
Transport Economics and Management 3 (2025) 135–152

A
2

 

Contents lists available at ScienceDirect

Transport Economics and Management

journal homepage: www.journals.elsevier.com/transport-economics-and-management  

Advanced Air Mobility for commuting? An exploration of economic, energy, 
and environmental feasibility
Daniel Perez a, Heeseung Shon a, Bo Zou a,∗, Kenneth Kuhn b
a Civil, Materials, and Environmental Engineering, University of Illinois Chicago, United States
bWalmart Global Tech, United States

A R T I C L E  I N F O

Keywords:
Advanced Air Mobility (AAM)
Electric vertical takeoff and landing aircraft 
(eVTOL)
Commuting
Time-expanded network model
Economic feasibility
Energy and environmental feasibility

 A B S T R A C T

Advanced Air Mobility (AAM) presents an emerging alternative to traditional car driving for commuting 
in metropolitan areas. However, its feasibility has not been thoroughly studied nor well understood at the 
operational level. Given that AAM has not been in place, this study explores the economic, energy, and 
environmental feasibility of AAM for commuting at an early stage of AAM deployment. We propose a time-
expanded network model to characterize the dynamics of eVTOL operations between a vertiport pair in 
different states: in-service flying, relocation flying, charging, and parking, while respecting various operational 
and commuter time window constraints. By jointly considering eVTOL flying with vertiport access and egress 
and using real-world data, we demonstrate an application of the model in the Chicago metropolitan area 
in the US. Different vertiport pairs and eVTOL aircraft models are investigated. We find substantial travel 
time saving if commuting by AAM. While vehicle operating cost will be higher using eVTOLs than using 
auto, the generalized travel cost will be less for commuters. On the other hand, with current eVTOL power 
requirement, the energy consumption and CO2 emissions of AAM will be greater than those of auto driving, 
with an important contributor being the significance presence of empty flights relocation. These findings, along 
with sensitivity analysis, shed light on future eVTOL development to enhance the competitiveness of AAM as 
a viable option for commuting.
1. Introduction

Advanced Air Mobility, AAM, has been rapidly developing and 
attracted keen interest in the aviation and tech industries, academia, 
governments, and the general public as a time-saving travel solution 
for mobility in metropolitan areas. The traditional heavy reliance on 
passenger cars presents a perennial traffic congestion problem in many 
large metropolitan regions, causing exceedingly long travel time, espe-
cially for commute travel. In the US, for example, an average driver 
experienced 102 h of traffic delay in New York City and Chicago in 
2024 [1]. Globally, millions of hours are lost each day due to traffic 
congestion [2,3]. AAM, by using electric vertical takeoff and landing 
(eVTOL) aircraft, offers a potential to transform personal mobility in 
metropolitan areas by expanding the travel dimension from 2D (on the 
ground) to 3D (on the ground plus in the air).

The successful deployment of AAM hinges first on its economic 
feasibility, especially in comparison with ground transportation. The 
earliest comparison may date back to Uber Elevate [4], which provides 
initial estimates of per vehicle-mile cost of VTOLs on a single trip 
basis. This pioneering study concludes that VTOL services is not likely 
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to be cost competitive compared to driving for metropolitan travel in 
the near term, but has the potential to become a viable alternative. 
From the eVTOL vehicle design and optimization perspective, Brown 
and Harris [5] investigate the main cost drivers of AAM operations. A 
case study of airport access in New York City is conducted to evaluate 
AAM trip time and cost. The study argues that AAM may provide a 
cost advantage over current helicopter services but would be more ex-
pensive than car ride-sharing. More recently, Liu and Gao [6] perform a 
techno-economic analysis of eVTOL for urban air taxi services, by using 
a return-on-investment framework to assess its cost-revenue dynamics. 
The authors find that a positive rate of return is likely to be achieved 
based on realistic assumptions of critical parameters such as price per 
kilometer.

While these studies contribute to the understanding of the eco-
nomic feasibility of AAM, no research has specifically looked into the 
economic feasibility of AAM for commuting. In metropolitan areas, 
commuters have long experienced significant traffic delays along with 
the stress of navigating crowded roadways and the difficulty in search 
for parking. To address these challenges, AAM provides a promising 
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alternative. First, AAM circumvents most of the road traffic: commuters 
only need to drive between home and a nearby vertiport, where eVTOLs 
fly to and from the central business district (CBD) where jobs are lo-
cated. Given the high job density of CBD, the distance between the CBD 
vertiport and home locations is likely to be short, making it feasible to 
cover via a brief walk trip. On the other hand, the directional nature of 
commuting demand suggests the need for relocating empty eVTOLs to 
better match eVTOL supply and commuter demand. The need for eV-
TOL relocation, along with the need for charging and parking, suggests 
that a holistic rather than a single trip-based approach should be taken 
to assess the economic feasibility of AAM for commuting.

In addition to economic feasibility, the energy and environmental 
implications of using AAM for commuting have not been investigated 
either. Given the rising concern of the energy efficiency and climate 
impact of transportation, understanding whether commuting by AAM 
instead of auto would bring energy and environmental benefits is 
critical to justify the potential use of AAM. An elaborate investigation of 
this question requires detailed consideration of both eVTOL scheduling 
plans and eVTOL flight profiles. However, to our knowledge, no such 
joint effort has been taken.

To fill these gaps, this study develops an optimization approach to 
solve for the optimal eVTOL scheduling plan by considering various 
plausible AAM operational and passenger travel constraints, including 
eVTOL seating capacity, vertiport operation limits, charging needs, and 
passenger time windows. It is assumed that at the beginning of a day 
or the night before, commuters submit their travel time windows–
specified by the earliest departure time at the origin vertiport and the 
latest arrival time at the destination vertiport—to the AAM operator. 
Using the submitted information, the AAM operator optimizes its op-
eration plan and returns to each commuter the schedule of the eVTOL 
flights reserved for him/her. Thus, what we envision is a reservation-
based AAM system. Given that AAM is still under development, the 
exact operational mode of AAM remains uncertain. In this study, we 
focus on eVTOL operations between one vertiport pair, which is likely 
to represent how AAM may begin at an early stage. The studied 
problem serves as a building block and a foundation for understanding 
how AAM could perform in more complex operational environments 
that will emerge at later AAM development stages. When numerically 
implementing the optimization approach in the Chicago metropolitan 
area in the US, we examine different vertiport pairs and distinct eVTOL 
models using a number of problem instances with randomly generated 
demand, to gain a comprehensive understanding and insights about the 
prospect of AAM for commuting.

In the remainder of the paper, Section 2 reviews the relevant 
literature. Section 3 introduces a time-expanded network model, which 
seeks the optimal eVTOL operation plan while respecting the various 
operational and time window constraints. We implement the model 
in the Chicago metropolitan area, to explore the potential of AAM 
for commuting. To this end, Section 4 first presents the experiment 
setup, including AAM commuting demand and model parameter spec-
ifications. Section 5 then reports the numerical results, including AAM 
operating cost, commuter travel time, generalized travel cost, and 
the associated energy consumption and CO2 emissions. The insights 
gleaned from the results are further discussed in Section 6, along with 
a conclusion and suggestions for future research.

2. Literature review and contributions of the present study

While the existing body of AAM research is wide covering aircraft 
design, travel demand estimation, flight trajectory control, air traffic 
management, scheduling, and so on, the most relevant area to our 
study is eVTOL scheduling and dispatching. Shihab et al. [7] propose 
operations management models for AAM operators to decide the type 
of schedule to offer, how to dispatch the eVTOL fleet, and scheduling 
operations such that operator profit is maximized. Ale-Ahmad and 
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Mahmassani [8] model AAM operations as a capacitated location–
allocation-routing problem with time windows. A mixed-integer pro-
gram is formulated to address request acceptance/rejection/allocation 
to eVTOL flights, as well as eVTOL routing and scheduling, while 
also allowing for demand consolidation. In a package delivery con-
text, Farazi and Zou [9] seeks Pareto-optimal eVTOL dispatching sched-
ules, considering the trade-off between minimizing eVTOL operating 
cost and the community impact of eVTOL noise. Shon and Lee [10] 
tackles a high-level AAM planning problem to determine the number 
of eVTOLs, vertiport spaces, and chargers, together with lower-level 
operations to control eVTOLs’ operational states in in-service, charging, 
idling, and relocation.

The scheduling of eVTOL flights depends on the supporting in-
frastructure, particularly vertiports where eVTOLs take off and land. 
Because of this, some research has tackled tactical-level eVTOL opera-
tion planning jointly with strategic-level infrastructure decisions such 
as the number, locations, and capacities of vertiports. Wang et al. [11] 
develop a mixed-integer second-order conic optimization approach 
with an adaptive discretization algorithm to plan vertiports combin-
ing a facility location structure, a queueing network, and a demand 
function. Because strategic-level decisions are involved, the model does 
not get into detailed daily scheduling of eVTOL flights. In Chen et al. 
[12], a vertiport location selection problem is investigated, by assuming 
AAM demand to be distributed over the whole metropolitan area. 
A novel variable neighborhood search heuristic is designed to very 
efficiently solve the problem. An integrated modeling framework for 
airport shuttle service is proposed by Lv et al. [13], where vertiport site 
selection, capacity design, eVTOL route planning, and fleet size design 
are considered in conjunction with eVTOL service level and scheduling.

