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QUADCOPTER CONTROL USING SINGLE NETWORK ADAPTIVE CRITICS

Alberto Velazquez
University of Texas Rio Grande Valley,

Edinburg, TX

Lei Xu
Kent State University, Kent, OH

Tohid Sardarmehni∗
California State University, Northridge,

Northridge, CA

ABSTRACT
In this paper, optimal tracking control is found for an input-

affine nonlinear quadcopter using Single Network Adaptive Crit-
ics (SNAC). The quadcopter dynamics consists of twelve states
and four controls. The states are defined using two related refer-
ence frames: the earth frame, which describes the position and
angles, and the body frame, which describes the linear and angu-
lar velocities. The quadcopter has six outputs and four controls,
so it is an underactuated nonlinear system. The optimal con-
trol for the system is derived by solving a discrete-time recursive
Hamilton-Jacobi-Bellman equation using a linear in-parameter
neural network. The neural network is trained to find a map-
ping between a target costate vector and the current states. The
network’s weights are iteratively trained using the least-squares
approximation method until the maximum number of iterations
or convergence is reached, and training begins at the final time
and proceeds backward to the initial time. The trained neural
controller applies online optimal feedback control that tracks a
trajectory, minimizes control effort, and satisfies the optimality
condition. The SNAC method provides a controller that can han-
dle all initial conditions within the domain of training and all
times less than the training’s final time.
Keywords: Quadcopter, Optimal Control, Adaptive Dy-

namic Programming, Reinforcement Learning

1. INTRODUCTION
Small unmanned aerial vehicles (UAVs) can be used for

a variety of tasks such as surveillance, reconnaissance, search
and rescue, forestry, flood and fire tracking, package delivery,
and agriculture. [1–4]. Small aerial drones are generally cost-
effective and expendable, allowing missions into dangerous areas
without endangering lives or otherwise requiring significant cost
or human effort.
Several multi-rotor UAV designs exist [5, 6], with quad-

copters being the most popular and commercially available.
Quadcopter drones have four rotors in a square configuration

∗Corresponding author: t.sardarmehni@gmail.com

and are located an equal distance from the center of mass. De-
spite having relatively simple hardware, quadcopter drones are
nonlinear, underactuated, and complex systems with six degrees
of freedom and four inputs. Several control strategies have been
implemented to control quadcopter drones including: LQR and
PID controllers [7, 8], backstepping controls [9, 10], slidingmode
controls [10–12], feedback linearization [12], dynamic inversion
[13], and reinforcement learning [14].
The control of a quadcopter can be formulated as an opti-

mal control question. The principle of optimality states that for
whatever the result of a set of initial states and controls, the re-
maining controls must be optimal [15]. Dynamic programming
is one such way to achieve this. Dynamic programming solves
a recursive Hamilton-Jacobi-Bellman equation backward in time
to generate optimal controls that minimize a cost function [16].
This closed-loop control method uses discretized states to make
a lookup table of optimal controls that can include constraints.
However, dynamic programming is limited by the curse of dimen-
sionality. As the number of state space, output space, and action
space variables increases, the required data grows exponentially,
limiting dynamic programming’s practicality [17].
Approximate Dynamic Programming (ADP) is a solution

to the curse of dimensionality [17]. ADP achieves this by es-
timating the value function rather than knowing the exact value
function through the backward iterations seen in dynamic pro-
gramming. This allows ADP to solve a problem forward in time.
The solution to ADP comes in the form of various adaptive-
critic (AC) algorithms [18]. Dual Heuristic Programming (DHP)
is an AC algorithm that uses a dual-network structure where
the actor-network maps the state and control variables while the
critic-network maps between the state and costate [19, 20]. Sin-
gle Network Adaptive Critics (SNAC) performs DHP using a
single network [19]. SNAC implementations result in a decrease
in training effort, computational resources, and storage memory
[20].
In this paper, Finite-SNAC Algorithm 1 developed in

Ref. [20] is used to control the quadcopter drone model derived
in Ref. [21]. The quadcopter’s state-space dynamics are divided
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into kinematic and kinetic models. Finite-SNAC is applied to the
kinematicmodelwith the linear and angular velocities as controls.
To improve SNAC’s performance, the states, the controls, and the
reference trajectory are nondimensionalized and scaled. A he-
lical trajectory is provided as the position reference signal, and
the attitude reference signal is then derived by using small-angle
approximations and defining the quadcopter’s yaw. This results
in a reference signal for all six degrees of freedom. Finite-SNAC
uses a linear in-parameter neural network to find the mapping
between the costate and the states. The trained neural network
is used to find the next set of optimal controls given the current
states. These controls (the linear and angular velocities) are used
to algebraically derive the input controls to the overall quadcopter
model. The resulting controller is then applied online for optimal
feedback control that tracks the helical trajectory.
The rest of the paper is organized as follows: Section 2 de-

scribes the quadcopter dynamics and implementation, the Finite-
SNAC algorithm is discussed in Section 3, the results and sim-
ulations are presented in Section 4, and Section 5 provides the
conclusion and future work.

