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ABSTRACT
This paper investigates deploying connected and automated
vehicle (CAV) lanes in transportation networks with a focus on
measuring and preserving equity among travelers. A new metric
is proposed to characterize equity based on (1) generalized travel
cost per unit origin-destination (OD) distance for travelers on
each OD pair and using each vehicle type and (2) maximum
deviation of the standardized unit generalized travel cost from
system average. A bi-level bi-objective program is developed to
simultaneously minimize system travel cost and inequity while
deploying CAV lanes. A solution algorithm that combines non-
dominated sorting genetic algorithm II and variable
neighborhood search is designed. Through extensive numerical
experiments, we find (1) inequity is more prominent when travel
demand is high; (2) human-driven vehicle travelers become more
disadvantageous with lower CAV price and higher CAV
automation; and (3) subsidy is effective in mitigating inequity, but
a fee for using CAV lanes is less promising.
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Nomenclature

Sets

N set of nodes
A set of links
A̅ set of links with no candidate connected and automated vehicle (CAV) lanes
Â set of links with one or more candidate CAV lanes
W set of origin-destination (OD) pairs
M set of vehicle types
Rm
w set of paths for vehicle type m. of OD pair w

Ia set of lanes on link a [ Â

Parameters

La capacity of link a
C̅ capacity of a single human-driven vehicle (HV) lane
Ĉ capacity of a single CAV lane
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Ya number of lanes on a physical link a [ Â

VCm variable operating cost of vehicle type m. per kilometer
hm value of time (VOT) of travelers using vehicle type m
rm price of vehicle type m
Dw

m travel demand using vehicle type m for OD pair w
Dw total travel demand for OD pair w
la length of link a

Variables

yia Binary variable, equal to 1 if lane i on link a [ Â is converted to a CAV lane,
and 0 otherwise

mw
m ratio of travel cost per unit OD distance of OD pair w to the system average,

for vehicle type m
f rw,m traffic flow on path r of OD pair w for vehicle type m
tma travel time of vehicle type m on link a
crw,m generalized travel cost of travelers using vehicle type m on path r of OD pair w
Cm
w minimum generalized travel cost by vehicle type m for OD pair w

va vehicle flow on link a
vma vehicle flow of type m on link a

1. Introduction

Connected and autonomous vehicles (CAV) have been gaining significant momentum
with many anticipated benefits to the transportation system, including increased road
capacity (Chen et al. 2017; Lu et al. 2020; Talebpour and Mahmassani 2016), improved
traffic operations (Gong, Shen, and Du 2016; Levin and Boyles 2016; Li, Elefteriadou, and
Ranka 2014; van den Berg and Verhoef 2016), reduced vehicle energy use (Han, Ma, and
Zhang 2020; Vahidi and Sciarretta 2018), and enhanced traffic safety (Kalra and Paddock
2016; Liu and Khattak 2016). However, as the transition from human-driven vehicles
(HVs) to CAVs will be a gradual process, HVs and CAVs are expected to coexist on
roads in the foreseeable future. Because of this, determining the optimal planning of
CAV infrastructure within existing road networks in a mixed CAV-HV environment
is an area of both research and practical interest.

In CAV infrastructure planning research, the idea of deploying dedicated CAV lanes –
through the conversion of some HV lanes to lanes only used by CAVs – to accommodate
CAV traffic while allowing mixed CAV-HV traffic to use the remaining lanes in a road
network has garnered special interest (e.g. Chen et al. 2016; Kumar, Guhathakurta, and
Venkatachalam 2020; Liu and Song 2019). The existing research focused mainly on
improving system efficiency and promoting CAV adoption. However, little attention
has been paid to equity, despite its importance in CAV lane deployment. By converting
some HV lanes to dedicated CAV lanes, travelers using CAVs are expected to save trip
times due to the allocation of dedicated road space and increased capacity of those lanes
thanks to CAV technologies (e.g. vehicle-to-vehicle communications). But for travelers
using HVs, the loss of road space may result in increased trip times. Thus, in determining
what lanes to convert for dedicated CAV use, it is desired and important to preserve
equity between CAV and HV travelers, in addition to maximizing system efficiency.
To this end, this study formulates a bi-level bi-objective mathematical program. By
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solving the program using a customized algorithm, extensive numerical experiments are
conducted to generate insights and policy implications.

Overall, this study aims to make four contributions. First, we propose a new metric to
characterize system equity while deploying CAV lanes. The equity metric measures the
maximum deviation of the generalized travel cost per unit origin-destination (OD) dis-
tance from the system average, for travelers of any OD pair and taking either vehicle type
(CAV or HV). This metric is highly relevant as ideally, we desire all travelers to have the
same unit generalized travel cost. To preserve equity, minimizing this maximum devi-
ation is sought and considered the equity-side objective. Constructing the equity
metric involves normalization of the unit generalized travel cost, which allows for
equity comparison between different networks.

Second, we propose a bi-level bi-objective program to tackle the optimal CAV lane
deployment. At the upper level, the program minimizes system travel cost and equity
metric value simultaneously, by selecting and converting HV lanes to dedicated CAV
lanes. The minimization anticipates responses of CAV and HV travelers, which are
reflected in the distribution of traffic on the network and characterized as a multi-class
user equilibrium at the lower level. To solve the equilibrium, an equivalent optimization
model is presented. In doing so, a new link notation is adopted to accommodate the fact
that converted CAV lanes can only be used by CAVs, while the remaining HV lanes can
be used by both HVs and CAVs. To solve the overall bi-level bi-objective program, a cus-
tomized algorithm that harnesses the complementary strengths of non-dominated
sorting genetic algorithm II (NSGA-II) in global search and variable neighborhood
search (VNS) in local search for solutions is proposed.

The next two contributions are related to insights and policy implications from
implementation of the program. The third contribution mainly pertains to understand-
ing the tradeoff between system efficiency and equity and its evolution with changes in
key system parameters. It is found find that the tradeoff space varies by network and
by where system travel cost and equity lie on the Pareto frontier. When travel demand
is low and the network is relatively uncongested, inequity is not a significant concern.
As demand increases, inequity starts to appear, first across different ODs and then
between CAV and HV travelers. When CAV price or CAV traveler VOT is lowered,
which is likely as CAVs continue to mature, the equity gap between CAV and HV tra-
velers will be widened, suggesting a need for interventions.

Our fourth contribution pertains to such interventions. We explore the possibility of
subsidizing HV travelers and levying a fee from CAV travelers for CAV lane use.
Numerical results show that subsidizing HV travelers by an appropriate amount can
improve equity as well as system travel cost. However, over-subsidy will widen the
equity gap, as disadvantaged HV travelers become advantaged travelers. On the other
hand, when travel demand is high and the network is congested, subsidy has limited
effect on the Pareto frontier. Subsidy can push the Pareto frontier toward better equity
and system travel cost when CAV price and CAV traveler VOT are reduced. In most
cases, subsidy is also economically justifiable as the associated reduction in system
travel cost exceeds the subsidy amount. Introducing a CAV lane use fee is not as prom-
ising as subsidizing HV travelers, as it not only increases CAV traveler cost but also offers
a less clear improvement in equity.
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The remainder of the paper is organized as follows. In Section 2, we review the rel-
evant literature, based on which the gaps we aim to fill are identified. Section 3 provides
a numerical characterization of the problem, including the network representation, the
equity metric, and the bi-level bi-objective optimization program. Section 4 proposes a
customized algorithm to solve the optimization program. Section 5 conducts numerical
experiments on the Nguyen-Dupuis network and a south Florida network. Section 6 con-
cludes and suggests directions for future research.

2. Literature review

This section conducts a review of the relevant literature, spanning three areas: CAV lane
deployment, multiple-objective transportation network design, and equity consider-
ations in transportation. Based on the literature review, we identify the research gaps
to fill and highlight the importance of filling these gaps.

2.1. CAV lane deployment

We begin our literature review by first looking at the implications of CAVs for road
capacity, which has drawn quite a bit of interest from researchers (Levin and Boyles
2016; Shladover 2018; van den Berg and Verhoef 2016). Chen et al. (2017) developed
detailed analytical formulations for road capacity in mixed automated vehicle (AV)-
HV traffic, taking into account (1) AV penetration rate, (2) micro/mesoscopic AV and
HV characteristics, and (3) different lane policies to accommodate AVs. Chen et al.
(2022) investigated the distribution of a single lane capacity with mixed AV-HV traffic
flow, derived capacity bounds, and found that capacity can vary with AV penetration
in and patterns of the traffic flow mix. Research attention has also been given to
having CAVs travel on dedicated lanes. Tientrakool, Ho, and Maxemchuk (2011)
showed that the capacity of a dedicated CAV lane can be nearly three times that of a con-
ventional lane. Using simulations, Ye and Yamamoto (2018) investigated the effect of
dedicated CAV lanes on highway capacity and examined the dynamic relationship
among dedicated CAV lanes, and CAV automation and penetration levels. Razmi Rad
et al. (2020) developed a conceptual framework to analyze different CAV lane design
configurations and utilization policies on motorways.

From a network perspective, a thread of research has looked into transportation
network equilibrium with mixed AV-HV traffic. Some of the works specifically pursued
optimal AV lane deployment, mostly with the objective of improving system efficiency.
Chen et al. (2016) proposed a bi-levelmodel to determine the optimalAV lane deployment
with decisions on timing, location, and quantity of AV lane deployment. Three plans:
withoutAV lane, deploying all AV lanes at once, and dynamic implementationwere exam-
ined. Chen, Wang, and Meng (2019) investigated the AV lane deployment problem con-
sidering AV price uncertainty and purchase subsidy. The authors proposed a purchase
subsidy strategy to improve system performance in terms of total travel time and
promote AV adoption. Liu and Song (2019) studied the AV/toll (AVT) lane problem, in
which AVT lanes are freely accessible by AVs, while HVs need to pay a toll to access the
AVT lanes. Wang et al. (2021) further studied the AVT lanes deployment problem with
detailed toll design under elastic travel demand. More recently, Seilabi et al. (2023)
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considered lane reallocation policy andmarket size uncertainty while deploying dedicated
CAV lanes, with the objective of minimizing vehicle emissions.

2.2. Multiple-objective transportation network design

As both efficiency and equity are of interest while deploying CAV lanes, bi-objective
optimization is more relevant. Such a problem falls into the general category of multi-
objective network design problems (MNDP) (Chen et al. 2010; Lin and Xie 2011; Mian-
doabchi et al. 2013; Sharma and Mathew 2011; Sohn 2011; Ye and Wang 2018). In the
MNDP literature, a subgroup of MNDP studies dealing with environmental objectives
or social equity of particular relevance is especially worth noting. Wang and Szeto
(2017) investigated multi-objective road network design which simultaneously optimizes
system travel cost, emission cost, and noise excess cost using a chemical reaction optim-
ization algorithm. Ferguson, Duthie, and Waller (2012) developed two bi-level optimiz-
ation models to minimize system total travel time and system emissions respectively, to
assess the trade-off between travel delay and emissions. The results showed that reducing
traffic congestion does not necessarily lead to minimum emissions for some criteria pol-
lutants. Chen and Xu (2012) employed a goal programming approach to road network
design under demand uncertainty, in which a priority structure is specified to achieve
the efficiency, environment, and equity objectives. A simulation-based genetic algorithm
was developed to solve the goal programming models.

2.3. Equity considerations in transportation network design

Transportation network design changes capacity of the existing road network, which can
cause redistribution of traffic and subsequently spatial inequity on the network. Spatial
inequity in a transportation network, generally speaking, refers to travelers of different
ODs not having access to the same quality of mobility. Various metrics were proposed
to measure spatial inequity, such as based on GINI coefficient, Theil index, and the
notion of accessibility (Ben-Elia and Benenson 2019; Feng and Zhang 2014; Shi 2021).
Additionally, the ratio of travel cost before and after transportation network design
was adopted as an equity constraint. Meng and Yang (2002) pointed out that performing
transportation network design by minimizing total system cost may end up increasing
travel cost for some OD pairs. The authors proposed an OD travel cost ratio before
and after the road network design to characterize OD equity.

Besides spatial equity, Yang and Zhang (2002) investigated the problem of tolling
network design considering social equity between poor and rich travelers who pay the
same toll, along with spatial equity among travelers of different ODs. Szeto and Lo
(2006) investigated time-dependent road network design by introducing inter-genera-
tional equity, and examined the tradeoff between societal and individual perspectives
for the planning period. Santos, Antunes, and Miller (2008) introduced three equity cri-
teria: accessibility to low-accessibility population centers, dispersion of accessibility
values across population centers, and dispersion of accessibility across all population
centers and across centers in the same region. These criteria were incorporated into a
road network design model to maximize a weighted sum of accessibility and equity objec-
tives. Sumalee, Shepherd, and May (2009) proposed a method to determine road user
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charging schemes by considering three objectives of social welfare, charging revenue, and
distributional equity. NSGA-II-based solution methods were developed to solve the
multi-objective design. Using John Rawls’s theory of justice, Behbahani, Nazari, Partovi-
far et al. (2019) developed a bi-level integer program to investigate road network design.
The authors found that compared to the classic method, John Rawls’ approach increases
accessibility of low-to-medium accessibility groups.

