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1 Abstract

Node embedding has become a more and more popular topic in recent years in many di↵erent
areas, such as node classification, node clustering, etc. There has been many di↵erent techniques
proposed to accomplish the task, such as Node2Vec, DeepWalk, and the unified framework PhU-
SION. Considering the generalization advantage of the PhUSION framework, we proposed a new
node embedding method based on it, and together with the well-known tensor decomposition
technique - PARAFAC, to generate the lower dimensional node representations.

2 Introduction

Graphs are a typical representation of relational information, especially for social networks, bio-
logical interactions, etc. Graphs contain plenty of structural information, such as the connectivity
among the nodes and the positions of the nodes in the whole graph. However, the information
stored in a graph is not obvious to directly transfer to current machine learning or deep learning
models. Hence, node embedding becomes a straightforward way to transform the characteristics
of nodes in the graph to numerical features for each node.

Similar to word embedding in natural language processing, node embedding is a vector rep-
resentation of nodes in a graph that model node similarities in a multidimensional feature space.
The o�cial definition of node embedding is as follows: Given an undirected graph G := {V,E}
containing a set of n nodes denoted by V, along with a set of pairwise connection between two
nodes represented by an edge denoted by E, where commonly E is represented by an edge list or
an adjacency matrix of size n⇥n. The goal of node embedding is to derive a vector representation
for each node with length d (d << n) based on the original graph.

There have been two directions for current node embedding methods, positional node embed-
ding and structural node embedding, where the positional node embedding generate close vector
representations for those connected nodes, while the structural node embedding create close rep-
resentations for nodes with similar roles in the graph. However, these two directions of node
embedding both result in a single embedding of the graph, our goal is to propose a method where
we can combine the information from multiple node embeddings to learn a single node embedding.

The structure of this paper is as follows. Section 3 introduces several previous work on node
embedding, including the PhUSION framework. Section 4 introduces the proposed ensemble node
embedding methods based on the PhUSION framework and the tensor decomposition. Section 5
shows the experiment results of the proposed method on a well-known protein dataset. Section 6
concludes what we have discovered from the performances of the method on the real dataset.

1



3 Related Work

Node embedding can be incorporated into di↵erent graph analysis problems, such as node classifi-
cation, node clustering, and graph classification, and so on. There have been a number of famous
algorithms proposed for node embedding, such as Node2Vec, which is based on maximizing the
likelihood of preserving the neighborhoods of the nodes with a biased random walk procedure;
similarly, the High-Order Proximity preserved Embedding (HOPE) also create low-dimensional
embedding preserving the high-order proximities of graphs based on the asymmetric transitivity;
also, the Structural Deep Network Embedding (SDNE) method generate node embeddings from
a semi-supervised deep model by exploiting the first and second order proximity jointly to pre-
serve the network structure. However, these methods are both regarding either the positional
node bembedding or structural embedding, while the PhUSION Framework below unifies both
directions.

3.1 PhUSION Framework

PhUSION, a proximity-based unified framework for computing structural and positional node
embeddings proposed by Zhu et al. is a unified framework for creating node embeddings in a
graph. There are three main steps in the framework:

Step 1: Given the adjacency matrix A of the graph, calculate the proximity matrix S using a
proximity function  (A).

Step 2: Element-wise filter the proximity matrix S with a non-linear function � to get the
filtered proximity matrix S̃ = �(S).

Step 3: Apply dimension reduction techniques based on singular value decomposition (SVD)
or characteristic function sampling (CFS) denoted as ⇣(S̃) to learn a d-dimensional representation
for each node.

PhUSION framework provides a generalized framework which includes some existing node
embedding methods for signed networks, such as GraphWave, NetMF, etc. The advantage of
the PhUSION framework is the unification of positional and structural embeddings, where posi-
tional (proximity-preserving) embedding embeds nodes based on closeness within the graph and
structural (role-based) embedding embeds nodes according to similar roles or similar patterns of
interactions with other nodes. However, although PhUSION framework o↵ers a range of options
for proximity functions and non-linear filter functions, it only considers the di↵erent combinations
of the options, but did not take the advantage of this richness, this is the motivation for us to
propose a new method which not only maintains the generalization property, but also extends the
combinations of functions by ensembling the resulting matrices.

All the above methods su↵er from the same problem of determining the optimal dimentionality
of embedding and choosing the appropriate proximity metrics.