Apart from the above studies, the vertiport location problem has 
also been tackled in Rajendran and Zack [14], where the optimal 
vertiport locations in New York City are identified by applying iterative 
constrained clustering to the taxi data in the city. Willey and Salmon 
[15] address the complexities of optimal vertiport placement, by rep-
resenting the problem as a modified single-allocation p-hub median 
location problem along with subgraph isomorphism techniques and 
heuristic algorithms to solve the problem. Rath and Chow [16] also 
employ a modified single-allocation p-hub medium location framework 
to determine the vertiport locations with two objectives of maximizing 
air taxi ridership and revenue. More recently, Jin et al. [17] takes a 
robust optimization approach to determine vertiport locations while 
accounting for traveler mode choice and uncertainties in user demand.

As eVTOLs cannot fly to customer doorsteps, to complete a trip, 
traveling by AMM will involve ground travel for vertiport access/egress.
Straubinger et al. [18] argue that vertiport access/egress as key factors 
to improve the attractiveness of AAM. As such, a multi-modal perspec-
tive has been taken by some studies for AAM operation planning. Lim 
and Hwang [19] employs a k-mean clustering approach to determine 
vertiport locations in the Seoul metropolitan area in South Korea. 
The authors highlight that depending on the number and locations 
of vertiports, vertiport access and egress ground travel times might 
dominate UAM total travel time. Shon et al. [20] plan on the optimal 
eVTOL fleet size and vertiport numbers using generalized cost models 
of AAM trip chains with multiple ground access modes. For using 
eVTOLs for package delivery, Perez et al. [21] adopts a two-leg system 
design where eVTOLs first carry packages from a central distribution 
point to a set of vertiports in the suburbs in a metropolitan area, 
where packages are relayed to a ground transportation mode for the 
second-leg delivery to final customers.

Based on the above review, this study aims to make three main 
contributions:

• First, we explore the problem of using AAM for commuting from 
a daily scheduling perspective. Compared to other types of travel, 
commuting is unique given the directional and peaking nature 
of demand. As such, relocating flights to balance eVTOL avail-
ability and travel demand is critical, which significantly increases 
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the operating cost. We propose a time-expanded network model 
to characterize the dynamics of eVTOL operations in different 
states: in-service flying, relocation flying, charging, and parking, 
while respecting various eVTOL operational and commuter time 
window constraints.

• Second, we demonstrate an application of the model using real-
world data from the US Census to examine the economic feasibil-
ity of AAM for commuting from multiple facets, including changes 
in vehicle operating cost, commuter travel time, and commuter 
generalized travel cost compared to auto commuting. The appli-
cation, performed in the Chicago metropolitan area, reveals the 
operational patterns of eVTOLs to cater for the plausible AAM 
commuting demand. Different vertiport pairs and eVTOL aircraft 
models are examined while accounting for demand uncertainties, 
which yields rich insights about the economic potential of AAM 
for commuting.

• Third, the energy and CO2 emission implications of AAM for 
commuting, which is crucial for public acceptance, is further 
investigated. An aerodynamic approach is employed for the com-
putation of eVTOL energy consumption. We break down the 
energy use and CO2 emission by in-service flying, relocation 
flying, and ground access and compare them with the alternatives 
of auto commuting using either gasoline or electric cars. The 
breakdown allows us to clarify the potentially misleading conclu-
sion about the energy efficiency and environmental attractiveness 
of AAM relative to auto commuting.

3. Optimization model

This section presents a time-expanded network model for optimizing 
eVTOL operations for passenger commuting between a suburb vertiport 
and a CBD vertiport. The model looks at one day of eVTOL operations. 
The total operation time in a day considered in our model is divided 
into 𝑇  equal-length time steps. The set of the time steps is denoted 
by T = {1, 2,… , 𝑇 }. Each time step 𝑡 ∈ T corresponds to time period 
[𝑡𝛥, (𝑡 + 1)𝛥), where 𝛥 is the length of a time period.

As commuters, each passenger is assumed to have a time window 
for taking AAM, specified as between his/her earliest possible departure 
time from the origin vertiport and latest possible arrival time at the 
destination vertiport. To be consistent with the time characterization in 
the model, the earliest possible departure time and the latest possible 
arrival time are measured in time step. The network model is developed 
such that all passenger trips are made within the passenger time 
windows.

Given the plausible space restraints for building and operating a 
vertiport, we consider that vertiports have limited capacities. In addi-
tion, the capacity of a vertiport can differ by location (e.g., a suburb 
vertiport is likely to be larger than a CBD vertiport given that lands 
are typically cheaper and more available in the suburb). Furthermore, 
takeoff and landing pads can require a more robust design than parking 
and charging pads due to higher structural demands to withstand the 
eVTOL hovering power during takeoff and landing [22,23]. Conse-
quently, two distinct capacities are specified at a vertiport: one for 
takeoff and landing and the other for parking and charging.

In optimizing the eVTOL operations, the decision variables include: 
the time step of each passenger to depart from a vertiport, the number 
of eVTOLs in various states – departing as an in-service flight, departing 
as a relocation flight, holding at a vertiport, and charging at a vertiport 
– at each time point 𝑡 ∈ T, and the takeoff and landing capacities 
at each vertiport in each time step. For the number of eVTOLs being 
charged, we separately count the number of eVTOLs after completing 
an in-service or a relocation flight, recognizing that the energy use of 
a flight will differ whether the flight carries passengers. This subse-
quently affects charging costs. For the takeoff and landing capacities, 
we consider that the given number of takeoff and landing pads of a 
vertiport can be flexibly allocated for takeoff and landing operations 
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in each time step, to best accommodate the eVTOL operation demand. 
Table  1 outlines the notations for the sets, parameters, and decision 
variables used in the model.

The objective of the model, shown in (1), is to minimize the daily 
AAM operating cost, encompassing various expenses related to in-
service and relocation flight operations, charging, aircraft depreciation, 
and vertiport capital. 
min

∑

𝑖∈V

∑

𝑡∈T
{𝛼𝑠 ⋅𝑠𝑖,𝑡+𝛼𝑟 ⋅𝑟𝑖,𝑡+𝛽𝑠 ⋅𝑐

𝑠
𝑖,𝑡+𝛽𝑟 ⋅𝑐

𝑟
𝑖,𝑡}+𝛾 ⋅𝑀+

∑

𝑖∈V
𝛿𝑖 ⋅(𝐾

𝑑,𝑙
𝑖 +𝐾𝑝,𝑐

𝑖 ) (1)

The cost minimization is subject to seven sets of constraints:
1. eVTOL seating capacity constraint : Constraint (2) imposes the eVTOL 
seating capacity constraints. This constraint ensures that the number 
of passengers departing from the suburb vertiport to the CBD, or vice 
versa, in a time step does not exceed the available seating capacity 
provided by the departing eVTOL flights of the time step.
∑

𝑝∈P
𝑥𝑝𝑡 ≤ 𝑄 ⋅ 𝑠𝑖,𝑡, ∀𝑡 ∈ T, 𝑖 ∈ V (2)

2. Vertiport capacity constraints: Constraints (3)–(6) regulate eVTOL 
operational limits due to vertiport capacity constraints. Specifically, 
constraint (3) ensures that the number of eVTOL flights taking off from 
each vertiport in a time step does not exceed the available takeoff 
capacity. Similarly, constraint (4) stipulates that the number of eVTOLs 
arriving at each vertiport in a time step does not exceed the available 
landing capacity. In this constraint, we count the number of arriving 
eVTOL flights in time step 𝑡 by backtracking the number of eVTOL 
flights departing from the other vertiport in time step 𝑡 − 𝑡𝑓 . To do so, 
subscript 3 − 𝑖 on the right-hand side of the constraint gives the index 
of the other vertiport (if 𝑖 = 1, 3 − 𝑖 = 2; if 𝑖 = 2, 3 − 𝑖 = 1). 
𝑠𝑖,𝑡 + 𝑟𝑖,𝑡 ≤ 𝑘𝑑𝑖,𝑡, ∀𝑡 ∈ T, 𝑖 ∈ V (3)

𝑠𝑖,𝑡−𝑡𝑓 + 𝑟𝑖,𝑡−𝑡𝑓 ≤ 𝑘𝑙3−𝑖,𝑡, ∀𝑡 ∈ {𝑡𝑓 + 1, 𝑡𝑓 + 2,… , 𝑇 }, 𝑖 ∈ V (4)