2.4. Gaps in the literature and importance of filling these gaps

Based on the review of the existing literature, very little research has looked into equity
while deploying CAV lanes. We are aware of only two relevant works. One sought to
jointly deploy AV lanes and determine road tolls, by minimizing a weighted sum of
travel time, emission, and electricity consumption cost (Pourgholamali, Miralinaghi,
and Ha 2023). Equity was considered through constraining exceeding HV travel cost
and ensuring revenue neutrality. The other work focused on deploying a CAV platoon-
able corridor (Zhu et al. 2023), by minimizing a weighted sum of infrastructure upgrade
cost, generalized travel cost, and inequity cost. The inequity cost was defined as the
increase in generalized travel cost of HV travelers compared to without the CAV pla-
toonable corridor. The inequity measure, as it is cost based, is network dependent:
larger networks and more HV travelers are likely to show greater inequity costs. Thus,
it would be difficult to use the measure to compare inequity between networks of
different sizes.

In view of the above, three important gaps in the literature are identified. First, a
network-independent equity metric that allows for inter-network equity comparison is
needed in the context of CAV lane deployment. Second, the tradeoff space between
system efficiency and equity while deploying CAV lanes, including how the tradeoff
evolves with changes in key system parameters, has not been investigated nor well under-
stood. Third, to mitigate inequity, the possibility of subsidizing HV travelers have not
been explored. Our paper attempts to fill these gaps. Filling these gaps will advance
our ability to understand and address the equity issue in CAV lane deployment. This
in turn supports more informed infrastructure planning, investment, and policy-
making as the society embraces connected and automated mobility.

3. Problem formulation

This section presents the mathematical formulation of our problem. We begin by intro-
ducing the network representation (Section 3.1). Then, the equity metric used in this
study is proposed (Section 3.2). The bi-level bi-objective mathematical program for
determining the optimal CAV lane deployment considering both system efficiency and
equity is described in Section 3.3.

3.1. Network representation

We let G(N , A) represent the transportation network, whereN denotes the set of nodes
and A denotes the set of links connecting adjacent nodes.A = A̅< Â. A̅ denotes the set
of links with no candidate CAV lane. Â denotes the set of links with one or more
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candidate CAV lanes. We further decompose Â. into Â1 and Â2. Â1 denotes the set of
virtual links each consisting of dedicated CAV lane(s) only. Â2 denotes the set of virtual
links each consisting of HV lane(s) only. An HV lane can be used by both HVs and
CAVs, while a dedicated CAV lane can only be used by CAVs. In other words, if a phys-
ical link a [ Â has both dedicated CAV and HV lanes, a is decomposed into two virtual
links a′ [ Â1. and a′′ [ Â2. a′ connects the same nodes as a, and consists of dedicated
CAV lane(s) only. a′′ also connects the same nodes as a, and consists of HV lane(s) only.
If no lane on a is converter dedicated CAV use, then a only has a′′. In this study, we
always keep at least one HV lane for each physical link a [ Â. Thus, it cannot happen
that a only has a′. By decomposing Â into Â1 and Â2, A = A̅< Â1 < Â2.

Let us use a simple network in Figure 1 to further illustrate this. Figure 1(a) presents
the conventional link notation, where any two nodes are connected by at most one link
with the direction indicated by the arrow. That link corresponds to a physical road link.
In Figure 1(a), links 1, 4, 5, and 6 contain only HV lanes which cannot be converted to
dedicated CAV lanes. These links belong to A̅. On the other hand, links 2, 3, 7, and 8 (in
red) each have one or multiple lanes converted to dedicated CAV lanes, and also have at
least one HV lane. These links belong to Â. With A = A̅< Â1 < Â2, link 2 is replaced
by two virtual links: 2′ from Â1 and 2′′ from Â2. Similarly for links 3, 7, and 8. This is
shown in Figure 1(b).

With the above link notations, the sets of feasible paths for CAVs and HVs for a given
OD pair can be different. As an example, for OD pair 1-2, the feasible paths for HVs are
comprised of: link 1, link 3’’→link 4, and link 2’’→link 6→link 4. These paths are also
feasible for CAVs of the same OD pair. However, the set of feasible paths for CAVs
further contains: link 3’→link 4, and link 2’→link 6→link 4.

3.2. The equity metric

Equity is an ever-present issue in human society. According to the Merriam-Webster
Dictionary (2024), equity is about the fairness or justice in the way people are treated.
Equity can be interpreted from different perspectives, such as utilitarianism,

Figure 1. Illustration of (a) conventional road network representation comprised of physical links with
(in red) and without (in black) dedicated CAV lane(s) on the links, and (b) proposed network represen-
tation where A = A̅ (set of physical links with no CAV lanes, in black)< Â1(set of CAV
virtual links, in green)<Â2(set of HV virtual links, in blue).
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libertarianism, and Rawls’ egalitarianism. The concept of equity has been extensively dis-
cussed in many studies (Dworkin 2018). For instance, Sawyer et al. defined fairness as
‘equal treatment for equal individuals while reserving preferential treatment for those
who deserve it.’ Many measures have been proposed (Atkinson index, Gini coefficient,
and Theil index, to name a few); they all point to the essence of equity that is to
achieve a reasonable distribution of resources (Behbahani, Nazari, Jafari Kang et al.
2019; Pereira, Schwanen, and Banister 2017). In the transportation domain, equity gen-
erally involves two categories: horizontal equity and vertical equity (Litman 2002; 2020).
Horizontal equity refers to the principle that individuals or groups in similar situations/
conditions should be treated equally. Vertical equity rests on the idea that individuals or
groups in different situations/conditions should receive different treatments, in order to
reduce inequality.

In transportation network design, changes in infrastructure provision can cause redis-
tribution of trips on the network, which may improve or worsen equity. To analyze the
impact of road network design on equity, concepts such as social equity, spatial equity,
and user equity have been proposed (Meng and Yang (2002); Yang and Zhang (2002)
Szeto and Lo (2006)). Despite differences in terminology, the analytical frameworks of
these studies generally align with two dimensions: horizontal equity and vertical
equity. Specifically for CAV lane deployment with a mix of HV and CAV traffic, horizon-
tal equity seeks to achieve equal travel cost per unit distance, among travelers of different
OD pairs using the same vehicle type. For vertical equity, the equity concern is to reduce
the difference in travel cost per unit distance between travelers using different vehicle
types. In this study, we propose an equity metric that accounts for both horizontal
and vertical equity. The metric builds on m values which characterize the travel cost
per unit distance for each OD pair and each vehicle type, relative to the average of the
travel costs per unit distance over all OD pairs and both vehicle types. Our equity is
defined as the maximum deviation of any m value from the mean m value, which can
be viewed as an Lp distance measure with the norm p→ 1 (Olivier, Lodi, and Pesant
2022). The equity objective is to minimize this maximum deviation. The idea of perform-
ing min–max derives from Rawls’ principle of justice (Rawls 1971) and has been used for
equity measurement in many contexts such as facility location (Marsh and Schilling 1994;
Ogryczak 2000), truck driver scheduling (Hamdan et al. 2024), machine scheduling (Qu
2018), and air traffic management (Guo et al. 2022; Zografos and Jiang 2019). For the
sake of clarity, we draw Figure 2 to present the derivation process of equity metric.
Below we detail the equity metric development.

A few notations need to be introduced for the metric development. For a traveler, the
generalized travel cost incurred by using vehicle type m [ {HV, CAV} of OD pair w is
denoted by Cw

m and calculated later in Section 3.3.2. The OD distance for OD pair w,
denoted by lwmin, is the length of the shortest-distance path connecting the OD pair.
The generalized travel cost per unit OD distance for HV travelers and CAV travelers
of OD pair w are thus Cw

HV/lwmin and Cw
CAV/lwmin. For the transportation system as a

whole, the total generalized travel cost incurred by all travelers across the network is


m



a
cma vma , where cma is the generalized travel cost on link a [ A̅< Â1 < Â2 of travelers

using vehicle type m. vma is traffic flow of vehicle type m on link a. The derivation of cma
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and vma is deferred to Section 3.3.2. Note that in line with the link notation in Section 3.1,
the summation of a is over physical links in A̅ as well as virtual links in Â1 and Â2.

With the above notations, we express the average generalized travel cost per unit OD
distance for all travelers on the network:

U =


m


a cma vma
w Dwlwmin

(1)

where Dw is travel demand of OD pair w, i.e. Dw = Dw
HV + Dw

CAV.
For a traveler of OD pair w, the ratio of the generalized travel cost per unit OD dis-

tance incurred by the traveler to the average generalized travel cost per unit OD distance
is expressed in (2)-(3), for HV and CAV travelers respectively.

mw
HV =

Cw
HV

lwminU
∀ w [ W (2)

mw
CAV =

Cw
CAV

lwminU
∀ w [ W (3)

In (2)–(3), we take the ratio to ‘normalize’ the generalized travel cost per unit OD dis-
tance. Doing so facilitates comparison between networks of different sizes and character-
istics. For example, a network composed primarily of highways will likely have a much
higher generalized travel cost per unit OD distance than another network composed
mainly of local roads and streets. In this case, comparing the unit generalized travel
cost between the two networks would not be very sensible. Through normalization,
the m values of different networks become more comparable, as each m is about the rela-
tivity of the unit generalized travel cost for an OD and a vehicle type with respect to the
average of the network.

Figure 2. The derivation process of equity metric.
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The system average ratio m̅ is obtained by taking the weighted average of mw
m’s over all

OD pairs and across both HV and CAV travelers, weighted by the respective travel
demands, as shown in (4). The maximum deviation of any ratio mw

m from the system
average ratio, expressed in (5), is used to describe system equity. The deviation considers
travelers of different OD pairs (i.e. w [ W). Thus, the spatial dimension of equity is cap-
tured. In addition, the deviation considers travelers using different vehicle types (i.e.
m [ M), which are likely to be correlated with travelers’ socioeconomic characteristics.
As such, the social dimension of equity is also incorporated. Furthermore, because m’s
can be compared between networks, the metric allows for inter-network comparison
of equity.

m̅ =


w
mw
HV

Dw
HV
D
+ mw

CAV
Dw
CAV
D

 

(4)

max
m[M,w[W

|mw
m − m̅| (5)

The equity-side objective is to minimize the maximum deviation of any mw
m value

across all OD pairs and both vehicle types from the system average m̅, by selecting an
appropriate CAV lane deployment scheme:

min
y

max
m[M,w[W

|mw
m − m̅| (6)

where y is a vector of binary decision variables indicating whether a specific lane of a
specific link is converted to a CAV lane. The precise definition of y is introduced next.

3.3. Determining optimal CAV lane deployment

In this subsection, we formulate a bi-level bi-objective program to determine the optimal
CAV lane deployment considering both system efficiency and equity. The bi-level
program characterizes the process that a CAV infrastructure planner, when determining
what HV lanes to convert into dedicated CAV lanes, anticipates how travelers would
respond by adjusting their route choices, resulting in traffic redistribution in the
network. Thus, the upper level is a bi-objective optimization problem, while the lower
level is characterized by a multi-class traffic network equilibrium with CAV and HV
vehicle types. Below we detail how the two levels are specified.

3.3.1. Upper level
The upper-level decision facing the CAV infrastructure planner is on what lanes to be
converted to dedicated CAV lanes. We introduce binary variable yia. to characterize
the lane conversion decision. In yia, i [ Ia. where Ia is the set of lanes on link a [ Â.
Lane i [ Ia. on physical link a. is converted to a dedicated CAV lane if yia = 1. The
lane is not converted if yia = 0.

Following the link definition in Section 3.1, the dedicated CAV lane(s) on link a [ Â.
form virtual link a′ [ Â1. . The remaining HV lane(s) on link a. form virtual link
a′′ [ Â2. To characterize the capacity of a virtual link, we use C̅ to denote the capacity
of a single HV lane, and Ĉ to denote the capacity of a single CAV lane. A CAV lane is
expected to have a higher capacity than an HV lane as CAVs can travel closer together
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by leveraging real-time communications between vehicles (Chen et al. 2017; Lu et al.
2020). Tientrakool, Ho, and Maxemchuk (2011) showed that the capacity of a CAV
lane can be nearly three times the capacity of a conventional lane.

