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Abstract
Accurate prediction of traffic flow dynamics is a key step towards effective congestion mitigation strategies. The dynamic 
nature of traffic flow and lack of comprehensive data coverage (e.g., availability of data at loop detector locations), however, 
have historically prevented accurate traffic state prediction, leading to the widespread utilization of reactive congestion 
mitigation strategies. The introduction of connected automated vehicles provides an opportunity to address this challenge. 
These vehicles rely on trajectory-level prediction of their surrounding traffic environment to plan a safe and efficient path. 
This study proposes a methodology to utilize the outcome of such predictions to estimate the future traffic state. Moreover, 
the same approach can be applied to data from connected vehicles for traffic state prediction. Since in many driving scenarios, 
more than one maneuver is feasible, it is more logical to predict the location of the vehicles in a probabilistic manner based 
on the probability of different maneuvers. The key contribution of this study is to introduce a methodology to convert such 
probabilistic trajectory predictions to aggregate traffic state predictions (i.e., flow, space–mean speed, and density). The key 
advantage of this approach (over directly predicting traffic state based on aggregated traffic data) is its ability to capture the 
interactions among vehicles to increase the accuracy of the prediction. The down side of this approach, on the other hand, is 
that any increase in the prediction horizon reduces the accuracy of prediction (due to the uncertainty in the vehicles’ interac-
tions and the increase in the possibility of different maneuvers). At the microscopic level, this study proposes a probability-
based version of the time–space diagram, and at the macroscopic level, this study proposes probabilistic estimates of flow, 
density, and space–mean speed using the trajectory-level predictions. To evaluate the effectiveness of the proposed approach 
in predicting traffic state, the mean absolute percentage error for each probabilistic macroscopic estimate is evaluated on 
multiple subsamples of the NGSIM US-101 and I-80 data sets. Moreover, while introducing this novel traffic state prediction 
approach, this study shows that the fundamental relation among the average traffic flow, density, and space–mean speed is 
still valid under the probabilistic formulations of this study.

Keywords Probabilistic traffic prediction · Fundamental diagram · Vehicle trajectory data

Introduction

Delaying the onset of traffic breakdown and congestion 
formation are the main objectives of any congestion pre-
vention and mitigation strategy. While a number of reactive 
strategies have been proposed over time (e.g., see Papageor-
giou et al. (1997) and Talebpour et al. (2013)), successful 

congestion management strategies rely on accurate predic-
tion of traffic flow dynamics (Elfar et al. 2019). Conven-
tionally, stationary vehicle detectors (e.g., inductive loops, 
piezoelectric sensors installed in the pavements, and cameras 
and radars installed on supporting structures) were utilized 
to monitor the traffic condition and provide the necessary 
data for traffic prediction. Accordingly, the available data 
only contained measurements along a very short segment 
of the road and have been mostly in the form of aggre-
gated measures (e.g., flow, occupancy/density, and average 
speed). Unfortunately, such data cannot accurately capture 
the evolution of traffic flow throughout the roadway (e.g., 
cannot fully capture the shockwave formation and propaga-
tion). While introducing multiple sensors along the roadway 
can slightly mitigate this challenge, many key traffic flow 
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features still cannot be captured due to the location-specific 
measurements by these sensors. For instance, Talebpour 
et al. (2013) showed that speed harmonization can prevent 
flow breakdown if the system can detect shockwave forma-
tion at its onset; which cannot be achieved with point meas-
urements from conventional sensors. In other words, by the 
time the shockwave reaches the sensor location, it might be 
impossible to prevent its propagation using common conges-
tion management strategies.

The dynamic nature of traffic flow combined with the 
aforementioned limitations of conventional data sources 
have historically prevented accurate traffic state predic-
tion, limiting the usage of predictive congestion manage-
ment strategies and leading to a widespread utilization of 
reactive methods. The introduction of connected automated 
vehicles provides an opportunity to address this challenge. 
Recent advances in vehicular communications have provided 
exceptional communications and data exchange opportuni-
ties between vehicles and their surroundings (Rahim et al. 
2021). Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastruc-
ture (V2I) communications enable monitoring the driving 
environment continuously over time and space and at indi-
vidual vehicle level. Such information can be utilized to pre-
dict the future trajectory of individual vehicles. Moreover, 
since connected automated vehicles rely on trajectory-level 
prediction of their surrounding traffic environment to plan 
a safe and efficient path, by sharing such predictions, one 
can estimate the future traffic state in a distributed manner 
(without relying on a centralized prediction based on con-
nected vehicles data).

Predicting the driving environment at the individual 
vehicle level is challenging due to the dynamic nature of 
the driving environment, the complex interactions among 
vehicles, and differences in driving behavior among dif-
ferent drivers. Structuring the driving task into multiple 
maneuvers based on the interactions among vehicles can 
improve vehicle trajectory prediction. These maneuvers 
represent the drivers’ possible responses to their sur-
rounding environment and interactions with other vehi-
cles. Obviously, each vehicle’s future trajectory changes 
depending on the driver’s choice of maneuver. Since in 
many driving scenarios, more than one maneuver is feasi-
ble, focusing on a single driving maneuver cannot provide 
a comprehensive picture of potential future trajectories. 
As a result, this study adopts a probabilistic approach to 
predict the future movement of the vehicles conditioned 
on different maneuvers and by considering the interactions 
among the vehicles. Accordingly, the main objective of 
this study is to introduce a methodology to convert such 
probabilistic trajectory predictions to aggregate traffic 
state predictions (i.e., flow, space–mean speed, and den-
sity). The key advantage of this approach (over directly 
predicting traffic state based on aggregated traffic data) 

is its ability to capture the impacts of interactions among 
vehicles on traffic flow dynamics to increase the accuracy 
of the predictions.

The prediction horizon depends on the planning horizon, 
and in general, a longer but accurate prediction horizon is 
preferred for congestion management. Unfortunately, the 
prediction accuracy is expected to decrease with the increase 
in the prediction horizon due to the uncertainty in drivers’ 
behavior and an increase in the possibility of various con-
figurations and outcomes (Zhou et al. 2019). Capturing and 
characterizing such uncertainties is critical to better adjust 
the congestion management strategies. This is another key 
advantage of the proposed approach over the traditional 
traffic state prediction methods based on aggregated speed, 
flow, and density data. While aggregated level data-driven 
methodologies provide the means to predict for any predic-
tion horizon, they mostly do not have the ability to explicitly 
capture the uncertainty in prediction as prediction horizon 
changes. In other words, their underlying models (that are 
well-trained for a particular prediction horizon) can be inca-
pable of accurately predicting for any horizon (other than the 
one that they have been trained to predict). Our proposed 
approach, on the other hand, provides a probabilistic trajec-
tory prediction for any time step between prediction time and 
the prediction horizon, accurately capturing and modeling 
the decrease in prediction accuracy as prediction horizon 
increases.

Accordingly, the main contributions of this study are 
threefold: (1) introducing a methodology to accurately pre-
dict the trajectory of the vehicles in the traffic stream while 
capturing all the interactions among vehicles; (2) introduc-
ing the concept of probabilistic time–space diagram and dis-
cuss its characteristics; and (3) proposing a set of method-
ologies to calculate probabilistic estimates of flow, density, 
and space–mean speed using the trajectory-level predictions. 
The traffic state prediction methodologies proposed in this 
study are based on the assumption of complete knowledge of 
the observed trajectory of all the vehicles in the study area 
considering a fully connected environment. Such informa-
tion is either provided through a fully connected environ-
ment or based on the data measured and shared with con-
nected and automated vehicles.

The remainder of this study is organized as follows: the 
following section provides a background on the existing 
macroscopic and vehicle trajectory prediction models. This 
section is followed by presenting the details on the adopted 
probabilistic trajectory prediction model at the microscopic 
level and introducing the proposed probabilistic traffic esti-
mates at the macroscopic level. Next, the presented proba-
bilistic traffic state prediction approach is evaluated using 
real-world vehicle trajectory data, and the results and a dis-
cussion on the findings are presented. Finally, the paper is 
concluded with some remarks and future research needs.
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Background

Macroscopic‑Level Traffic Prediction

Traffic prediction is one of the primary components of 
intelligent transportation systems. A traffic management 
system can implement appropriate traffic control meas-
ures based on the predicted traffic state. In addition, the 
energy management system in automated and connected 
vehicles can use traffic predictions to determine when to 
take control actions to optimize energy consumption. The 
process of traffic state prediction involves forecasting the 
state variables, such as flow, density, speed, and travel 
time, using observed data. Over the past two decades, a 
number of studies have proposed various methodologies 
for short-term (20 s up to 1hr) and long-term (1hr and 
more) traffic state prediction.

