastic 

environment. At each discrete time step 𝑡, the agent observes the current state 𝑆𝑡 of the 

environment and selects an action 𝐴𝑡 based on the observed state. The time step advances, and 

the agent receives a numeric reward, 𝑅𝑡+1, and is in the next set of states, 𝑆𝑡+1 , due to the 

propagation of the action. Figure 1 shows the discrete-time MDP. The mapping between the state 

and action is called the policy. In RL, the objective is to improve the policy to maximize the 

cumulative reward or minimize the cumulative cost, called value. This requires the policy to be 

CHAPTER I 
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forward-looking such that the agent may receive lower rewards in the short term but higher 

rewards in the long term.  

 

Figure 1: Agent interaction with the environment (Sutton, 2018). 

Reinforcement learning is closely related to optimal control theory (Sutton, 2018). An 

agent or controller selects actions or generates controls that maximize or minimize a 

performance measure. In optimal control, the objective is to determine an optimal state-action 

mapping policy that maximizes or minimizes a performance measure. This optimal policy is 

defined using Bellman's optimality principle, which states that an optimal policy must be optimal 

for any initial state and all subsequent states (Bellman, 1965). Figure 2 illustrates a simple 

system to travel from the starting point, 𝐴, to the endpoint, 𝐸, while minimizing the cost. The 

numbers indicate the cost of traveling between the nodes. Path 𝐴𝐵𝐸, in this case, would have a 

total cost of 18, path 𝐴𝐶𝐸 has a total cost of 15, and path 𝐴𝐷𝐸 has a total cost of 13. The optimal 

policy would be to select the path 𝐴𝐷𝐸, which has a total cost of 13. However, if the starting 

point was 𝐵 instead of 𝐴, the optimal policy would select path 𝐵𝐶𝐸, with a total cost of 15. The 

principles of optimal control are easily extended to reinforcement learning, with Bellman's 

optimality principle serving as the foundation for optimal control and RL algorithms. In control 

synthesis, the reinforcement learning terms agent, environment, action, and rewards are 
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interchangeable with the terms controller, plant dynamics, control signal, and cost. The controller 

is the agent responsible for making decisions, the plant dynamics represent the environment that 

the controller interacts with, the control signal is the action that the controller takes in response 

to the current state of the plant dynamics, and the cost is the reward, a performance measure that 

is maximized or minimized.  

 

Figure 2: Principle of optimality. 

  To understand popular reinforcement learning algorithms, it is helpful to understand the 

foundational algorithms of optimal control theory. To find an optimal control, the minimum 

principle of Pontryagin or dynamic programming (DP) can be used (Kirk, 2004). Pontryagin's 

minimum principle finds the control that optimizes a Hamiltonian using variational calculus, 

which is limited by nonlinearities in the dynamics or performance index. DP is a recursive, 

backward-in-time method that explicitly calculates and tabulates cost, resulting in a 

computationally intensive method. Dynamic programming is vital in understanding popular 

reinforcement learning algorithms. 
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1.2 Dynamic Programming 

Dynamic programming is a backward-in-time, recursive method that satisfies the 

conditions of Bellman's principle of optimality. To apply DP to continuous-time systems, the 

system must first be discretized in time, and the states and controls must be quantized between 

allowable values. DP then finds the optimal policy by explicitly calculating the immediate cost 

of all quantized controls for all quantized states (Kirk, 2004). For each state, the control that 

results in the lowest cost, and the cost itself, are stored in a table or cache, as well as the next 

state that results from the control propagation along the plant dynamics. This process proceeds 

recursively, backward in time, so the future cost is always known. 

The optimal policy is the control law that minimizes the cumulative cost at any state and 

time. At any step between the final and initial time, dynamic programming solves the immediate 

cost by trying all controls at all states and calculating the resulting state using knowledge of the 

system's dynamics. If the resulting state falls outside the allowable states, it is discarded. The 

optimal control policy is the control law that minimizes the cost-to-go, or the cumulative cost, 

from any state in the current time to the final time, so the immediate cost of the current step is 

added to the immediate cost of all remaining steps. This information is pulled from memory, or a 

table, based on the resulting state and interpolating if necessary. Since the optimal policy is 

found for every allowable state, the resulting control law is a robust, closed-loop control method. 

If uncertainties or noise in the system push the states off the optimal path, a new optimal path 

can be determined from the new states based on saved data. 

1.2.1 Curse of Dimensionality 

 As the state-space dimensions, which define the allowable range of states, and control-

space dimensions, which define the allowable range of controls, of a dynamic problem grow, the 
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required computation and memory requirements to solve for an optimal policy grow 

exponentially. This becomes a significant limitation of dynamic programming known as the 

curse of dimensionality (Powell, 2007). To solve for the optimal control of high-dimensional 

dynamic systems, function approximations, such as neural networks, can simplify calculations 

for the policy and value functions. 

1.3 Approximate Dynamic Programming 

 The use of function approximation to estimate the optimal policy and value function 

without needing to try every possible state and control input is called Adaptive Dynamic 

Programming (ADP). In ADP, a dual-network architecture called Adaptive Critic (AC), 

consisting of a critic and an actor network, is used to determine the optimal policy using the 

Hamiltonian-Jacobi-Bellman (HJB) equation (Konda, 1999). The HJB equation is a nonlinear 

partial differential equation fundamental in optimal control and reinforcement learning. The 

solution to the HJB is the value function, which represents the expected cumulative rewards an 

agent or controller can receive overtime when following an optimal policy. Solutions to the HJB 

equation are too complex to solve analytically, so approximations are used. In the AC algorithm, 

the actor network approximates the optimal policy, while the critic network estimates the optimal 

value function. The AC algorithm has its namesake as the actor networks acts by choosing a 

control/action given a set of states, and the critic network then judges the actor's performance by 

estimating the expected future value of the states and control variables. In the field of control, the 

actor-critic algorithm is referred to interchangeably as the adaptive-critic algorithm. The two 

networks are trained and updated iteratively; the actor network updates its policy function 

approximation based on the approximated value function in the critic network, which results in 

lower costs or increased rewards. The critic network then updates its value function 
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approximation based on the feedback received from the actor network. This continues until the 

networks converge, resulting in an approximate solution to the HJB equation, which provides the 

necessary and sufficient conditions for a near-optimal solution. Notably, the approximation of 

the value function in the critic network allows ADP to solve optimal control problems forward in 

time. 

1.3.1 Online and Offline Training  

ADP and RL algorithms are trainable online or offline. In online training, an agent or 

controller interacts with the environment, learning and updating its policy in real time. This 

training method is well-suited to applications with changes or uncertainties in the environment or 

system dynamics.  

Offline training does not require real-time interaction with the environment, as an agent is 

trained using a set of sampled state, control, or reward data. If the data is sampled within a 

limited domain, the trained agent could operate optimally within that domain. However, if the 

sampled data does not accurately represent the real-world environment, the agent may behave 

suboptimally in unexpected scenarios. Furthermore, a changing or uncertain real-world 

environment can result in suboptimal behavior or failure. Careful consideration must be given to 

the domain and environmental representation to ensure that the data accurately reflects the real-

world conditions the agent will encounter.  

1.3.2 Heuristic Dynamic Programming and Dual Heuristic Programming 

 The AC algorithm described previously is classified as a heuristic dynamic programming 

(HDP) algorithm. In the HDP formulation, the actor network maps between the state and control, 

while the critic network maps between the state and the value. A similar formulation is the dual-

heuristic programming (DHP) class of algorithms. In this method, the actor network also maps 
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between the state and control while the critic network maps between the state and gradient of the 

value function called the costate (Padhi, 2006). By estimating the costate, DHP achieves faster 

convergence as the rate of change of the value function is maximized. The costate estimation 

requires knowledge of the full plant dynamics, which provides more information about the 

system and aids in the convergence and approximation of the policy function (Lewis, 2009). 