On other hand, the capacity of an HV lane is considered invariant with a mix of HV
and CAV traffic. We note that some CAV research argues that the capacity of a road link
increases with the penetration of CAVs (Noruzoliaee, Zou, and Liu 2018; Wang et al.
2021). The argument was made by assuming an ideal driving environment where
CAVs can precisely perceive their surroundings and make timely decisions and HV
drivers are rational and do not extend their car-following distance in the presence of
CAVs. However, such an ideal driving environment may not be realized (Do,
Rouhani, andMiranda-Moreno 2019; Li et al. 2020; Ye and Yamamoto 2018). In practice,
CAVs can be prohibited from traveling in very short headways on HV lanes, for safety
reasons in mixed traffic (Chen, Wang, and Meng 2019). When following an HV, a
CAV may even need additional time to react (Milanés and Shladover 2014). Considering
these, we follow the literature (Chen, Wang, and Meng 2019; Milanés and Shladover
2014; Zhu et al. 2023) and assume invariant capacity for HV lanes.

Ts, the capacity of a physical link a with some lane(s) converted to dedicated CAV
lane(s) consists of two parts: the capacity of the dedicated CAV lane(s) (La′) and the
capacity of the remaining lanes (La′′), as shown in (7). La′ is proportional to the
number of dedicated CAV lanes on the link (which is



i[Ia
yia). La′′ is proportional to

the number of remaining HV lanes (which is Ya −


i[Ia
yia; Ya is the total number of

lanes on the link).

La′ = Ĉ


i[Ia

yia ∀ a′ [ Â1 . (7)

La′′ = C̅ Ya −


i[Ia

yia

 

∀ a′′ [ Â2. (8)

The objective of the optimal CAV lanes deployment problem are to (1) minimize
system travel cost (efficiency), and (2) minimize the maximum deviation of any mw

m.
from its system-level mean (equity), by deciding on what to be converted for dedicated
CAV use while anticipating traffic response to the lane conversion:

min
y



m[M



a[A

cma v
m
a , max

m[M,w[W
|mw

m − m̅|

 

. (9)

s.t.


i[Ia

yia , Ya ∀ a [ Â (10)

where y = {yia}, ∀i [ Ia, a [ Â. Given a CAV lane deployment scheme, cma . and vma . will
come from the equilibrium traffic flow at the lower level. Constraint (10), which is termed
lane conversion constraint, stipulates that at least one HV lane is kept on any link a [ Â.
By doing so, HVs can always travel on any link.

TRANSPORTATION PLANNING AND TECHNOLOGY 11



3.3.2. Lower level
The lower level of the bi-level program characterizes traffic distribution on the network
given a CAV lane deployment scheme, following Wardrop’s first principle (Wardrop
1952). To do so, we use f rw,m to denote traffic flow of vehicle type m on path (route) r
of OD pair w. r [ Rm

w , where Rm
w denotes the set of paths for vehicle type m connecting

OD pair w. The traffic flow conservation in the network is specified as follows:


r[Rm
w

f rw,m = Dw
m ∀ m [ M, w [ W (11)

f rw,m ≥ 0 ∀ m [ M, w [ W, r [ Rm
w (12)

Equation (11) expresses that the sum of traffic flows for vehicle type m on all paths of
an OD pair w, which equals the OD pair’s travel demand for the vehicle type. Constraint
(12) ensures that the traffic flow of a vehicle type on a path is always non-negative.

We specify the travel time on a link based on the Bureau of Public Roads (1964) func-
tion. For a link a [ A̅ which has only HV lanes, travel time on the link is computed as:

ta = tHV
a = tCAVa = t0a 1+ a

va
La

 b
 

∀ a [ A̅ (13)

where ta denotes travel time on link a. The link may accommodate a mixed traffic of HVs
and CAVs. Thus, the travel time of HVs and the travel time of CAVs on the link, tHV

a and
tCAVa , are the same and equal to ta. t0a is the free-flow travel time on link a. va is vehicle
flow on the link and is the sum of HV flow and CAV flow on the link: va = vHV

a + vCAVa .
La is the capacity of the link. a and b are parameters.

A link a [ Â can have both dedicated CAV lanes and HV lanes. In this case, travel
time on the link needs to be calculated differently on the corresponding virtual links:

ta′ = tCAVa′ = t0a 1+ a
vCAVa′

La′

 b
 

∀ a′ [ Â1 (14)

ta′′ = tHV
a′′ = tCAVa′′ = t0a 1+ a

vHV
a′′ + vCAVa′′

La′′

 b
 

∀ a′′ [ Â2 (15)

For a physical link a [ Â, if the corresponding virtual links a′ and a′′ both have CAV
flows, then it must be that tCAVa′ = tCAVa′′ , which means ta′ = ta′′ . This is because otherwise,
some CAVs would switch from one lane type to the other lane type, which would violate
equilibrium. It is also possible that a′′ [ Â2 does not have CAV flow. In other words, all
CAVs on the physical link a travel on virtual link a′. If only a′ has CAV flows, then
ta′ ≤ ta′′ . because otherwise, some CAVs would switch from using a′ to a′′, which
would also violate equilibrium. As La′ and La′′ . depend on yia (as shown in Equation
(7)–(8)), the travel time on the two virtual links of a physical link a [ Â is a function
of the CAV lane conversion decisions.

For each of the two vehicle types, vehicle flow on a link follows the link-path relation-
ship of Equation (16). The vehicle flow on a link is the sum of vehicle flows of the two
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vehicle types on the link (Equation (17)).

vma =


w[W



r[Rm
w

dm,w
a,r f rw,m ∀ a [ A, m [ M (16)

va =


m[M
vma ∀ a [ A (17)

where dm,w
a,r is a 0–1 indicator of link-path incidence. It takes value one if link a is on path

r of OD w for vehicle type m, and 0 otherwise.
We consider that travelers make route choice decisions based on their generalized

travel cost, which includes not only travel time but out-of-pocket money. The generalized
travel cost of travelers using vehicle type m on path r of OD w, denoted by crw,m, is
expressed in Equations (18)–(19). In Equation (18), the generalized travel cost of trave-
lers using a vehicle type on a path is the sum of generalized travel cost on the links tra-
versed by the path. Equation (19) specifies the generalized travel cost on a link for
travelers using a vehicle type, which follows Noruzoliaee, Zou, and Liu (2018).

crw,m =


a
dm,w
a,r cma ∀ m [ M, w [ W, r [ Rm

w (18)

cma = hmt
m
a +

km,1km,2

km,3km,4km,5
rmla +

VCm

km,5
la ∀ a [ A, m [ M (19)

In Equation (19), the first term on the right-hand side is travel time cost. The second
term corresponds to the vehicle depreciation cost. The third term corresponds to the
variable vehicle operating cost. Specifically, for a vehicle of typem, hm is VOT of travelers
using the vehicle type. rm is the vehicle purchase price. km,1 is a scale factor scaling vehicle
price by taking further consideration the overhead costs (e.g. tax and registration fee).
km,2 is a proportion factor denoting the portion of the vehicle price value loss at the
end of the vehicle’s lifetime, as a result of depreciation. The average vehicle lifetime,
measured in years, is denoted by km,3. The average travel distance of a vehicle in a
year is denoted by km,4. The average occupancy of a vehicle is denoted by km,5. la is
the length of link a. VCm denotes the unit variable operating cost of vehicle type m, in
$/kilometer. The variable cost includes items such as fuel, maintenance, and insurance.

Following Yang and Huang (2004), the equilibrium condition for the multi-class user
equilibrium with generalized travel cost can be written as follows:

f rw,m(c
r
w,m − Cm

w ) = 0 ∀ m [ M, w [ W, r [ Rm
w (20)

crw,m − Cm
w ≥ 0 ∀ m [ M, w [ W, r [ Rm

w (21)

f rw,m ≥ 0 ∀ m [ M, w [ W, r [ Rm
w



r[Rm
w

f rw,m = Dw
m ∀ m [ M, w [ W

where Cm
w is the minimum generalized travel cost by vehicle type m for OD pair w. The

last two expressions are not numbered as they are already numbered earlier as (11) and
(12). To solve the multi-class user equilibrium, we consider its equivalent optimization
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model. Specifically, we first re-express Equation (18) as a generalized travel time
equation:

crw,m =


a
tma +

1
hm

km,1km,2

km,3km,4km,5
rmla +

VCm

km,5
la

  

dm,w
a,r

∀ m [ M, w [ W, r [ Rm
w

(22)

Based on Equation (22), we formulate the following minimization problem for the
CAV lane deployment problem:

Z(vma ) = min


a

va

0

ta(x)dx +


a



m
vma

1
hm

km,1km,2

km,3km,4km,5
rmla +

VCm

km,5
la

 

(23)

s.t. (11), (12), (16), and (17)
For brevity, we use Um to denote

km,1km,2

km,3km,4km,5
rm +

VCm

km,5
, which captures the per unit

distance out-of-pocket travel cost. Using the first-order Karush-Kuhn-Tucker (KKT)
conditions of the above minimization problem, the equilibrium conditions with
respect to general travel time can be derived:


a
tma d

m,w
a,r +



a

1
hm

laUmd
m,w
a,r = lm

w if f rw,m . 0 ∀ m [ M, w [ W, r [ Rm
w (24)



a
tma d

m,w
a,r +



a

1
hm

laUmd
m,w
a,r ≥ lm

w if f rw,m = 0 ∀ m [ M, w [ W, r [ Rm
w (25)

where lm
w is the Lagrange multiplier corresponding to Equation (11). Multiplying both

sides of (24)–(25) by hm, we obtain:


a
hmt

m
a d

m,w
a,r +



a
laUmd

m,w
a,r = hml

m
w if f rw,m . 0 ∀m [ M, w [ W, r [ Rm

w (26)



a
hmt

m
a d

m,w
a,r +



a
laUmd

m,w
a,r ≥ hml

m
w if f rw,m = 0 ∀m [ M, w [ W, r [ Rm

w (27)

The left-hand side of Equations (26)–(27) is the path travel cost crw,m. On the right-hand
side,lm

w is the corresponding Lagrangianmultiplier. Equations (26)–(27) indicate that crw,m
is equal to traveler VOT hm times lm

w when there is traffic flow on the path; the path travel
cost is no less thanhml

m
w when there is no traffic flow on the path. Thus, (26)–(27) is equiv-

alent to (20)–(21) and (12), with hml
m
w representing the minimum OD travel cost Cm

w . In
other words, the solution of the minimization problem of (23) (subject to constraints (11),
(12), (16), and (17)) is a solution for the multi-class user equilibrium with generalized
travel cost. The minimization problem can be solved by the well-known Frank-Wolfe
algorithm (Frank and Wolfe 1956). A detailed proof of the equivalency between the
KKT conditions of the minimization problem and (20)–(22) is relegated to Appendix.

As a final note for the lower-level formulation, it should be noted that in formulating the
lower-level problem, the demandon anODpair is assumedfixed. By assuming so,we intend
to focus our study on the relatively short-term effects of CAV lane deployment on system
efficiency and equity given the existing travel demand. On the other hand, as the adoption
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of CAVs increases, the OD demand patterns are likely to evolve in the longer term. Incor-
porating suchCAVadoptionwould give rise to newmodeling challenges. First, the adoption
of CAVs will depend not only on the travel cost of using CAV, but a number of other econ-
omic, sociodemographic, and attitudinal factors (Chen et al. 2022; Talebian and Mishra
2018). Thus, how to appropriately characterize CAV adoption will be a separate study
itself. Second, evenwith an adoption function, how to integrate it into the existingmodeling
framework could involve considerable effort. For example, one possibility could be to
assume that CAV adopters switched from using HVs. Then, a binomial Logit model
should be specified to capture traveler vehicle type choice and added to the multi-class
network equilibrium formulation. Understanding the best ways to characterize and incor-
porate CAV adoption into the lower-level problem will be left for future research.

4. Solution algorithm

The CAV lanes deployment problem can be viewed as a type of discrete network design
problem (Farahani et al. 2013), for which finding an exact solution is generally NP-hard
and challenging (Yu et al. 2015). Considering further that the problem has two objectives
to deal with, we propose to solve our problem by a customized algorithm, termed NSGA-
II-VNS, which leverages the complementary strengths of NSGA-II in global search for bi-
objective optimization and VNS in local search while we seek the optimal solution, i.e.
optimal CAV lane deployment scheme. NSGA-II, initially proposed by Deb et al.
(2002), is a classical algorithm for solving multi-objective optimization. Simulating
natural evolutionary processes, NSGA-II characterizes solutions as chromosomes. In
our context, each element in a chromosome corresponds to a convertible lane, and is
binary indicating whether the lane is converted to a CAV lane. Thus, the length of a
chromosome is equal to the number of convertible lanes. To illustrate, consider a
network consisting of five convertible lanes. Chromosome C = [0, 1, 1, 0, 0] denotes
a solution with lanes 2 and 3 converted to dedicated CAV lanes.