Constraint (5) ensures that the sum of available takeoff capacity and 
available landing capacity at a vertiport is equal to the takeoff and 
landing capacity at the vertiport in each time step. Constraint (6) 
requires that the sum of eVTOLs being held and charged do not exceed 
the parking and charging capacity at each vertiport in each time step. 
An implicit assumption in the two constraints is that each takeoff 
(landing) pad handles at most one eVTOL takeoff (landing) operation 
in a time step.
𝑘𝑑𝑖,𝑡 + 𝑘𝑙𝑖,𝑡 = 𝐾𝑑,𝑙

𝑖 , ∀𝑡 ∈ T, 𝑖 ∈ V (5)

ℎ𝑖,𝑡 + 𝑐𝑠𝑖,𝑡 + 𝑐𝑟𝑖,𝑡 ≤ 𝐾𝑝,𝑐
𝑖 , ∀𝑡 ∈ T, 𝑖 ∈ V (6)

3. Design balance constraints: Constraints (7)–(9) ensure the balance of 
eVTOL flow. In our model, we assume that all eVTOLs are charged 
immediately after completing a flight, based on the rationale that it 
simplifies the eVTOL operational process (which will be important at 
the early-stage AAM deployment) and ensures that an eVTOL will be 
ready for the next flight at the earliest possible time. Following this 
assumption, constraints (7)–(8) describes that an arriving eVTOL gets 
charged at a vertiport right after completing the flight (the flight can 
be either an in-service flight or a relocation flight). 
𝑠𝑖,𝑡−𝑡𝑓 = 𝑐𝑠3−𝑖,𝑡, ∀𝑡 ∈ {𝑡𝑓 + 1, 𝑡𝑓 + 2,… , 𝑇 }, 𝑖 ∈ V (7)

𝑟𝑖,𝑡−𝑡𝑓 = 𝑐𝑟3−𝑖,𝑡, ∀𝑡 ∈ {𝑡𝑓 + 1, 𝑡𝑓 + 2,… , 𝑇 }, 𝑖 ∈ V (8)

Constraint (9) says that the eVTOLs being charged and held at a 
vertiport in a time step should either depart from the vertiport (as an 
in-service flight or a relocation flight) or continue being held in the 
next time step. In our model, we consider that charging after a flight 
takes one time step. The length of a time step is set to five minutes 
in our model. This consideration is supported by the speculation that 
eVTOLs are likely to be ready for the next flight after one time step 
of charging. For example, Lilium Jet (one of the two eVTOL models 
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Table 1
Notations used in the model.
 Sets Description  
 T Set of time steps: T = {1, 2,… , 𝑇 }  
 V Set of vertiports - {suburb vertiport (1) and CBD vertiport (2)}  
 P Set of all passengers, P = P1 ∪ P2  
 Parameters Description  
 𝑡𝑓 eVTOL flight time (in time steps) between suburban and CBD vertiports  
 𝑡𝑝𝑒 Earliest possible departure time (in time step) of passenger 𝑝 from the origin vertiport  
 𝑡𝑝𝑎 Latest possible arrival time (in time step) of passenger 𝑝 at the destination vertiport  
 𝑀 eVTOL fleet size  
 𝑄 eVTOL seating capacity  
 𝛾 eVTOL capital cost ($/eVTOL/day)  
 𝛼𝑠 , 𝛼𝑟 Operating cost for in-service/relocation flight between suburban and CBD vertiport ($/flight)  
 𝛽𝑠 , 𝛽𝑟 Charging cost for in-service/relocation flight between suburban and CBD vertiport ($/charge)  
 𝛿1 , 𝛿2 Capital and operation cost for suburban/CBD vertiport ($/space/day)  
 𝐾𝑑,𝑙

1 , 𝐾𝑑,𝑙
2 Takeoff and landing capacity (per time step) at suburban/CBD vertiports  

 𝐾𝑝,𝑐
1 , 𝐾𝑝,𝑐

2 Parking and charging capacity (per time step) at suburban/CBD vertiports  
 Decision variables Description  
 𝑥𝑝𝑡 Binary variable indicating whether passenger 𝑝 departs from origin vertiport in time step 𝑡  
 𝑠1,𝑡 , 𝑠2,𝑡 Integer variables indicating the number of in-service flights departing from suburban/CBD vertiport in time step 𝑡  
 𝑟1,𝑡 , 𝑟2,𝑡 Integer variables indicating the number of relocation flights departing from suburban/CBD vertiport in time step 𝑡  
 ℎ1,𝑡 , ℎ2,𝑡 Integer variables indicating the number of eVTOLs being held at suburban/CBD vertiport in time step 𝑡  
 𝑐𝑠1,𝑡 , 𝑐𝑠2,𝑡 Integer variables indicating the number of eVTOLs being charged at suburban/CBD vertiport in time step 𝑡, after completing an 

in-service flight
 

 𝑐𝑟1,𝑡 , 𝑐𝑟2,𝑡 Integer variables indicating the number of eVTOLs being charged at suburban/CBD vertiport in time step 𝑡, after completing a 
relocation flight

 

 𝑘𝑑1,𝑡 , 𝑘𝑙1,𝑡 Integer variables indicating the available takeoff/landing capacities at suburb vertiport in time step 𝑡  
 𝑘𝑑2,𝑡 , 𝑘𝑙2,𝑡 Integer variables indicating the available takeoff/landing capacities at CBD vertiport in time step 𝑡  
considered in our numerical experiments) is reported to achieve a 60% 
charge in five minutes [24], which is more than enough to fly one flight 
in our numerical experiments.
ℎ𝑖,𝑡−1 + 𝑐𝑠𝑖,𝑡−1 + 𝑐𝑟𝑖,𝑡−1 = 𝑠𝑖,𝑡 + 𝑟𝑖,𝑡 + ℎ𝑖,𝑡, ∀𝑡 ∈ {2, 3,… , 𝑇 },∀𝑖 ∈ V (9)

4. Initial eVTOL assignment constraints: Constraint (10) stipulates that at 
the beginning of a day, all eVTOLs start from the suburb vertiport, given 
that 1) morning commuting is typically from the suburb to CBD and 2) 
the suburb vertiport is likely to be larger due to less space restraints 
and thus more capable of holding eVTOLs when not in operation. As 
such, the sum of in-service flights, relocation flights, and eVTOLs being 
held at the suburb vertiport in the first time step is set to the fleet size. 
No eVTOLs are in other states in this time step, as characterized by 
constraint (10). 
𝑠1,1 + 𝑟1,1 + ℎ1,1 = 𝑀 (10)

𝑠2,1 + 𝑟2,1 + ℎ2,1 + 𝑐𝑠1,1 + 𝑐𝑟1,1 + 𝑐𝑠2,1 + 𝑐𝑟2,1 = 0 (11)

5. Final eVTOL assignment constraint : Constraint (12) describes the final 
positioning and status of eVTOLs, which should be either in holding or 
in charging at the suburb vertiport in the last time step in a day. In the 
last time step in the operation time in a day, all eVTOLs must be at the 
suburb vertiport where the eVTOLs will start operations the next day. 
Thus, the total number of eVTOLs being held and being charged at the 
suburb vertiport in the last time step must equal the fleet size.
ℎ1,𝑇 + 𝑐𝑠1,𝑇 + 𝑐𝑟1,𝑇 = 𝑀 (12)

6. Passenger time window constraint : Constraint (13) ensures that each 
passenger’s departure is scheduled exactly once within their specified 
time window. The possible departure time steps range between the 
earliest possible departure time step 𝑡𝑝𝑒 and the latest possible departure 
time step, which is backtracked by subtracting the flight steps 𝑡𝑓  from 
the latest possible arrival time step 𝑡𝑝𝑎.
∑

𝑡
𝑥𝑝𝑡 = 1, 𝑡 ∈ {𝑡𝑝𝑒 , 𝑡

𝑝
𝑒 + 1,… , 𝑡𝑝𝑎 − 𝑡𝑓 }, ∀𝑝 ∈ P (13)

7. Decision variables domains: This final set of constraints defines the 
domains for the decision variables used in the model. Constraint (14) 
specifies that each passenger departs from the origin vertiport within 
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his/her time window. Constraint (15) specifies that all decision vari-
ables associated with eVTOL operations as well as those governing 
vertiport takeoff and landing capacities are non-negative integers.
𝑥𝑝𝑡 ∈ {0, 1}, ∀𝑡 ∈ {𝑡𝑝𝑒 , 𝑡

𝑝
𝑒 + 1,… , 𝑡𝑝𝑎 − 𝑡𝑓 }, 𝑝 ∈ P (14)

𝑠𝑖,𝑡, 𝑟𝑖,𝑡, ℎ𝑖,𝑡, 𝑐
𝑠
𝑖,𝑡, 𝑐

𝑟
𝑖,𝑡, 𝑘

𝑑
𝑖,𝑡, 𝑘

𝑙
𝑖,𝑡 ∈ Z≥0, ∀𝑡 ∈ T, 𝑖 ∈ V (15)

4. Numerical experiments: setup

The optimization model of Section 3 is numerically examined for 
AAM commuting in the Chicago metropolitan area. Since our focus is 
on early stage of AAM deployment, we consider that eVTOLs operate 
between one vertiport in the suburb and one vertiport in the Chicago 
CBD. We examine two scenarios in terms of the suburb vertiport 
locations: one in Northern Cook County and the other in Lake County. 
For each scenario, two distinct eVTOL models are investigated. This 
section describes the setup of the numerical experiments. We begin by 
describing how AAM commuting demand is generated in Section 4.1. 
Then, we present the model parameter values in Section 4.2.