1.3.3 Single Network Adaptive Critic 

 Single Network Adaptive Critics is an improvement to the AC dual network class of 

DHP. SNAC uses a single neural network to approximate the next costate as opposed to the 

current costate of DHP. This eliminates the need for an actor network, reducing computational 

costs and eliminating the approximation error of the action network (Padhi, 2006). Moreover, the 

critic network not only approximates the costate but also predicts it for the next time step, 

providing more information about the system and aiding in the convergence and approximation 

of the policy function. However, to calculate the next costate, knowledge of the full plant 

dynamics is, again, necessary (Lewis, 2009). Furthermore, the SNAC algorithm also requires the 

optimal control to be explicitly expressible in terms of the current state variable and the 

following costate variable, which would occur in input-affine systems with quadratic cost 

functions (Heydari, 2014). 

1.4 Quadcopter Control 

 Small unmanned aerial vehicles (UAVs) have become increasingly popular in recent 

years due to their versatility and cost-effectiveness. These aerial drones are used for various 

applications such as surveillance, reconnaissance, search and rescue, forestry, flood and fire 

tracking, package delivery, and agriculture (Baldazo, 2019; Julian, 2019; Frachtenberg, 2019). 

Their small size and expendability make them ideal for missions in dangerous or hard-to-reach 
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areas without risking human life or requiring significant resources. As such, they have become 

valuable tools in various industries and have the potential to transform many aspects of modern 

life. 

 Multirotor UAVs come in several designs. Quadcopters are the most commercially 

available and popular type of multirotor drone. They consist of four rotors arranged in a square 

configuration at an equal distance from the center of mass, with two rotating clockwise and two 

rotating counterclockwise. Generally, quadcopters are limited in their payload capacity and 

would become unstable in the event of a rotor failure; however, quadcopters are small, 

inexpensive, and readily available. On the other hand, hexacopters use six rotors, with three 

rotating clockwise and three rotating counterclockwise. They are typically used for more 

complex aerial photography or videography due to their ability to carry heavier loads and 

provide better stability. Additionally, a hexacopter could continue operating in the event of a 

rotor failure. Finally, octocopters use eight rotors, with four rotating clockwise and four rotating 

counterclockwise, making them the largest, most powerful, and most robust type of multirotor 

drone. They are commonly used for industrial applications that require heavy lifting. 

 Despite quadcopters having relatively simple hardware, they are nonlinear, underactuated 

dynamic systems with six degrees of freedom and four inputs. Several control strategies have 

been implemented to control quadcopter drones. PID controllers are the most commonly used 

controllers in commercially available quadcopter drones. PID and LQR controllers are usually 

limited in controlling simplified and linearized dynamics (Argentim, 2013; Bouabdallah, 2004). 

Feedback linearization is one method of deriving linear systems from nonlinear systems. In the 

case of a quadcopter with uninvertible control dynamics, feedback linearization requires a small 

angle assumption to deal with repeated differentiation resulting in derivative terms that are 
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sensitive to noise (Lee, 2009). Backstepping control is an example of a nonlinear control 

technique that can be applied to quadcopters. Backstepping controls divide the dynamic model 

into several subsystems that are stabilized using the Lyapunov theorem (Bouabdallah, 2005; 

Madani, 2006). These subsystems typically consist of the quadcopter's linear and angular 

translations. However, variations in assumptions and derivation of the mathematical model can 

result in different subsystems between research. Other nonlinear control techniques, such as 

sliding mode control, can be applied to a quadcopter (Bouabdallah, 2005). Sliding mode can 

control a system subject to disturbances, uncertainties, or modeling errors, which can help 

control uncertain quadcopter dynamics such as the ground effect (Lee, 2009). However, it can 

result in high-frequency oscillations in a system's state trajectory. Some studies have effectively 

used a combination of subsystems, like those used in backstepping controls, to control the 

quadcopter using sliding mode control. (Xu, 2006). Additionally, quadcopter control has been 

achieved with a combination of backstepping and feedback linearization to control the nonlinear 

quadcopter dynamics (Das, 2009). More recent work in quadcopter control has implemented 

popular reinforcement learning algorithms such as Deep Deterministic Policy Gradient (DDPG), 

Trust Region Policy Optimization (TRPO), and Proximal Policy Optimization (PPO) to control 

the attitude subsystem responsible for stabilization and control (Koch, 2019).  

1.5 Motivation and Contribution 

 In this thesis, a novel control method for quadcopters that achieves near-optimal tracking 

control for input-affine nonlinear quadcopter dynamics is developed. The method uses the 

reinforcement learning algorithm called Single Network Adaptive Critics (SNAC), which 

approximates a solution to the discrete-time Hamilton-Jacobi-Bellman (DT-HJB) equation using 

a single neural network trained offline. Using a linear in-parameter neural network and training it 
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with least squares makes the algorithm computationally inexpensive to train and easy to 

implement on commercially available hardware.  

  The control method involves two control loops, with the outer loop controlling waypoint 

navigation by regulating the linear position and velocities and the inner loop controlling 

stabilization by regulating the angular position and velocities. As such, the nonlinear quadcopter 

dynamics are divided into position and attitude subsystems. To apply the SNAC algorithm, the 

system dynamics need to be input-affine and require a cost function that results in the optimal 

control being expressible in terms of the state and costate. The quadcopter controller uses 

optimal feedback control to track a reference trajectory for an infinite-horizon, utilizing an 

approximated near-optimal policy obtained from the SNAC algorithm. The controller effectively 

regulates the error between the quadcopter's actual position and attitude states and the desired 

position and attitude states. Furthermore, the SNAC algorithm provides a closed-loop controller 

that can control a system with any initial conditions within the domain of training. The controls 

generated by the quadcopter controller can be compared with DIDO, a commercial optimal 

control software that solves for a near-optimal control using Pontrygarin minimum principle. 

 Overall, this research aims to use the benefits of the SNAC algorithm for nonlinear 

control, with its ability to achieve near-optimal tracking control while reducing computational 

complexity. This thesis provides insights into a new approach for the complete control of 

quadcopters, with potential applications in various fields such as aerial surveillance, delivery, 

and search and rescue. 

1.6 Related Work 

The Single Network Adaptive Critic algorithm has demonstrated versatility in solving 

various problems across different fields, including control, healthcare, and environmental 
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engineering. SNAC has been utilized to design optimal tracking control for the velocity 

subsystem of a hypersonic flight vehicle with uncertain dynamics (Bu, 2020), where fuzzy 

approximators were used to estimate the system's behavior and enable the SNAC formulation to 

control such systems. SNAC has also been employed to regulate blood glucose levels in diabetic 

patients; this required a mathematical model that describes the glucose and insulin interaction in 

the blood system (Ali, 2011). Additionally, SNAC has been applied to a quarter-vehicle active 

suspension system with parametric uncertainty and time-varying system parameters such as mass 

(Fu, 2017). The algorithm has also been utilized in the optimal tracking control of a morphing 

aircraft during a pull-up maneuver by modeling significant system uncertainties, such as the lift-

curve slope and static longitudinal stability derivative, as time-varying quantities (Nobleheart, 

2013). This highlights SNAC's adaptability compared to traditional controllers like LQR, which 

require time-invariant system parameters. Furthermore, the SNAC algorithm has been applied to 

manage the beaver population in a given area by utilizing a reduced-order distributed parameter 

model, resulting in effective management and maintenance of the population at a desired level 

through optimal control policies (Padhi, 2006). 

The first use of reinforcement learning for quadcopter control was applied to an altitude 

subsystem in 2005 by Waslander. A model-based RL algorithm was used to search for an 

optimal control policy capable of handling disturbances, including blade flex, ground effect, and 

battery discharge dynamics (Waslander, 2005). Further work into quadcopter control with 

reinforcement learning was done by Hwangbo (2017), where a model-free algorithm that forgoes 

the need to divide the dynamics into different subsystems was presented. The algorithm was a 

deterministic on-policy learning algorithm that outperformed Deep Deterministic Policy 

Gradient (DDPG) and Trust Region Policy Optimization (TRPO), popular RL algorithms, in 



12 

 

computation time (Hwangbo, 2017). In 2019, Koch implemented several RL algorithms, 

including DDPG, TRPO, and Proximal Policy Optimization (PPO), to control the attitude 

subsystem responsible for stabilization and control (Koch, 2019). 