Different approaches to traffic state prediction use a 
variety of input data, traffic flow models, and estimation 
methodologies (Seo et al. 2017). Van Lint and Van Hins-
bergen (2012) grouped traffic prediction methodologies 
into naive, parametric, and non-parametric categories. A 
naive approach assumes that future traffic states remain 
the same as the current ones (Huisken and Berkum 2003) 
or that future observations will be similar to historical 
ones (Eglese et  al. 2006). The naive prediction meth-
ods are limited to situations, where the traffic conditions 
are stable over an extended period of time (notice that 
such situations are rare) or where the traffic patterns are 
nearly constant over time (e.g., daily, weekly). Parametric 
approaches refer to the methodologies that use a traffic 
flow model with parameters calibrated on historical data 
or in combination with new observations. The fundamen-
tal diagram represents the macroscopic characteristics of 
the traffic state and is a well-studied model of traffic flow. 
Accordingly, the fundamental diagram is mostly used in 
parametric traffic prediction and in conjunction with first- 
and second-order traffic flow models to estimate the state 
of the segments of roadways or networks based on noisy 
measurements collected from sensors or probe vehicles 
(Wang et al. 2009; Sun and Work 2014; Zheng and Su 
2016; Wang et al. 2016; Seo et al. 2016). Another type of 
parametric model is mesoscopic traffic prediction models. 
The mesoscopic models predict the traffic state by tracking 
individual vehicles considering the macroscopic state of 
the traveling links (Mahmassani et al. 2009). One of the 
main challenges of the parametric approach is the trade-
off between accuracy and complexity, especially when 
dealing with time-variant and abnormal traffic dynam-
ics. Alternatively, non-parametric approaches are mostly 
based on simple data-driven methods that do not directly 
incorporate traffic flow models. To predict traffic state, a 

variety of data analysis and machine learning techniques 
are employed. Among the common approaches are linear 
regression (Smith et al. 2003; Wilby et al. 2014), vari-
ous classes of neural networks (Chan et al. 2012; Lv et al. 
2015; Duan et al. 2016; Polson and Sokolov 2017), support 
vector regression (Su et al. 2007; Castro-Neto et al. 2009), 
and time-series forecasting (Chen et al. 2011; Kumar and 
Vanajakshi 2015).

As data have become more widely available in the past 
decade, data-driven methods for traffic prediction have been 
gaining attention. Majority of non-parametric traffic state 
prediction models revolve around aggregated and macro-
scopic traffic data as input to the models, and there are only 
a few studies utilizing the vehicle trajectories as input to the 
macroscopic prediction models (Elfar et al. 2018; Khajeh 
Hosseini and Talebpour 2019a; Khajeh-Hosseini and Taleb-
pour 2019b).As traffic flow and density increase (especially 
around the breakdown point), unexpected driving behaviors 
have an increasing impact on the traffic state and more com-
plex dynamics can be observed in the traffic flow (Ossen 
2008). As a result, better traffic predictions can be derived 
from capturing interactions among vehicles. Note that traf-
fic prediction has a large and growing body of literature as 
well as comprehensive reviews, such as Seo et al. (2017), 
which are recommended for more in-depth study to inter-
ested readers.

Vehicle Trajectory Prediction

Although vehicle trajectory data are at the core of any traf-
fic flow analysis, it has not been widely utilized for traffic 
state prediction. In fact, the majority of vehicle trajectory 
prediction methodologies has been developed to support 
the motion planning algorithms of automated vehicles. Pre-
dicting the movement of traffic agents in the surrounding 
driving environment is essential for safe path planning of 
the automated vehicles. Lefèvre et al. (2014) classifies the 
motion prediction methodologies based on their modeling 
hypotheses into three groups: (1) physics-based, (2) maneu-
ver-based, and (3) interaction-aware.

The physics-based model refers to the simple methodolo-
gies that consider the movements of vehicles with respect to 
dynamic or kinematic motion models without considering 
the vehicle’s maneuvers or interaction among traffic agents. 
Dynamic modeling is usually adopted in control applications 
for an ego vehicle. However, measuring a target vehicle’s 
position, speed, and acceleration is easier than measuring the 
forces resulting in the vehicle’s motion. Consequently, kin-
ematic models are simpler and more popular than dynamic 
models to predict a target vehicle’s future state (Lefèvre 
et al. 2014). Some studies, such as Khajeh Hosseini et al. 
(2019), assume that the data on the vehicle’s current state 
and the motion prediction model is adequate to estimate 
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the future state of the target vehicle without considering 
any uncertainties. Another group of studies, such as Batz 
et al. (2009); Abbas et al. (2020), consider uncertainties in 
measurements and adopt Kalman Filter in motion modeling. 
Monte Carlo methods can also be used to sample from input 
data for the motion model to simulate different possibilities 
of the target vehicle’s future state (Broadhurst et al. 2005). 
Unrealistic predictions can be removed in the post-process-
ing of trajectories or by eliminating unrealistic input to the 
motion models. The physics-based models, however, do not 
consider the vehicle’s maneuver or the interaction among 
vehicles, making them limited to short-term trajectory pre-
diction (Lefèvre et al. 2014).

Maneuver-based models recognize the different vehicle 
maneuvers and predict the vehicle’s movement consider-
ing the intended maneuver. In this approach, the intended 
maneuver is first detected by comparing the observed partial 
trajectory with a set of prototype trajectories for different 
maneuvers. Then, the trajectory of the vehicle is predicted 
based on the detected maneuver. In the prototype trajectory 
approach, it is assumed that the vehicles’ trajectories can 
be grouped into different motion patterns represented by 
prototype trajectories learned from previous observations 
(i.e., from a training set). Gaussian Process has proven to be 
a good modeling approach for trajectory prototyping (Goli 
et al. 2018; Tran and Firl 2014; Joseph et al. 2011). The par-
tially observed trajectory is compared to the prototype tra-
jectories, and the rest of the trajectory is predicted based on 
the closest prototype trajectory. Some other studies identify 
the vehicle’s maneuver by classifying the partially observed 
trajectory using machine learning approaches, such as sup-
port vector machine (Dou et al. 2016), multilayer perceptron 
(MLP) (Yoon and Kum 2016), logistic regression (Klin-
gelschmitt et al. 2014) or even recurrent neural networks 
(Khosroshahi 2017). Kinematic motion models predict the 
rest of the vehicle’s trajectory based on the detected maneu-
ver. Maneuver-based trajectory prediction models are more 
accurate than the simple physics-based models; however, the 
maneuver-based models also do not consider the full interac-
tion among the traffic agents that could impact the vehicle’s 
trajectory (Lefèvre et al. 2014).

Interaction-aware methodologies consider the interactions 
among traffic agents when predicting the maneuver and tra-
jectory of a target vehicle. A simple consideration of vehi-
cles’ interaction is using trajectory prototyping and drop-
ping the conflicting trajectories between the pair of vehicles 
(Lawitzky et al. 2013). Another approach is to consider 
pairwise interaction among all the vehicles in the driving 
environment; however, the number of pairwise combina-
tions increases quadratically with the number of vehicles in 
the scene. Some interaction-aware studies (Deo and Trivedi 
2018a; Liebner et al. 2012) simplify the problem by assum-
ing an asymmetric interaction between the target vehicle and 

environment, such that the environment impacts the target 
vehicle but the target vehicle does not impact the environ-
ment. The interaction-aware prediction methodologies are 
more accurate than the physics-based and maneuver-based 
methodologies as they consider the interdependency among 
the movement of traffic agents and consequently can be used 
for a longer prediction horizon (Lefèvre et al. 2014).