4.1. AAM commuting demand

Spatial distribution of demand: We consider two AAM commuting sce-
narios. The first scenario focuses on AAM servicing between a vertiport 
located in Northern Cook County, which is further north, and Chicago 
CBD, which is often referred to as the ‘‘Chicago Loop’’ (Fig.  1). The 
second scenario focuses on AAM servicing between a vertiport located 
in Lake County and Chicago CBD. Both Northern Cook County and Lake 
County have significant commuter traffic to Chicago CBD during peak 
hours. According to the Illinois Department of Employment Security 
[25], Northern Cook County presents the largest source of commuters 
to Chicago CBD, while Lake County presents the third largest.

To identify the spatial distribution of the high-income commuters, 
we resort to the Longitudinal Employer-Household Dynamics Origin–
Destination Employment Statistics (LODES) and the American Com-
munity Survey (ACS) from the US Census [26,27]. The LODES data 
provide detailed worker information in the US, including the home and 
work locations at the census tract level. The ACS data document the 
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Fig. 1. The Chicago metropolitan area for numerical experiments.

percentage of residents in different income groups, also at the census 
tract level. In this study, we conjecture that commuters with a high 
income level are most likely to adopt AAM for commuting first. We set 
$150,000 as the annual income threshold, above which commuters are 
considered to take AAM. We multiply the percentage of residents in a 
census tract with an annual income higher than this threshold by the 
number of workers who live in the census tract and work in Chicago 
CBD, to obtain an estimate of the number of potential AAM commuters 
between the census tract and Chicago CBD. In aggregate, the estimated 
numbers of potential AAM commuters are 2273 in Northern Cook 
County and 1317 in Lake County respectively.

Because the worker location information in LODES is specified only 
at the census tract level, we randomly generate a precise location 
within the home census tract of each potential AAM commuter as 
the home location of the commuter. Fig.  2 shows one instance of 
the generated home locations of the potential AAM commuters in 
Northern Cook County (a) and Lake County (b). For work locations, 
145 workplaces are identified in Chicago CBD using Google Maps (Fig. 
2(c)). For each potential AAM commuter, we randomly pick one out of 
the 145 workplaces as his/her work location.

While income is a critical determining factor, the willingness of 
commuters to use AAM also depends on how close the suburb vertiport 
is to home.1 To this end, we consider that only those potential AAM 
commuters whose home locations are within a square zone of five 
square miles centered around the suburb vertiport will take AAM. 
Through a trial-and-error process, the suburb vertiport location for 
which the square zone encompasses the most potential AAM commuters 
is identified for each scenario, as shown in Fig.  2(a)-2(b). The CBD 
vertiport location is similarly determined. However, instead of looking 
into how many potential AAM commuters are encompassed, we seek 
to minimize the overall travel distance from the vertiport to the 145 
identified workplaces. The CBD vertiport location is shown in Fig.  2(c).

Apart from distance, other factors can affect the propensity of 
a commuter to take AAM as well [28–30]. It is likely that not all 

1 In CBD, the area is dense and relatively small. As such, we assume that 
commuters will walk from the CBD vertiport to the work location.
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commuters with an annual income above $150,000 will take AAM. 
Conversely, some commuters even with a lower income may be willing 
to take AAM for commuting. As AAM has not been deployed for 
commuting, inherent uncertainties exist when predicting the AAM com-
muting demand. To partially capture the uncertainties, in the numerical 
experiments we generate and test 10 instances for each AAM commut-
ing scenario. In each instance, the home and job locations (as well 
as the time window) of each AAM commuter are randomly generated 
within the commuter’s census track in the suburb and in Chicago CBD. 
In Appendix  B.3, we further experiment with higher demand levels, 
although the focus is on solution time. In addition to these efforts, more 
behavioral studies will be needed to better understand and forecast the 
AAM demand for commuting.

Temporal distribution of demand: Besides the spatial distribution, the 
temporal distribution of AAM commuter demand needs to be specified 
as well. As already described in Section 3, each AAM commuter has a 
time window for commuting characterized by the commuter’s earliest 
possible departure time from the origin vertiport and the latest pos-
sible arrival time at the destination vertiport. Informed by the actual 
temporal pattern of commuter trips in a day [31], we assume that 
the earliest departure time of AAM commuters in each travel direction 
follows a truncated normal distribution: one between 6:00–10:00 AM 
(mean at 8:00 am) for commuting from the suburb to CBD; the other 
between 2:00–6:00 PM (mean at 4:00 pm) for commuting from CBD 
to the suburb, both with a standard deviation of 0.5 h. To illustrate, 
Fig.  3 displays the temporal distribution of earliest departure time of 
the commuters generated in Fig.  2 on the Northern Cook County-CBD 
route.

For each AAM commuter, we perform a random draw from each 
of the truncated normal distributions to generate the earliest departure 
time for morning and evening commutes. Considering that the length 
of a time step is set to five minutes in our numerical experiments, we 
convert the generated earliest departure time to the corresponding time 
step index. For example, if the generated earliest departure time for 
AAM commuter 𝑝 is 6:47 am, it falls into the 10th time step starting 
from 6:00 am, i.e., 𝑡𝑝𝑒 = 10. For the latest possible arrival time step 𝑡𝑝𝑎, 
it is obtained by adding a random number to 𝑡𝑝𝑒 . Given that the it takes 
each AAM commuter about 15 min vertiport-to-vertiport on the North-
ern Cook County-CBD route and about 20 min on the Lake County-CBD 
route,2 the random number is drawn from set {3, 4, 5, 6, 7, 8} for the 
Northern Cook County-CBD route and from set {4, 5, 6, 7, 8, 9} for the 
Lake County-CBD route. In other words, a value between 15 min and 
40 min is added to the earliest possible departure time to obtain the 
latest possible arrival time on the Northern Cook County-CBD route. 
Likewise, on the Lake County-CBD route.

4.2. Model parameters

4.2.1. eVTOL models
Two eVTOL models are specified: Joby S4 and Lilium Jet (Fig.  4), 

which represent two distinct eVTOL aircraft designs. Joby S4 employs 
a conventional fixed-wing configuration with six tilting electric ro-
tors, enabling smooth transitions between vertical and horizontal flight 
and accommodating four passengers plus a pilot. In contrast, Lilium 
Jet features a ducted fan propulsion system integrated into a canard 
wing configuration, with 36 electric ducted fans distributed across its 
wings. The emphasis of Lilium Jet on advanced fan integration con-
tributes to its enhanced aerodynamic efficiency and payload—carrying 
up to six passengers plus a pilot. Both models utilize a vectored thrust 
configuration.

2 The vertiport-to-vertiport time for AAM commuters is calculated as the 
eVTOL flight time plus three minutes to capture commuter boarding/disem-
barking from the eVTOL. How eVTOL flight time is calculated is described in 
Section 4.2.2.
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Fig. 2. (a) Home locations in Lake County, (b) home locations in Northern Cook County, and (c) work locations in Chicago CBD, generated for commuters with an annual income 
above $150,000.

Fig. 3. Earliest departure time distribution of AAM commuters on Northern Cook County-CBD route.

Fig. 4. The two eVTOL models considered: (a) Joby S4 and (b) Lilium Jet.
Source: Vertical Flight Society [32,33].
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4.2.2. eVTOL cost, energy use, and emission factors
The cost of an eVTOL flight consists of variable operating cost 

and capital cost. For variable operating cost, which includes crew and 
avionics cost, vehicle maintenance cost, and infrastructure cost, the 
estimates in [34] are adopted, at $366/hour for Joby S4 and $397/hour 
for Lilium Jet after excluding energy cost and capital cost. The energy 
cost is excluded as it is already counted in the charging cost in the 
objective function (1) of the optimization model. In addition, as we 
distinguish the energy use between an in-service flight and a relocation 
eVTOL flight, it is separately counting energy use for in-service and 
relocation flights. The capital cost is separately counted in our model 
as well, because our objective function (1) expresses capital cost as a 
function of the eVTOL fleet size. For capital cost, Joby S4 is estimated at 
$1,400,000 [33], while Lilium Jet at $7,000,000 [35]. The significantly 
greater cost of Lilium Jet can be attributed to its more complex and 
powerful propulsion system, more advanced aerodynamic design with 
a canard wing configuration, and a larger airframe.