While NSGA-II copes with multi-objective optimization, it is rooted in genetic algor-
ithm which is generally good at diversifying the solution space by considering and eval-
uating a population of solutions that evolve over generations (Mohammadi, Jula, and
Tavakkoli-Moghaddam 2019). On the other hand, genetic algorithm is less good in inten-
sifying search in local regions. In our paper, we try to mitigate this weakness by hybridiz-
ing NSGA-II with VNS, to balance global exploration with local exploitation during the
evolutionary process. VNS, which was initially proposed by Mladenović and Hansen
(1997) and has since been widely employed in solving complex combinatorial and
global optimization problems (e.g. see the review of Hansen, Mladenović, and Moreno
Pérez (2010)), relies on the idea of constructing and performing local search for better
solutions over different neighborhood structures.

By hybridizing NSGA-II with VNS, we replace the crossover operation with multiple
neighborhood searches. Specifically, the following manifold neighborhood search struc-
ture is employed:

(1) Left Insert (Figure 3(a)): Randomly select a lane (Location 1) from the current CAV
lane deployment scheme, and randomly pick another position (Location 2) on the
left of Location 1. Then, insert Location 1 to the left of Location 2.
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(2) Right Insert (Figure 3(b)): Randomly select a lane (Location 1) from the current
CAV lane deployment scheme, and randomly pick another position (Location 2)
on the right of Location 1. Then, insert Location 1 to the right of Location 2.

(3) 2-Opt Operator (Figure 3(c)): Randomly select two lanes from the current CAV lane
deployment scheme. Then reverse the order of positions between the two lanes.

(4) Exchange Operator (Figure 3(d)): Randomly select two lanes from the current CAV
lane deployment scheme. Exchange values of the two selected lanes.

Note that a random number r [ (0, 1) is first drawn, to determine whether the above
VNS is performed on a chromosome. If the r value is below a prespecified threshold
value, VNS is performed. If the r value is above the threshold value, then a random sol-
ution is generated instead. The detailed algorithmic steps of NSGA-II-VNS is shown in
Table 1.

In implementing the NSGA-II-VNS algorithm, whenever a chromosome is generated,
constraint (10) always needs to be respected. Specifically, in step 1 of the algorithm, if a
randomly generated chromosome violates constraint (10), we discard the chromosome,
and randomly generate another one. We keep doing this until a feasible chromosome is
obtained. Similarly for the random chromosome generation in step 5 of the algorithm. In

Figure 3. Neighborhood search structures.

Table 1. Detailed steps of the NSGA-II-VNS algorithm.
Step 1 Initialization. Initialize the generation counter g = 1. Set the population size to 2N. Generate randomly the first

population of chromosomes, denoted as Pg = P1.
Step 2 Traffic assignment. For each chromosome in the current population Pg, perform multi-class traffic assignment

based on Frank-Wolfe algorithm, to obtain the equilibrium traffic flow on the network.
Step 3 Compute objective values. Given the equilibrium traffic flow, compute system travel cost and equity for each

chromosome in Pg . Based on the computed system travel cost and equity values, perform non-dominated
sorting of the chromosomes and compute crowding distance (see Deb et al. 2002) for each chromosome.

Step 4 Preserve elite chromosomes. With the sorting and crowding distance computation results, pick N/2
chromosomes by tournament selection. The picked chromosomes constitute a new population P1g .

Step 5 Variable neighborhood search. For each chromosome in p1g, generate a random value r [ (0, 1). . If r , rc
which is the threshold for performing VNS, perform VNS to generate four new chromosomes. Otherwise,
randomly generate a chromosome. The generated chromosomes constitute another new population P2g .

Step 6 Perform elite selection operations. Perform non-dominated sorting to pick 2N chromosomes from the combined
P1g + P

2
g population. These 2N picked chromosomes form population pg+1.

Step 7 Determine whether to stop or move to the next iteration. If g+ 1 is no greater than the maximum number of
generations to perform, set g = g + 1. Go back to step 2 and repeat. If g+ 1 reaches the maximum number
of generations, perform only steps 2–3 to obtain Pareto solutions. Then stop.
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step 5, we also keep performing the search until a feasible chromosome is found for each
neighborhood search structure under VNS.

In performing step 5, we set rc to 0.9, which means a large probability that VNS will be
performed. In other words. number of generated solutions, which constitute p2g , is likely
to be closer to 2N. rather than N/2, the latter resulting from simply doing random
chromosome generation. Consequently, the combined size of p1g . and p2g is likely to be
greater than 2N, making it necessary to select 2N chromosomes out of the combined
p1g and p2g .

5. Numerical experiments

In this section, we perform numerical experiments of the bi-level bi-objective optimiz-
ation program and the solution algorithm on two networks. The first is a modified
Nguyen-Dupuis network, where a base case and alternative scenarios are investigated.
Then, we examine CAV lane deployment on a real-world large-scale network of south
Florida. The numerical experiments are run on a PC with Intel(R) Core(TM) i7 CPU
@ 2.60 GHz with 32 GB RAM.

5.1. Experiments on Nguyen-Dupuis network

The modified Nguyen-Dupuis network used in our experiments has 13 nodes, 19 links,
and nine OD pairs (Figure 4). The OD information is listed in Table 2. The main mod-
eling parameters are drawn from the Chen et al. (2016) and Noruzoliaee, Zou, and Liu
(2018), as presented in Table 3. In particular, the value difference in the unit variable
cost parameters VCm, m [ {HV, CAV}. reflects additional maintenance cost associated
with the CAV technologies as well as reduced insurance and fuel cost when using
CAVs (Noruzoliaee, Zou, and Liu 2018). The detailed attributes of the network are pre-
sented in Table 4. The capacity of a dedicated CAV lane is considered 2.5 times the

Figure 4. Nguyen-Dupuis network.
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capacity of an HV lane. For each OD pair, travel demand is evenly split between CAVs
and HVs. With the exception of comparing the Pareto frontiers by NSGA-II-VNS and
enumeration in Section 5.1.1, each link is assumed to have one convertible lane. In imple-
menting NSGA-II-VNS, the population size is 20 (the only exception is when NSGA-II-
VNS is compared with NA-II in Figure 8. There the population size is set to 50 to gen-
erate more solutions on Pareto frontiers.). The number of generations is set to 50.

5.1.1. Base case
In the base case, we follow the network setup in Chen, Wang, and Meng (2019) (which is
also for AV lane deployment) and consider seven links each of which has one convertible
lane, as shown in Figure 5. Considering a subset of the links with convertible lanes allows
us to enumerate all possible CAV lane deployment schemes (in total 27 = 128 schemes)
and evaluate the effectiveness of the NSGA-II-VNS algorithm and the quality of the sol-
utions obtained in a reasonable amount of time. Nonetheless, it is worth noting that the
proposed model and solution algorithm are generic and can solve problems with alterna-
tive network setups. The system travel cost and equity for each of the 128 schemes are
displayed as blue dots in Figure 6. Note that the number of dots is less than 128, as
some schemes have identical system travel cost and equity. The non-dominated solutions
are connected in the small subfigure in Figure 6, forming the true Pareto frontier. The
three orange dots (labeled as ‘Scheme 1’, ‘Scheme 2’, and ‘Scheme 3’) are solutions
obtained from NSGA-II-VNS. These orange dots overlap with true Pareto solutions

Table 2. OD demand of the Nguyen-Dupuis network.
Number 1 2 3 4 5 6 7 8 9

OD pair (1–12) (1–13) (3–13) (3–12) (1–5) (3–5) (3–9) (5–12) (3–13)
Demand 2,000 2,000 2,000 1,600 600 1,000 1,600 1,400 1,200

Table 3. Values for main modeling parameters.

Parameter Value Parameter Value Parameter Value
CAV HV

hm ($/min) 0.4 0.5 km,1 5.1 km,4 20,000
VCm ($/km) 0.284 0.264 km,2 0.9 km,5 1
rm ($) 28,000 20,000 km,3 10

Table 4. Link attributes of the Nguyen-Dupuis network.
Link t0a Number of lanes Capacity Length (km) Link t0a Number of lanes Capacity Length (km)

1 9 3 2,400 5.4 11 5 2 1,600 3.0
2 7 4 4,000 4.2 12 9 4 3,200 5.4
3 7 3 3,000 4.2 13 9 3 2,400 5.4
4 14 2 2,000 8.4 14 10 4 6,000 6.0
5 9 3 3,000 5.4 15 9 2 3,000 5.4
6 12 3 4,500 7.2 16 6 4 4,000 3.6
7 3 4 5,200 1.8 17 5 3 3,000 3.0
8 9 3 3,900 5.4 18 9 4 6,000 5.4
9 5 3 2,400 3.0 19 11 3 4,500 6.6
10 13 3 4,500 7.8
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from enumeration, suggesting the effectiveness of NSGA-II-VNS. Figure 7 shows the
CAV lane deployment associated with the three solutions from NSGA-II-VNS.

Note that the extent of convergence of the solutions obtained by NSGA-II-VNS to the
solutions on the true Pareto frontier can be quantified by the convergence metric Y (Deb
et al. 2002). As illustrated in Figure 8, the black circles are the solutions on the true Pareto
frontier. The red circles are the solutions obtained by NSGA-II-VNS. For each red sol-
ution, we measure the closest Euclidean distance to any black solution on the true

Figure 5. The Nguyen-Dupuis network considered (each red link allows one lane to be converted to a
dedicated CAV lane).

Figure 6. Pareto frontiers obtained based on NSGA-II-VNS and enumeration.
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Pareto frontier. The average of the distances for all the red solutions gives the value of Y.
In our case, because the NSGA-II-VNS solutions overlap with the true Pareto solutions,
Y = 0, i.e. the NSGA-II-VNS algorithm leads to converging results.

Recall that an important feature of NSGA-II-VNS is the hybridization of NSGA-II
with VNS. Next, we compare the Pareto frontiers produced by NSGA-II-VNS and
NSGA-II. Figure 9 shows the resulting Pareto frontiers. Clearly, NSGA-II-VNS produces

Figure 7. CAV lane deployment results of the three Pareto solutions obtained from NSGA-II-VNS (each
red link indicates that an actually deployed CAV lane).

Figure 8. Illustration of computing the convergence metric value for NSGA-II-VNS.
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a better frontier which lies to the lower left of the frontier produced by NSGA-II. There-
fore, augmenting NSGA-II with VNS does enhance the Pareto solution quality.

We observe that the Pareto frontiers in Figure 9 are not smooth. In other words, the
tradeoff between system travel cost and equity varies depending on the level of system
travel cost. For example, on the NSGA-II-VNS frontier, the equity value will experience
a significant decrease – from 0.156 to 0.145 (or 7%) – when system travel cost increases
slightly from $3.547 × 105 to $3.549 × 105 (or 0.03%). The implied equity elasticity with
respect to system travel cost is 7%/0.03% = − 246. By contrast, the equity value decrease
is much less as we continue increasing system travel cost from $3.548 × 105 to $3.569 ×
105. The implied equity elasticity with respect to system travel cost at about −7.

We further observe that there can be multiple solutions on the NSGA-II-VNS frontier
(similarly, on the NSGA-II frontier) that have almost the same system travel cost and
equity. If the corresponding system travel cost and equity values are desired, one may
ask which solution should be picked. For this, further looking at the cost of CAV lane
conversion would be needed. The most preferred solution should be one that costs the
least.

5.1.2. Alternative scenarios
We further investigate how system travel cost and equity change under alternative scen-
arios by varying travel demand, CAV price, CAV traveler VOT, and the available budget.

(1) Travel demand.We consider three alternative scenarios with the travel demand at
0.5, 2, and 4 times of the base travel demand. For these demand levels, the Pareto fron-
tiers are presented in Figure 10. The Pareto frontier under the base demand is also pre-
sented as a reference. Not surprisingly, the system travel cost increases as travel demand
increases. The cost increase is more than proportionate, which is attributed to the non-
linear impact of traffic flow on congestion, as characterized by the BPR form of the link
travel time function.

We observe that it is more difficult to maintain equity as travel demand increases. In
addition, the equity value range on a Pareto frontier expands as demand increases. For
example, at 0.5 times base demand, the maximum and the minimum equity values are
0.107 and 0.083 (the difference is 0.024). When demand increases to four times the

Figure 9. Pareto frontiers generated by NSGA-II-VNS and NSGA-II.
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base demand, the maximum and the minimum equity values drastically increase to 0.517
and 0.207 (the difference is 0.310). Thus, the system becomes less equitable with more
travelers.