2. QUADCOPTER MODEL

Two reference systems need to be related to describe the
mathematical model of the quadcopter: the fixed earth frame and
the mobile aircraft body frame. The fixed earth frame uses the
North-East-Down (ONED) coordinate system while the mobile
aircraft body frame describes the Aircraft-Body-Center (OABC)
coordinate system. Linear and angular position are defined in the
earth frame as the following vector: [x y z 𝜙 𝜃 𝜓]T. Euler angles
are used to describe the orientating of the quadcopter: 𝜙 describes
the roll, 𝜃 describes the pitch, and 𝜓 describes the yaw. In the
aircraft body frame, linear and angular velocities are defined as:
[u v w p q r]T.
To relate themobile aircraft body reference frame to the fixed

earth reference frame, a combination of the following rotational
matrices is used:

𝑅𝑥 (𝜙) =
⎡⎢⎢⎢⎢⎣
1 0 0
0 𝑐𝑜𝑠(𝜙) −𝑠𝑖𝑛(𝜙)
0 𝑠𝑖𝑛(𝜙) 𝑐𝑜𝑠(𝜙)

⎤⎥⎥⎥⎥⎦ (1)

𝑅𝑦 (𝜃) =
⎡⎢⎢⎢⎢⎣
𝑐𝑜𝑠(𝜃) 0 𝑠𝑖𝑛(𝜃)
0 1 0

−𝑠𝑖𝑛(𝜃) 0 𝑐𝑜𝑠(𝜃)

⎤⎥⎥⎥⎥⎦ (2)

𝑅𝑧 (𝜓) =
⎡⎢⎢⎢⎢⎣
𝑐𝑜𝑠(𝜓) −𝑠𝑖𝑛(𝜓) 0
𝑠𝑖𝑛(𝜓) 𝑐𝑜𝑠(𝜓) 0
0 0 1

⎤⎥⎥⎥⎥⎦ (3)

Different combinations of rotational matrices can result
in greatly simplified dynamics that omit the yaw 𝜓, such as
Rxyz(𝜙,𝜃,𝜓). The Rzyx(𝜙,𝜃,𝜓) combination is used in this pa-
per.

𝑅𝑧𝑦𝑥 (𝜙, 𝜃, 𝜓) = (4)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐(𝜃)𝑐(𝜓) 𝑠(𝜙)𝑠(𝜃)𝑐(𝜓)
− 𝑐(𝜙)𝑠(𝜓)

𝑐(𝜙)𝑠(𝜃)𝑐(𝜓)
+ 𝑠(𝜙)𝑠(𝜓)

𝑐(𝜃)𝑠(𝜓) 𝑠(𝜙)𝑠(𝜃)𝑠(𝜓)
+ 𝑐(𝜙)𝑐(𝜓)

𝑐(𝜙)𝑠(𝜃)𝑠(𝜓)
− 𝑠(𝜙)𝑐(𝜓)

−𝑠(𝜃) 𝑠(𝜙)𝑐(𝜃) 𝑐(𝜙)𝑐(𝜃)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Here 𝑐() = cos() and 𝑠() = sin().
The rotational matrix will be used to relate the derivative

of the linear position and the linear velocities between the two
reference frames. The following angular transformation matrix
can be used to relate the derivative of the angular positions to the
angular velocities in a similar manner:

𝑇 (𝜙, 𝜃) =
⎡⎢⎢⎢⎢⎣
1 𝑠𝑖𝑛(𝜙)𝑡𝑎𝑛(𝜃) 𝑐𝑜𝑠(𝜙)𝑡𝑎𝑛(𝜃)
0 𝑐𝑜𝑠(𝜙) −𝑠𝑖𝑛(𝜙)
0 𝑠𝑖𝑛(𝜙)

𝑐𝑜𝑠 (𝜃)
𝑐𝑜𝑠 (𝜙)
𝑐𝑜𝑠 (𝜃)

⎤⎥⎥⎥⎥⎦ (5)

Relating the two reference frames results in the kinematics
of the quadcopter:

�̇� = 𝑢[𝑐(𝜓)𝑐(𝜃)]
− 𝑣[𝑐(𝜙)𝑠(𝜓) − 𝑐(𝜓)𝑠(𝜙)𝑠(𝜃)]
+ 𝑤[𝑠(𝜙)𝑠(𝜓) + 𝑐(𝜙)𝑐(𝜓)𝑠(𝜃)]

�̇� = 𝑢[𝑐(𝜃)𝑠(𝜓)]
+ 𝑣[𝑐(𝜙)𝑐(𝜓) + 𝑠(𝜙)𝑠(𝜓)𝑠(𝜃)]
− 𝑤[𝑐(𝜓)𝑠(𝜙) − 𝑐(𝜙)𝑠(𝜓)𝑠(𝜃)]

�̇� = − 𝑢[𝑠(𝜃)] + 𝑣[𝑐(𝜃)𝑠(𝜙)] + 𝑤[𝑐(𝜙)𝑐(𝜃)]

�̇� = 𝑝 + 𝑞 [𝑠(𝜙)𝑡 (𝜃)] + 𝑟 [𝑐(𝜙)𝑡 (𝜃)]

�̇� = 𝑞 [𝑐(𝜙)] − 𝑟 [𝑠(𝜙)]

�̇� = 𝑞
𝑠(𝜙)
𝑐(𝜃) + 𝑟

𝑐(𝜙)
𝑐(𝜃)

(6)

Using Newton’s law for the total force and Euler’s equation
for the total torque, the following dynamic model in the body
frame can be found:

𝑓𝑥 = 𝑚(�̇� + 𝑞𝑤 − 𝑟𝑣)
𝑓𝑦 = 𝑚(�̇� − 𝑝𝑤 + 𝑟𝑢)
𝑓𝑧 = 𝑚(�̇� + 𝑝𝑣 − 𝑞𝑢)

𝑚𝑥 = �̇�𝐼𝑥 − 𝑞𝑟𝐼𝑦 + 𝑞𝑟𝐼𝑧

𝑚𝑦 = �̇�𝐼𝑦 + 𝑝𝑟𝐼𝑥 − 𝑝𝑟𝐼𝑧

𝑚𝑧 = �̇� 𝐼𝑧 − 𝑝𝑞𝐼𝑥 + 𝑝𝑞𝐼𝑦

(7)

When solving for the external forces and moments, gyro-
scopic moments due to the motors, the ground effect, and the
effects of environmental factors such as wind are ignored. The
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resulting values are shown below:

𝑓𝑥 = −𝑚𝑔[𝑠(𝜃)]
𝑓𝑦 = 𝑚𝑔[𝑐(𝜃)𝑠(𝜙)]
𝑓𝑧 = 𝑚𝑔[𝑐(𝜃)𝑐(𝜙)]

𝑚𝑥 = 𝜏𝑥

𝑚𝑦 = 𝜏𝑦

𝑚𝑧 = 𝜏𝑧

(8)

From Eq. (7), Eq. (8), and the kinematics of Eq. (6), the
state-space model for the quadcopter can be found [21]:

�̇� = 𝑢[𝑐(𝜓)𝑐(𝜃)]
− 𝑣[𝑐(𝜙)𝑠(𝜓) − 𝑐(𝜓)𝑠(𝜙)𝑠(𝜃)]
+ 𝑤[𝑠(𝜙)𝑠(𝜓) + 𝑐(𝜙)𝑐(𝜓)𝑠(𝜃)]

�̇� = 𝑢[𝑐(𝜃)𝑠(𝜓)]
+ 𝑣[𝑐(𝜙)𝑐(𝜓) + 𝑠(𝜙)𝑠(𝜓)𝑠(𝜃)]
− 𝑤[𝑐(𝜓)𝑠(𝜙) − 𝑐(𝜙)𝑠(𝜓)𝑠(𝜃)]

�̇� = − 𝑢[𝑠(𝜃)] + 𝑣[𝑐(𝜃)𝑠(𝜙)] + 𝑤[𝑐(𝜙)𝑐(𝜃)]
�̇� = 𝑝 + 𝑟 [𝑐(𝜙)𝑡 (𝜃)] + 𝑞 [𝑠(𝜙)𝑡 (𝜃)]
�̇� = 𝑞 [𝑐(𝜙)] − 𝑟 [𝑠(𝜙)]

�̇� = 𝑞
𝑠(𝜙)
𝑐(𝜃) + 𝑟

𝑐(𝜙)
𝑐(𝜃)

�̇� = 𝑟𝑣 − 𝑞𝑤 − 𝑔[𝑠(𝜃)]
�̇� = 𝑝𝑤 − 𝑟𝑢 + 𝑔[𝑠(𝜙)𝑐(𝜃)]