In this thesis, we propose a novel approach to quadcopter control by utilizing the SNAC 

RL algorithm to control both the position and attitude subsystems. This contrasts with other 

implementations of RL on quadcopter control, which often focus on controlling only one 

subsystem or use alternative algorithms such as sliding mode control for each subsystem.  

The thesis is organized as follows: Chapter I presents an overview of quadcopter control 

and reinforcement learning and its various forms, including dynamic programming and 

approximate dynamic programming. Chapter II delves into the details of the SNAC algorithm 

and its application to quadcopter dynamics, explaining the discretization and cost functions used 

to solve the discrete-time Hamilton-Jacobi-Bellmen equation. It also provides an overview of the 

quadcopter dynamics, including reference frames and state-space dynamics, essential for 

developing effective control strategies. Chapter III discusses the control scheme used for position 

and attitude control of the quadcopter and the training of position and attitude regulators using 

the SNAC algorithm. The chapter provides a comprehensive understanding of the SNAC 

algorithm's implementation in quadcopter control. Chapter IV presents the results of applying the 

SNAC algorithm to the quadcopter dynamics, including stabilization, comparison with DIDO, a 

commercial optimal control software, and the SNAC controller's performance with significant 

noise applied to the controls. The results show that the SNAC algorithm effectively controls the 

quadcopter, even in the presence of significant noise. Finally, Chapter V concludes the thesis by 

summarizing the study's main contributions and suggests future work. 
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SNAC ALGORITHM AND QUADCOPTER DYNAMICS 

 

 

2.1 Single Network Adaptive Critic (SNAC) 

  SNAC is an ADP algorithm introduced by Padhi in 2006. It approximates a DT-HJB 

equation to determine the optimal policy and value functions. Using a single neural network, the 

SNAC algorithm finds the optimal control by mapping between the current state and the next 

costate. Once the SNAC algorithm is trained, it can provide online optimal feedback control to 

problems with varying initial conditions and for an infinite-time horizon (Padhi, 2006). 

2.1.2 Discretization and Euler Integration 

 SNAC requires full knowledge of a system's dynamics and for those dynamics to be 

described as a continuous-time input-affine system, shown below  

ẋ(𝑡) = 𝑓𝑐(𝑥(𝑡)) + 𝑔𝑐(𝑥(𝑡))𝑢(𝑡) (1) 

where 𝑥 𝜖 ℝ𝑛 is the state vector, 𝑢 𝜖 ℝ𝑚 is the control vector, 𝑓𝑐 ∶  ℝ𝑛 → ℝ𝑛 is the continuous-

time drift dynamics of the system, and 𝑔𝑐 ∶  ℝ𝑛 → ℝ𝑛×𝑚 is the continuous-time control 

dynamics of the systems. The integers n and m are the number of states and the number of 

controls, respectively. The system can be discretized using a small sample time, 𝛥𝑡, to yield the 

following equation. 

𝑥𝑘+1 = 𝐹(𝑥𝑘) + 𝐺(𝑥𝑘)𝑢𝑘, 𝑘 𝜖 {0,1, … ,𝑁 − 1} (2) 

CHAPTER II 
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where 𝑘 represents the discrete time index, 𝑁 =
𝑡𝑓

𝛥𝑡
 is the total number of time steps, 𝑥𝑘 =

𝑥(𝑘𝛥𝑡), 𝑢𝑘 = 𝑢(𝑘𝛥𝑡), and  𝐹(𝑥𝑘) = 𝑥𝑘 + Δ𝑡𝑓𝑐(𝑥𝑘)and 𝐺(𝑥𝑘) = Δ𝑡𝑔𝑐(𝑥𝑘) are derived using 

Euler integration. 

2.1.2 Cost Function and Discrete-time Hamilton-Jacobi-Bellmen Equation 

 For state regulation in SNAC, the following discrete-time cost function is defined. 

J =
1

2
∑((𝑥𝑘)

𝑇𝑄(𝑥𝑘) + 𝑢𝑘
𝑇𝑅𝑢𝑘)

∞

𝑘=1

 (3) 

where 𝑆 𝜖 ℝ𝑛×𝑛 is the terminal state error penalizing matrix and 𝑄 𝜖 ℝ𝑛×𝑛 is the state error 

penalizing matrix. Both 𝑆 𝜖 ℝ𝑛×𝑛 and 𝑄 𝜖 ℝ𝑛×𝑛 are positive semi-definite matrices. 𝑅 𝜖 ℝ𝑚×𝑚 is 

a positive definite matrix that penalizes the control input. The cost function represents the 

magnitude of the states 𝑥𝑘 and the overall control effort expended with 𝑢𝑘. The magnitude of the 

matrices 𝑆, 𝑄, and 𝑅 determine the emphasis of the performance measure. Higher values in the 

matrices result in higher costs and vice versa. From the discrete-time cost function, the cost-to-go 

function, J(xk, k), at step, 𝑘, can be derived. 

J(xk, k) =
1

2
∑((𝑥𝜅)

𝑇𝑄(𝑥𝜅) + 𝑢𝜅
𝑇𝑅𝑢𝜅)

∞

𝜅=𝑘

 (4) 

The equation shows the cost at the final time and each step before the final time. This allows us 

to derive the following recursive equation. 

J(xk, k) =
1

2
((𝑥𝑘)

𝑇𝑄(𝑥𝑘) + 𝑢𝑘
𝑇𝑅𝑢𝑘) + 𝐽(𝑥𝑘+1, 𝑘 + 1), 𝑘 𝜖 {0,1, … ,∞} (5) 

This equation shows that the cost-to-go at any time step is the cost of the current time step plus 

the cost of all future time steps. Once the cost function is in a recursive notation, the following 

discrete-time HJB can be derived. 
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J∗(xk, k) = min
𝑢𝑘

(
1

2
((𝑥𝑘)

𝑇𝑄(𝑥𝑘) + 𝑢𝑘
𝑇𝑅𝑢𝑘) + 𝐽(𝑥𝑘+1, 𝑘 + 1)) , 𝑘 𝜖 {0,1, … ,∞} (6) 

J∗(xk, k) is the optimal cost-to-go, which minimizes the recursive cost-to-go equation. 

2.1.3 Optimality Condition and Costate 

 To find the optimal control, the optimality condition must be met.  

𝜕𝐽(𝑥𝑘, 𝑘)

𝜕𝑢𝑘
= 0 (7) 

Taking the partial derivative of the cost-to-go function with respect to the control results in the 

following equation. 

𝑅𝑢𝜅 +
𝜕𝐽(𝑥𝑘+1, 𝑘 + 1)

𝜕𝑢𝑘
= 𝑅𝑢𝜅 +

𝜕𝑥𝑘+1

𝜕𝑢𝑘

𝜕𝐽(𝑥𝑘+1, 𝑘 + 1)

𝜕𝑥𝑘+1

= 𝑅𝑢𝜅 + 𝐺(𝑥𝑘)
𝑇
𝜕𝐽(𝑥𝑘+1, 𝑘 + 1)

𝜕𝑥𝑘+1
= 0 

(8) 

The partial derivative, or gradient, of the cost-to-go function with respect to the state vector is 

called the costate. 

𝜆𝑘+1 =
𝜕𝐽(𝑥𝑘+1, 𝑘 + 1)

𝜕𝑥𝑘+1
 (9) 

The costate expands into the following 

𝜆𝑘 =
𝜕𝐽(𝑥𝑘, 𝑘)

𝜕𝑥𝑘
= 𝑄𝑥𝑘 +

𝜕𝐽(𝑥𝑘+1, 𝑘 + 1)

𝜕𝑥𝑘
= 𝑄𝑥𝑘 +

𝜕𝑥𝑘+1

𝜕𝑥𝑘

𝜕𝐽(𝑥𝑘+1, 𝑘 + 1)

𝜕𝑥𝑘+1

= 𝑄𝑥𝑘 +
𝜕𝑥𝑘+1

𝜕𝑥𝑘
𝜆𝑘+1 

(10) 

where the gradient of the following states with respect to the current state is 𝐴𝑘 =
𝜕𝑥𝑘+1

𝜕𝑥𝑘
. 