To understand the cause of inequity as demand increases, the values of m’s, i.e. the
generalized travel cost per unit OD distance defined in Equations (2)–(3), are plotted
for each of the nine ODs and for CAV and HV travelers. For each demand level, we
select the Pareto solution with the largest equity value (the most inequitable solution)
to plot m values. Figure 11 shows that when demand is low at 0.5 times the base
demand, the m values are more or less the same across ODs and between the two
vehicle types. As demand increases to the base level, m values across ODs begins to
show disparities: OD pairs 5, 6, and 7 have the lowest m values while OD pair 9 has
the highest. The disparities become more noticeable when demand increases to twice
the base demand. When demand increases further to four times the base demand, the
equity gap between CAV and HV also appear. HV travelers will experience significantly
greater travel cost per unit OD distance for most ODs. At one extreme, HV travelers of
OD pair 4 would spend more than twice the average cost per unit OD distance of CAV
travelers.

The above results clearly indicate that inequity stems from two sources. The first
source is inequity among travelers of different ODs, which exhibits early as demand
increases. The second source is inequity between travelers using CAVs vs. HVs. This
inequity starts its effect later when demand is further increased. On the other hand,
once showing the effect, the second source contributes greatly to the overall inequity.

(2) CAV price. The selling price of a CAV affects travel cost of CAV travelers. We
investigate how the Pareto frontier changes as we have a different CAV price. Two
alternative CAV prices, at 90% and 80% of the base level, are examined. While HVs

Figure 10. Pareto frontiers under four demand scenarios.

22 Y. LIN ET AL.



might also respond to a lower CAV price, given the maturity of the HV technology we
conjecture that the room of such a response would be limited. In the following, we keep
HV price constant and focus on the effect of CAV price on the Pareto frontier.

Figure 12 shows that the two alternative frontiers and the frontier from the base case
are similar in shape. As CAV becomes cheaper, a reduced system travel cost is expected,

Figure 11. m values for both CAV and HV travelers on each OD pair, under four demand scenarios.

Figure 12. Pareto Frontiers with different CAV prices.
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as evidenced by the leftward move of the frontier. Meanwhile, cheaper CAVs reduces the
travel cost per unit OD distance, giving CAV travelers further cost advantage and widen-
ing the equity gap. This is evidenced by the upward move of the frontier. Thus, HV tra-
velers will be negatively affected in terms of equitable travel. CAV infrastructure planners
need to be cognizant of this. Actions may be needed to mitigate the inequity effect, for
example, by subsidizing HV travelers. This will be explored in Section 5.1.3.

(3) CAV traveler VOT. CAV traveler VOT differs from HV traveler VOT due to the
influence of two factors. First, as CAVs entail automation, less human interference is
expected while traveling. Consequently, travelers could use a greater proportion of
their in-vehicle time for other more productive or leisurely activities. This helps
reduce CAV traveler VOT. Second, travelers who use CAVs are likely to be those who
value their time more. Depending on which factor dominates, the net effect can be a
lower or a higher CAV traveler VOT. Given that the base case VOT for CAV travelers
is $0.4/min, we explore four alternative values for CAV traveler VOT: $0.2/min, $0.3/
min, $0.5/min, and $0.6/min. The resulting Pareto frontiers are reported in Figure 13.

A few observations are worth noticing. First, as CAV traveler VOT increases, system
travel cost increases, which is not surprising as travel time cost is part of the system travel
cost. Second, starting from the base value for CAV traveler VOT ($0.4/min), either
increasing or decreasing the VOT will push the Pareto frontier upward, i.e. widening
the equity gap. This may result from the fact that increasing VOT makes CAV travelers
worse off in their generalized travel cost compared to HV travelers, while decreasing the
VOT does the opposite. The farther away the CAV traveler VOT from the base value, the
greater the inequity. Third, if CAV travelers have a lower VOT, the Pareto frontier is
smoother than if CAV travelers have a higher VOT, where a sudden drop is observed

Figure 13. Pareto frontiers with different CAV traveler VOT values.
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(see Figure 13(c and d)). In fact, under a higher VOT, a relatively small system travel cost
can be achieved on the frontier while keeping equity at a low value.

Figure 14 plots the m values for CAV and HV travelers on each OD pair. For a given
CAV traveler VOT, the m values again are based on the solution with the largest equity
value on the Pareto frontier. We can see that as we increase the CAV traveler VOT, the m
values for CAV and HV travelers follow opposite changing directions: the values increase
for CAV travelers and decrease for HV travelers, consistently across all OD pairs. When
CAV traveler VOT = $0.4/min, the m values of the CAV and HV travelers are the closest,
yielding the lowest equity value. Either increasing or decreasing the CAV VOT, the m

value difference between CAV and HV travelers will be widened, resulting in greater
inequity. This echoes what we observe in Figure 13.

(4) Available budget for CAV lane deployment. An important factor affecting CAV
lane deployment is how much budget is available. Conceptually, with a smaller budget,
the Pareto frontier should be no better than with a larger budget. Four budget levels are
tested: the first one with a base budget and the other three each with a portion of the base
budget. The base budget is set to the maximum cost for CAV lane deployment and oper-
ation, i.e. the required cost meets all convertible lanes were converted and operation. In
other words, having a base budget is equivalent to no budget constraint. Assuming a unit
CAV lane conversion cost of $100,000/lane-kilometer (Chen, Wang, and Meng 2019),
the deployment cost budget is set to $9,660,000. The operation cost of CAV lane come
from infrastructure maintenance, technology maintenance, software and so on. Assum-
ing the average annual operating costs of CAV lane is $30,000 per kilometer per year and
the average operating cycle of CAV lane is 10 years, the operation cost budget is set to
$28,980,000 (Greer et al. 2018; Kockelman et al. 2017; Smith et al. 2015). Thus, the
base budget is $38,640,000. The other three budget levels are set to 80%, 60%, and
40% of the base budget.

The budget constraint is incorporated in the upper level of the bi-level program:



a[Â
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where ui
a denotes the deployment and operation cost of CAV lane i on link a. Given the

same unit lane cost, ui
a can be simplified as ua which is a linear function of link length.

Figure 14. m values for CAV and HV travelers on each OD pair, with different CAV traveler VOTs.
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With the budget constraint, performing NSGA-II-VNS needs to ensure that total cost
of CAV lane deployment and operation for a chromosome always respects the budget
constraint. Figure 15 shows the Pareto frontiers. We find that reducing the budget by
up to 40% does not alter the shape of the frontiers much. As we further reduce the
budget by 60%, the frontier becomes different: the middle and the upper parts of
the froner move rightward, meaning greater system travel cost if we want to achieve
the same level of equity. On the other hand, if we focus on achieving the best possible
equity, reducing the base budget by 60% would still be okay, as the lower part of the fron-
tier remains almost the same. Overall, constraining the budget seems to impact the best
achievable system travel cost more than the best achievable equity.

5.1.3. Subsidizing HV travelers
The results in Section 5.1.2 show that as CAV becomes more popular and mature –
characterized by higher demand, lower CAV price, and reduced CAV traveler VOT,
the system travel cost will decrease. However, the system also becomes more inequitable
between CAV and HV travelers. In this subsection, we explore the possibility of subsidiz-
ing HV travelers to mitigate the inequity.

We consider that subsidy to HV travelers is provided based on the distance traveled.
Three subsidy levels are examined: $0.05/km, $0.12/km, and $0.16/km. Figure 16(a)
shows the Pareto frontiers with and without the subsidy. As HV travelers receive
subsidy, system travel cost is decreased. Higher subsidy leads to smaller system travel
cost, reflected in the leftward movement of the frontiers. For the impact of subsidy on
equity, we first look at the frontier with $0.05/km subsidy. Three solutions (in green)
are picked from the frontier, with the m values of all ODs and between CAV and HV tra-
velers for the three solutions presented in Figure 16(b)–(d).

Because of the subsidy, HV travelers enjoy a smaller travel cost per unit OD distance
than CAV travelers (with the only exception of OD pair 9, where the m values for HV
travelers are only slightly higher). If we continue providing more subsidies, HV travelers

Figure 15. Pareto frontiers under different budget levels.
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will become over-subsidized, with the travel cost per unit distance further below the cost
for CAV travelers. This exacerbates inequity, as reflected in the upward movement of the
frontiers in Figure 16(a).

The question of what subsidy level is appropriate depends on system parameter values,
including those that define the alternative scenarios in Section 5.1.2. To this end, we con-
struct Pareto frontiers with the parameter values leading to the most inequity, under each
alternative scenario in Section 5.1.2: four times base demand, 80% base CAV price, and
CAV traveler VOT at $0.2/min. Figure 17 displays the frontiers.

Figure 17(a) shows that when travel demand is very high, adding more subsidy does
not substantially improve system travel cost and equity, as the associated frontiers (in
orange, grey, and yellow) are quite close to each other. Considering that higher travel
demand means greater congestion, these frontiers suggest that in a highly congested
network subsidy has limited effect on improving equity. By contrast, when CAV price
is low (Figure 17(b)) and CAV traveler VOT is low (Figure 17(c)), more clear trends
of simultaneous improvement on system travel cost and equity are observed. Thus, as
CAV becomes more attractive because of cheaper price and lowered traveler VOT,
more subsidy will help HV travelers reduce travel cost and consequently the equity
gap between HV and CAV travelers.

As an additional examination, we compare the amount of subsidy with the reduction
in system travel cost, which is the cost difference with and without the subsidy. Table 5
reports the results. In each row, the comparison is based on the solution that has the
worst equity on the frontier. The last column of the table shows the ratio of system
travel cost reduction to the amount of subsidy, which can be viewed as the ‘returns’
on subsidy.

Figure 16. (a) Pareto frontiers with HV traveler subsidy; (b)–(d) m values for CAV and HV travelers on
each OD pair, for the three solutions (in green) on the Pareto frontier with a subsidy of $0.05/km.
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Table 5 shows three interesting points. First, as we increase the subsidy level, system
travel cost keeps decreasing. For most of the scenario-subsidy level combinations, the
returns on subsidy takes a value greater than one, justifying the use of subsidy to
enhance system efficiency. On the other hand, the changing trends of the ratio are not
monotonic. In the base case, the best ratio occurs at subsidy level $0.05/km, which
coincides with the best Pareto frontier based on equity as shown in Figure 16(a). For
the other three scenarios, the subsidy level that achieves the best ratio is also at $0.05/
km, which however does not coincide with the best Pareto frontier based on equity as
shown in Figure 17. Thus, subsidizing HV travelers at a level greater than $0.05/km is

Figure 17. Pareto frontiers with HV traveler subsidy under three alternative scenarios: (a) four times
base demand, (b) 80% base CAV price, and (c) CAV traveler VOT = $0.2/min.

Table 5. Total subsidy, system travel cost reduction, and the ratio of the two under different subsidy
levels and scenarios for the Nguyen-Dupuis network.
Scenario Subsidy level ($/km) Total subsidy (I) ($) System cost reduction (II) ($) Ratio (II/I)

Base case 0.05 5,513 6,846 1.24
0.12 11,036 12,542 1.14
0.16 16,573 19,373 1.17

Four times base demand 0.05 22,754 27,753 1.22
0.12 54,641 49,133 0.90
0.16 72,467 77,303 1.07

80% base CAV price 0.05 5,221 6,843 1.31
0.12 12,541 12,534 1.00
0.16 16,740 19,363 1.16

CAV traveler VOT = $0.2/min 0.05 5,247 6,306 1.20
0.12 12,593 11,538 0.92
0.16 16,792 17,851 1.06
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less desirable from the economic return perspective. In particular for the scenarios of
80% base CAV price and CAV traveler VOT at $0.2/min, a large HV traveler subsidy
will help improve equity, but this should be balanced with the economic returns of
doing so.

5.1.4. The alternative measures for mitigating inequity
As an opposite of subsidizing HV travelers, one might also think of pricing CAV travelers
to improve equity. A reasonable argument can be that a use fee be levied when CAVs use
the dedicated CAV lanes, to recover the CAV lane conversion cost. In view of this, the
effect of introducing a CAV lane use fee to mitigate inequity is explored. In addition,
we propose a lane-access restriction strategy that all CAVs travel exclusively on CAV
lanes when such lanes are present on a link and analyze the impact of this strategy on
system equity.

5.1.4.1. CAV lane use fee. The effect of introducing a fee to CAV travelers for using dedi-
cated CAV lanes is investigated. Such a fee can be justified to recover the CAV lane con-
version cost. Three use fee levels are examined: $0.06/km, $0.12/km, and $0.17/km. The
resulting Pareto frontiers, along with the Pareto frontier without a use fee, are shown in
Figure B1(a). Similar to the subsidy investigation, we also investigate the Pareto frontiers
with a use fee under three alternative scenarios: four times base demand, 80% base CAV
price, and CAV traveler VOT at $0.2/min. The resulting Pareto frontiers (along with the
Pareto frontier without a use fee) are displayed in Figure 18(b)–(d).