Recent trajectory prediction studies are mostly based on 
deep learning approaches considering the interaction among 
the vehicles. The interaction among vehicles is captured in 
the input representation of the driving environment to the 
deep learning prediction model (Mozaffari et al. 2020). The 
driving environment representation to these models could be 
in the form of trajectory history of the target vehicle and sur-
rounding vehicles (Deo and Trivedi 2018b; Ma et al. 2019), 
bird’s eye view representation of the processed surround-
ing environment (Deo and Trivedi 2018a; Cui et al. 2019; 
Sheng et al. 2022), or raw sensory data (Luo et al. 2018). 
The deep learning-based trajectory prediction models are 
mostly based on Recurrent neural networks (RNN) (Deo 
and Trivedi 2018b; Ma et al. 2019), convolutional neural 
networks (CNN) (Cui et al. 2019; Luo et al. 2018). or a 
combination of the two approaches (Deo and Trivedi 2018a). 
RNN architecture has a high capability to capture temporal 
dependencies in sequence data, and CNN architecture has 
a high capability to capture spatial dependencies in feature 
maps. Accordingly, the combination of two approaches 
seems suitable to capture both temporal and spatial depend-
encies in the traffic stream.

Methodology

The driving environment evolves as a result of interactions 
among individual vehicles. These interactions can be defined 
based on a combination of lateral and longitudinal maneu-
vers of vehicles in response to their driving environment. As 
discussed before, the accuracy of prediction at the individual 
vehicle level can increase by structuring the driving task into 
different maneuvers and considering the vehicles’ interac-
tions. In many driving scenarios, however, more than one 
maneuver is feasible. Therefore, to increase the realism of 
the predictions, the location of the vehicles should be esti-
mated in a probabilistic manner based on different maneu-
vers. Obviously, with the increase in the prediction horizon, 
the accuracy of prediction decays due to the uncertainty in 
the vehicles’ interactions and the increase in the possibility 
of different configurations and outcomes.

This issue can be partially resolved by aggregated level 
data-driven approaches. Those approaches can be trained to 
predict for any prediction horizon. The key downside of those 
approaches, however, is that they do not consider the interac-
tions among agents that form the traffic flow. To address this 
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shortcoming, this study proposes a methodology to capture the 
uncertainty in the prediction process. Our proposed approach 
provides a probabilistic trajectory prediction for any time step 
between the prediction time and the prediction horizon, accu-
rately capturing and modeling the decrease in prediction accu-
racy as prediction horizon increases. Moreover, utilizing the 
trajectory level predictions, this study proposes estimating the 
macroscopic traffic states (e.g., flow, density, and space–mean 
speed) by aggregating probabilistic individual-level predic-
tions. Accordingly, the prediction horizon can be extended 
at the microscopic level and interactions among vehicles can 
be captured at the macroscopic level. As discussed before, to 
capture the uncertainties, the macroscopic level predictions are 
also probabilistic in this approach.

Microscopic Level: Probabilistic Trajectory 
Prediction

The driving environment prediction at the individual vehicle 
level can be performed in the form of trajectory prediction. 
However, the dynamic nature of the driving environment, 
the interaction among vehicles, and the variation in driving 
behavior make predicting at the trajectory level challenging. 
The vehicle trajectory prediction can be improved by divid-
ing the driving task into different maneuvers and considering 
the vehicle’s interactions. In many driving scenarios, multi-
ple maneuvers are feasible, and focusing on a single driving 
maneuver may not be sufficient. Thus, it is more realistic to 
adopt a probabilistic trajectory prediction model that includes 
the possibility of different maneuvers and considers the inter-
actions among vehicles. This study utilizes the convolutional 
social pooling model proposed by Deo and Trivedi (2018a) 
as the core of individual vehicle trajectory prediction mod-
ule. This model predicts the probabilistic trajectory of a target 
vehicle for different longitudinal and lateral maneuvers by 
considering the observed history of its surrounding vehicles, 
and captures the interactions among the vehicles considering a 
bird’s eye view of the driving environment. At the time of pre-
diction, it is assumed that a complete knowledge of the history 
of the surrounding driving environment, H, is available (either 
from a fully connected vehicle environment or based on the 
sensor data collected from connected and automated vehicles 
at a high penetration rate.) The maneuver-based probabilistic 
trajectory prediction can then be defined based on

where the future trajectory, T, is predicted based on the 
observed history of the surrounding environment, H, and 
the combination of M possible maneuvers (i.e., mi for 
i = 1…M ). Θ is the parameters of the conditional prob-
ability distribution of the vehicle trajectory. The prediction 

(1)P(T|H) =

M∑

i=1

PΘ(T|H,mi)P(mi|H)

model can be trained to estimate Θ and P(mi|H) , the prob-
ability of individual maneuvers given the history.

The location of vehicle v over the roadway segment 
can be described with longitudinal and lateral coordinates 
of the vehicle ( Xv = [xv, yv]

T ). The probabilistic trajectory 
prediction model is trained to estimate the probability of 
every possible maneuver, as well as the future trajectory 
of vehicle v, in the form of the mean ( � ) and covariance 
( Σ ) of a bivariate normal distribution for every time step 
t in the future and for every maneuver mi:

This equation defines the probabilistic location of the vehicle 
considering one of the possible maneuvers. Accordingly, the 
probabilistic location of the vehicle can be defined based on 
a weighted summation of these bivariate Gaussian distribu-
tion models and the probability of each maneuver. Accord-
ingly, the probability density function of the vehicle’s loca-
tion, p(Xt) can be written as

In this bivariate Gaussian mixture model, P(mi) is the prob-
ability of taking maneuver mi , and Φ is the probability den-
sity function of the vehicle location for maneuver mi at time 
t. Utilizing these probabilistic trajectories, one can define 
probabilistic time–space diagram and utilize it to define the 
probabilistic macroscopic measures of traffic flow (i.e., flow, 
speed, density, and occupancy).

The convolutional social pooling model (Deo and 
Trivedi 2018a) uses an LSTM encoder–decoder network 
to predict the probability distribution of a target vehicle’s 
future location. The model estimates parameters of the 
conditional distribution of the target vehicle’s location, 
considering the observed trajectory histories. Moreo-
ver, this model expands each maneuver to different lat-
eral and longitudinal maneuvers. The lateral maneuvers 
include three movements of maintaining the lane and lane-
changing to the right and left. The longitudinal maneuvers 
include braking and not braking.

The convolutional social pooling model (Deo and 
Trivedi 2018a) is trained to predict the probability of dif-
ferent maneuvers (combination of lateral and longitudinal 
movements) of a target vehicle, as well as predicting the 
probabilistic location of the target in the form of the mean 
( � ) and covariance ( � ) of a bivariate normal distribution 
for every time step t in the future and for every maneuver 
m. In other words, this model predicts a separate set of 
parameters ( � ) for every time step in the prediction period 

(2)Xt,mi

v
∼ N(�t,mi

v
,

t,mi∑

v

)

(3)p(Xt) =

M∑

i=1

P(mi)Φ(Xt,mi |�t,mi ,

t,mi∑
)
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and for every maneuver. Accordingly, the output of the 
probabilistic trajectory prediction model are

where mi refers to maneuver i, and �mi
 refers to the set of the 

parameters of the bivariate normal distribution describing 
the target vehicle’s location for every time step in the future 
based on maneuver mi.

The original deep learning model of Deo and Trivedi 
(2018a) predicts the probability of each of the lateral and 
longitudinal maneuvers separately and assumes independ-
ence between the lateral and longitudinal maneuvers. 
Accordingly, Deo and Trivedi (2018a) estimate the prob-
ability of the combination of maneuvers based on the fol-
lowing equation:

In this equation, P(mi,j) is the probability of taking the 
maneuver that is a combination of lateral movement i (e.g., 
lane changing to the right) and longitudinal movement j 
(e.g., braking). Predicting the probability of the lateral and 
longitudinal maneuvers separately results in the same prob-
ability of longitudinal maneuver independent of the lateral 
maneuver and vice versa. In other words, the probability 
of deceleration would be independent of the vehicle main-
taining its current lane or moving to one of its neighbor-
ing lanes. However, the acceleration and deceleration due 
to a lateral maneuver depend on the new car following 
conditions (e.g., new leader) in the new lane. Accordingly, 
this study modifies the deep learning model to predict the 
joint probability of lateral and longitudinal maneuvers. 
The updated network is trained to predict the probability 
of six different maneuvers instead of predicting the prob-
ability of lateral and longitudinal movements separately. 
Each maneuver is a combination of lateral and longitudinal 
movements. In other words, the updated network is predict-
ing P(laterali, longitudinalj) directly rather than predicting 
P(laterali) and P(longitudinalj) separately.