�̇� = 𝑞𝑢 − 𝑝𝑣 + 𝑔[𝑐(𝜃)𝑐(𝜙)] − 𝑓𝑡

𝑚

�̇� =
𝐼𝑦 − 𝐼𝑧

𝐼𝑥
𝑟𝑞 + 𝜏𝑥

𝐼𝑥

�̇� =
𝐼𝑧 − 𝐼𝑥

𝐼𝑦
𝑝𝑟 +

𝜏𝑦

𝐼𝑦

�̇� =
𝐼𝑥 − 𝐼𝑦

𝐼𝑧
𝑝𝑞 + 𝜏𝑧

𝐼𝑧

(9)

The quadcopter model is defined as an input-affine system:
�̇� = f(x) + g(x)u where x = [x y z 𝜙 𝜃 𝜓 u v w p q r]T represents
the state vector and u = [ft 𝜏x 𝜏y 𝜏z]T is the control vector.

2.1 Kinematic and Algebraic Controls
Equation (9) describes a complex, nonlinear, and underactu-

ated system. Separating the system into the kinematics of Eq. (6)
and into the dynamics of Eq. (7) simplifies solutions to the sys-
tem. Treating the linear and angular velocities, [u v w p q r]T, as
controls in Eq. (6) lets the actual control, u = [ft 𝜏x 𝜏y 𝜏z]T, be
found algebraically using the following:

𝑓𝑡 = 𝑚(−�̇� + 𝑞𝑢 − 𝑝𝑣 + 𝑔[𝑐(𝜃)𝑐(𝜙)])
𝜏𝑥 = �̇�𝐼𝑥 − (𝐼𝑦 − 𝐼𝑧)𝑟𝑞
𝜏𝑦 = �̇�𝐼𝑦 − (𝐼𝑧 − 𝐼𝑥)𝑝𝑟
𝜏𝑧 = �̇� 𝐼𝑧 − (𝐼𝑥 − 𝐼𝑦)𝑝𝑞

(10)

2.2 Reference Signal
Provided with a reference signal for the position, a refer-

ence signal for the angles can be generated based on small-angle

approximations [22]. Setting the yaw, 𝜓, to zero simplifies the
relations between position and angles; however, it prevents the
quadcopter from rotating, limiting applications where a fixed
component, like a camera, is used. The reference signal approxi-
mations are shown below.

𝑥 = − 𝜃
𝑓𝑡

𝑚

𝑦 = 𝜙
𝑓𝑡

𝑚

𝑧 = 𝑔 − 𝑓𝑡

𝑚

(11)

3. FINITE-SNAC
To utilize Finite-SNAC on the the quadcopter dynam-

ics derived in Eq. (9), the dynamics need to be described
as a continuous-time input-affine system: �̇�(𝑡) = 𝑓 (𝑥(𝑡)) +
𝑔(𝑥(𝑡))𝑢(𝑡). Where 𝑥 ∈ R𝑛 is the state vector, 𝑢 ∈ R𝑚 is the
control, 𝑓 : R𝑛 → R𝑛 is the drift dynamics of the system, and
𝑔 : R𝑛 → R𝑛×𝑚 is the control dynamics of the system. The inte-
gers n and m are the number of states and the number of controls,
respectively. This system is discritized using a small sample time,
Δ𝑡, to yield the following equation:

𝑥𝑘+1 = 𝐹 (𝑥𝑘) + 𝐺 (𝑥𝑘)𝑢𝑘 , 𝑘 ∈ [0, 1, ..., 𝑁 − 1] (12)

where k represents the time step, 𝑁 = 𝑡𝑓 /Δ𝑡, and 𝐹 (𝑥𝑘) =

𝑥𝑘 + Δ𝑡 𝑓 (𝑥𝑘) and 𝐺 (𝑥𝑘) = Δ𝑡𝑔(𝑥𝑘) are derived using Euler inte-
gration. In Finite-SNAC with trajectory tracking, the following
cost function is minimized:

𝐽 =
1
2
(𝑥𝑁 − 𝑟𝑁 )𝑇𝑆(𝑥𝑁 − 𝑟𝑁 )

+ 1
2

𝑁−1∑︂
𝑘=0

((𝑥𝑘 − 𝑟𝑘)𝑇𝑄(𝑥𝑘 − 𝑟𝑘) + 𝑢𝑇𝑘 𝑅𝑢𝑘)
(13)

where 𝑆 ∈ R𝑛×𝑛 and 𝑄 ∈ R𝑛×𝑛 are positive semi-definite matri-
ces, and 𝑅 ∈ R𝑚×𝑚 is a positive definite matrix for penalizing the
final states, states, and controls respectively. The reference signal
is denoted as 𝑟 . Minimizing the difference between the reference
signal and the states minimizes the cost function and tracks the
trajectory.
A discrete-time Hamilton-Jacobi-Bellmen (HJB) equation

can be derived from Eq. (13). It shows that the optimal cost-to-
go, denoted with *, is the minimization of the cost at step k plus
the cost from k+1 to N-1.