Figure 18. Pareto frontiers with different CAV lane use fees: (a) base scenario, (b) four times base
demand, (c) 80% base CAV price, and (d) CAV traveler VOT = $0.2/min.
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While it is natural to expect the system travel cost to increase as CAV travelers
need to pay for using dedicated CAV lanes, it is more difficult to say about the use
fee effect on equity. For the base scenario, imposing a CAV lane use fee of $0.06/
km will slightly push the frontier downward. Further increasing the fee to $0.12/km
leads to a continued downward movement of the frontier, while the maximum
system travel cost on the frontier does not seem to increase. This may be the result
of lane and route changes by CAV travelers, by shifting away from dedicated CAV
lanes. If the dedicated CAV lane use fee increases to $0.17/km, both equity and
system travel cost will get worse, possibly as a result of further lane/route adjustment
of CAV travelers.

When travel demand is high (four times the base demand), meaning the network is
very congested, the use fee has limited impact on the shape and location of the fron-
tier. When CAV price is dropped to 80% of the base price, the changing trend of
Pareto frontier is similar to the base scenario. However, there is an important differ-
ence that the frontier with a $0.12/km use fee no longer moves downward compared
to the frontier with a $0.06/km use fee. Rather, the frontier covers a wider range of
equity values. When CAV traveler VOT is at $0.2/min, imposing and increasing the
dedicated CAV lane use fee will exacerbate both system travel cost and equity. This
is different from the case of subsidy (where more subsidy improves system travel
cost and equity, as shown in Figure 17(c)), and may be attributed to the shift of
CAVs away from dedicated CAV lanes to HV lanes, making HV travelers and the
whole system worse off.

5.1.4.2. Lane-access restriction strategy. Lane-access restriction strategy means that all
CAVs travel exclusively on CAV lanes when such lanes are present on a link. This
approach enables the analysis of lane allocation effects on equity. The resulting Pareto
frontiers, along with the Pareto frontier without restriction, are shown in Figure 19(a).
Further, we also investigate the Pareto frontiers with the strategy under three alternative
scenarios: four times base demand, 80% base CAV price, and CAV traveler VOT at $0.2/
min. The resulting Pareto frontiers (along with the Pareto frontier without restriction)
are displayed in Figure 19(b)–(d).

Figure 19(a) shows that the implementation of the lane-access restriction strategy has
mixed effects on system performance and equity. Overall, the strategy results in slight
improvements in system travel costs and significant increases in equity, particularly in
a lower system travel cost interval. At a system travel cost of about 3.55, the strategy
achieves better equity and slightly optimized travel costs. Under high-demand conditions
(Figure 19(b)), the strategy significantly exacerbates equity disparities, while the system
without lane-access restriction performs better in maintaining equity and shows little
difference in travel costs. Base on Figure 19(c), reducing CAV prices by 20% lowers
the overall system travel cost and moderately improves the system equity with a restricted
strategy. However, equity disparities persist in a lower system travel cost interval. Simi-
larly, a decrease in CAV VOT reduces both CAVs travel costs and the overall system
travel cost (Figure 19(d)). At a system travel cost of approximately 3.16, the restriction
strategy’s impact diverges. Below this threshold, the restriction strategy fails to
enhance equity, but above it, equity improves significantly, accompanied by optimized
travel costs.
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These results suggest that while the lane-access restriction strategy can improve
system performance and equity in certain contexts, its effectiveness is highly dependent
on demand levels, pricing adjustments, and specific system cost invest, and it may inad-
vertently worsen equity under unfavorable conditions.

5.2. Experiments on south Florida network

In this subsection, we experiment with deploying dedicated CAV lanes on a larger
network, the south Florida network (Figure 20). The network consists of 232 physical
links, 82 nodes, and 83 OD pairs. In Figure 20, the links with a convertible lane are
marked in red. The travel demand on each OD pair is presented in Table 6. Other
network data are drawn from Chen et al. (2016). The main modeling parameters
remain the same as those for the Nguyen-Dupuis network (Table 3).

Figure 21 shows the resulting Pareto frontier. We observe that the frontier is smoother
than the frontier for the Nguyen-Dupuis network (Figure 9). The median value for the
equity metric is similar between the two networks (around 0.14). However, the equity
value is less sensitive to system travel cost: if we take the two ending points of the frontier,
the equity elasticity with respect to system travel cost is only −12.1, much smaller (in
absolute value) than the elasticity of the Nguyen-Dupuis network (−246). The equity
value range is also narrower, about 0.003 as opposed to 0.04 for the Nguyen-Dupuis
network.

Figure 19. Pareto frontiers with lane-access restriction strategy: (a) base scenario, (b) four times base
demand, (c) 80% base CAV price, and (d) CAV traveler VOT = $0.2/min.
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Figure 20. The south Florida network considered.
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Figure 22 plots the m values for each of the 83 ODs and for CAV and HV travelers.
While the m values vary both between CAV and HV travelers of the same OD pair
and across different OD pairs, the variations are small overall. In fact, the m values of
a given OD pair between CAV and HV travelers are very similar for most OD pairs,
as compared to m values between different OD pairs. This is consistent with what we
observe for the base case of the Nguyen-Dupuis network.

As in Section 5.1.3, we explore the possibility of providing subsidy for HV travelers to
improve equity between HV and CAV travelers. The same three levels of subsidy are

Table 6. OD demand of the south Florida network.
OD Demand OD Demand OD Demand OD Demand

1–36 743.56 28–57 743.56 50–19 793.76 64–30 815.3
1–57 860.8 28–63 863.41 50–59 758.15 66–31 768.05
4–64 810.61 29–37 794.11 50–69 806.96 68–5 801.23
5–40 837.18 29–62 806.96 51–21 804.53 70–82 802.1
5–41 862.89 31–70 770.49 51–23 760.76 74–8 826.94
6–42 823.64 32–24 763.02 52–44 768.92 74–33 843.44
7–72 809.91 32–76 848.65 52–71 757.29 75–33 832.32
8–47 847.6 32–80 824.16 53–24 820.68 76–8 777.95
9–46 847.08 33–74 752.6 53–46 798.97 76–33 842.74
10–45 825.72 34–48 812.35 53–75 766.84 76–53 816.17
12–28 810.09 36–1 845.87 54–45 835.45 78–35 828.85
13–2 823.98 40–30 789.77 54–78 841.53 78–53 769.79
14–1 854.38 41–51 846.91 55–48 765.62 78–55 759.89
19–4 843.26 43–7 802.79 55–79 862.37 81–8 767.19
19–50 856.46 44–82 864.97 57–1 832.84 81–33 845
21–51 861.33 45–54 803.49 58–29 774.83 81–52 826.07
24–53 786.64 46–53 745.82 60–1 836.84 82–22 763.89
24–82 797.93 48–8 812 61–1 746.69 82–42 838.4
26–9 825.72 48–55 768.75 61–27 782.3 82–74 811.3
26–10 781.78 49–10 749.82 61–49 815.12 82–80 766.67
28–56 839.27 49–34 865.49 63–29 776.22

Figure 21. Pareto frontier for the south Florida network.
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examined: $0.05/km, $0.12/km, and $0.16/km. The resulting frontiers are shown in
Figure 23. Unlike the Nguyen-Dupuis network where a small subsidy ($0.05/km)
improves equity, providing subsidy for HV travelers does not improve equity in the
south Florida network. In fact, the changing trend is the reverse: more subsidy leads
to worse system equity. The reason is that subsidy makes HV travelers much better off
than CAV travelers, thereby widening the equity gap and putting CAV travelers in
more disadvantageous positions. This can be seen in Figure 24: with a subsidy level of
$0.16/km, the m values for HV travelers are consistently and noticeably lower than for
CAV travelers. On the other hand, subsidizing HV travelers reduces system travel
cost. This reduction is always greater than the amount of subsidy provided, as shown
in Table 7. Thus, subsidy is justifiable based on economic return, though not from an
equity improvement perspective.

Figure 22. The m values for CAV and HV travelers on different OD pairs for the south Florida network.

Figure 23. Pareto frontiers with HV traveler subsidy for the south Florida network.
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6. Conclusions

The development of CAVs has been gaining significant momentum in recent years. To
accommodate CAVs in a mixed traffic environment, this paper investigates the problem
of optimally converting some HV lanes to lanes for dedicated CAV use. While this
problem has drawn prior research interest, the uniqueness of our study is that we
focus on preserving equity, which is important as CAV travelers are likely to benefit
from using dedicated CAV lanes while HV travelers may be worse off due to reduced
usable road space. To measure equity, a novel metric is proposed based on the value
of m, which is defined as the ratio of travel cost per unit OD distance over the system
average m value, for each OD pair-vehicle type combination. The equity is then measured
as the maximum deviation of any m values from its mean. Minimizing this maximum
deviation is sought jointly with minimizing system travel cost through a bi-level bi-objec-
tive program, where the decisions are on selecting and converting HV lanes to dedicated
CAV lanes. To solve this program, a customized algorithm leveraging the complemen-
tary strengths of non-dominated sorting genetic algorithm II and variable neighborhood
search is developed.

The bi-level bi-objective program is numerically implemented on a modified Nguyen-
Dupuis network and a larger network representing south Florida, yielding a number of
findings and insights. Among them, the most interesting findings are: (1) when travel
demand is low, equity is not a significant concern. As demand increases, inequity
starts to appear, first across different OD pairs and then between CAV and HV travelers.

Figure 24. The m values for CAV and HV travelers on different OD pairs with a subsidy of $0.16/km for
HV travelers, for the south Florida network.

Table 7. Total subsidy, system travel cost reduction, and the ratio of the two under different subsidy
levels for the south Florida network.
Subsidy level Total subsidy (I) ($) System travel cost reduction (II) ($) Ratio (II/I)

$0.05/km 58,515 73,918 1.26
$0.12/km 140,534 129,214 1.01
$0.16/km 187,835 208,656 1.11
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The latter form of inequity arises because CAV travelers, by taking advantage of the dedi-
cated CAV lanes, are less affected by congestion than HV travelers; (2) as CAVs benefit
from lower price and greater automation, the generalized travel cost of CAV travelers will
decrease, putting HV travelers at more disadvantageous positions and widening the
equity gap. Thus, the need to preserve equity will increase as CAV continues to
develop and mature; (3) an adequate amount of subsidy can be effective in mitigating
inequity. Subsidy is especially useful when CAV price and CAV traveler VOT are low.
Compared to subsidy, introducing a fee for using CAV lanes or lane-access restriction
strategy is less promising; (4) the potential use of subsidy is further justified from an
economic return perspective, given that the travel cost reduction almost always
exceeds the amount of subsidy provided.

For future research, we suggest a few directions. First, the demand side specification
could be refined. In the paper, we intend to focus on the short-term effect of CAV lane
deployment by assuming fixed travel demand. Further research could treat travel
demand to be elastic. Second, the CAV lane deployment may be considered over a plan-
ning horizon. Doing so would substantially expand the decision space and time complexity
of solving the problem, warranting additional algorithmic examination. Third, other equity
metrics employed in the transportation network design literature can be tested, which will
help further understand the uniqueness of the equity metric proposed in this study.

Acknowledgement

The financial support of NSF is gratefully acknowledged. The authors also thank the anonymous
reviewers for their insightful and constructive comments, which helped us further strengthen the
paper.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

The work presented in this paper was supported in part by the US National Science Foundation
(NSF) under grant numbers 2112650 and 2330565.

References

Behbahani, H., S. Nazari, M. Jafari Kang, and T. Litman. 2019. “A Conceptual Framework to
Formulate Transportation Network Design Problem Considering Social Equity Criteria.”
Transportation Research Part A: Policy and Practice 125:171–183. https://doi.org/10.1016/j.
tra.2018.04.005.

Behbahani, H., S. Nazari, H. Partovifar, and M. J. Kang. 2019. “Designing a Road Network Using
John Rawls’s Social Justice Approach.” Journal of Urban Planning and Development 145 (2):
05019002. https://doi.org/10.1061/(ASCE)UP.1943-5444.0000500.

Ben-Elia, E., and I. Benenson. 2019. “A Spatially-Explicit Method for Analyzing the Equity of
Transit Commuters’ Accessibility.” Transportation Research Part A: Policy and Practice
120:31–42. https://doi.org/10.1016/j.tra.2018.11.017.

36 Y. LIN ET AL.

https://doi.org/10.1016/j.tra.2018.04.005
https://doi.org/10.1016/j.tra.2018.04.005
https://doi.org/10.1061/(ASCE)UP.1943-5444.0000500
https://doi.org/10.1016/j.tra.2018.11.017


Bureau of Public Roads. 1964. “Traffic Assignment Manual.” Department of commerce, Urban
Planning Division, Washington D.C, U.S.