This study adopts the lateral and longitudinal movement 
classification of Deo and Trivedi (2018a). Lateral move-
ments include lane changing to the right, lane changing 
to the left, and staying in the same lane, and longitudinal 

(4)
Probability of maneuvers

= [P(m1),P(m2),P(m3),P(m4),P(m5),P(m6)]

(5)

�m1
= [(�t,m1 , �t,m1 ), ..., (�t+tf ,m1 , �t+tf ,m1)]

�m2
= [(�t,m2 , �t,m2 ), ..., (�t+tf ,m2 , �t+tf ,m2)]

�m3
= [(�t,m3 , �t,m3 ), ..., (�t+tf ,m3 , �t+tf ,m3)]

�m4
= [(�t,m4 , �t,m4 ), ..., (�t+tf ,m4 , �t+tf ,m4)]

�m5
= [(�t,m5 , �t,m5 ), ..., (�t+tf ,m5 , �t+tf ,m5)]

�m6
= [(�t,m6 , �t,m6 ), ..., (�t+tf ,m6 , �t+tf ,m6)]

(6)
P(mi,j) = P(laterali, longitudinalj)

= P(laterali)P(longitudinalj)

movements include braking or not braking. The lateral 
movement is defined based on the lane of the target vehicle 
at the time of prediction and its lane 5 s in the future. For 
example, if the target vehicle’s lane at the time of prediction 
is the middle lane and the vehicle’s lane 5 s in the future is 
one lane to the right of the middle lane, the lateral move-
ment of the target vehicle is considered as lane changing to 
the right. The longitudinal movement is based on the target 
vehicle’s speed at the time of the prediction and the vehicle’s 
average speed during the prediction period. It is assumed 
that the target vehicle is performing a braking movement if 
its average speed during the prediction period is less than 80 
percent of the vehicle’s speed at the time of prediction. After 
updating the model to predict the lateral and longitudinal 
maneuvers jointly, the model’s performance in predicting the 
maneuver is increased by more than 8 percent on the testing 
data set of this study. More details on the training and testing 
data set used for this model is provided in Sect. 4.

Probabilistic Occupancy Map

Occupancy map is a grid-based representation of the road-
way segment. The roadway segment is divided into small 
cells (e.g., 1.2 by 1.2 ms in this study) represented by a 
matrix with values indicating the probability of that cell 
being occupied by a vehicle. The probabilistic occupancy 
map of the study area can be created considering the proba-
bilistic location of all the vehicles on the study segment. 
Considering the probabilistic location of individual vehicles 
(Eq. 3), the occupancy probability of cell c with boundaries 
of [x1, x2] and [y1, y2] can be estimated based on

This equation estimates the occupancy probability of each 
cell (e.g., c) in the occupancy matrix (O) by summing the 
probability of that cell being occupied by each of the vehi-
cles on the roadway segment.

Probabilistic Time–Space Diagram

The time–space diagram is the plot of the trajectory of 
vehicles over time and space. To create the probabilistic 
time–space diagram, this study utilizes the representation 
proposed by Khajeh Hosseini and Talebpour (2019a). They 
proposed dividing the time and space domains into smaller 
cells and reconstructing the time–space diagram with a 
binary time–space matrix. In the binary time–space matrix 
of Khajeh Hosseini and Talebpour (2019a), a cell value of 
one indicates the presence of a vehicle at the respective 

(7)
P(Oc = 1) =

#vehicles∑

v=1
∫

y2

y1
∫

x2

x1

M∑

i=1

P(mi,v)

Φ(Xt,mi

v
|�t,mi

v
,Σt,mi

v
)dxdy
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time and location, and a value of zero is used for empty 
cells (Fig. 1). A probabilistic prediction of the time–space 
matrix can be created by breaking the binary constraint and 
replacing the value of each cell with the expected value of 
the time–space cell. The probability of vehicle v passing 
through a time–space cell ( [t1, t2],[y1, y2] ) can be estimated 
by considering the probabilistic location of the vehicle at the 
beginning of the time period of the cell and the probabilistic 
location of the vehicle at the end on the time period of the 
cell. A vehicle can move from one time–space cell to another 
either by crossing the beginning of the space domain of the 
next cell during its time period or entering a new cell that 
shares the exact space boundaries similar to its previous cell. 
These two movements in time and space are depicted with 
red and yellow arrows in Fig. 2, respectively. The probability 
of a vehicle passing through a specific time–space cell is the 
summation of the probability of both possible ways to enter 
this cell. The expected value of each cell in the time–space 
matrix (TS) is the summation of the probability of every 
vehicle going through that cell multiplied by its contribution 
to the value of the cell, which is assumed to be one for all the 
vehicles in this study. Note that this contribution can vary 
based on the type of vehicles (e.g., trucks can have higher 
contribution than passenger cars).

where v represents all the vehicles in the segment of inter-
est. Considering the Gaussian mixture model of the loca-
tion of the vehicles (Eq. 3), the expected value of each cell 
( c = [[t1, t2], [y1, y2]] ) of the time–space matrix can be esti-
mated based on the following equation:

(8)
E[TSc] =

#vehicles∑

v=1

[P(yt1
v
≤ y1, y

t2
v
≥ y1)

+ P(yt1
v
≥ y1, y

t2
v
≤ y2)] × 1 It should be noted that in Eq. 9, the probability of passing the 

edge of the cell, P(yt1v ≤ y1, y
t2
v ≥ y1) is approximated by mul-

tiplying the probability of the location of the vehicle being 
behind that point at the beginning of the given period mul-
tiplied by the probability of the vehicle being beyond that 
point at the end of the given period. This approximation is 
based on the consideration that the dependence between the 

(9)

E[TSc] =

#vehicles∑

v=1

[∫
y1

−∞ ∫
∞

−∞

M∑

i=1

P(mi,v)Φ(Xt1,mi

v
|�t1,mi

v
,Σt1,mi

v
)dxdy

× ∫
∞

y1
∫

∞

−∞

M∑

i=1

P(mi,v)Φ(Xt2,mi

v
|�t2,mi

v
,Σt2,mi

v
)dxdy

+ ∫
∞

y1
∫

∞

−∞

M∑

i=1

P(mi,v)Φ(Xt1,mi

v
|�t1,mi

v
,Σt1,mi

v
)dxdy

× ∫
y2

−∞ ∫
∞

−∞

M∑

i=1

P(mi,v)Φ(Xt2,mi

v
|�t2,mi

v
,Σt2,mi

v
)dxdy]

Fig. 1  Matrix representation of time–space diagram (Khajeh Hosseini and Talebpour 2019a)

Fig. 2  Moving from one time–space cell to another
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mean ( � ) and covariance ( Σ ) of the distributions for every 
time step t on the previous time steps’ predictions is captured 
by the LSTM decoder component of the convolutional social 
pooling (Deo and Trivedi 2018a). Similar approximation is 
considered when estimating the probability remaining within 
the space boundaries ( P(yt1v ≥ y1, y

t2
v ≤ y2)).

Macroscopic Level: Probabilistic Density and Flow 
Estimation

Probabilistic Density Estimation

Traffic density is defined by the number of vehicles occupy-
ing the unit length of the roadway. Based on this definition, 
the expected value of traffic density (K) can be estimated 
considering the expected number of vehicles on the roadway 
segment divided by the length of the roadway. The expected 
number of vehicles on a roadway segment with boundaries 
of [x1, x2] and [y1, y2] is the summation of the probability of 
every vehicle being on the segment multiplied by its contri-
bution to the density, which is one for every passenger car. 
Note that this value can be adjusted to account for heavy 
vehicles and their impact on traffic flow dynamics (i.e., the 
concept of passenger car equivalent):

Considering the probabilistic location of vehicles from Eq. 3 
and the general definition of expected density in Eq. 10, the 
expected density can be estimated based on

The numerator of Eq. 11 is comparable to the the occupancy 
probability in Eq. 7. The occupancy map is a matrix repre-
sentation of the study area with values indicating the prob-
ability of that cell in space being occupied. Consequently, 
the expected density can also be estimated by summing all 
the values of the submatrix of the occupancy map that covers 
the target area and divided by the length of that segment:

where O is the occupancy matrix and ry1 and ry2 are the row 
number of the occupancy map corresponding to y1 and y2 , 
respectively. cx1 and cx2 denote the column number of the 
occupancy map corresponding to x1 and x2 , respectively, and 
�⃗1 is a vector of all ones. The vectors of all ones are used in 
the multiplication to facilitate summing all the members of 
the submatrix of the occupancy map.