𝐽∗ (𝑥𝑘 , 𝑘) = min
𝑢𝑘

( 1
2
((𝑥𝑘 − 𝑟𝑘)𝑇𝑄(𝑥𝑘 − 𝑟𝑘) + 𝑢𝑇𝑘 𝑅𝑢𝑘)

+ 𝐽 (𝑥𝑘+1, 𝑘 + 1)), 𝑘 ∈ [0, 1, ..., 𝑁 − 1]
(14)

To find a closed-form optimal control, the optimality con-
dition: 𝜕𝐽 (𝑥𝑘 ,𝑘)

𝜕𝑢𝑘
= 0 must be satisfied. The optimal control is

shown below:

𝑢∗𝑘 = −𝑅−1𝐺 (𝑥𝑘)𝑇𝜆𝑘+1 (𝑥
𝑢∗
𝑘

𝑘+1), 𝑘 ∈ [0, 1, ..., 𝑁 − 1] (15)

where 𝑥𝑢
∗
𝑘

𝑘+1 is the state at time k+1 along policy 𝑢∗
𝑘
, and 𝜆𝑘+1

is the costate vector and can be defined based on the following
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equation:

𝜆𝑘 (𝑥𝑘) = 𝛿𝐽 (𝑥𝑘 , 𝑘)/𝛿𝑥𝑘 (16)

Finite-SNAC uses a neural network (NN) that outputs the
costate vector 𝜆𝑘+1 given the current state vector 𝑥𝑘 . The form of
the NN is shown below:

𝜆𝑘+1 = 𝑊𝑇
𝑘 𝜙(𝑥𝑘), 𝑘 ∈ [0, 1, ..., 𝑁 − 1] (17)

where 𝑊𝑘 is the time-dependent weight matrix and 𝜙(𝑥𝑘) is a
vector of smooth linearly-independent scalar basis functions. To
train the NN, target costate vectors need to be found. In the
final time step, N, the target costate vector, denoted with t, is the
following:

𝜆𝑡𝑁 = 𝑆(𝑥𝑁 − 𝑟𝑁 ) (18)

The target costate vector at k+1 can be defined as

𝜆𝑡𝑘+1 = 𝑄(𝑥𝑘+1 − 𝑟𝑘+1) + 𝐴𝑇
𝑘+1𝜆𝑘+2 (19)

where Ak+1 is equal to

𝐴𝑘+1 =
𝛿𝑥𝑘+2
𝛿𝑥𝑘+1

=
𝛿(𝐹 (𝑥𝑘+1) + 𝐺 (𝑥𝑘+1)𝑢𝑘+1)

𝛿𝑥𝑘+1
(20)

Substituting Eq. (12), Eq. (15), and Eq. (17) into Eq. (19)
results in the following:

𝜆𝑡𝑘+1 = 𝑄(𝐹 (𝑥𝑘) − 𝐺 (𝑥𝑘)𝑅−1𝐺 (𝑥𝑘)𝑇𝑊𝑇
𝑘 𝜙(𝑥𝑘) − 𝑟𝑘+1)

+ 𝐴𝑇
𝑘+1𝑊

𝑇
𝑘+1𝜙(𝐹 (𝑥𝑘) − 𝐺 (𝑥𝑘)𝑅−1𝐺 (𝑥𝑘)𝑇𝑊𝑇

𝑘 𝜙(𝑥𝑘))
(21)

Finite-SNAC is trained recursively starting at k = N-1 and
continuing backward to the initial time. Therefore, the value
𝑊𝑘+1 is known at step k. As the target costate vector in Eq. (21)
is a function of the current weights, the NN must be trained
iteratively with the weights initialized to a random set of values.
The training error can be defined as the difference between the
current costate output by the NN and the target costate:

𝑒𝑘 = 𝜆𝑘+1 − 𝜆𝑡𝑘+1 = 𝑊𝑇
𝑘 𝜙(𝑥𝑘) − 𝜆𝑡𝑘+1 (22)

Once a sufficiently low error is reached, or a maximum number
of iterations have passed, the training for step k is concluded and
step k-1 begins.
The procedure for training the neural network’s weights is

described in Algorithm 1.