Chen, D., S. Ahn, M. Chitturi, and D. A. Noyce. 2017. “Towards Vehicle Automation: Roadway
Capacity Formulation for Traffic Mixed with Regular and Automated Vehicles.”
Transportation Research Part B: Methodological 100:196–221. https://doi.org/10.1016/j.trb.
2017.01.017.

Chen, Z., F. He, L. Zhang, and Y. Yin. 2016. “Optimal Deployment of Autonomous Vehicle Lanes
with Endogenous Market Penetration.” Transportation Research Part C: Emerging Technologies
72:143–156. https://doi.org/10.1016/j.trc.2016.09.013.

Chen, A., J. Kim, S. Lee, and Y. Kim. 2010. “Stochastic Multi-Objective Models for Network
Design Problem.” Expert Systems with Applications 37 (2): 1608–1619. https://doi.org/10.
1016/j.eswa.2009.06.048.

Chen, S., H. Wang, and Q. Meng. 2019. “Designing Autonomous Vehicle Incentive Program with
Uncertain Vehicle Purchase Price.” Transportation Research Part C: Emerging Technologies
103:226–245. https://doi.org/10.1016/j.trc.2019.04.013.

Chen, S., H. Wang, L. Xiao, and Q. Meng. 2022. “Random Capacity for a Single Lane with Mixed
Autonomous and Human-Driven Vehicles: Bounds, Mean Gaps and Probability Distributions.”
Transportation Research Part E: Logistics and Transportation Review 160:102650. https://doi.
org/10.1016/j.tre.2022.102650.

Chen, A., and X. Xu. 2012. “Goal Programming Approach to Solving Network Design Problem
with Multiple Objectives and Demand Uncertainty.” Expert Systems with Applications 39 (4):
4160–4170. https://doi.org/10.1016/j.eswa.2011.09.118.

Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan. 2002. “A Fast and Elitist Multiobjective Genetic
Algorithm: NSGA-II.” IEEE Transactions on Evolutionary Computation 6 (2): 182–197. https://
doi.org/10.1109/4235.996017.

Do, W., O. M. Rouhani, and L. Miranda-Moreno. 2019. “Simulation-based Connected and
Automated Vehicle Models on Highway Sections: A Literature Review.” Journal of Advanced
Transportation 2019:1–14. https://doi.org/10.1155/2019/9343705.

Dworkin, R. 2018. “What is Equality? Part 2: Equality of Resources.” In The Notion of Equality,
edited by Mane Hajdin, 143–205. London: Routledge.

Farahani, R. Z., E. Miandoabchi, W. Y. Szeto, and H. Rashidi. 2013. “A Review of Urban
Transportation Network Design Problems.” European Journal of Operational Research 229
(2): 281–302. https://doi.org/10.1016/j.ejor.2013.01.001.

Feng, T., and J. Zhang. 2014. “Multicriteria Evaluation on Accessibility-Based Transportation
Equity in Road Network Design Problem.” Journal of Advanced Transportation 48 (6): 526–
541. https://doi.org/10.1002/atr.1202.

Ferguson, E. M., J. Duthie, and S. T. Waller. 2012. “Comparing Delay Minimization and Emissions
Minimization in the Network Design Problem.” Computer-Aided Civil and Infrastructure
Engineering 27 (4): 288–302. https://doi.org/10.1111/j.1467-8667.2011.00746.x.

Frank, M., and P. Wolfe. 1956. “An Algorithm for Quadratic Programming.” Naval Research
Logistics Quarterly 3 (1-2): 95–110. https://doi.org/10.1002/nav.3800030109.

Gong, S., J. Shen, and L. Du. 2016. “Constrained Optimization and Distributed Computation
Based car Following Control of a Connected and Autonomous Vehicle Platoon.”
Transportation Research Part B: Methodological 94:314–334. https://doi.org/10.1016/j.trb.
2016.09.016.

Greer, L., J. L. Fraser, D. Hicks, M. Mercer, and K. Thompson. 2018. “Intelligent Transportation
Systems Benefits, Costs, and Lessons Learned: 2018 Update Report (No. FHWA-JPO-18-641).
United States.” Department of Transportation. ITS Joint Program Office.

Guo, Y., M. Hu, B. Zou, M. Hansen, Y. Zhang, and H. Xie. 2022. “Air Traffic Flow Management
Integrating Separation Management and Ground Holding: An Efficiency-Equity bi-Objective
Perspective.” Transportation Research Part B: Methodological 155:394–423. https://doi.org/10.
1016/j.trb.2021.12.004.

TRANSPORTATION PLANNING AND TECHNOLOGY 37

https://doi.org/10.1016/j.trb.2017.01.017
https://doi.org/10.1016/j.trb.2017.01.017
https://doi.org/10.1016/j.trc.2016.09.013
https://doi.org/10.1016/j.eswa.2009.06.048
https://doi.org/10.1016/j.eswa.2009.06.048
https://doi.org/10.1016/j.trc.2019.04.013
https://doi.org/10.1016/j.tre.2022.102650
https://doi.org/10.1016/j.tre.2022.102650
https://doi.org/10.1016/j.eswa.2011.09.118
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/4235.996017
https://doi.org/10.1155/2019/9343705
https://doi.org/10.1016/j.ejor.2013.01.001
https://doi.org/10.1002/atr.1202
https://doi.org/10.1111/j.1467-8667.2011.00746.x
https://doi.org/10.1002/nav.3800030109
https://doi.org/10.1016/j.trb.2016.09.016
https://doi.org/10.1016/j.trb.2016.09.016
https://doi.org/10.1016/j.trb.2021.12.004
https://doi.org/10.1016/j.trb.2021.12.004


Hamdan, A., S. Hamdan, M. H. Benbitour, and S. Jradi. 2024. “On the Fair Scheduling of Truck
Drivers in Delivery Companies: Balancing Fairness and Profit.” Central European Journal of
Operations Research 1–26. https://doi.org/10.1007/s10100-023-00899-5.

Han, X., R. Ma, and H. M. Zhang. 2020. “Energy-aware Trajectory Optimization of CAV Platoons
Through a Signalized Intersection.” Transportation Research Part C: Emerging Technologies
118:102652. https://doi.org/10.1016/j.trc.2020.102652.

Hansen, P., N. Mladenović, and J. A. Moreno Pérez. 2010. “Variable Neighbourhood Search:
Methods and Applications.” Annals of Operations Research 175 (1): 367–407. https://doi.org/
10.1007/s10479-009-0657-6.

Kalra, N., and S. M. Paddock. 2016. “Driving to Safety: HowMany Miles of Driving Would it Take
to Demonstrate Autonomous Vehicle Reliability?” Transportation Research Part A: Policy and
Practice 94:182–193. https://doi.org/10.1016/j.tra.2016.09.010.

Kockelman, K., S. Boyles, P. Stone, D. Fagnant, R. Patel, M. W. Levin, G. Sharon, et al. 2017. “An
Assessment of Autonomous Vehicles: Traffic Impacts and Infrastructure Needs (No. FHWA/
TX-17/0-6847-1).” University of Texas at Austin. Center for Transportation Research.

Kumar, A., S. Guhathakurta, and S. Venkatachalam. 2020. “When and Where Should There be
Dedicated Lanes Under Mixed Traffic of Automated and Human-Driven Vehicles for
System-Level Benefits?” Research in Transportation Business & Managemen 36:100527.

Levin, M. W., and S. D. Boyles. 2016. “A Multiclass Cell Transmission Model for Shared Human
and Autonomous Vehicle Roads.” Transportation Research Part C: Emerging Technologies
62:103–116.

Li, Y., Z. Chen, Y. Yin, and S. Peeta. 2020. “Deployment of Roadside Units to Overcome
Connectivity Gap in Transportation Networks with Mixed Traffic.” Transportation Research
Part C: Emerging Technologies 111:496–512. https://doi.org/10.1016/j.trc.2020.01.001.

Li, Z., L. Elefteriadou, and S. Ranka. 2014. “Signal Control Optimization for Automated Vehicles at
Isolated Signalized Intersections.” Transportation Research Part C: Emerging Technologies 49:1–
18. https://doi.org/10.1016/j.trc.2014.10.001.

Lin, D.-Y., and C. Xie. 2011. “The Pareto-Optimal Solution set of the Equilibrium Network Design
Problem with Multiple Commensurate Objectives.” Networks and Spatial Economics 11 (4):
727–751. https://doi.org/10.1007/s11067-010-9146-3.

Litman, T. 2002. Evaluating Transportation Equity. Victoria, British Columbia: Victoria Transport
Policy Institute.

Litman, T. 2020. Evaluating Transportation Equity. Victoria, British Columbia: Victoria Transport
Policy Institute.

Liu, J., and A. J. Khattak. 2016. “Delivering Improved Alerts, Warnings, and Control Assistance
Using Basic Safety Messages Transmitted Between Connected Vehicles.” Transportation
Research Part C: Emerging Technologies 68:83–100. https://doi.org/10.1016/j.trc.2016.03.009.

Liu, Z., and Z. Song. 2019. “Strategic Planning of Dedicated Autonomous Vehicle Lanes and
Autonomous Vehicle/Toll Lanes in Transportation Networks.” Transportation Research Part
C: Emerging Technologies 106:381–403. https://doi.org/10.1016/j.trc.2019.07.022.

Lu, Q., T. Tettamanti, D. Hörcher, and I. Varga. 2020. “The Impact of Autonomous Vehicles on
Urban Traffic Network Capacity: An Experimental Analysis by Microscopic Traffic Simulation.”
Transportation Letters 12: 540–549.

Marsh, M. T., and D. A. Schilling. 1994. “Equity Measurement in Facility Location Analysis: A
Review and Framework.” European Journal of Operational Research 74 (1): 1–17. https://doi.
org/10.1016/0377-2217(94)90200-3.

Meng, Q., and H. Yang. 2002. “Benefit Distribution and Equity in Road Network Design.”
Transportation Research Part B: Methodological 36 (1): 19–35. https://doi.org/10.1016/S0191-
2615(00)00036-9.

Miandoabchi, E., F. Daneshzand, W. Y. Szeto, and R. Zanjirani Farahani. 2013. “Multi-objective
Discrete Urban Road Network Design.” Computers & Operations Research 40 (10): 2429–
2449. https://doi.org/10.1016/j.cor.2013.03.016.

38 Y. LIN ET AL.

https://doi.org/10.1007/s10100-023-00899-5
https://doi.org/10.1016/j.trc.2020.102652
https://doi.org/10.1007/s10479-009-0657-6
https://doi.org/10.1007/s10479-009-0657-6
https://doi.org/10.1016/j.tra.2016.09.010
https://doi.org/10.1016/j.trc.2020.01.001
https://doi.org/10.1016/j.trc.2014.10.001
https://doi.org/10.1007/s11067-010-9146-3
https://doi.org/10.1016/j.trc.2016.03.009
https://doi.org/10.1016/j.trc.2019.07.022
https://doi.org/10.1016/0377-2217(94)90200-3
https://doi.org/10.1016/0377-2217(94)90200-3
https://doi.org/10.1016/S0191-2615(00)00036-9
https://doi.org/10.1016/S0191-2615(00)00036-9
https://doi.org/10.1016/j.cor.2013.03.016


Milanés, V., and S. E. Shladover. 2014. “Modeling Cooperative and Autonomous Adaptive Cruise
Control Dynamic Responses Using Experimental Data.” Transportation Research Part C:
Emerging Technologies 48:285–300. https://doi.org/10.1016/j.trc.2014.09.001.

Mladenović, N., and P. Hansen. 1997. “Variable Neighborhood Search.” Computers & Operations
Research 24 (11): 1097–1100. https://doi.org/10.1016/S0305-0548(97)00031-2.

Mohammadi, M., P. Jula, and R. Tavakkoli-Moghaddam. 2019. “Reliable Single-Allocation Hub
Location Problem with Disruptions.” Transportation Research Part E: Logistics and
Transportation Review 123:90–120. https://doi.org/10.1016/j.tre.2019.01.008.

Noruzoliaee, M., B. Zou, and Y. Liu. 2018. “Roads in Transition: Integrated Modeling of a
Manufacturer-Traveler-Infrastructure System in a Mixed Autonomous/Human Driving
Environment.” Transportation Research Part C: Emerging Technologies 90:307–333. https://
doi.org/10.1016/j.trc.2018.03.014.

Ogryczak, W. 2000. “Inequality Measures and Equitable Approaches to Location Problems.”
European Journal of Operational Research 122 (2): 374–391. https://doi.org/10.1016/S0377-
2217(99)00240-4.

Olivier, P., A. Lodi, and G. Pesant. 2022. “Measures of Balance in Combinatorial Optimization.”
4OR 20 (3): 391–415. https://doi.org/10.1007/s10288-021-00486-x.