(10)E[K(t)] =

∑
v=1 P(y1 < yt

v
< y2, x1 < xt

v
< x2) × 1

y2 − y1

(11)

E[K(t)] =

∑
v ∫ y2

y1
∫ x2
x1

∑
i P(mi,v)Φ(X

t,mi

v ��t,mi

v ,Σ
t,mi

v )dxdy

y2 − y1

(12)E[K(t)] =
�⃗1TO[[ry1 , ry2 ];[cx1 , cx2 ]]

�⃗1

y2 − y1

Probabilistic Flow Estimation

The traffic flow rate is defined as the number of vehicles 
passing a point during a given period. Accordingly, the 
expected value of traffic flow (Q) at a given point can be esti-
mated considering the expected number of vehicles passing 
the point over a given period. The probability of a vehicle 
passing a specific point of roadway over a period of time 
(e.g., t1 to t2 ) is the probability of the location of the vehicle 
being behind that point at the beginning of the given period 
and the vehicle being beyond that point at the end of the 
given period:

where Pcrossing
v (Y) is the probability of vehicle v crossing 

point Y during the time period of [t1, t2] . The expected num-
ber of vehicles passing a specific point on the roadway over 
a fixed period is the summation of the probability of every 
vehicle passing that point during that period multiplied by 
its contribution to the flow rate, which is one for all pas-
senger cars. Considering the Gaussian mixture model of the 
vehicle’s location (Eq. 3), the expected flow rate, E[Q], can 
be estimated based on the following equations:

In Eq. 15, the probability of a vehicle passing a specific 
point of roadway over a period of [t1, t2] is approximated by 
the probability of the location of the vehicle being behind 
that point at the beginning of the given period multiplied by 
the probability of the vehicle being beyond that point at the 
end of the given period. Note that similar to the density cal-
culations, this approximation is based on the consideration 
that the dependence between the mean ( � ) and covariance 
( Σ ) of the distributions for every time step t on the previous 
time steps’ predictions is captured by the LSTM decoder 
component of the convolutional social pooling (Deo and 
Trivedi 2018a).

Probabilistic Space–Mean Speed

There exists a variety of approaches to meaure space–mean 
speed ( Ūs ) in the literature (Hall 1996). A common 

(13)Pcrossing
v

(Y) = P(yt1
v
< Y , yt2

v
> Y)

(14)E[Q(Y)] =

∑
v P(y

t1
v < Y , y

t2
v > Y) × 1

t2 − t1

(15)

E[Q(Y)] =
∑

v

[∫
Y

−∞ ∫
∞

−∞

∑

i

P(mi,v)Φ(Xt1,mi

v
|�t1,mi

v
,Σt1,mi

v
)dxdy

× ∫
∞

Y ∫
∞

−∞

∑

i

P(mi,v)

Φ(Xt2,mi

v
|�t2,mi

v
,Σt2,mi

v
)dxdy]∕(t2 − t1)
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definition of the space–mean speed is based on the aver-
age time taken by the vehicles to travel a specific segment 
of a roadway:

where ti is the time that took vehicle i to travel a specific 
roadway segment with the length D. One of the challenges 
with this definition is that it only averages the travel time of 
the vehicles that traveled the roadway segment completely. 
A more accurate definition of the space–mean speed, that 
is also more in line with the definition of the space–mean 
speed, considers all the vehicles traveling a specific segment 
of roadway over a given period of time (Hall 1996). In this 
definition, the space–mean speed is estimated by dividing 
the total distance traveled by all the vehicles by the total 
time spent by those vehicles on the specific segment of the 
roadway over a given period of time:

where d(A) and t(A) denote the total distance traveled 
and total time spent by all the vehicles going through the 
time–space block A, respectively. This general definition of 
the space–mean speed is comparable to the ratio of Edie’s 
(1963) generalized average flow and density of a time–space 
block A. Accordingly, the expected distance traveled by 
each vehicle in the time–space block of A with boundaries 
[t1, t2] and [y1, y2] can be estimated based on the following 
equations:

Equation 18 estimates the expected distance traveled by 
vehicle v in time–space block A, considering the probabil-
ity of the vehicle going through every point of the segment 
of roadway in block A during the period of this time–space 
block. Similar to the concepts of the probabilistic time–space 
diagram, the time and space domains can be divided into 
smaller time–space bins. In this representation, the expected 
distance traveled by each vehicle can be estimated based on 
the following equation:

Equation 19 is similar to Eq. 18 except the integration is 
replaced with a summation. The expected time spent by 
each vehicle in the time–space block of A with boundaries 
[t1, t2] and [y1, y2] can be estimated based on the following 
equation:

(16)Ūs =
D

1

N

∑
i ti

(17)Ūs =
d(A)

t(A)

(18)E[dv] = �
y2

y1

P(yt1
v
≤ y, yt2

v
≥ y)dy

(19)E[dv] =
∑

i

P(yt1
v
≤ yi, y

t2
v
≥ yi)Δy

Equation 20 estimates the expected time spent by vehicle 
v in the time–space block A, considering the probability of 
the vehicle being within the space boundaries of block A at 
every point of time within the period of time–space block. 
Similar to the concepts of the probabilistic time–space 
diagram, the time and space domains can be divided into 
smaller time–space bins. In this representation, the expected 
time spent by each vehicle can be estimated using summa-
tion instead of integration:

From Eq. 17, the space–mean speed ( Ūs ) can be estimated 
from the total expected distance traveled divided by the total 
time spent by all the vehicles on the study segment during 
the study period:

Fundamental Equation of Traffic Flow

The traffic flow rate is defined as the number of vehicles pass-
ing a point of the roadway during a given period. The traffic 
flow rate is a function of location, Q(y), and its average over 
the definite segment of roadway, [y1, y2] can be estimated by 
integration of the traffic flow function:

The integration in Eq. 23 can be approximated by a summa-
tion over small roadway segments ( Δy ). Considering Eq. 14, 
the average traffic flow can be estimated based on the fol-
lowing equation:

Traffic density is defined by the number of vehicles occupy-
ing the unit length of the roadway at a point of time. The 
traffic density is a function of time, and similar to the aver-
age flow, the average density over the definite time period, 
[t1, t2] can be estimated by integrating the traffic density 
function:

(20)E[tv] = �
t2

t1

P(yt
v
≤ y2, y

t
v
≥ y1)dt

(21)E[tv] =
∑

t

P(yt
v
≤ y2, y

t
v
≥ y1)Δt

(22)Ūs =
E[d(A)]

E[t(A)]
=

∑
v

∑
i P(y

t1
v ≤ yi, y

t2
v ≥ yi)Δy∑

v

∑
t P(y

t
v
≤ y2, y

t
v
≥ y1)Δt

(23)Q̄ =
∫ y2
y1

q(y)dy

(y2 − y1)

(24)Q̄ =

∑
i

∑
v P(y

t1
v < Y , y

t2
v > Y)Δy

(t2 − t1)(y2 − y1)

(25)K̄ =
∫ t2
t1
K(t)dt

(t2 − t1)
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Taking into account Eq. 10 and replacing the integration of 
Eq. 25 with summation, the average density can be defined 
as

From Eqs. 24 and 26, the ratio of the average flow and aver-
age density of a time–space block A with boundaries [t1, t2] 
and [y1, y2] is

The ratio of average flow and density of time–space block A 
in Eq. 27 is comparable to the space–mean speed in Eq. 22 
when the order of summations are changed in both numera-
tor and denominator. Accordingly, the fundamental relation 
among the average traffic flow, density and space–mean 
speed is preserved under the probabilistic formulations of 
this study:

Data

One of the commonly adopted vehicle trajectory data sets 
is the FHWA Next generation Simulation Models (NGSIM) 
(U.S 2006). NGSIM is a well-known open-source trajectory 
data set collected in 2006 using digital cameras at different 
locations, including US Highway 101 and Interstate 80 free-
way. The vehicle trajectories are extracted from the images 
of multiple cameras combined to create a single image that 
looks like an aerial shot. The NGSIM trajectory data con-
tains the location of each vehicle at a frequency of 10 Hz 
over a 500 to 1000 ms stretch of roadway. The NGSIM data 
set contains three sets of 15 min trajectory data for each of 
the US Highway 101 and Interstate 80 freeway. This study 
uses the NGSIM data set for training the probablistice trajec-
tory prediction model and evaluating the proposed proba-
bilistic macroscopic estimates of this study. In this data set, 
every vehicle has a unique vehicle identification number that 
helps to identify the data points that belong to the same 
vehicle to store its trajectory. Each data point in the vehicle’s 
trajectory includes multiple features, such as frame number 
(time), location (x and y), and velocity. For every point in 
the vehicle’s trajectory, the lane feature is compared with the 
lane feature of the point 5 s later in the vehicle’s trajectory 
(or the last point of the trajectory if the remaining trajectory 

(26)K̄ =

∑
t

∑
v P(y1 < yt

v
< y2)Δt

(y2 − y1)(t2 − t1)

(27)

Q̄

K̄
=

∑
i

∑
v P(y

t1
v < Y , y

t2
v > Y)Δy

∑
t

∑
v P(y1 < yt

v
< y2)Δt

=

∑
v

∑
i P(y

t1
v < Y , y

t2
v > Y)Δy

∑
v

∑
t P(y1 < yt

v
< y2)Δt

= Ūs

(28)Q̄ = K̄Ūs

is shorter than 5 s) to determine the lateral movement. Simi-
larly, for every point in the vehicle’s trajectory, the speed 
feature is compared with the average speed of the rest of 
the points in the trajectory up to the prediction period to 
determine the longitudinal movement.

Results and Discussion

The complete NGSIM data set is split into training (80%), 
validation (5%), and testing (15%) data sets. The updated 
probabilistic trajectory prediction model of Deo and Trivedi 
(2018a) is trained on the training portion of the data set 
to predict the trajectory of individual vehicles for different 
prediction periods, including 5, 10, 15, and 20 s. The trajec-
tory prediction model takes as input 3 s of the track histories 
(locations over time) of a target vehicle and the vehicles 
within ± 27.4 ms in the longitudinal direction and within 
two adjacent lanes. The spatial configuration of surround-
ing vehicles of the target vehicle is summarized by a 13 × 3 
matrix/grid. The output of the trajectory prediction model is 
the parameters of the conditional probability distribution of 
the location of the vehicle and the probability of individual 
maneuvers (based on Eq. 1) for time steps of 0.2 s for the 
next 5–20 s (depending on the model) in the future.

The trained trajectory prediction model is used to predict 
the future probabilistic trajectory of every vehicle in every 
tenth frame of a subsample of the NGSIM data set. The 
subsample is 5 min of the first set of trajectory data of US 
Highway 101. The predicted probabilistic trajectories are 
used to predict the proposed probabilistic microscopic and 
macroscopic traffic estimates (presented in the methodol-
ogy section) for the middle 305 ms of the highway segment. 
The predicted macroscopic states are compared with the true 
traffic states calculated from the actual trajectories of the 
NGSIM data set. All the plots provided in this section are 
based on the selected subsample of the NGSIM data set.

Microscopic Level: Probabilistic Trajectory 
Prediction

The input to the maneuver-based model is 3 s of the past 
trajectory of a target vehicle as well as 3 s of the past trajec-
tory of all its neighboring vehicles within the distance of 
±27.4 meters. As it is mentioned in the methodology sec-
tion, the deep learning model of Deo and Trivedi (2018a) is 
modified to predict the probability of lateral and longitudinal 
maneuvers jointly. Considering Eq. 1, the model is trained 
to predict Θ , the parameters of the conditional probability 
distribution of the location of the vehicle and P(mi|H) , the 
probability of individual maneuvers for time steps of 0.2 s 
over the prediction period (e.g., 5, 10, 15 or 20 s). Table 1 
presents the accuracy of four models trained for different 
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prediction periods. According to this table, the model’s 
accuracy in predicting the vehicle’s maneuver and location 
decreases with the increase in the prediction period. The tra-
jectory prediction model predicts the probability of six dif-
ferent maneuvers (the combination of three lateral and two 
longitudinal movements) for every target vehicle. In Table 1, 
the lateral movement accuracy is estimated by counting the 
number of times that the maneuver with the highest prob-
ability matches the actual lateral movement of the vehicle. 
Similarly, the longitudinal movement accuracy is estimated 
by counting the number of times that the maneuver with the 
highest probability matches the actual longitudinal move-
ment of the vehicle.

In this approach, the probabilistic location of the vehi-
cle is described by a bivariate normal distribution (Eq. 2) 
for every maneuver, and the probability of each maneuver, 
P(mi) , is predicted separately. Each maneuver is a com-
bination of lateral and longitudinal movements. Figure 3 

presents six plots of the predicted probabilistic density 
function of the location of a vehicle for 5 s in the future 
and for six different maneuvers. It should be noted that the 
color of points changes from dark blue to light yellow with 
the increase in the value of the probability density function 
of the points. According to this figure, the vehicle’s loca-
tion and its variance differ for various maneuvers.

Figure 4 presents five plots of the predicted probabil-
istic density function of the location of a single vehicle 
(Eq. 2) for different prediction periods. The predicted 
location of the vehicle in these plots is depicted based 
on the density function of the predicted bivariate normal 
distribution for the vehicle’s location in the future for the 
second maneuver, and the color of points changes from 
dark blue to light yellow proportion to the density function 
value. The uncertainty in the vehicle’s location increases 
with the increase in the prediction period. This increase 
in the uncertainty of the vehicle’s location is also evident 
in the plots of Fig. 4 with the increase in the spread of the 
density function along both axes.

Figure 5 presents the plots of the bivariate Gaussian 
mixture models (Eq. 3) of the location of a single vehicle 
for different prediction periods. In most cases, the pre-
dicted probability of a single maneuver is significantly 
higher than the probability of other maneuvers. Conse-
quently, the shape of the resulting Gaussian mixture model 
is closer to the shape of the density function of the maneu-
ver with the highest probability.

Table 1  Accuracy of the trajectory prediction model on the testing 
data set

Model Location RMSE 
(m)

Lateral accu-
racy(%)

Longitudinal 
accuracy (%)

5 s 1.81 97.99 91.72
10 s 5.20 97.99 87.29
15 s 10.49 97.98 84.37
20 s 16.68 97.95 82.82

Fig. 3  Predicted location of a single vehicle for 5 s in the future and for different maneuvers
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Probabilistic Occupancy Map

In this study, the space domain is divided into small cells of 
1.2 by 1.2 ms, and the occupancy map of the roadway seg-
ment is represented by a matrix with values estimated using 
Eq. 7 indicating the probability of that cell being occupied. 
Figure 6 presents the probabilistic occupancy map of the 
segment of roadway for up to 5 s in the future. In these plots, 
the color of each cell changes from dark blue to light yellow 
proportional to the probability of the cell being occupied. 
The lighter the color of the cell indicates a higher prob-
ability of being occupied. The uncertainty in the vehicle’s 
location increases with the increase in the prediction period. 
The increase in the uncertainty of the location of the vehicle 
is also evident in the plots of Fig. 6 with the spread of cells 
with low occupancy probability.