Applying the above cost information to the study area, the values 
of the eVTOL cost parameters in the optimization model are derived. 
Specifically, the distance between the Northern Cook County vertiport 
and the CBD vertiport is 13 miles, while the distance between the Lake 
County vertiport and the CBD vertiport is 24.2 miles. Assuming an 
eVTOL cruise speed of 150 mph [4,36], we obtain the cruise time for an 
eVTOL flight. Apart from cruise, we further add two minutes for eVTOL 
climb and descent and one minute for takeoff and landing hovers to 
the total time of an eVTOL flight [37]. Then, the eVTOL flight time is 
multiplied by the variable operating cost per hour to obtain the variable 
operating cost per flight, at $50 for Joby S4 and $54 for Lilium Jet for 
flying on the Northern Cook County-CBD route, and at $77 for Joby S4 
and $83 for Lilium Jet for flying on the Lake County-CBD route. Note 
that because energy cost is excluded, the variable operating cost per 
flight is considered the same for an in-service flight and a relocation 
flight. For capital cost per flight, we assume a service life of 30 years 
for eVTOLs, 260 operation days in a year, and a 3% discount factor. 
This results in a daily capital cost of $275 for Joby S4 and $1374 for 
Lilium Jet.

For energy use per eVTOL flight, we employ the approach in Kasli-
wal et al. [37]. For the interest of space, details about the approach 
are presented in Appendix  A. On the Northern Cook County-CBD route, 
Joby S4 consumes 62.8 kWh for an in-service flight and 50.9 kWh for 
a relocation flight, while Lilium Jet uses 82.9 kWh and 66.3 kWh, 
respectively. On the Lake County-CBD route, Joby S4 requires 87.0 
kWh for an in-service flight and 70.6 kWh for a relocation flight, while 
Lilium Jet consumes 115.0 kWh and 91.9 kWh, respectively. The energy 
cost per flight, which is captured by the charging cost after a flight in 
the optimization model, is then calculated using the average energy 
price in the state of Illinois, which is $0.10/kWh [38], multiplied by 
the energy consumed in a flight. For the Northern Cook County-CBD 
route, Joby S4 incurs a charging cost of $6.5 after an in-service flight 
and $5.3 after a relocation flight. Lilium Jet incurs a charging cost of 
$8.6 after an in-service flight and $6.9 after a relocation flight. For the 
Lake County-CBD route, Joby S4 incurs a charging cost of $9.1 after an 
in-service flight and $7.4 after a relocation flight. Lilium Jet incurs a 
charging cost of $12 after an in-service flight and $8.6 after a relocation 
flight. To calculate the CO2 emissions of a flight, the energy used by a 
flight is multiplied by an appropriate emission factor. The emissions 
stem from electricity generation. In the state of Illinois, the emission 
factor of electricity generation is 0.314 kg CO2/kWh.

4.2.3. Ground vehicle cost, energy use, and emission factors
As eVTOL cannot fly to passengers’ doorsteps, using AAM for com-

muting still involves ground transportation for vertiport access/egress. 
At the suburban end, we assume that an AAM passenger will drive from 
his/her home to the suburb vertiport. At the CBD end, we consider that 
an AAM passenger will walk between his/her office building and the 
CBD vertiport. The latter consideration is reasonable given the small 
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size and very high building density of the CBD area. Thus, to calculate 
the total energy use, accounting for the energy use of auto driving 
is needed. Moreover, as we desire to compare the cost, energy use, 
and CO2 emissions of commuting by AAM and auto driving, obtaining 
appropriate ground vehicle cost, energy use, and emission factors will 
be necessary.

To this end, two types of cars are considered for auto driving: 
gasoline and electric. The gasoline car model is Toyota Corolla, with 
an operating cost of $0.63/mile for local travel and $0.59/mile for 
highway travel [39]. The electric car model is Tesla Model 3, which 
has lower operating costs of $0.44/mile for local travel and $0.42/mile 
for highway travel [40]. For energy use, Toyota Corolla has a fuel 
efficiency of 32 miles/gallon for local travel and 41 miles/gallon for 
highway travel [41]. Given that a gallon of gasoline contains 33.7 kWh 
of energy [42], the energy consumption rates for Toyota Corolla is 
1.05 kWh/mile for local travel and 0.82 kWh/mile for highway travel. 
For Tesla Model 3, it can achieve a greater energy efficiency, at 0.29 
kWh/mile for local travel and 0.32 kWh/mile for highway travel [43].

For CO2 emission, Toyota Corolla has a tailpipe emission factor of 
9.00 kg CO2/gallon [44]. In addition, a ‘well-to-use’ emission factor of 
2.14 kg CO2/gallon [45] is incorporated to account for CO2 emissions 
during production, refining, and transportation of the fuel before reach-
ing the vehicle. To be consistent with the CO2 emission calculation for 
eVTOLs, the two emission factors are combined, resulting in a total 
emission factor of 11.02 kg CO2/gallon. Dividing this by the car’s fuel 
efficiency gives emission factors of 0.34 kg CO2/mile for local street 
travel and 0.27 kg CO2/mile for highway travel. The CO2 emission 
factor of Tesla Model 3 is obtained by multiplying its energy efficiency 
values by the emission factor of electricity generation in Illinois, which 
is 0.31 kg CO2/kWh. This yields the CO2 emission factors of Tesla 
Model 3 of 0.09 kg CO2/mile for local travel and 0.10 kg CO2/mile 
for highway travel.

4.2.4. Vertiport capital cost
The cost associated with vertiports consists of two parts: (1) capital 

cost and (2) operating cost. Recall in Section 4.2.2 that the eVTOL cost 
includes infrastructure cost which captures the expenses of operating 
vertiports. Therefore, only vertiport capital cost is specified here. Con-
ceptually, the capital cost of a vertiport depends on the vertiport size. In 
this study, we make a simplification that the capital cost of a vertiport 
is proportional to the total number of pads (for takeoff/landing and 
parking/charging) the vertiport has. Thus, it is important to have an 
estimate of the capital cost per pad.

While existing estimates of vertiport capital cost are scarce, we 
follow Johnston et al. [46] which gives the capital cost of a medium-
size vertiport with three takeoff/landing pads and six parking/charging 
pads to be $650,000. The capital cost per pad is obtained by dividing 
$650,000 by nine (which is the total number of pads). Since the 
objective function is about daily cost, we amortize the capital cost per 
pad, assuming a service life of 30 years, 260 operation days in a year, 
and a 3% discount factor. This yields a unit capital cost of $14.2 per 
pad per day.

The capital cost of a vertiport used in objective function (1) is then 
obtained by multiplying the unit capital cost above by the number of 
pads at the vertiport. Because all eVTOLs start operations from the 
suburb vertiport at the beginning of the day, the minimum number 
of parking/charging pads at the suburb vertiport is set equal to the 
eVTOL fleet size. Moreover, at the early stage of AAM deployment, 
eVTOL operations are expected to be in relatively simple and small in 
size. As such, we consider that a vertiport has two takeoff and landing 
pads to meet the minimum requirement of simultaneous takeoff and 
landing operations (i.e., one for takeoff and one for landing) in a time 
step. The total number of pads at the suburb vertiport is thus equal to 
the minimum number of parking/charging pads plus two. For the CBD 
vertiport, given the space constraint in CBD, we consider only three 
parking/charging pads in addition to the two takeoff/landing pads.
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5. Numerical experiments: results

Now we proceed to implementing the optimization model in Sec-
tion 3. The model, which is a mixed-integer linear program, is coded in 
Spyder Python 5.4.2 and solved using the SCIP optimization suite on a 
MacBook Pro with Intel Core i5 2.3 GHz dual-core processor and 8 GB 
of memory. Considering the randomness in AAM commuter demand, 
for each scenario 10 problem instances are randomly generated. Given 
an instance, we start from a large eVTOL fleet size and gradually reduce 
it, until a feasible solution cannot be obtained. In this process, we find 
that the objective function monotonically decreases. As such, we set the 
eVTOL fleet size at the minimum number that yields a feasible optimal 
solution.

In the rest of this section, the numerical results are mostly presented 
in the form of the average over the 10 generated instances for each 
scenario. When very detailed results such as travel time distribution 
of AAM commuters and flight operation schedules, only the results for 
the first generated instance are presented. The results for the other 
instances are not presented as they are very similar. All the instances 
can be solved very fast: for the Northern Cook County-CBD scenario, 
the solution time is within 26 s over all the 20 instances generated (10 
instances times two eVTOL models); for the Lake County-CBD scenario, 
the solution time is within 22 s over all the 20 instances generated. 
Apart from the results reported in this section, sensitivity analysis is 
further conducted to investigate how the results change as values for 
some key parameters change. For the interest of space, details about 
the sensitivity analysis results are relegated to Appendix  B.