 By combining the above equations, the optimality condition in Equation 8 can be written 

as the following: 
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𝑅𝑢𝜅 + 𝜆𝑘+1𝐺(𝑥𝑘) = 0 (11) 

from which the optimal control can be derived as: 

𝑢𝑘
∗ = −𝑅−1𝐺(𝑥𝑘)

𝑇𝜆𝑘+1 (12) 

The target costate, from Equation 9, at step 𝑘 + 1 can similarly be written as:  

𝜆𝑘+1
𝑡 = 𝑄(𝑥𝑘+1) + 𝐴𝑘+1

𝑇 𝜆𝑘+2 (13) 

 To train a SNAC controller effectively, it is crucial to use Equations 12 and 13 as they 

form the core equations for the controller. 

2.1.4 Neural Network Approximator 

 SNAC uses a neural network (NN) that outputs the approximate costate vector 𝜆𝑘+1
𝑎  

given the current state vector 𝑥𝑘. The NN form is shown below 

𝜆𝑘+1
𝑎 = 𝑊𝑇𝜙(𝑥𝑘), 𝑘 𝜖 {0,1, … ,𝑁 − 1} (14) 

where 𝑊𝑘 𝜖 ℝ
𝑚×𝑛 are the time-dependent weight matrix and 𝜙 ∶  ℝ𝑛 → ℝ𝑚 is a vector of 

smooth linearly-independent scalar basis functions. 

 To train the neural network's weights, least squares is used, as shown below. 

𝑊𝑖+1 = (𝜙𝜙𝑇)−1𝜙𝜆𝑡𝑇 (15) 

Notably, the training is iterative, with 𝑖 showing the current iteration. The target costate, found 

with the costate equations, is a function of the previous iteration of the weights, with the first 

iteration being randomly initialized weights. During each iteration, the algorithm updates the 

weights to minimize the difference between the estimated and target costs. The training process 

continues iteratively until the error between the target costate and the estimated costate falls 

below a preselected tolerance. This ensures that the neural network converges to an optimal 

solution for the control problem. 
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𝑒𝑘(𝑥𝑘) = 𝜆𝑘+1
𝑎 − 𝜆𝑘+1

𝑡 = 𝑊𝑇𝜙(𝑥𝑘) − 𝜆𝑘+1
𝑡  (16) 

 To train the neural network, the procedure is as follows (Padhi, 2006):  

1. Randomly generate 𝑊 

2. Randomly generate 𝑥𝑘  𝜖 Ω where Ω ⊂ ℝ𝑛 is the domain of interest. 

a. Input 𝑥𝑘 into the neural network, Equation 14, to generate 𝜆𝑘+1. 

b. Calculate 𝑢𝑘 using Equation 14, the optimal control equation. 

c. Calculate 𝑥𝑘+1 from Equation 2, the state equation. 

d. Input 𝑥𝑘+1 into the neural network, Equation 14, to generate 𝜆𝑘+2. 

e. Calculate 𝑢𝑘+1 using Equation 14, the optimal control equation. 

f. Use 𝑥𝑘+1, 𝑟𝑘+1, and 𝜆𝑘+2 in Equation 13, the costate equation, to find the target 

costate 𝜆𝑘+1
𝑡 . 

3. Train the neural network weights 𝑊 using Equation 15, the least square equation, and 

input-target pair {𝑥𝑘, 𝜆𝑘+1
𝑡 }. 

4. Calculate the training error 𝑒𝑘(𝑥𝑘) using Equation 16.  

5. Iteratively repeat steps 2 to 4 until the weights 𝑊 converge.  

This process can be seen in Figure 3 below. 
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Figure 3: SNAC training diagram 

2.2 Quadcopter Dynamics 

2.2.1 Reference Frames 

 Two reference systems need to be related to describe the mathematical model of the 

quadcopter: the fixed earth frame and the mobile aircraft body frame. The fixed Earth frame uses 

the North-East-Down (𝑂𝑁𝐸𝐷) coordinate system, while the mobile aircraft body frame describes 

the Aircraft-Body-Center (𝑂𝐴𝐵𝐶) coordinate system. Linear and angular positions are defined in 

the earth frame as the following vector: [𝑥 𝑦 𝑧 𝜙 𝜃 𝜓]𝑇. Euler angles are used to describe the 

orientating of the quadcopter: 𝜙 describes the pitch, 𝜃 describes the roll, and 𝜓 describes the 

yaw. In the aircraft body frame, linear and angular velocities are defined as: [𝑢 𝑣 𝑤 𝑝 𝑞 𝑟]𝑇.  

 To relate the mobile aircraft body reference frame to the fixed earth reference frame, a 

combination of the following rotational matrices is used: 
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𝑅𝑥(𝜙) = [

1 0 0
0 cos(𝜙) − sin(𝜙)

0 sin(𝜙) cos(𝜙)
] (17) 

  

𝑅𝑥(𝜃) = [
cos(𝜃) 0 sin(𝜃)

0 1 0
− sin(𝜃) 0 cos(𝜃)

] (18) 

 

𝑅𝑥(𝜓) = [
cos(𝜓) − sin(𝜓) 0

sin(𝜓) cos(𝜓) 0
0 0 1

] (19) 

 Different combinations of rotational matrices can result in greatly simplified dynamics 

that omit the yaw 𝜓, such as 𝑅𝑥𝑦𝑧(𝜙, 𝜃, 𝜓). The 𝑅𝑧𝑦𝑥(𝜙, 𝜃, 𝜓) combination is used in this thesis. 

𝑅𝑧𝑦𝑥(𝜙, 𝜃, 𝜓)

= [

c(θ)c(𝜓) 𝑠(𝜙)𝑠(𝜃) c(𝜓) − 𝑐(𝜙)𝑠(𝜓) 𝑐(𝜙)𝑠(𝜃) c(𝜓) + 𝑠(𝜙)𝑠(𝜓)

c(θ)s(𝜓) 𝑠(𝜙)𝑠(𝜃) s(𝜓) + 𝑐(𝜙)𝑐(𝜓) 𝑐(𝜙)𝑠(𝜃) s(𝜓) − 𝑠(𝜙)𝑐(𝜓)

−𝑠(𝜃) 𝑠(𝜙)𝑐(𝜃) 𝑐(𝜙)𝑐(𝜃)
] 

(20) 

Here 𝑐(.) = cos(.) and 𝑠(.) = sin(.). 

 The rotational matrix will be used to relate the derivative of the linear position and the 

linear velocities between the two reference frames. The following angular transformation matrix 

can be used to relate the derivative of the angular positions to the angular velocities in a similar 

manner. 

𝑇(𝜙, 𝜃) =

[
 
 
 
1 sin(𝜙) tan(θ) cos(𝜙) tan(𝜃)

0 cos(𝜙) − sin(𝜙)

0
sin(𝜙)

cos(𝜃)

cos(𝜙)

cos(𝜃) ]
 
 
 

 (21) 

 The rotational matrix 𝑅𝑧𝑦𝑥(𝜙, 𝜃, 𝜓) and the translational matrix 𝑇(𝜙, 𝜃) are used to relate 

the fixed Earth and the mobile aircraft body frame. This can be done using the following 
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relations 𝑣 = 𝑅𝑣𝐵 and 𝑤 = 𝑇𝑤𝐵. Where 𝑣 = [𝑥̇ 𝑦̇ 𝑧̇]𝑇, 𝑣𝐵 = [𝑢 𝑣 𝑤]𝑇, 𝑤 =

[𝜙̇ 𝜃̇ 𝜓̇]𝑇, and 𝑤𝐵 = [𝑝 𝑞 𝑟]𝑇 (Sabatino, 2015).  