4 Methodology

To overcome the problems of the previous methods, a solution is to combine di↵erent node em-
beddings together and create a single embedding representing all information from multiple em-
beddings. The main idea of the method proposed is to incorporate tensor decomposition in the
PhUSION embedding framework.
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4.1 Ensemble Matrix Learning with Tensor Decomposition

One way of utilizing the multiple functions included in the PhUSION framework is to combine
the di↵erent resulting matrices in one step into a single matrix and deliver to the next step, A
popular method for this is tensor decomposition. Given a number of M matrices denoted by
{Xm 2 RN⇥D}Mm=1, where each matrix Xm is of dimension N ⇥ D, then the PARAFAC (CP)
tensor decomposition technique can be applied to decompose the three-way tensor by combining
all M matrices to get three component matrices U 2 RN⇥R, V 2 RD⇥R, and W 2 RM⇥R. The
PARAFAC decomposition can be written as:

X ⇡
RX

r=1

ur � vr � wr =: bX, (1)

where ur, vr, wr are the rth rows of the corresponding U,V, and W matrices, and notation
� denotes the outer product for tensors. The U,V, and W matrices can be found through the
optimization problem:

min
bX

kX � bXk with bX =
RX

r=1

�rur � vr � wr (2)

where the k · k denotes the Frobenius norm. Then a matrix representation in the RN⇥D space
for the original three-way tensor can be derived from the decomposed matrices U and V. The
ensemble matrix learning can be incorporated into the PhUSION framework in two ways which
are the two gaps between the three steps.

4.2 Stage 1 Ensemble

The first way of implementing ensemble matrix learning based on tensor decomposition is to
ensemble multiple filtered proximity matrices derived in the Step 2 of PhUSION framework, so
the renewed step 1 and 2 of the PhUSION framework will be:

Step 1: Given the adjacency matrix A of the graph, calculate multiple proximity matrices S1,
S1, ..., SMS using di↵erent proximity functions  1(A),  2(A), ...,  MS(A).

Step 2: Element-wise filter the proximity matrices S1, S1, ..., SMS with multiple non-linear
functions �1, �2, ..., �MS̃

to get the combined filtered proximity matrices S̃1 = �1(S1), S̃2 = �2(S1),

..., S̃MS̃
= �MS̃

(S1), S̃MS̃+1 = �1(S2), ..., S̃2⇤MS̃
= �MS̃

(S2), ....
Then apply the ensemble matrix learning to combine all the filtered proximity matrices into a

single ensemble filtered proximity matrix S̃E using tensor decomposition.
Finally, the ensemble filtered proximity matrix S̃E can then be applied to the ensemble stage

of the PhUSION framework. Considering our interest in the positional structure of the graphs
in this paper, we implement the singular value decomposition (SVD) to the (ensemble) filtered
proximity matrices to generate the final embeddings of the nodes.

4.3 Stage 2 Ensemble

Another deeper way of applying ensemble matrix learning based on tensor decomposition is to
further implement the ensemble matrix learning on multiple PhUSION node embedding matrices
to create a single ensemble node embedding.
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Similar to the two steps in Section 4.2, then we apply the singular value decomposition (SVD)
to each of the filtered proximity matrices to learn multiple d-dimensional representation matrices,
and ensemble all embedding matrices and apply tensor decomposition to derive a single embedding
matrix.

4.4 Choices of proximity and filter functions

In this subsection, we give a full list of proximity functions and non-linear filter functions imple-
mented in the proposed method.

The following Table 1 lists all seven proximity functions considered.

Table 1: Table of di↵erent proximity functions.
Name Function

Positive pointwise mutual information (PPMI) S = vol(G)
bT

⇣PT
r=1 R

r
⌘
D

�1

Heat kernel (HK) S = Uggs(⇤)U>

Belief Propagation (FaBP) S = (I+ aD� cA)�1

Personalized Pagerank (PPR) S = (I� �A)�1(�A)
Laplacian pseudoinverse S = L

+

Powers of the adjacency matrix (Adj) S = A
k

Powers of the random walk matrix (RW) S = R
k

The following Table 2 lists seven non-linear filter functions considered in the proposed method.

Table 2: Table of di↵erent non-linear filter functions.
Name Function

Identity �(S) = S

Element-wise log transformation �(S)i,j = log (max {Si,j, 1})

Thresholded binarization (0.05) �(S)i,j =

(
0 ,Si,j  a

1 ,Si,j > a
, a 2 N is the 5% percentile in S.