5.1. Daily AAM operating cost

Fig.  5 shows the daily AAM operating cost averaged over 10 in-
stances for each of the two scenarios. For each scenario, both Joby 
S4 and Lilium Jet are tested. Using Joby S4, the daily AAM operating 
cost is about $27,300 for serving Northern Cook County-CBD and 
$22,700 for serving Lake County-CBD, which are significantly lower 
(31.5% and 30.8%) than using Lilium Jet. The cost difference is mainly 
attributed to substantially higher capital cost of Lilium Jet ($7,000,000 
vs. $1,400,000 for Joby S4). On the other hand, Lilium Jet enjoys a 
lower variable operating cost for both in-service and relocation flying 
due to its larger seating capacity and relatively comparable variable 
operating cost per flight.

Fig.  5 shows that the eVTOL variable operating costs incurred by 
in-service flights and by relocation flights are comparable. This can be 
attributed to two factors. First is the directional nature of commuter de-
mand: in the morning from suburb to CBD and in the evening from CBD 
to suburb. In our numerical experiments, we observe that a relocation 
flight often occurs right after an in-service flight, which helps rebalance 
between eVTOL supply and commuter demand. This directional nature 
of commuter demand is further exacerbated by the limited space at 
the CBD vertiport, which contributes further to the need for eVTOL 
relocation. The considerable need for eVTOL relocation is illustrated 
in the distribution of eVTOLs in different states in Figs.  6–7.

Besides eVTOL variable operating cost, eVTOL charging cost and 
vertiport capital cost hold a small fraction in the daily operating 
expenses. In particular, the vertiport capital cost is almost negligible 
compared to the other cost items. The results suggest that the most 
important driving force for the economic feasibility of AAM is related 
to its operational efficiency, not much so about the capital investment 
in vertiports.

5.2. Travel time comparison with auto driving

A notable advantage of AAM for commuting is the potential travel 
time saving compared to auto driving. For each AAM commuter, we 
calculate the door-to-door travel time as the sum of: (1) travel time 
between home and suburb vertiport, (2) eVTOL flight time between 
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the vertiports, and (3) travel time between work location and CBD 
vertiport. For travel between home and suburb vertiport, it is assumed 
that the commuter will drive. This travel time is calculated using 
Google Distance Matrix API, which incorporates historical traffic data 
to accurately estimate the driving time during peak hours. For auto 
commuting, the travel time is calculated in a similar fashion. The only 
difference is that driving lasts all the way from one’s home to work 
location (or vice versa). The travel time between the two vertiports 
is eVTOL flight time plus three minutes which capture commuter 
boarding/disembarking from the eVTOL. For travel between the CBD 
vertiport and work location, the time needed is estimated using Google 
Maps, assuming a walking speed of 3 mph (4.8 km/h).

Recall that in this study, the proposed AAM for commuting system 
is a reservation-based system. Upon receiving the travel time window 
information from the commuters, the AAM operator runs the opti-
mization model to generate an operation plan, including the departure 
time of each commuter from the origin vertiport. An AAM commuter 
will arrive at the origin vertiport right before its scheduled flight 
departure time. Consequently, waiting at the origin vertiport will be 
very minimum, thus neglected in our calculation.

Fig.  8 presents the distributions of door-to-door travel time of the 
commuters if they choose AAM vs. auto driving. The distributions 
are based on the first generated instance for each scenario. For the 
other instances, the distributions are similar and thus not presented 
for brevity. For Northern Cook County-CBD commute, Fig.  8(a) clearly 
shows that the travel time distributions of using AAM and auto driving 
do not have an overlap. All commuters will experience a travel time 
saving by taking AAM. The average door-to-door commute time by 
AAM is 30 min, as opposed to 56 min by auto, or 26 min of time 
saving. For Lake County-CBD commute, Fig.  8(b) shows an even larger 
disparity between the travel time distributions of using AAM and using 
auto. The average door-to-door commute time by AAM is 36 min, as 
opposed to 68 min by auto, or 32 min of time saving. Overall, using 
AAM cuts commute time by almost half.

It is worth noting that the calculation of the commute time does 
not directly rely on the optimization solution (as long as the solution 
accommodates all AAM commuter demand). The travel time saving 
results will be used together with the operating cost results from 
the optimization solution to come up with generalized travel cost for 
comparison between AAM and auto commuting. This is presented next.

5.3. Generalized travel cost comparison with auto commuting

Using the results from the previous two subsections, we proceed to 
calculating the generalized travel cost of AAM and auto commuting. 
For AAM commuting, the generalized travel cost of a commuter in a 
day, which involves a morning trip from home to work location and 
an evening trip from work location back to home, is composed of 
three parts. The first part is the daily AAM operating cost borne by a 
commuter, which is obtained by dividing the total daily operating cost 
by the number of commuters.3 The second part is the auto operating 
cost associated with driving between home and the suburb vertiport. 
For illustration, here we assume gasoline cars for this part of driving. 
The cost is calculated by multiplying the per mile operating cost by the 
mileage between home and the suburb vertiport, times two (to account 
for morning and evening trips). The mileage information is obtained 
using Google Distance Matrix API.

For the third part, it is about the travel time-related cost, which 
relates to commuter value of time (VOT). We follow a recent estimate 
of Boddupalli et al. [29], who provide separate traveler VOT distri-
butions while taking eVTOL, driving, and out-of-vehicle. Assuming 

3 This part could be more accurately measured as the fare paid by com-
muters to take eVTOL. However, as this study does not deal with AAM pricing, 
we use AAM operating cost borne by a commuter as a proxy.
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Fig. 5. Daily operating cost for AAM commuting.
that higher-income travelers are associated with higher VOTs, we first 
identify the percentage of the commuters with income greater than 
$150,000 in the overall commuter population based on the LODES data. 
We find that these commuters account for the top 6.5% on the Northern 
Cook County-CBD route and the top 8.5% on the Lake County-CBD 
route. Given these percentages, we pick the 95th percentile value in 
each of the three VOT distributions as the average VOT of the AAM 
commuters while taking eVTOL, driving, and out-of-vehicle (which 
in our context is walking). For a commuter, these VOT values are 
multiplied by the amount of time spent in taking eVTOL, driving, and 
walking, and then summed together to yield the travel time-related 
cost.

For auto commuting, the generalized travel cost of a commuter 
is calculated in a similar way. The auto operating cost is derived by 
multiplying the per mile operating cost specified in Section 4.2.3 by 
the mileage on local streets and highways that a commuter incurs in a 
day. The mileage information is again obtained from Google Distance 
Matrix API. As both gasoline and electric are considered, two operating 
costs are calculated for auto commuting. The travel time-related cost is 
calculated by multiplying the traveler VOT for driving by the amount 
of time spent if driving door-to-door between home and work location.

Fig.  9 displays the generalized travel cost per commuter in a day, 
averaged over all AAM commuters and all the generated instances. In 
each commuting scenario, four bars are presented: AAM commuting 
using Joby S4, AAM commuting using Lilium Jet, auto commuting by 
gasoline car, and auto commuting by electric car. We can see that for 
both Northern Cook County-CBD and Lake County-CBD commuting, the 
vehicle operating cost is always significantly higher using AAM. The 
higher vehicle operating cost is offset by the lower travel time-related 
cost using AAM. Overall, the generalized travel cost per commuter in 
a day will be lower by AAM than by auto. In particular, using Joby 
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S4 yields the lowest generalized travel cost, which is about 22%–25% 
lower than if using gasoline cars in the two commuting scenarios.

5.4. Energy consumption and CO2 emissions

We apply the energy and emission factors described in
Sections 4.2.2–4.2.3 to the optimization results to compute the energy 
consumption and CO2 emissions when AAM is used for commuting. 
For comparison, the energy consumption and CO2 emissions by auto 
commuting are also calculated. Fig.  10 reports the total energy use 
results: the colored solid bars show the averages of the generated 
instances, while the error bar at the top of each solid bar displays the 
range of the total energy use from the individual generated instances. 
Overall, the error bars are short, suggesting consistency of the results 
across the different instances. Considering that we have two eVTOL 
models and two types of cars (gasoline and electric), the energy 
consumption is calculated for six cases: four involving AAM and two 
for auto commuting. For AAM commuting, the energy consumption 
is broken down into the energy used by in-service eVTOL flights, 
relocation eVTOL flights, and ground mode (auto), which corresponds 
to driving between home and the suburb vertiport.

Three observations are worth discussing. First, regardless of the 
commuting scenarios and the eVTOL models, AAM commuting always 
consumes substantially more energy than auto commuting. Compared 
to cars which travel on the ground, flying in the air requires sub-
stantially more energy not only for cruise but also for takeoff hover, 
landing hover, climb, and descent. These non-cruise phases account for 
a significant portion of the energy use of an eVTOL flight [21]. The 
difference in energy consumption is particularly prominent if electric 
cars are used for commuting.
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Fig. 6. eVTOL operations on Northern Cook County-CBD route.
Second, relocation eVTOL flights consume about the same energy 
as in-service flights. Together, relocation and in-service flights hold the 
bulk of the total energy consumption, whereas ground travel between 
home and the suburb vertiport account for only a small fraction. If 
we just look at the energy consumption from in-service flying and 
ground travel for vertiport access, the energy use of AAM commuting 
is lower than auto commuting by gasoline car. For people not thinking 
carefully enough about the AAM operational details, this could lead 
to an incorrect conclusion that using AAM for commuting would be 
energy attractive. However, this ignores the crucial fact that, due to 
the inherently unbalanced nature of commute traffic and space limit at 
a CBD vertiport, eVTOL relocation is necessary and results in a much 
higher total energy consumption for AAM commuting.
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Third, between Lilium Jet and Joby S4, using Lilium Jet leads to 
lower energy consumption. While a single Joby S4 flight requires less 
energy than a single Lilium Jet flight, as is shown in Section 4.2.2, a 
Lilium Jet flight has 50% greater seating capacity. As a consequence, 
per seat energy consumption for Lilium Jet is lower. The larger seating 
capacity of Lilium Jet also means fewer flights to accommodate the 
same AAM commuting demand. Overall, the energy consumption using 
Lilium Jet is less than the energy consumption using Joby S4.