Probabilistic Time–Space Diagram

This study proposes the use of probabilistic time–space 
matrix representation of the time–space diagram. In this 
matrix, the time and space domains are divided into smaller 
cells, and the value of each cell is the expected value of 
that cell being occupied by a vehicle. Equation 8 estimates 
the probability of a vehicle passing through a time–space 

cell based on two probabilities either by crossing the begin-
ning of the space domain of the cell during its time period 
or remaining within the exact space boundaries similar 
to its previous cell. The probability of each of these two 
movements in time and space as well as their summation 
are depicted in Fig. 7 for a single vehicle. For the specific 
vehicle presented in this figure, the probability of the vehi-
cle remaining within the exact space boundaries similar to 
its previous cell (Fig. 7b) is relatively low compared to the 
probability of entering new space domains (Fig. 7a) particu-
larly at the beginning of the time domain. With the increase 
in the prediction time, the uncertainty in the location of 
the vehicle increases, and the probability of the two pos-
sible movements from one time–space cell to another gets 
slightly closer to each other. Figure 7c presents the summa-
tion of the probability of these two possible movements in 
the time–space diagram. In addition, Figs. 8 and 9 present 
predicted probabilistic time–space matrix and correspond-
ing actual time–space matrix of the study area for the next 
5 s. Please note that these figures are provided to present an 
example of the probabilistic time–space matrix proposed in 
this study; a quantitative evaluation of the macroscopic traf-
fic state measures proposed in this study is provided in the 
next section. The predicted probabilistic time–space matrix 
is comparable to the true time–space matrix for most lanes 

Fig. 4  Predicted location of a single vehicle for 5 s in the future and for the second maneuver
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and vehicle trajectories. However, there are some instances 
of dissimilarity between predicted and actual trajectories 
in the future. The trajectory prediction model predicts the 
probability of different maneuvers at the beginning of the 
prediction period and the corresponding probabilistic tra-
jectories for each maneuver. The trajectory prediction model 
predicts six sets of probabilistic trajectories (one trajectory 
per maneuver) based on the maneuvers initiated at the begin-
ning of the prediction period. However, the trajectory pre-
diction model is incapable of predicting a combination of 
maneuvers over the prediction period, for example, predict-
ing maintaining the same lane and changing lanes further in 
the future. The accuracy of the maneuver prediction decays 
with the increase in the prediction period due to the possibil-
ity of the occurrence of new maneuvers further in the future. 
The majority of the discrepancies observed between the pre-
dicted trajectories and the actual trajectories in Figs. 8 and 9 
are due to the occurrence of more than one maneuver over 
the prediction period, such as maintaining the lane and then 
lane changing (additional maneuvers) that happen further in 
the future, especially in the right-most lane (lane 5) and the 
auxiliary lane (lane 6). This drawback is due to one of the 
shortcomings of the trajectory prediction model adopted in 
this study that cannot capture a combination of maneuvers 
(more than one maneuver) as a result of future interactions 

or lane-changing maneuvers further in the future. The cur-
rent trajectory prediction model predicts the trajectory of 
the vehicles individually considering the current observed 
environment, without taking into account the future trajec-
tory of the surrounding vehicles and their interactions and 
the possibility of a combination of maneuvers. Accordingly, 
developing a probabilistic trajectory prediction model that 
could capture the future interactions among all the vehicles 
and predicts the trajectory of all the vehicles in the scene 
simultaneously could potentially address this shortcoming. 
However, developing such a holistic prediction approach is 
left as the future research direction.

Macroscopic‑Level Traffic State Prediction

This study proposes probabilistic estimates of the traffic 
flow, density, and space–mean speed considering uncertaini-
ties in location of the vehicles. First, the trajectory prediction 
model is used to predict the probabilistic trajectory of every 
vehicle in every tenth frame of multiple subsamples of the 
NGSIM data set. Then, the probabilistic traffic states are 
estimated for the middle 305 ms of the highway segment 
considering the probabilistic trajectories of the vehicles.

Fig. 5  Predicted location of a single vehicle for 5 s in the future considering all maneuvers
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In this section, the expected traffic flow is estimated 
based on Eq. 24. In this equation, the duration of time 
( t2 − t1 ) is considered equal to the prediction period (e.g., 
20 s), and the expected traffic flow is estimated for every 
3.05 ms of the middle 305 ms of the study segment (i.e., 
at 100 locations). The mean absolute percentage error for 

traffic flow rate ( MAPEQ ) is estimated based on the fol-
lowing equation:

(29)MAPEQ =
100

n × f

F∑

f=1

n∑

i=1

|E[Qi,f ] − Qi,f |
|Qi,f |

Fig. 6  Probabilistic occupancy map for 5 s in the future

Fig. 7  Probabilistic time–space matrix for a single vehicle
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In this equation, E[Qi,f ] is the expected traffic flow rate at 
the i th on the study area estimated using the probabilistic 
trajectories predicted based on frame f and the probabilistic 
traffic flow estimate proposed in this study (Eq. 15), and Qi,f  
is the actual traffic flow rate at the i th location on the study 
area estimated based on the true trajectories of the vehicles. 
The traffic flow is estimated every 3.05 ms at 100 locations 
( n = 100).

The expected traffic density is estimated using Eq. 26 for 
the middle 305 ms of the highway segment and for every 
0.2 s time step in the future up until the prediction period 
(e.g., 20 s). For example, if the prediction period is 20 s, 
the density of the middle 305 ms of the highway segment is 
estimated for 0.2, 0.4, 0.6,..., 20 s in the future. The mean 
absolute percentage error for traffic density ( MAPEK ) is esti-
mated using the following equation:

In this equation, E[Kj,f ] is the expected traffic density of the 
middle 305 ms of the highway segment at the j th time step 
in the future estimated using the probabilistic trajectories 
predicted based on frame f and the probabilistic traffic den-
sity estimate proposed in this study (Eq. 26). Kj,f  is the actual 
density at the j th time step based on the true trajectory of 
the vehicles. m is the number of time steps in the prediction 
period that density is estimated for.

The space–mean speed is estimated considering the 
expected total distance traveled (Eq. 19) and expected total 
time spent (Eq. 21) by all the vehicles traveling the mid-
dle 305 ms during the prediction period (e.g., 20 s). Conse-
quently, one space–mean speed is predicted for every frame. 
Then, the mean absolute percentage error for space–mean 
speed ( MAPEK ) is estimated using the following equation:

In this equation, Us,f  is the space–mean speed predicted 
based on the expected total distance traveled and total time 
spent using the probabilistic trajectories predicted based on 
frame f. Us,f  is the space–mean speed estimated based on the 
actual total distance and actual total time spent by all the 
vehicles based on the true trajectories.

Figure 10 presents the mean absolute percentage error 
(MAPE) of the traffic estimates for different prediction peri-
ods and for six different 5-min subsamples of the NGSIM 
data set. Table 2 presents the average traffic flow and density 
of the 5-min subsamples adopted from the six trajectory data 
sets. According to this table, the traffic conditions in the 
second and third data sets of the US 101 are slightly more 
congested (higher density and lower flow) compared to the 

(30)MAPEK =
100

m × F

F∑

f=1

m∑

j=1

|E[Kj,f ] − Kj,f |
|Kj,f |

(31)MAPEUs
=

100

F

F∑

f=1

|Ūs,f − Us,f |
|Us,f |

Fig. 8  Predicted and True time–space matrix for individual lanes and all lanes
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first data set of US 101. The second data set of the US 101 
has the highest average density and the lowest traffic flow 
compared to other two data sets of US 101. According to this 
table, the traffic density of the subsamples of the I80 have a 
relatively higher average density. The second and third data 

sets of the I80 are more congested compared to the first data 
set of the I80.

According to Fig. 10, the mean absolute percentage error 
for traffic flow increases from 6.1 to 8.6 on the first data 
set of US101, 7.6 to 17.8 percent for the second data set 

Fig. 9  Predicted and True time–space matrix for all lanes

Table 2  Traffic state of the 
subsamples of NGSIM data set

Data set Average flow (vehicles per hour 
per lane)

Average density (vehi-
cles per kilometer per 
lane)

NGSIM US101, first 15 min 1373.5 35.0
NGSIM US101, second 15 min 1191.1 44.6
NGSIM US101, third 15 min 1272.5 42.5
NGSIM I80, first 15 min 1238.4 36.1
NGSIM I80, second 15 min 1225.7 50.7
NGSIM I80, third 15 min 1308.4 52.3