Thresholded binarization (0.25) a 2 N is the 25% percentile in S.
Thresholded binarization (0.5) a 2 N is the 50% percentile in S.
Thresholded binarization (0.75) a 2 N is the 75% percentile in S.
Thresholded binarization (0.95) a 2 N is the 95% percentile in S.

5 Experiments

To evaluate the proposed node embedding method, the resulting node embeddings are imple-
mented in a node classification problem to check the performance using logistic regression. Our
experiments are based on the Protein Protein Interaction (PPI) dataset, which is a subgraph of
the PPI network for Homo Sapiens, and there are 3,890 proteins (nodes) and 76,584 edges in the
graph, and there are 50 Biological states (labels) for all the proteins while each protein can belong
to multiple Biological states.

Considering the multi-labelling problem in the datasets, we implemented the one-vs-all logistic
regression and report the micro-F1 scores based on test data which is 20% of the whole dataset.
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5.1 Stage 1 Ensemble Results

In the Stage 1 ensembling, the tensor decomposition is directly implemented on all the filtered
proximity matrices to reconstruct a N ⇥N ensemble proximity matrix, and the final node embed-
ding matrix is generated by applying SVD on the ensemble proximity matrix. So the following
Table 3 presents the performance of SVD on the same ensemble proximity matrix with varying
ranks.

Table 3: Performance of stage 1 ensemble with di↵erent SVD ranks.
rank = 128 rank = 256 rank = 512

U*U 17.28 18.35 18.38

U*V 18.36 19.35 19.84

V*V 18.77 18.84 19.18

The U & V in the table refers to the decomposed matrices in the tensor decomposition, so the
di↵erent rows corresponds to di↵erent ways to reconstruct the ensemble proximity matrix. It is
obvious to see that as the rank increases, the performances of the stage 1 ensemble method get
better and better.

5.2 Stage 2 Ensemble Results

In the Stage 2 ensembling, multiple node embedding matrices are created using PhUSION frame-
work. And they are implemented by the tensor decomposition to create a single ensemble node
embedding matrix. The ensemble node embedding is then fed to logistic regression and the micro-
F1 scores for three datasets are shown in Table 4 with varying tensor decomposition rank.

Table 4: Performance of stage 2 ensemble with di↵erent tensor decomposition ranks.
Rank R PhUSION Our method

128 25.45 14.43

256 24.99 17.65

512 24.01 21.08

1024 23.53 22.51

In the second column of Table 4, the best performances of the PhUSION method are listed,
and although with lower ranks, our method is not as good as the PhUSION method, but the
performance of the proposed method is getting better and better as the rank increases, while the
performance of the PhUSION method is getting worse and worse, and the performance of the
proposed method is already close to the best performance of the PhUSION method with rank of
1,024.

Since our method is an ensemble method, so we are also interested in the comparison of the
proposed method to the avrage performance of the PhUSION method. The following Table 5
shows the comparisons:
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Table 5: Comparison of performances of stage 2 ensemble and average of the PhUSION method.
Rank R PhUSION mean PhUSION median Our method

128 17.66 17.76 14.43

256 17.84 18.25 17.65

512 17.86 18.40 21.08

1024 17.83 19.25 22.51

In the second and third columns of the Table 5, the mean and median performances of the
PhUSION method are listed. Although the average performance of the the PhUSION method
gets better as the rank increases, however, the proposed method has already outperformed the
PhUSION method with rank 512.

6 Conclusion

In this paper, we propose a new ensemble method based on the unified node embedding framework
in two stages, and the experiments with both self-study of the proposed method and the comparison
between the proposed method and the PhUSION method have shown both advantages and further
improvement directions of the proposed method.

Firstly, our method achieves better and better classification accuracy as the rank of either
SVD or tensor decomposition increases, which motivates us to explore the performances of the
proposed method with higher ranks.

Secondly, the experiments show that the stage 2 ensemble method can achieve better results
compared with stage 1 ensemble method. And even though the current method did not outperform
the best of the PhUSION method, but it has already outperform the PhUSION method on average.

There are still more spaces for improving the current method and di↵erent ways of tensor
decomposition which are expected to help the proposed method to achieve better performance,
and the performance of the proposed method on multiple other datasets are also expected to reveal
more aspects of the method.
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