2.2.2 Newton and Euler Equations 

 The following process was outlined by Sabatino (2015). Newton's law can be used to find 

the total force applied to the quadcopter: 

𝑓𝐵 = 𝑚(𝑤𝐵 × 𝑣𝐵 + 𝑣̇𝑏) (22) 

where m is the mass and 𝑓𝐵 = [𝑓𝑥 𝑓𝑦 𝑓𝑧] is the total force. The total external force acting on 

the body frame can be given by: 

𝑓𝐵 = 𝑚𝑔𝑅𝑇𝑒̂𝑍 − 𝑓𝑡𝑒̂3 (23) 

where 𝑔 is the acceleration due to gravity, 𝑒̂𝑍 is a unit vector along the global z-axis, 𝑒̂3 is a unit 

vector in the body-frame relative z-axis, and 𝑓𝑡 is the total thrust. 

 Euler equations can be used to find the total torque acting on the quadcopter 

𝑚𝐵 = 𝐼𝑤̇𝐵 + 𝑤𝐵 × (𝐼𝑤𝐵) (24) 

where 𝐼 is a diagonal inertia matrix and 𝑚𝐵 = [𝑚𝑥 𝑚𝑦 𝑚𝑧] is the total torque. The total 

external moments acting on the body frame are given by 

𝑚𝐵 = 𝜏𝐵 − 𝑔𝑎 (25) 

where 𝜏𝐵 = [𝜏𝑥 𝜏𝑦 𝜏𝑧] is the control torques generated by the quadcopter rotors, and 𝑔𝑎 is the 

gyroscopic moments due to the rotors on the quadcopter. 

 The total thrust, 𝑓𝑡, and the control torques, [𝜏𝑥 𝜏𝑦 𝜏𝑧], can be defined as proportional 

to the squared speeds of the rotors (Bresciani, 2008, as cited in Sabatino, 2015). 

𝑓𝑡 = 𝑏(Ω1
2 + Ω2

2 + Ω3
2 + Ω4

2)

𝜏𝑥 = 𝑏𝑙(Ω3
2 − Ω1

2)

𝜏𝑦 = 𝑏𝑙(Ω4
2 + Ω2

2)

𝜏𝑧 = 𝑑(Ω2
2 + Ω4

2 − Ω1
2 − Ω3

2)

 (26) 
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where 𝑏 is the thrust factor, 𝑙 is the distance between the center of the drone and a rotor, 𝑑 is the 

drag factor, and Ω is the angular speed of the quadcopter's rotors. These factors are specific to the 

quadcopter and rotors. 

 By rewriting Newton's law as 

𝑚𝑣̇ = 𝑅𝑓𝐵 = 𝑚𝑔𝑒̂𝑍 − 𝑓𝑡𝑅𝑒̂3 (27) 

and setting [𝜙̇ 𝜃̇ 𝜓̇]𝑇 = [𝑝 𝑞 𝑟]𝑇, an assumption that is true for small angles of 

movements (Das, 2009, as cited in Sabatino, 2015), the dynamics model of the quadcopter can 

be written as 

𝑥̈ = −
𝑓𝑡
𝑚

[𝑠(𝜙)𝑠(𝜓) + 𝑐(𝜙)𝑐(𝜓)𝑠(𝜃)]

𝑦̈ = −
𝑓𝑡
𝑚

[𝑐(𝜙)𝑠(𝜓)𝑠(𝜃) − 𝑐(𝜓)𝑠(𝜙)]

𝑧̈ = 𝑔 −
𝑓𝑡
𝑚

[𝑐(𝜙)𝑐(𝜃)]

𝜙̈ =
𝐼𝑦 − 𝐼𝑧

𝐼𝑥
𝑞𝑟 +

𝜏𝑥

𝐼𝑥

𝜃̈ =
𝐼𝑧 − 𝐼𝑥

𝐼𝑦
𝑝𝑟 +

𝜏𝑦

𝐼𝑦

𝜓̈ =
𝐼𝑥 − 𝐼𝑦

𝐼𝑧
𝑝𝑞 +

𝜏𝑧

𝐼𝑧

 (28) 

2.2.3 State-space Dynamics 

 The dynamic model of the quadcopter can be written in the state-space form to yield the 

following equation: 

𝑥̇ = 𝑓(𝑥) + 𝑔(𝑥)𝑢 (29) 

 

𝑥̇ = [𝑥̇ 𝑦̇ 𝑧̇     𝑢̇ 𝑣̇ 𝑤̇    𝜙̇ 𝜃̇ 𝜓̇    𝑝̇ 𝑞̇ 𝑟̇]𝑇 (30) 
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𝑓(𝑥) =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑢
𝑣
𝑤
0
0
𝑔

𝑝 + 𝑞(𝑠(𝜙)𝑡(𝜃)) + 𝑟(𝑐(𝜙)𝑡(𝜃))

𝑞(𝑐(𝜙)) − 𝑟(𝑠(𝜙))

𝑞
𝑠(𝜙)

𝑐(𝜃)
+ 𝑟

c(𝜙)

𝑐(𝜃)
𝐼𝑦 − 𝐼𝑧

𝐼𝑥
𝑞𝑟

𝐼𝑧 − 𝐼𝑥
𝐼𝑦

𝑝𝑟

𝐼𝑥 − 𝐼𝑦

𝐼𝑧
𝑝𝑞

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (31) 

 

𝑔(𝑥) =

[
 
 
 
 
 
 
 
 
 
 
 
 

0 0 0 0
0 0 0 0
0 0 0 0

−1/𝑚(𝑠(𝜙)𝑠(𝜓) + 𝑐(𝜙)𝑐(𝜓)𝑠(𝜃) 0 0 0

−1/𝑚(𝑐(𝜓)𝑠(𝜙) − 𝑐(𝜙)𝑠(𝜓)𝑠(𝜃) 0 0 0

−1/𝑚(𝑐(𝜙)𝑠(𝜃)) 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 1/𝐼𝑥 0 0
0 0 1/𝐼𝑦 0

0 0 0 1/𝐼𝑧]
 
 
 
 
 
 
 
 
 
 
 
 

 (32) 

 

𝑢 = [𝑓𝑡 𝜏𝑥 𝜏𝑦 𝜏𝑧]𝑇 (33) 

 These state-space dynamics represent the drift and control dynamics that can be 

controlled by reinforcement learning algorithms such as SNAC.  
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SIMULATION SETUP 

 

 

3.1 Control Scheme 

 To effectively control the underactuated and nonlinear dynamics of a quadcopter, two 

SNAC controllers are required. This is because the quadcopter's dynamics are highly coupled 

and nonlinear, making it difficult to control. To control the linear position [𝑥 𝑦 𝑧]𝑇, it is 

necessary to solve for the corresponding linear velocities [𝑢 𝑣 𝑤]𝑇, simultaneously. This 

requires the determination of the total thrust produced by the quadcopter, 𝑓𝑡, and the angular 

position [𝜙 𝜃 𝜓]𝑇, which is in turn determined by the angular velocities [𝑝 𝑞 𝑟]𝑇. The 

control torques [𝜏𝑥 𝜏𝑦 𝜏𝑧]𝑇 produced by the quadcopter's rotors are necessary to determine 

the angular velocities. The highly coupled angle dynamics make quadcopter control with a single 

control loop challenging. However, splitting the dynamics into a position loop and an attitude 

(angle) loop allows for the successful control of the quadcopter system. 

3.1.1 Position Control 

 The position control splits the dynamics into the linear position, [𝑥 𝑦 𝑧]𝑇, and linear 

velocities, [𝑢 𝑣 𝑤]𝑇, resulting in simple, easily controllable dynamics, as shown below. 