4. RESULTS AND DISCUSSION
The Finite-SNAC algorithm is applied to the kinematics of

Eq. (6). Using unaltered states to train the neural network with
the least-squares method results in singular or badly scales val-
ues. This is due to the potential similarities between the smooth
linearly-independent scalar basis functions of 𝜙(𝑥𝑘), and the issue
is exacerbated by the difference in magnitude between the linear
positions and velocities and the angular positions and velocities.
Nondimensionalizaton and scaling improves the performance of

Algorithm 1 FINITE-SNAC ALGORITHM - REF. [20]
1: procedure Neural Network Training
2: Select an initial guess on𝑊0

𝑘
, 𝑘 = [0, 1, ..., 𝑁 − 1]

3: while 𝑒𝑁−1 (𝑥𝑁−1) < 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 do
4: Randomly select 𝑥𝑁−1 within the domain of interest
5: Calculate 𝜆𝑡

𝑁
through the process in Eq. (18)

6: Train weights𝑊𝑁−1 on input-target pair [𝑥𝑁−1, 𝜆𝑡𝑁 ]
7: Calculate training error 𝑒𝑁−1 (𝑥𝑁−1) using Eq. (22)
8: end while
9: for K = N-2 to 0 do
10: while 𝑒𝑘 (𝑥𝑘) < 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 do
11: Randomly select state vector 𝑥𝑘
12: Calculate 𝜆𝑡

𝑘+1 through the process in Eq. (21)
13: Train weights𝑊𝑘 on input-target pair [𝑥𝑘 , 𝜆𝑡𝑘+1]
14: Calculate training error 𝑒𝑘 (𝑥𝑘) Eq. (22)
15: end while
16: end for
17: return Trained weights: W
18: end procedure

the Finite-SNAC algorithm. An example of an Euler integrated,
nondimensionalized state-space equation is shown below:

𝜃𝑘+1 = 𝜃𝑘 +
Δ𝑡

Θ
(�̄�𝑘𝑄 [𝑐(𝜙𝑘Φ)] − 𝑟𝑘𝑅[𝑠(𝜙𝑘Φ)]) (23)

where 𝜃, 𝜙, �̄�, and 𝑟 represent the respective nondimensionalized
states. Θ, Φ, Q, and R represent the nondimensionalizing and
scaling values for their respective states. The same approach was
applied to the remainder of the state-space equations in Eq. (9).
The values of the nondimensionalization terms were arbitrarily
chosen to ensure better scaling of the states. Nondimensionaliza-
tion has a significant effect on reducing training divergence and
improving network performance.
The reference signal is defined as a helix that begins and

circles about the origin while increasing in height at a constant
velocity. Equation (11) was used to find the reference signal
for the six degrees of freedom of the quadcopter’s kinematics.
Figure 1a and Fig. 1b show the Finite-SNAC controller tracking
the nondimensionalized position and angles effectively. Figure 1c
and Fig. 1d show the optimal, nondimensionalized linear and
angular velocities that are required to track the helical trajectory
as seen in Fig. 2.
Using the values of Fig. 1c and Fig. 1d, the control u = [ft

𝜏x 𝜏y 𝜏z]T can be found using Eq (10). The nondimensionalized
results are seen in Fig. 3a. The controls are lightly filtered to
reduce the overall noise of the signals. Applying the controls to
the state-space system inEq. (9) results in the nondimensionalized
trajectory shown in Fig. 3b. The results show the quadcopter
trajectory deviating from the reference trajectory over time. This
occurs regardless of filtering. The deviation is likely due to
instabilities during the initial moments of simulations.
The results in Fig. 3b do not use online optimal feedback

control. The desired optimal linear and angular velocities of
Figure 1c and Fig. 1d were calculated until the final time. The
desired velocities were then used to find the controls, u = [ft 𝜏x 𝜏y
𝜏z]T, using Eq. (10), and they were then propagated to the system
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FIGURE 1: FINITE-SNAC CONTROLLING A QUADCOPTER’S KINEMATICS

FIGURE 2: FINITE-SNAC CONTROLLER TRACKING A HELICAL TRAJECTORY
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FIGURE 3: ALGEBRAIC CONTROLS AND RESULTING 3D TRAJECTORY

independently.
Implementing online optimal feedback control, where the op-

timal linear and angular velocities found with Eq. (15) are passed
to Eq. (10) at each time step, resulted in divergence. Further
research into divergence in the Finite-SNAC algorithm, particu-
larly the linear in-parameter neural network and the domain of
training, is needed.