Fig.  11 shows the CO2 emission results. Given the close association 
between energy consumption and CO2 emissions, it is not surpris-
ing that the relativity of the CO2 emissions resembles that of energy 
consumption in Fig.  10. AAM commuting emits more CO2 than auto 
commuting. Among the four cases of AAM commuting, Lilium Jet + 
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Fig. 7. eVTOL operations on Lake County-CBD route.
electric car as the ground mode results in the least emission. Still, it 
is significantly higher than using auto for commuting. Overall, AAM 
commuting does not seem to be more attractive than auto commuting 
in terms of energy consumption and CO2 emissions, at least with the 
current eVTOL performance.

6. Discussions and conclusion

The numerical experiments provide several insights into using AAM 
for commuting in a metropolitan area. First, the most significant driver 
for using AAM to commute is the potential savings in travel time. Our 
numerical results demonstrate that all commuters will experience a 
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sizable reduction in travel time. Moreover, the longer the commut-
ing distance, the greater the travel time saving that AAM can bring 
compared to auto driving, which is clearly shown by the separation 
of the travel time distributions between using AAM and using auto 
in the two commuting scenarios (Fig.  8). Thus, from the travel time 
reduction perspective, AAM may be more attractive for commuters who 
live farther away from their work locations.

Second, eVTOLs are likely to be expensive to own and operate, at 
least in the early stage of AAM deployment. As such, using AAM will 
incur greater vehicle operating cost than using auto for commuting, 
even with the fact that an eVTOL flight can carry multiple travelers and 
only one traveler in the car for auto driving. The significant need for 
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Fig. 8. Travel time distributions for AAM and auto commuting: (a) Northern Cook County-CBD and (b) Lake County-CBD.
Fig. 9. Generalized travel cost per commuter (GC: gasoline car; EC: electric car).
eVTOL relocation—due to the inherent directional nature of commuter 
demand, adds to the eVTOL operating cost and exacerbates the cost 
difference with respect to auto commuting. Therefore, continuous im-
provement of eVTOL cost efficiency is needed to economically justify its 
potential use for commuting. To recover the operating cost, AAM opera-
tors may also explore revenue-generating opportunities using the empty 
seats on the relocation eVTOL flights, for example, letting relocating 
flights carry packages for delivery [9].

Third, when it comes to the generalized travel cost, the travel time 
saving benefit from taking eVTOL dominates over the effect of higher 
operating cost of eVTOL than auto driving. As a result, using AAM 
for commuting leads to a lower generalized travel cost per commuter. 
The generalized cost reduction could justify government support in the 
forms of R&D investment and subsidy to bring the eVTOL cost down 
and accelerate the AAM deployment. This can help reduce the operating 
cost of eVTOLs, which in turn attracts more travelers to use AAM. More 
travelers could create economies of scale which further brings down the 
eVTOL operating cost, thus a positive feedback loop.

Fourth, due to the significantly greater power requirement by eV-
TOLs to fly than by cars to travel on the ground, AAM for commuting 
will consume more energy and produce more CO2 emissions than auto 
driving. Future R&D efforts should focus on enhancing the energy 
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efficiency of eVTOLs. This will involve a multi-faceted approach encom-
passing aerodynamic, structural, battery, and propulsion advancements 
in eVTOL design. For example, the more streamlined airframe of Lilium 
Jet than Joby S4 can be a contributor to the reduced energy use. 
In addition, understanding the relationship between eVTOL power re-
quirement and seating capacity is also needed to design the right-sized 
eVTOL aircraft with the best energy and environmental performance.

Finally, the comparison between Joby S4 and Lilium Jet, reveals the 
relative attractiveness of the two eVTOL models. Joby S4, with its sim-
pler aerodynamic design and propulsion system, enjoys a significantly 
lower capital cost than Lilium Jet. This presents the main contributor 
to the smaller operating cost and generalized commuter travel cost 
by using Joby S4 for commuting. Despite the slightly higher energy 
consumption, Joby S4 is likely to be the choice for AAM operators. 
Beyond Joby S4 and Lilium Jet, more eVTOL models, especially those 
with distinct performance parameters, can be further investigated to 
identify the best eVTOL model and inform potential aircraft refinement.

This research presents a start toward understanding the potential of 
using AAM for commuting in metropolitan areas. A service network 
design model is developed to schedule eVTOLs to fly between two 
vertiports, one in the suburb and one in the in CBD, while respecting 
the operational constraints such as vertiport capacity limit and com-
muter time windows. Several interesting insights are generated from 
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Fig. 10. Comparison of energy consumption on (a) Northern Cook County-CBD route and (b) Lake County-CBD route (GC: gasoline car; EC: electric car).
the numerical experiments by implementing the model in the Chicago 
metropolitan area, which can be used to inform future eVTOL design 
and AAM deployment, to enhance the competitiveness of AAM as a 
viable option for commuting.

We suggest a few directions as possible extensions of the present 
research. First, this study considers AAM commuting between two 
vertiports. While it is likely to be the case at an early stage of AAM 
deployment, over time this new mode of transportation is expected to 
become more accepted by commuters. Consequently, the AAM operator 
will expand its service beyond one vertiport pair. Future research can 
be directed to the modeling and possibly tailored algorithm develop-
ment to deal with a multi-OD service network, e.g., by connecting CBD 
to multiple suburbs. Second, the extent to which the CBD vertiport 
capacity constrains eVTOL operations can be further investigated. With 
limited space, a vertiport in CBD is expected to be small in size. Future 
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research may explore having multiple vertiports at CBD, e.g., setting 
up vertiports on the rooftops of multiple high-rise buildings. Third, 
while the use of discrete time steps in a time-expanded network allows 
for absorbing operational uncertainties (e.g., if the eVTOL flight time 
deviates from the nominal flight time by a couple of minutes, it is likely 
that the time step for eVTOL arrival remains unchanged), it would 
be helpful to investigate additional ways, such as robust optimization, 
to account for the uncertainties. Lastly, in this research, we consider 
potential AAM commuters to be those with an annual income above a 
threshold. While this is probable, it is also possible that lower-income 
commuters have an interest in taking AAM to work. To this end, more 
elaborate behavioral studies will be needed to better understand and 
characterize the demand side of AAM commuting, including what and 
how socioeconomic and AAM operational factors influence the mode 
choice of commuters.



Transport Economics and Management 3 (2025) 135–152D. Perez et al.
Fig. 11. Comparison of CO2 emissions on (a) Northern Cook County-CBD route and (b) Lake County-CBD route (GC: gasoline car; EC: electric car).
CRediT authorship contribution statement

Daniel Perez: Writing – original draft, Visualization, Methodol-
ogy, Investigation, Formal analysis, Data curation. Heeseung Shon: 
Writing – review & editing, Validation, Supervision, Methodology, 
Investigation. Bo Zou: Writing – review & editing, Validation, Supervi-
sion, Resources, Methodology, Funding acquisition, Conceptualization. 
Kenneth Kuhn: Writing – review & editing, Validation, Supervision.

Declaration of competing interest

None.

Acknowledgment

This research was supported in part by the US National Science 
Foundation (NSF) under grant numbers 2112650 and 2330565. The 
148
support of the NSF is gratefully acknowledged. The authors would 
also like to thank the anonymous reviewers for their insightful and 
constructive comments, which helped us further strengthen the paper.

Appendix A. Calculating energy use of an eVTOL flight

An eVTOL flight profile is composed of five phases: takeoff hover, 
climb, cruise, descent, and landing hover (Fig.  A.12). Thus, the energy 
use of an eVTOL flight is the sum of energy use in the five phases. In 
each phase, the energy use is calculated as the required power multi-
plied by the time spent in the phase. In doing so, three assumptions are 
made [21,37]. First, the takeoff hover and the landing hover phases 
have the same energy requirements. Second, the additional energy 
required during climb as compared to cruise due to acceleration is 
approximately counterbalanced by the energy savings during descent 
compared to cruise due to deceleration. Consequently, assuming cruise 
performance for the whole duration of climb and descent is a good 
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Fig. A.12. eVTOL flight profile.
approximation. Third, we assume that an eVTOL cruises at an altitude 
of 1000 ft, with the rate of climb/descent at 1000 feet/minute.