𝑥̇𝑝 = 𝑓𝑝(𝑥𝑝) + 𝑔𝑝(𝑥𝑝)𝑢𝑝 (34) 

 

𝑥̇𝑝 = [𝑥̇ 𝑦̇ 𝑧̇     𝑢̇ 𝑣̇ 𝑤̇ ]𝑇 (35) 

CHAPTER III 
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𝑓𝑝(𝑥𝑝) =

[
 
 
 
 
𝑢
𝑣
𝑤
0
0
𝑔]

 
 
 
 

 (36) 

 

𝑔𝑝(𝑥𝑝) = [
1 0 0
0 1 0
0 0 1

] (37) 

 

𝑢𝑝 = [𝑢𝑥 𝑢𝑦 𝑢𝑧]𝑇 (38) 

where 

𝑢𝑥 = −
𝑓𝑡
𝑚

(𝑠(𝜙)𝑠(𝜓) + 𝑐(𝜙)𝑐(𝜓)𝑠(𝜃)

𝑢𝑦 = −
𝑓𝑡
𝑚

(𝑐(𝜓)𝑠(𝜙) − 𝑐(𝜙)𝑠(𝜓)𝑠(𝜃)

𝑢𝑧 = −
𝑓𝑡

𝑚(𝑐(𝜙)𝑠(𝜃))

 (39) 

 The SNAC algorithm will control the position dynamics by regulating the states to zero, 

as defined by the cost function. By defining a reference trajectory, [𝑟𝑥 𝑟𝑦 𝑟𝑧]𝑇, the difference 

between the current states and the reference states also be regulated, resulting in trajectory 

tracking. The controller will generate the inputs [𝑢𝑥 𝑢𝑦 𝑢𝑧]𝑇, which are a function of the total 

thrust and the Euler angles [𝑓𝑡 𝜙 𝜃 𝜓]. The control inputs represent a 3-equation, 4-

unknown system. 

3.1.2 Euler Angle and Thrust Approximation 

 To solve this system of equations, an additional variable is required. The yaw angle, 𝜓, is 

selected as a reference input as it allows the quadcopter to face any direction. The system can be 



 

25 

 

solved using any number of system solvers. Numerically solving the system is the most accurate 

approach, with a function such as MATLAB's 'fsolve' iterating upon an initial guess until 

convergence. This approach is time-consuming in systems discretized by a small sample time, 

but it can account for nonlinearities in the equations. Analytically solving for the Euler angles is 

possible but can be prohibitively complex and computationally expensive. The equations are 

nonlinear and sinusoidal, requiring significant time and computational resources to find 

analytical solutions to the system. Furthermore, MATLAB functions such as 'solve' return 

possibly spurious solutions that lack the accuracy of the numerical solutions due to 

approximations and assumptions in their derivations. Finally, neural networks can also be used to 

map between the inputs [𝑢𝑥 𝑢𝑦 𝑢𝑧 𝜓] and the outputs [𝑓𝑡 𝜙 𝜃]. While the neural 

network is simple and computationally inexpensive to use once trained, it may not be as accurate 

as numerical or analytical solutions to systems of equations. 

 Solving the system of equations yields the total thrust, 𝑓𝑡, and the Euler angles 𝜙, and 𝜃. 

The Euler angles are used as a reference trajectory [𝑟𝜙 𝑟𝜃 𝑟𝜓]𝑇 in the attitude control.  

3.1.3 Attitude Control 

 Once a reference signal for the attitude control has been generated, they are passed into a 

SNAC regulator trained on the following attitude dynamics. 

𝑥𝑎̇ = 𝑓𝑎(𝑥𝑎) + 𝑔𝑎(𝑥𝑎)𝑢𝑎 (40) 

 

𝑥̇𝑎 = [𝜙̇ 𝜃̇ 𝜓̇    𝑝̇ 𝑞̇ 𝑟̇]𝑇 (41) 
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𝑓𝑎(𝑥𝑎) =

[
 
 
 
 
 
 
 
 
 
 
 
𝑝 + 𝑞(𝑠(𝜙)𝑡(𝜃)) + 𝑟(𝑐(𝜙)𝑡(𝜃))

𝑞(𝑐(𝜙)) − 𝑟(𝑠(𝜙))

𝑞
𝑠(𝜙)

𝑐(𝜃)
+ 𝑟

c(𝜙)

𝑐(𝜃)
𝐼𝑦 − 𝐼𝑧

𝐼𝑥
𝑞𝑟

𝐼𝑧 − 𝐼𝑥
𝐼𝑦

𝑝𝑟

𝐼𝑥 − 𝐼𝑦

𝐼𝑧
𝑝𝑞

]
 
 
 
 
 
 
 
 
 
 
 

 (42) 

 

𝑔𝑎(𝑥𝑎) = [

1/𝐼𝑥 0 0
0 1/𝐼𝑦 0

0 0 1/𝐼𝑧

] (43) 

 

𝑢𝑎 = [𝜏𝑥 𝜏𝑦 𝜏𝑧]𝑇 (44) 

 The SNAC algorithm will regulate the Euler angle and angular velocities. Angle tracking 

can be achieved using the angle reference signal generated by the system solver.  

3.1.4 Quadcopter Control Summary 

 Once the position and attitude controllers are trained, they can be used to control the 

quadcopter. First, reference inputs for the position and yaw are required. The difference between 

the current and desired positions is passed into the SNAC position regulator. This controller 

generates the necessary acceleration. These accelerations are a function of thrust, roll, pitch, and 

yaw. To determine these variables, a system solver in the form of a neural network or a 

numerical solver takes the acceleration and reference yaw as input and generates the resulting 

thrust, roll, and pitch. The roll, pitch, and yaw represent the required angles that allow the 

quadcopter to move from its current position to the desired one. These reference angles are then 

compared with the current angles, and the error is passed into the trained SNAC attitude 
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regulator. The regulator outputs the torques required to reach the angular rates corresponding to 

the desired angles. Figure 4 summarizes the control scheme used to control a quadcopter.  

 

Figure 4: Quadcopter control diagram. 

 In the reinforcement learning framework, the position and attitude regulators are two 

agents that interact with the quadcopter dynamics environment and minimize a cost function. 

These agents are trained by sampling a state-space within a domain where the quadcopter is 

expected to operate. Within this domain, the agents can effectively generate actions that would 

regulate the states to zero, as determined by the reward function. As the error is fed into these 

agents, the error is regulated to zero, resulting in trajectory tracking. 

3.2 Position Regulator 

The position SNAC regulator was trained with the parameters outlined in Table 1. The 

number of basis functions was selected to reduce approximation errors in the neural network. 

The neurons were selected by trail and error of 84 linearly independent polynomials comprised 

of the states up to a power of three. 

Given the simplicity of the position dynamics, the number of basis functions can be as 

low as seven consisting of the states. This can be determined by the value at which the weights 

converge. If the value is near zero, the weight has little impact on the overall network accuracy. 
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Despite this, there was little incentive to lower the number of basis functions for the position 

dynamics as the SNAC algorithm requires insignificant amounts of computation, with the 

network converging within 3.5 seconds using an Intel® Core™  i7-10700K CPU. Furthermore, 

the resulting storage size of the neural network weights was small at 4 KB. As the neural 

network was trained using least squares, the number of patterns must be equal to or greater than 

the number of basis functions and be linearly independent such that the inverse matrix of 

Equation 15 exists. The max training loop was arbitrarily selected as 40,000 iterations. This 

would allow the controller ample time to converge or otherwise train for a sufficiently long time 

so that the resulting neural network would be effective. The maximum training loop can be 

increased if the network does not converge. Similarly, the convergence threshold was selected so 

that the error between the target and actual neural network output, the costate, would be 

sufficiently low at convergence. 

For the position regulator, a time step of 1 millisecond was selected to achieve high-

frequency sampling and generate controls quickly, resulting in smooth trajectory tracking. 

Although this works well in a simulation environment, sensor readings may have a higher 

frequency than one millisecond in practical applications, such as 2.5 milliseconds. However, due 

to the simplicity of the position dynamics, the position SNAC algorithm can have a higher time 

step, even up to 10 milliseconds, without significant loss of accuracy. The state penalizing matrix 

emphasizes tracking the trajectory in the xy-direction over the z-direction and velocities. This 

was selected as the SNAC controller prefers tracking in the z-direction over the xy-directions. 

The control penalizing matrix was selected to keep the controls sufficiently smooth while 

allowing for tracking. Finally, the domain of training for the position regulator was selected to be 

within a range of -100 meters to 100 meters for position and a range of -100 m/s to 100 m/s for 
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velocity. This gives the algorithm significant leeway in tracking a trajectory, as the input to the 

position regulator is the tracking error.  