5. CONCLUSION
The Finite-SNACalgorithmwas used on a quadcopter’s kine-

matics to find the optimal linear and angular velocities that track
a certain trajectory. The result was used to algebraically find the
optimal controls for the quadcopter’s state-space dynamics. How-
ever, this solution failed to effectively track the trajectory. Future
work into quadcopter control using Finite-SNAC can implement
deep neural networks, include environmental perturbations such
as wind in the dynamics, and apply online optimal feedback con-
trol to make the system more robust.

ACKNOWLEDGMENTS
This work was partially supported by the U.S. Department

of Homeland Security under the award number 21STSLA00009-
01-00, and by the U.S. National Science Foundation under the
award number 2112650.

REFERENCES
[1] Lee, Dongwoo, Kim, Seungkeun and Suk, Jiny-
oung. “Formation flight of unmanned aerial ve-
hicles using track guidance.” Aerospace Science
and Technology Vol. 76 (2018): pp. 412–420.
DOI https://doi.org/10.1016/j.ast.2018.01.026. URL
https://www.sciencedirect.com/science/article/pii/
S1270963817302006.

[2] Baldazo, David, Parras, Juan and Zazo, Santiago. “De-
centralized Multi-Agent Deep Reinforcement Learning in
Swarms of Drones for Flood Monitoring.” (2019): pp. 1–
5DOI 10.23919/EUSIPCO.2019.8903067.

[3] Julian, Kyle D. and Kochenderfer, Mykel J. “Dis-
tributed Wildfire Surveillance with Autonomous Aircraft
using Deep Reinforcement Learning.” (2018). DOI
10.48550/ARXIV.1810.04244. URL https://arxiv.org/abs/
1810.04244.

[4] Frachtenberg, Eitan. “Practical Drone Delivery.” Com-
puter Vol. 52 No. 12 (2019): pp. 53–57. DOI
10.1109/MC.2019.2942290.

[5] Mehmood, Hamza, Nakamura, Takuma and Johnson,
Eric N. “A maneuverability analysis of a novel hexaro-
tor UAV concept.” 2016 International Conference on Un-
manned Aircraft Systems (ICUAS): pp. 437–446. 2016. DOI
10.1109/ICUAS.2016.7502576.

[6] Zhu, He, Nie, Hong, Zhang, Limao, Wei, Xiaohui and
Zhang, Ming. “Design and assessment of octocopter drones
with improved aerodynamic efficiency and performance.”
Aerospace Science and Technology Vol. 106 (2020): p.
106206. DOI https://doi.org/10.1016/j.ast.2020.106206.
URL https://www.sciencedirect.com/science/article/pii/
S1270963820308889.

[7] Argentim, Lucas M., Rezende, Willian C., Santos, Paulo E.
and Aguiar, Renato A. “PID, LQR and LQR-PID on a
quadcopter platform.” 2013 International Conference on
Informatics, Electronics and Vision (ICIEV): pp. 1–6. 2013.
DOI 10.1109/ICIEV.2013.6572698.

[8] Bouabdallah, S., Noth, A. and Siegwart, R. “PID vs LQ con-
trol techniques applied to an indoor micro quadrotor.” 2004
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS) (IEEE Cat. No.04CH37566), Vol. 3: pp.
2451–2456 vol.3. 2004. DOI 10.1109/IROS.2004.1389776.

6 Copyright © 2022 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/IM

EC
E/proceedings-pdf/IM

EC
E2022/86670/V005T07A035/6981474/v005t07a035-im

ece2022-96834.pdf by U
niversity O

f Texas At El Paso user on 12 April 2023

https://doi.org/https://doi.org/10.1016/j.ast.2018.01.026
https://www.sciencedirect.com/science/article/pii/S1270963817302006
https://www.sciencedirect.com/science/article/pii/S1270963817302006
https://doi.org/10.23919/EUSIPCO.2019.8903067
https://doi.org/10.48550/ARXIV.1810.04244
https://arxiv.org/abs/1810.04244
https://arxiv.org/abs/1810.04244
https://doi.org/10.1109/MC.2019.2942290
https://doi.org/10.1109/ICUAS.2016.7502576
https://doi.org/https://doi.org/10.1016/j.ast.2020.106206
https://www.sciencedirect.com/science/article/pii/S1270963820308889
https://www.sciencedirect.com/science/article/pii/S1270963820308889
https://doi.org/10.1109/ICIEV.2013.6572698
https://doi.org/10.1109/IROS.2004.1389776


[9] Madani, Tarek and Benallegue, Abdelaziz. “Backstepping
Control for a Quadrotor Helicopter.” 2006 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems: pp.
3255–3260. 2006. DOI 10.1109/IROS.2006.282433.