Pereira, R. H. M., T. Schwanen, and D. Banister. 2017. “Distributive Justice and Equity in
Transportation.” Transport Reviews 37 (2): 170–191. https://doi.org/10.1080/01441647.2016.
1257660.

Pourgholamali, M., M. Miralinaghi, and P. Ha. 2023. “Sustainable Deployment of Autonomous
Vehicles Dedicated Lanes in Urban Traffic Networks.” Sustainable Cities and Society
99:104969. https://doi.org/10.1016/j.scs.2023.104969.

Qu, R. 2018. Mechanism Design for Fair Allocation on Uniform Machines. PhD thesis, University
of Warwick.

Rawls, J. 1971. A Theory of Justice. Cambridge, MA: Harvard University Press.
Razmi Rad, S., H. Farah, H. Taale, B. van Arem, and S. P. Hoogendoorn. 2020. “Design and

Operation of Dedicated Lanes for Connected and Automated Vehicles on Motorways: A
Conceptual Framework and Research Agenda.” Transportation Research Part C: Emerging
Technologies 117:102664. https://doi.org/10.1016/j.trc.2020.102664.

Santos, B., A. Antunes, and E. J. Miller. 2008. “Integrating Equity Objectives in a Road Network
Design Model.” Transportation Research Record: Journal of the Transportation Research
Board 2089 (1): 35–42. https://doi.org/10.3141/2089-05.

Seilabi, S. E., M. Pourgholamali, G. H. de Almeida Correia, and S. Labi. 2023. “Robust Design of
CAV-Dedicated Lanes Considering CAV Demand Uncertainty and Lane Reallocation Policy.”
Transportation Research Part D: Transport and Environment 121:103827. https://doi.org/10.
1016/j.trd.2023.103827.

Sharma, S., and T. V. Mathew. 2011. “Multiobjective Network Design for Emission and Travel-
Time Trade-off for a Sustainable Large Urban Transportation Network.” Environment and
Planning B: Planning and Design 38 (3): 520–538. https://doi.org/10.1068/b37018.

Shi, F. 2021. “Research on Accessibility and Equity of Urban Transport Based on Multisource big
Data.” Journal of Advanced Transportation 2021:1–18. https://doi.org/10.1155/2021/1103331.

Shladover, S. E. 2018. “Connected and Automated Vehicle Systems: Introduction and Overview.”
Journal of Intelligent Transportation Systems 22 (3): 190–200. https://doi.org/10.1080/15472450.
2017.1336053.

Smith, S., J. Bellone, S. Bransfield, A. Ingles, G. Noel, E. Reed, and M. Yanagisawa. 2015. “Benefits
Estimation Framework for Automated Vehicle Operations (No. FHWA-JPO-16-229; DOT-
VNTSC-FHWA-15-12).” United States. Departmant of Transportation. ITS Joint Program
Office.

Sohn, K. 2011. “Multi-objective Optimization of a Road Diet Network Design.” Transportation
Research Part A: Policy and Practice 45 (6): 499–511. https://doi.org/10.1016/j.tra.2011.03.005.

Sumalee, A., S. Shepherd, and A. May. 2009. “Road User Charging Design: Dealing with Multi-
Objectives and Constraints.” Transp 36:167–186.

TRANSPORTATION PLANNING AND TECHNOLOGY 39

https://doi.org/10.1016/j.trc.2014.09.001
https://doi.org/10.1016/S0305-0548(97)00031-2
https://doi.org/10.1016/j.tre.2019.01.008
https://doi.org/10.1016/j.trc.2018.03.014
https://doi.org/10.1016/j.trc.2018.03.014
https://doi.org/10.1016/S0377-2217(99)00240-4
https://doi.org/10.1016/S0377-2217(99)00240-4
https://doi.org/10.1007/s10288-021-00486-x
https://doi.org/10.1080/01441647.2016.1257660
https://doi.org/10.1080/01441647.2016.1257660
https://doi.org/10.1016/j.scs.2023.104969
https://doi.org/10.1016/j.trc.2020.102664
https://doi.org/10.3141/2089-05
https://doi.org/10.1016/j.trd.2023.103827
https://doi.org/10.1016/j.trd.2023.103827
https://doi.org/10.1068/b37018
https://doi.org/10.1155/2021/1103331
https://doi.org/10.1080/15472450.2017.1336053
https://doi.org/10.1080/15472450.2017.1336053
https://doi.org/10.1016/j.tra.2011.03.005


Szeto, W. Y., and H. K. Lo. 2006. “Transportation Network Improvement and Tolling Strategies:
The Issue of Intergeneration Equity.” Transportation Research Part A: Policy and Practice 40 (3):
227–243. https://doi.org/10.1016/j.tra.2005.06.004.

Talebian, A., and S. Mishra. 2022. “Unfolding the State of the Adoption of Connected
Autonomous Trucks by the Commercial Fleet Owner Industry.” Transportation Research
Part E: Logistics and Transportation Review 158: 102616.

Talebpour, A., and H. S. Mahmassani. 2016. “Influence of Connected and Autonomous Vehicles
on Traffic Flow Stability and Throughput.” Transportation Research Part C: Emerging
Technologies 71:143–163. https://doi.org/10.1016/j.trc.2016.07.007.

Tientrakool, P., Y.-C. Ho, and N. F. Maxemchuk. 2011. “Highway Capacity Benefits from Using
Vehicle-to-Vehicle Communication and Sensors for Collision Avoidance.” In 2011 IEEE
Vehicular Technology Conference (VTC Fall), 1–5. San Francisco, CA: IEEE.

Vahidi, A., and A. Sciarretta. 2018. “Energy Saving Potentials of Connected and Automated
Vehicles.” Transportation Research Part C: Emerging Technologies 95:822–843. https://doi.
org/10.1016/j.trc.2018.09.001.

van den Berg, V. A. C., and E. T. Verhoef. 2016. “Autonomous Cars and Dynamic Bottleneck
Congestion: The Effects on Capacity, Value of Time and Preference Heterogeneity.”
Transportation Research Part B: Methodological 94:43–60. https://doi.org/10.1016/j.trb.2016.
08.018.

Wang, J., L. Lu, S. Peeta, and Z. He. 2021. “Optimal Toll Design Problems Under Mixed Traffic
Flow of Human-Driven Vehicles and Connected and Autonomous Vehicles.” Transportation
Research Part C: Emerging Technologies 125:102952. https://doi.org/10.1016/j.trc.2020.102952.

Wang, Y., and W. Y. Szeto. 2017. “Multiobjective Environmentally Sustainable Road Network
Design Using Pareto Optimization: Environmentally Sustainable Road Network Design
Using Pareto Optimization.” Computer-Aided Civil and Infrastructure Engineering 32 (11):
964–987. https://doi.org/10.1111/mice.12305.

Wardrop, J. G. 1952. “Some Theoretical Aspects of Road Traffic Research.” Proceedings of the
Institution of Civil Engineers - Transport 1:325–362.

Yang, H., and H.-J. Huang. 2004. “The Multi-Class, Multi-Criteria Traffic Network Equilibrium
and Systems Optimum Problem.” Transportation Research Part B: Methodological 38 (1): 1–
15. https://doi.org/10.1016/S0191-2615(02)00074-7.

Yang, H., and X. Zhang. 2002. “Multiclass Network Toll Design Problem with Social and Spatial
Equity Constraints.” Journal of Transportation Engineering 128 (5): 420–428. https://doi.org/10.
1061/(ASCE)0733-947X(2002)128:5(420).

Ye, Y., and H. Wang. 2018. “Optimal Design of Transportation Networks with Automated Vehicle
Links and Congestion Pricing.” Journal of Advanced Transportation 2018:1–12. https://doi.org/
10.1155/2018/3435720.

Ye, L., and T. Yamamoto. 2018. “Impact of Dedicated Lanes for Connected and Autonomous
Vehicle on Traffic Flow Throughput.” Physica A: Statistical Mechanics and its Applications
512:588–597. https://doi.org/10.1016/j.physa.2018.08.083.

Yu, B., L. Kong, Y. Sun, B. Yao, and Z. Gao. 2015. “A Bi-Level Programming for bus Lane Network
Design.” Transportation Research Part C: Emerging Technologies 55:310–327. https://doi.org/10.
1016/j.trc.2015.02.014.

Zhu, D., T. Xie, Y. Liu, B. Zou, and N. Rujeerapaiboon. 2023. “Optimal Deployment of an
Equitable CAV Platoonable Corridor on Road Networks with Mixed Traffic Flow.”
Transportation Research Part C: Emerging Technologies 157:104399. https://doi.org/10.1016/j.
trc.2023.104399.

Zografos, K. G., and Y. Jiang. 2019. “A Bi-Objective Efficiency-Fairness Model for Scheduling Slots
at Congested Airports.” Transportation Research Part C: Emerging Technologies 102:336–350.
https://doi.org/10.1016/j.trc.2019.01.023.

40 Y. LIN ET AL.

https://doi.org/10.1016/j.tra.2005.06.004
https://doi.org/10.1016/j.trc.2016.07.007
https://doi.org/10.1016/j.trc.2018.09.001
https://doi.org/10.1016/j.trc.2018.09.001
https://doi.org/10.1016/j.trb.2016.08.018
https://doi.org/10.1016/j.trb.2016.08.018
https://doi.org/10.1016/j.trc.2020.102952
https://doi.org/10.1111/mice.12305
https://doi.org/10.1016/S0191-2615(02)00074-7
https://doi.org/10.1061/(ASCE)0733-947X(2002)128:5(420)
https://doi.org/10.1061/(ASCE)0733-947X(2002)128:5(420)
https://doi.org/10.1155/2018/3435720
https://doi.org/10.1155/2018/3435720
https://doi.org/10.1016/j.physa.2018.08.083
https://doi.org/10.1016/j.trc.2015.02.014
https://doi.org/10.1016/j.trc.2015.02.014
https://doi.org/10.1016/j.trc.2023.104399
https://doi.org/10.1016/j.trc.2023.104399
https://doi.org/10.1016/j.trc.2019.01.023


Appendix

Equivalency between the KKT conditions of the minimization problem in Section
3.3.2 and equilibrium conditions (12) and (20)–(21)

The Lagrangian of the minimization problem of expression (23) subject to (11), (12), (16), and (17)
can be written as:

L(fm, l) = Z(V(fm))+


w[W
lm
w Dw

m −


r[Rm
w

f rw,m

 

(A1)

where lm
w is the Lagrange multiplier for vehicle type m of OD pair w. The first-order KKT con-

ditions of the Lagrangian is as follows:

f rw,m
∂L(fm, l)
∂f rw,m

= 0;
∂L(fm, l)
∂f rw,m

≥ 0; f rw,m ≥ 0 ∀ m [ M, w [ W, r [ Rm
w (A2)

To investigate the derivatives in the above conditions, let us consider an arbitrary route r of OD
pair w:

∂L(fm, l)
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∂Z(V(fm))
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+
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lm
w Dw

m −
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w
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(A3)

where the first term on the right-hand side can be further derived using chain rule:

∂Z(V(fm))
∂f rw,m

=


Â2
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b[Â1

∂Z(V)
∂vCAVb

∂vCAVb
f rw,m

(A4)

For
∂Z(V)
∂vHV

b
, we have:
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where UHV =
kHV,1kHV,2

kHV,3kHV,4kHV,5
rHV +

VCHV

kHV,5
. . The last equality is because vb = vHV

b + vCAVb . Thus,

∂vb
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b
=
∂vHV

b
∂vHV

b
+
∂vCAVb
∂vHV

b
= 1+ 0 = 1.

For
∂Z(V)
∂vCAVb

, we can similarly derive the following, with UCAV defined the same as UHV except

changing the subscript:

∂Z(V)
∂vCAVb

= tb(vb)+
1
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lbUCAV (A6)
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We further note that
∂vHV

b
∂f rw,HV

= dHV,w
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∂vHV

b
∂f rw,CAV

= 0, and
∂vCAVb
∂f rw,HV

= 0, we have:

∂Z[V(fm)]
∂f rw,m

=



b[A̅<Â2
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For the second term of Equation (A3), we have:
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where the first term on the right-hand side is zero. Thus we only need to look at the second term.

Because
∂f rw,m
∂f rw,m

=
1, w = w and r = r
0, otherwise



, we have:

∂

∂f rw,m
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w Dw
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= − lm
w (A9)

With the above derivations, the first-order KKT conditions (A2) can be written as:

f rw,m(c
r
w,m − hml

m
w ) = 0 ∀ m [ M, w [ W, r [ Rm

w (A10)

crw,m − hml
m
w ≥ 0 ∀ m [ M, w [ W, r [ Rm

w (A11)

f rw,m ≥ 0 ∀ m [ M, w [ W, r [ Rm
w (A12)

With hml
m
w = Cm

w , (A10)-(A12) is the same as equilibrium conditions (12) and (20)–(21).
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