Table 1: Parameters used to train the position SNAC regulator. 

Position Regulator Parameters 

Number of Patterns 100 

Number of Basis Functions/Neurons 84 

Max Training Loop 40000 

Convergence Threshold 1𝑥10−5 

Time Step Δ𝑡 0.001 seconds 

State Penalizing Matrix 𝑄 

[
 
 
 
 
 
1𝑥106 0 0 0 0 0

0 1𝑥106 0 0 0 0
0 0 1𝑥105 0 0 0
0 0 0 1𝑥105 0 0
0 0 0 0 1𝑥105 0
0 0 0 0 0 1𝑥105]

 
 
 
 
 

 

Control Penalizing Matrix 𝑅 [

0.5𝑥104 0 0 0
0 0.5𝑥104 0 0
0 0 0.5𝑥104 0
0 0 0 0.5𝑥104

] 

Domain of Training 

Position (x,y,z) range: [-100 100] (m) 

Velocity (u,v,w) range: [-100 100] (m/s) 

 

3.3 Attitude Regulator 

 The attitude SNAC regulator was trained with the parameters outlined in Table 2. As the 

attitude dynamics are more intensive, the number of basis functions was selected to reduce 

inaccuracies in the trained network; however, inspecting the weights shows that no weights 

converged near zero. This indicates the need for additional basis functions to accurately map 
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between the input states and the next constates. The number of patterns was selected for the same 

reasons outlined in the position regulator parameters. The max training loop was also selected as 

40,000 iterations, and the convergence threshold was selected to reduce network error. Given the 

complexity of the attitude dynamics, the SNAC algorithm required more time to train than the 

position controller, with the algorithm reaching the max training loop before convergence. The 

current domain of training was selected with those reasons in mind.  

The attitude SNAC regulator was trained with a time step of 1 millisecond. The same 

sensor sampling frequency issues would arise with the attitude regulator as those outlined in the 

position regulator. As opposed to the position regulator, the attitude regulator contains dynamics 

responsible for the quadcopter's stability. The frequency of sampling can have a significant effect 

on the stability and controllability of a quadcopter. Low-frequency sampling would result in 

slower control generation and instability; therefore, training and simulating the attitude regulator 

to the base frequency of sensors would provide more realistic values. With this in mind, the 

SNAC regulator was trained successfully with a 2.5-millisecond timestep. With a training time 

step of 10 milliseconds position regulator and a time step of 2.5 milliseconds in the attitude 

regulator, it would be possible to create a new control scheme with a slow navigation outer loop 

and a fast stabilization inner loop. 

The state penalizing matrix was selected to track the roll, pitch, and yaw equally. Figure 8 

shows the SNAC tracking of the angles. The algorithm tracks 𝜙 and 𝜓 well, but the tracking of 𝜃 

can be improve. Modifying the state penalizing matrix to emphasize the tracking on 𝜃 would 

improve the results; however, a different reference signal might produce different results in 

tracking. The control penalizing matrix limits the magnitude of the regulator and ensures smooth 
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signals. If these values were sufficiently high, the regulator would prioritize minimizing control 

signals rather than tracking.  

Table 2: Parameters used to train the attitude SNAC regulator. 

Attitude Regulator Parameters 

Number of Patterns 100 

Number of Basis Functions/Neurons 84 

Max Training Loop 40000 

Convergence Threshold 1𝑥10−5 

Time Step dt 0.001 seconds 

State Penalizing Matrix Q 

[
 
 
 
 
 
1𝑥106 0 0 0 0 0

0 1𝑥106 0 0 0 0
0 0 1𝑥106 0 0 0
0 0 0 1𝑥105 0 0
0 0 0 0 1𝑥105 0
0 0 0 0 0 1𝑥105]

 
 
 
 
 

 

Control Penalizing Matrix R [

0.5𝑥104 0 0 0
0 0.5𝑥104 0 0
0 0 0.5𝑥104 0
0 0 0 0.5𝑥104

] 

Domain of Training 

Euler Angle (𝜙, 𝜃, 𝜓) range: [-1 1] (rad) 

Angular Velocity (p,q,r) range: [-1 1] (rad/s) 
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RESULTS AND DISCUSSION 

 

 

 The SNAC regulator is a closed-loop control method that enables feedback control and 

allows for controlling a system with any initial condition within the defined domain of training. 

Additionally, SNAC is an infinite-horizon algorithm capable of controlling systems for any 

length of time and defined reference signal. This would allow two individual regulators to 

effectively track a trajectory, with one regulator focused on waypoint navigation and the other on 

quadcopter stabilization.  

 

Figure 5: 3D helix trajectory tracking of the full quadcopter controller. 

 An example of the SNAC quadcopter controllers tracking a trajectory over 50 seconds 

with several initial conditions can be seen in Figure 5. The trajectory is a helix with an initial 

CHAPTER IV 
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starting point at zero. The initial conditions of all the quadcopter paths assume an initial velocity, 

initial angular position, and initial angular velocity of zero for all directions. The initial position 

in the xy-plane is arbitrarily chosen; however, the limiting factor is the domain of training of the 

linear position and velocities.   

4.1 Position Control 

 

Figure 6: SNAC tracking of the XYZ position in the position control. 

The simulation results for the position and velocity tracking are presented in Figure 6 and 

Figure 7, respectively. Figure 6 displays the position tracking of the helical trajectory with 

various initial conditions in the xy-coordinates while the remaining states had initial values of 

zero. The paths converge to the trajectory after 18 seconds, with the delay attributed to the 

quadcopter's initial takeoff, during which it stabilizes. Afterward, the quadcopter path closely 

follows the helical trajectory. The reference trajectory was generated as a parametric function 
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with time as the input to provide a reference signal for the quadcopter to track at each time step. 

Another approach would be to generate waypoints, have the controller guide the quadcopter to 

each point, and maintain it until a new waypoint is provided. 

 

Figure 7: SNAC tracking of the velocity in the position control.  

Figure 7 displays the velocity tracking of the quadcopter path, where the reference signal 

for velocity was generated by taking the numeric derivative of the position. The quadcopter 

started with zero initial conditions, and the velocity trajectory shows the quadcopter increasing 

its climbing rate initially to catch up with the reference trajectory. The climbing rate, 𝑤, then 

stabilizes as the quadcopter tracks the reference trajectory. 
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4.2 Attitude Control  

The simulation results for the position and velocity tracking are presented in Figure 8 and 

Figure 9, respectively. Figure 8 displays the Euler angle tracking of the angular trajectory 

generated by the system solver. The initial conditions for the angles and angular velocities were 

selected as zero. The angles are tracked effectively with a more significant error in the roll, 𝜃,  

due to the state penalizing matrix. The small angles are due to the large and smooth diameter of 

the trajectory and the small angle approximation in the dynamics. Different trajectories can be 

simulated to show more significant and more demanding angular positions. The yaw, 𝜓, is 

selected as zero. This keeps the quadcopter facing a single direction throughout the duration of 

the flight. This value was selected for simplicity, with the yaw being a reference input.  

 

Figure 8: SNAC tracking angles generated by the approximator NN.  
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Figure 8 displays the angular velocity tracking, where the reference signal for velocity 

was generated by taking the numeric derivative of the angular reference signal generated by the 

system solver. The small magnitude of the angular velocities is also due to the low angular 

change demanded by the selected trajectory. Notably, the initial second of the angular velocity 

tracking shows the section responsible for the stabilization of the quadcopter during initial 

takeoff. A close look at these sections of the angular velocities can be seen in Figure 11.  

 

Figure 9: SNAC tracking angles generated by the approximator NN. 

4.3 Quadcopter Control Inputs 

Figure 10 shows the quadcopter inputs of the trust and torques in the principle axis. The 

thrust stabilizes slightly above 9.81 N, which is the force required to keep the 1 kg simulated 

quadcopter climbing at the desired rate. The input torques have a small magnitude corresponding 

to the small angular rates and angles demanded by the trajectory. The initial seconds of the 
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simulation shows the stabilization of the angular velocities. A more detailed look can be seen in 

Figure 11. 