[10] Bouabdallah, S. and Siegwart, R. “Backstepping and
Sliding-mode Techniques Applied to an Indoor Micro
Quadrotor.” Proceedings of the 2005 IEEE International
Conference on Robotics and Automation: pp. 2247–2252.
2005. DOI 10.1109/ROBOT.2005.1570447.

[11] Xu, Rong and Ozguner, Umit. “Sliding Mode Control of
a Quadrotor Helicopter.” Proceedings of the 45th IEEE
Conference on Decision and Control: pp. 4957–4962. 2006.
DOI 10.1109/CDC.2006.377588.

[12] Lee, Daewon, Kim, H. Jin and Sastry, S. Shankar. “Feed-
back linearization vs. adaptive sliding mode control for a
quadrotor helicopter.” International Journal of Control,
Automation and Systems Vol. 7 (2009): pp. 419–428.

[13] Das, Abhijit, Subbarao, Kamesh and Lewis, Frank L.
“Dynamic inversion with zero-dynamics stabilisation for
quadrotor control.” Iet Control Theory and Applications
Vol. 3 (2009): pp. 303–314.

[14] Koch, William, Mancuso, Renato, West, Richard and
Bestavros, Azer. “Reinforcement learning for UAV at-
titude control.” (2019). URL https://open.bu.edu/handle/
2144/40560.

[15] Bellman, Richard and Kalaba, Robert E. “Dynamic Pro-
gramming and Modern Control Theory.” 1966.

[16] Kirk, Donald E. “Optimal control theory : an introduction.”
1970.

[17] Powell, Warren B. “Approximate Dynamic Programming:
Solving the Curses of Dimensionality.” 2011.

[18] Konda, Vijay and Tsitsiklis, John. “Actor-Critic
Algorithms.” Solla, S., Leen, T. and Müller,
K. (eds.). Advances in Neural Information Pro-
cessing Systems, Vol. 12. 1999. MIT Press.
URL https://proceedings.neurips.cc/paper/1999/file/
6449f44a102fde848669bdd9eb6b76fa-Paper.pdf.

[19] Padhi, Radhakant, Unnikrishnan, Nishant, Wang,
Xiaohua and Balakrishnan, S.N. “A single net-
work adaptive critic (SNAC) architecture for optimal
control synthesis for a class of nonlinear systems.”
Neural Networks Vol. 19 No. 10 (2006): pp. 1648–
1660. DOI https://doi.org/10.1016/j.neunet.2006.08.010.
URL https://www.sciencedirect.com/science/article/pii/
S0893608006001912.

[20] Heydari, Ali and Balakrishnan, S.N. “Fixed-final-
time optimal tracking control of input-affine nonlinear
systems.” Neurocomputing Vol. 129 (2014): pp. 528–
539. DOI https://doi.org/10.1016/j.neucom.2013.09.006.
URL https://www.sciencedirect.com/science/article/pii/
S0925231213009065.

[21] Sabatino, Francesco Di. “Quadrotor control: modeling,
nonlinearcontrol design, and simulation.” 2015.

[22] Clemente, Salvatore. “Quadrotor control: implementa-
tion,cooperation and human-vehicleinteraction.” 2015.

7 Copyright © 2022 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/IM

EC
E/proceedings-pdf/IM

EC
E2022/86670/V005T07A035/6981474/v005t07a035-im

ece2022-96834.pdf by U
niversity O

f Texas At El Paso user on 12 April 2023

https://doi.org/10.1109/IROS.2006.282433
https://doi.org/10.1109/ROBOT.2005.1570447
https://doi.org/10.1109/CDC.2006.377588
https://open.bu.edu/handle/2144/40560
https://open.bu.edu/handle/2144/40560
https://proceedings.neurips.cc/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://doi.org/https://doi.org/10.1016/j.neunet.2006.08.010
https://www.sciencedirect.com/science/article/pii/S0893608006001912
https://www.sciencedirect.com/science/article/pii/S0893608006001912
https://doi.org/https://doi.org/10.1016/j.neucom.2013.09.006
https://www.sciencedirect.com/science/article/pii/S0925231213009065
https://www.sciencedirect.com/science/article/pii/S0925231213009065

	Quadcopter Control Using Single Network Adaptive Critics
	Recommended Citation

	Abstract
	1 Introduction
	2 Quadcopter Model
	2.1 Kinematic and Algebraic Controls
	2.2 Reference Signal

	3 Finite-SNAC
	4 Results and Discussion
	5 Conclusion
	Acknowledgments
	References