Fig. 10  Mean absolute percentage error (MAPE) of the traffic estimates for different prediction period
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of US101, and 7.0 to 13.6 percent for the third data set of 
US101 with the increase in the prediction period. The mean 
absolute percentage error for traffic flow changes between 
6.3 to 7.3 percent for the first data set of I80, 7.2 to 10.9 
percent for the second data set of I80, and 7.3 to 14.0 percent 
for the third data set of I80, with the increase in the predic-
tion period. The MAPE reported for density in Fig. 10 is 
the average of the mean absolute percentage error over all 
the time-steps of the prediction period. According to this 
figure, the mean absolute percentage error for traffic den-
sity increases from 1.0 to 4.1 percent for the first data set of 
US101, 1.0 to 3.7 percent for the second data set of US101, 
and from 0.9 to 4.4 percent for the third data set of US101, 
with the increase in the prediction period. The mean abso-
lute percentage error for traffic density increases from 1.0 
to 3.9 percent for the first data set of I80, 0.8 to 3.1 percent 
for the second data set of I80, and 0.9 to 2.9 percent for 
the third data set of I80 with the increase in the prediction 
period. Moreover, the mean absolute percentage error for 
the space-mean speed increases from 3.8 to 9.2 percent for 
the first data set of US101, 2.6 to 11.4 percent for the sec-
ond data set of US101, and from 3.1 to 11.7 percent for the 
third data set of US 101 with the increase in the prediction 
period. The mean absolute percentage error for space-mean 
speed increases from 3.2 to 7.4 percent for the first data set 
of I80, from 3.0 to 8.6 percent for the second data set of I80, 
and from 3.3 to 11.0 percent for the third data set of I80. 
In general, the model performance decays in predicting the 
traffic state for all three measures with the increase in the 
prediction period and traffic congestion. The performance 
decay is more significant for the traffic flow compared to 
density and space-mean speed.

These MAPE values are comparable to or even lower 
than most of the existing studies, showing the importance 
of capturing the interactions among individual vehicles in 
the prediction process. A recent example of such studies is 
a study by Khajeh-Hosseini and Talebpour (2019b). They 
proposed a deep learning traffic state prediction model based 
on the observed time-space diagram of the roadway to cap-
ture the interaction among the vehicles when predicting the 
traffic state. The performance of their deep neural network 
model in terms of MAPE on predicting the flow and density 
for the next 20 s on the NGSIM data set is 22.23 and 22.50, 
respectively. Moreover, they also compared the performance 
of their proposed model with other non-parametric mod-
els, including multilayer perceptron (MLP), support vector 
regression (SVR), and autoregressive integrated moving 
average (ARIMA). In their study, the ARIMA model trained 
on the NGSIM data set performed relatively better than the 
other non-parametric models with MAPE of 10.55 and 10.04 
for predicting the average flow and density of the segment 
in the next 20 s. In this study, the average MAPE is 9.54 
percent for measuring flow and 2.16 percent for measuring 

density. The traffic density and flow estimates top the per-
formance of the models evaluated in Khajeh Hosseini and 
Talebpour (2019a). However, it should be noted that the 
performances of the probabilistic traffic state estimates are 
directly dependent on the performance of the probabilistic 
trajectory prediction model at the individual level. There-
fore, the performances reported in this study are just proof 
of concept investigating the opportunity of probabilistic 
estimates of the traffic state. Accordingly, a more accurate 
trajectory prediction can even further improve the accuracy 
of the macroscopic predictions.

Figure 11 presents the MAPE for density estimate over 
time steps on the 5-min subsample of the first 15 min of 
the US Highway 101 data set of NGSIM, and for different 
trajectory prediction models trained for different predic-
tion periods. The general trend of the error in the density 
estimation is also increasing with the increase in the time 
steps, due to the decrease in the accuracy of the trajectory 
prediction with the increase in the prediction period. The 
MAPE in density gets to 13.45 percent when predicting the 
density of the segment at 20 s in the future. According to 
Fig. 11, the MAPE in density estimates for different trajec-
tory prediction models (trained for different prediction peri-
ods) performs relatively similar on their overlapping steps, 
specifically for models with prediction periods of 5, 10, and 
15. However, the model with a prediction period of 20 s 
performs slightly better than the other models, indicating 
that the model trained to predict for a more extended period 
learns a better generalization. It should be noted that all the 
four trajectory prediction models are trained with five train-
ing epochs and random initialization of the parameters. The 
random initialization could also result in slightly different 
performances among the models. Please note that the MAPE 
reported in Fig. 10 is the average of the error when predict-
ing density for all those time steps and for all the frames. 
However, Fig. 11 presents the MAPE for density estimates 

Fig. 11  Mean absolute percentage error (MAPE) of the density esti-
mates for different prediction period
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for every time step in the future separately, and the accuracy 
of the prediction decays with time. In Fig. 10, the MAPE 
is the average of the density errors over all the time steps; 
consequently, the MAPE over the whole prediction period 
(Fig. 10) is less than the MAPE of the density prediction 
at the end of the prediction period (i.e., at the time step for 
20 s in the future).

Conclusion

This study proposes a novel methodology for probabilis-
tic estimation and prediction of the traffic state based on 
probabilistic predictions of vehicle trajectories. At the 
microscopic level, this study develops a probability-based 
version of the time-space diagram of the vehicles. In this 
representation, the time and space are divided into smaller 
cells, where the value of each cell is the expected value of 
that cell being occupied by a vehicle. With the increase in 
the prediction period, the uncertainty in the location of the 
vehicles increases. As a result, more cells are expected to 
have values larger than zero further along the end of the 
prediction horizon but with smaller values compare to the 
cell values at the start of the prediction period. The predicted 
probabilistic time-space matrix is comparable to the actual 
time-space matrix for most lanes and vehicle trajectories. 
There are instances, however, where predicted and actual 
future trajectories diverge. In most cases, the discrepancies 
are due to lane-changing maneuvers in the future. This short-
coming is due to a limitation in the trajectory prediction 
model used in this study that does not capture future interac-
tions that can lead to lane-changing maneuvers.

This study also proposes probabilistic estimates of flow, 
density, and space-mean speed at the macroscopic level. 
Moreover, this study proves that the fundamental relation 
among the average traffic flow, density, and space-mean 
speed is preserved under the probabilistic formulations 
of this study. The presented approach was tested using 
NGSIM US-101 and I-80 data sets. The mean absolute 
percentage of error (MAPE) for each of the probabilistic 
estimates at the macroscopic level is estimated for multiple 
subsamples of the NGSIM data set for different prediction 
periods. With an increase in prediction period time, the 
MAPE increases for all three traffic state estimates. As 
the uncertainty in probabilistic trajectories increases, the 
accuracy of the prediction decreases. The average MAPE 
of flow rises from 6.92 to 12.03 percent, with increas-
ing the prediction period from 5 to 20 s. Moreover, the 
average MAPE of the space-mean speed rises from 3.17 
to 9.89 percent, with an increase in the prediction period 
from 5 to 20 s. The average MAPE reported for density 
is the average of the MAPE over all the time-steps of the 
prediction period and changes from 0.93 to 3.52 percent 

from 5 to 20 s, respectively. It should be noted that the 
performances of the probabilistic traffic state estimates 
proposed in this study are directly dependent on the per-
formance of the probabilistic trajectory prediction model 
at the individual level. Therefore, despite being more accu-
rate than many existing approaches, this study should be 
treated as a proof-of-concept for probabilistic estimation 
of the traffic state.

The current trajectory prediction model adopted for this 
study predicts the trajectory of the vehicles individually con-
sidering the current observed environment, without taking 
into account the future trajectory of the surrounding vehicles 
and their interactions and the possibility of a combination of 
maneuvers. Accordingly, developing a probabilistic trajec-
tory prediction model that could capture the future interac-
tion among all the vehicles and predict the trajectory of all 
the vehicles in the scene simultaneously could potentially 
help the trajectory prediction for a more extended period. 
However, developing such a holistic prediction approach 
is left as the future research direction. Moreover, the traf-
fic state prediction methodologies proposed in this study 
are based on the assumption of complete knowledge of the 
observed trajectory of all the vehicles in the study area con-
sidering a fully connected environment. Such information 
is either provided through a fully connected environment 
or based on the data measured and shared with connected 
and automated vehicles. In practice, the future traffic stream 
could be a mix of conventional, connected, and connected 
automated vehicles. While it is feasible to capture and moni-
tor the majority of the vehicles in the traffic stream based 
on the sensory data from the connected and automated vehi-
cles when their market penetration rate is above a minimum 
level, Talebpour et al. (2016) showed that due to signal 
interference, many information packets would not reach 
their destinations, even in a fully connected driving environ-
ment. Accordingly, it is critical to investigate and improve 
the proposed models in this study to predict the traffic state 
based on partial or incomplete data from the traffic stream 
in future research studies.
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