 

Figure 10: Quadcopter controls of thrust and torques in the principal axis. 

4.4 Stabilization 

Quadcopter performance is directly linked to its ability to maintain stability, which is 

crucial for the drone's maneuverability and robustness. A stable quadcopter is more flyable and 

resilient to external disturbances like wind or gusts, allowing it to maintain its position and 

orientation accurately. As the SNAC algorithm is a closed-loop feedback controller, it can handle 

noise and aid in stabilization. Figure 11 shows the angular velocities and corresponding 

stabilizing torque controls. 
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Figure 11: Quadcopter controls of thrust and torques in the principal axis. 

4.5 SNAC and DIDO Comparison 

DIDO is a commercial MATLAB optimal control software that finds the optimal control 

using Pontryagin minimum principle (Ross, 2012, 2015). DIDO can achieve optimal tracking 

control given the full quadcopter dynamics with no subsystem divisions. However, the result is 

an open-loop control that tracks a fixed trajectory, with fixed initial conditions, and within a 

selection time-horizon, requiring recalculations for each scenario. DIDO's solutions are known as 

extremal solutions, representing high-quality solutions that may not necessarily be optimal. 

However, an optimal solution must also be an extremal solution. The results DIDO produces can 

be used to validate the effectiveness of the SNAC quadcopter optimal controllers. 



 

39 

 

 

Figure 12: DIDO and SNAC quadcopter controls of thrust and torques in the principal axis. 

 Figure 12 shows the DIDO controls overlaid with the SNAC controls. As DIDO finds an 

extremal solution that can be optimal, the results of the SNAC controllers can be compared to 

determine its efficiency. Notably, the DIDO controller was trained with parameters similar to the 

parameters seen in Table 1 and Table 2 used to train the SNAC controls. The same dynamics 

were used to train both systems, with the dynamic model provided to DIDO being the full, 

undivided dynamics of the quadcopter. The result in Figure 12 serves to validate the magnitude 

and trend of the SNAC controls with those of the DIDO control. Variations in the controls exist 

due to differences in how DIDO is trained and discretized with respect to the SNAC controllers. 

For example, DIDO discretizes dynamics with various time steps resulting in dense, rapid 

sampling during the first few iterations of the simulation. The time steps then increase during the 

middle of the training time.  
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Figure 13: DIDO and SNAC 3D quadcopter trajectory. 

 Figure 13 shows a comparison of the 3D trajectory of the SNAC and DIDO controllers. 

Both converge to the desired reference signal with the DIDO path converging almost 

immediately. Notably, the SNAC path converges soon after. Once both converge, the tracking is 

nearly identical, with variations in the DIDO path present due to the variable time steps. 

4.6 Robustness Evaluation Through Simulations 

The quadcopter control was additionally tested with varying levels of noise applied to the 

quadcopter thrust and torque inputs. Figure 14 shows up to 600% noise was added to the inputs 

with the quadcopter controller being able to control the system and track a trajectory. The 

quadcopter was able to continue tracking the helical trajectory with various initial conditions as 

seen in Figure 15 and at higher levels of noise. This type of simulated dynamic disturbance is 

limited in its realism, and does not accurately represent disturbances such as wind, gusts, or 
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uncertainties in the dynamic model. In the case of wind, additional forces would be applied in the 

three position directions with the force of the wind corresponding to the cross-sectional area of 

the quadcopter, the quadcopter's coefficient of drag, and the wind's speed and heading. 

 

Figure 14: Noisy quadcopter controls of thrust and torques in the principal axis. 

 Figure 14 depicts the effects of noise on the control signal when the system has zero 

initial conditions. The noise was introduced by multiplying the current control by up to 600%. 

Since the quadcopter's rotors can only produce positive thrust, the maximum possible thrust is 

limited to zero. While the magnitude of torques is generally small, the accumulation of noise 

over time requires increasingly significant spikes of torques to stabilize the system.  
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Figure 15: 3D quadcopter trajectory with noisy inputs. 

 Figure 15 demonstrates the robustness of the developed SNAC controllers by showing 

paths with different initial conditions tracking the helical trajectory defined earlier. To test the 

controllers for significant noise, each path has up to 600% noise added to its controls. Despite the 

noise, the controllers maintain their ability to control systems with various initial conditions and 

effectively track the reference trajectory. The altitude tracking shows a small, constant offset, 

that can be alleviated by retraining the controller with greater emphasis on the altitude parameter 

𝑧. Overall, the controllers perform well and prove to be robust against noise.  
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Figure 16: Velocity tracking for quadcopter with zero initial conditions and noise. 

Figure 16 displays the velocity tracking of the quadcopter for the zero initial condition 

path. The SNAC controllers were designed to prioritize tracking in the x and y directions, as 

highlighted by the state penalizing matrix in Table 1, resulting in accurate and smooth tracking 

of the corresponding velocities. However, the training emphasis on x and y tracking leads to 

increased noise in the velocity of the quadcopter in the z direction, 𝑤. Despite the noise, the 

SNAC controllers are able to effectively track the velocity trajectories that correspond to the 

desired position.  
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Figure 17: Angle tracking for quadcopter with zero initial conditions and noise. 

 Figure 17 shows the angle tracking of the quadcopter for the zero initial condition path. 

For the 𝜙 and the 𝜃, notable spikes appear near 12 seconds. This occurred as the quadcopter 

needed to adjust angles due to the unpredictable noise inputs rapidly. For the yaw, 𝜓, a constant 

offset of 0.002 rad is present. This offset is of a sufficiently low magnitude that the attitude 

regulator prioritizes tracking for the pitch and roll. The yaw, 𝜓, reference is an input variable 

selected as zero, so there is no noise in the reference signal. However, the pitch and roll 

references are both outputs based on the control received from the position regulator.  
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Figure 18: Angular velocity tracking for quadcopter with zero initial conditions and noise. 

 Figure 18 shows the noisy angular velocity tracking for the path with zero initial 

conditions. Small angular velocities are necessary due to the small angle requirements of the 

large-diameter helical trajectory.  

The SNAC controller's ability to maintain the reference position with large percentages 

of noise in the controls demonstrates its robustness and versatility in dealing with varying control 

and dynamic inputs. To model the effect of environmental conditions more accurately, additional 

forces should be added to the three position directions corresponding to the wind force. Overall, 

the results demonstrate the effectiveness of the SNAC controllers in tracking complex reference 

trajectories with varying initial conditions and significant noise. 
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CHAPTER V 

 

 

CONCLUSION 

 

 

 In this thesis, the use of Single Network Adaptive Critics control for regulating the 

position and attitude of a quadcopter is presented. The SNAC algorithm was trained offline and 

applied to both subsystems, achieving state regulation for an infinite-horizon. The resulting 

controllers were compared with DIDO to validate the solution, demonstrating the effectiveness 

of SNAC in controlling quadcopter dynamics. The robustness of the closed-loop SNAC 

controller was also tested by adding substantial noise, showing its ability to maintain control in 

the presence of significant disturbances. The successful application of the SNAC controller 

highlights the potential of reinforcement learning techniques for controlling complex systems in 

real-world scenarios. However, future work in quadcopter control using SNAC should consider 

more sophisticated environments that account for sensor sampling frequency, control output to 

rotor speeds, and more realistic external disturbances. Overall, this research demonstrates the 

benefits of using SNAC for nonlinear control, showing its ability to achieve near-optimal 

tracking control while reducing computational complexity. With the increasing demand for 

autonomous vehicles and drones, this work contributes to the development of more efficient and 

effective control strategies for these complex systems.
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APPENDIX 

Figures show the controller tracking various trajectories. 

  

(a)                                                                                (b) 

 

(c)                                                                                (d) 

Figure 19: Quadcopter applied to various trajectories. (a) 3D trajectory of the quadcopter 

tracking a circle trajectory at a fixed altitude. (b) 2D trajectory corresponding to the circular 

trajectory. (c) 3D trajectory of the quadcopter tracking a crown shaped trajectory. (d) 2D 

trajectory corresponding to the crown shaped trajectory. 
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