The power during the hover phases, referred to as hover power, is 
calculated as: 

𝑃hover =
𝑤𝑔
𝜂ℎ

√

𝛿
2𝜌

(A.1)

where 𝑤 is the eVTOL weight, 𝑔 is gravity constant, 𝜂ℎ is hover system 
efficiency, 𝛿 is disk-loading, and 𝜌 is sea-level air density.

The power during the cruise phase, referred to as cruise power, is 
calculated as: 
𝑃cruise =

𝑚𝑔
𝐿
𝐷

𝑣
𝜂𝑐

(A.2)

where 𝑣 is cruise speed, 𝐿∕𝐷 is the lift-to-drag ratio (𝐿 stands for 
lift, the force that holds the eVTOL aloft; 𝐷 stands for drag, the 
aerodynamic resistance the eVTOL encounters while moving through 
the air), and 𝜂𝑐 is cruise system efficiency. We calculate the cruise 
power to determine the amount of energy required for an eVTOL to 
sustain steady-level flight at its cruising speed.

With Eq. (A.1)–(A.2), the total energy consumption for an eVTOL 
flight is calculated as follows: 

𝐸 =
2 ⋅ 𝑃hover ⋅ 𝑡hover + 𝑃cruise ⋅ (𝑡cruise + 120)

3600 ⋅ 𝐶𝐷 ⋅ 𝑃𝐷
(A.3)

In the above equation, 𝑡ℎ𝑜𝑣𝑒𝑟, set at 30 s for both the takeoff hover 
and the landing hover phases. For cruise time, two additional minutes 
(120 s) are added to account for the climb and descent phases as per 
the second assumption. CD is the battery charge–discharge efficiency. 
PD is primary-to-delivered electricity efficiency. In the denominator, 
3600 converts the calculated energy from kilowatt-seconds (kWs) to 
kilowatt-hours (kWh).

It should be noted that following the above equations allows us to 
distinguish the energy use between an in-service flight and a relocation 
flight by using different 𝑚’s. For Joby S4, the maximum gross weight 
is 2404 kg. Assuming that the average weight of a pilot/passenger is 
90 kg, the empty weight of Joby S4 is 1950 kg. Similarly, Lilium Jet has 
a maximum gross weight of 3175 kg with an empty weight of 2539 kg. 
For an in-service flight, it is assumed that all seats are occupied, i.e., the 
maximum gross weight is used for 𝑚.4 For relocation flights, only the 
pilot’s weight is added to the empty weight to obtain 𝑚. The parameters 
and their values in Eqs. (A.1)–(A.3) are summarized in Table  A.2.

Appendix B. Sensitivity analysis

The sensitivity analysis focuses on two crucial parameters: eVTOL 
operating cost per flight and eVTOL power requirement. The two 

4 This assumption of full seat occupancy is actually confirmed in numerical 
experiments: our results show that the average seat occupancy is above 0.98 
for Northern Cook County-CBD commute and above 0.97 for Lake County-CBD 
commute.
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Table A.2
Parameters values for eVTOL aircraft energy calculation.
Source: Vertical Flight Society [32,33],Zhang et al. [36],Kasliwal et al. [37].
 Parameter Symbol Value (Unit)  
 Joby S4 maximum gross weight 𝑚 2,404 kg  
 Joby S4 empty weight 𝑚 1,950 kg  
 Lilium Jet maximum gross weight 𝑚 3,175 kg  
 Lilium Jet empty weight 𝑚 2,539 kg  
 Gravitational acceleration 𝑔 9.81 m/s2  
 Cruise speed 𝑣 150 mph (67.1 m/s) 
 Hover system efficiency 𝜂ℎ 0.63  
 Cruise system efficiency 𝜂𝑐 0.765  
 Cruise lift-to-drag ratio 𝐿∕𝐷 17  
 Sea-level air density 𝜌 1.225 kg/m3  
 Disk loading 𝛿 450 N/m2  
 Battery charge–discharge efficiency 𝐶𝐷 0.9  
 Primary-to-delivered electricity efficiency 𝑃𝐷 0.408  

parameters are chosen because of their significant impact on the total 
operating cost, energy use, and CO2 emissions in the proposed AAM 
system. To preserve clarity of the results, the sensitivity analysis is 
performed based on the first generated instance for each commute route 
and each eVTOL model. In addition, we vary the demand level and 
examine how the solution time of the optimization model will change. 
This examination is useful to understand the scalability of the model.

B.1. eVTOL operating cost

In this appendix, we reduce the variable operating cost per eVTOL 
flight by 10%, 20%, 30%, 40%, and 50%, to examine how AAM daily 
operating cost will change. The reductions are applied to both commute 
routes and both eVTOL models, as shown in Fig.  B.13. We can see that 
using Joby S4, the AAM daily operating cost exhibits greater sensitivity 
to the per flight variable operating cost than Lilium Jet. The greater 
sensitivity can be attributed to the larger share of the eVTOL variable 
operating cost in the daily operating cost for Joby S4 (Fig.  5). In 
contrast, for Lilium Jet, the eVTOL capital cost holds a significantly 
larger share in daily operating expenses. Comparing Figs.  B.13 and 9, it 
can be said that when the per flight variable cost is reduced by 50%, the 
vehicle operating cost for Joby S4 will be reduced by about 35% and 
become comparable to that of auto commuting by gasoline car on both 
routes. However, a more significant difference will remain for Lilium 
Jet.

B.2. eVTOL power requirements

In this appendix, we reduce the eVTOL power requirement across all 
phases by 10%, 20%, 30%, 40%, and 50%, to examine how daily total 
energy consumption and CO2 emissions will change if using AAM to 
commute. Figs.  B.14–B.15 report the results. The energy consumption 
by auto commuting is also plotted as horizontal lines (black for gasoline 
car and purple for electric car). On the Northern Cook County-CBD 
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Fig. B.13. Daily operating cost under different variable cost per flight for Joby S4 and Lilium Jet on (a) Northern Cook County-CBD route and (b) Lake County-CBD route.
Fig. B.14. Sensitivity of energy usage to eVTOL power reduction on (a) Northern Cook County-CBD route and (b) Lake County-CBD route (GC: Gasoline car; EC: Electric car).
route, when the eVTOL power requirement is reduced by 50%, the 
energy use of AAM commuting will fall below that of auto commuting 
by gasoline car. On the Lake County-CBD route, the extent of reduction 
will be less for Joby S4 with an electric car for ground access and for 
Lilium Jet: the energy use of AAM commuting will go below that of 
auto commuting by gasoline car when the eVTOL power requirement is 
reduced by 40%. However, the energy use will still be much higher than 
auto commuting if electric cars are used. The trend is similar for CO2
emissions, although the extent of reduction is slightly less. For example, 
when Lilium Jet is used, the eVTOL power requirement only needs to 
be reduced by 30% in order for the CO2 emissions to fall below those 
by gasoline auto commuting. Overall, these percentages indicate that 
substantial efforts are required to reduce eVTOL power requirements 
in order to make AAM energy- and emission-competitive with auto for 
commuting.

B.3. Model solution time under different demand levels

In this appendix, we examine how the solution time of the optimiza-
tion model will change as we increase the problem size, as reflected 
in the commuter demand level. For Northern Cook County-CBD, we 
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increase the commuter demand from 357 to 600, 900, 1200, and 1500. 
For Lake County-CBD, we increase the commuter demand from 199 
to 400, 600, 800, and 1000. We assume that the number of takeoff 
and landing pads at a vertiport (almost) proportionately increases. For 
example, when demand increases from 357 to 600, the number of 
takeoff and landing pads at the CBD vertiport is increased from two to 
four. When the demand further increases to 900, the number of takeoff 
and landing pads at the CBD vertiport is increased further from four to 
six. As the number of AAM commuters is increased by up to five times, 
we are likely to cover and even go above the highest possible AAM 
commuter demand in early-stage AAM deployment. The generation of 
commuter home and work locations and time windows follows the 
same procedure as in Section 4.1.

Fig.  B.16 shows the solution time. We can see that the solution time 
increases almost linearly with the AAM commuter demand, on each 
commute route and with each eVTOL model. On the Northern Cook 
County-CBD route, the longest solution time is less than 80 s. On the 
Lake County-CBD route, the longest solution time is less than 60 s. 
Given that the long solution time corresponds to very high demand 
levels and the proposed AAM system is reservation based, solving the 
optimization model using the SCIP optimization suite seems to be 
acceptable for eVTOL scheduling.
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Fig. B.15. Sensitivity of CO2 emissions to eVTOL power reduction on (a) Northern Cook County-CBD route and (b) Lake County-CBD route (GC: gasoline car; EC: electric car).
Fig. B.16. Solution times with different commuter demand: (a) Northern Cook County-CBD and (b) Lake County-CBD.
Data availability

Data will be made available on request.
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