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ABSTRACT 

 

 

De Leon Vazquez, Oscar G., Human-Centric Smart Cities: A Digital Twin-Oriented Design of 

Interactive Autonomous Vehicles. Master of Science in Engineering (MSE), December, 2023, 51 

pp., 7 tables, 7 figures, references, 29 titles. 

Autonomous vehicle (AV) technology is introduced as a solution to improve 

transportation safety by eliminating traffic accidents caused by human error, which is the leading 

cause of 90% of accidents.  One key feature of AVs is sensing and perceiving their surrounding 

environment through processing observations collected from the environment.  The perception 

system is essential for an AV to make informed decisions and safely navigate the environment.  

This study presents an image semantic segmentation algorithm developed in the area of 

computer vision to improve AV perception.  The U-Net-based algorithm is trained and validated 

using a synthetically generated dataset in a simulation environment, namely, CAR Learning to 

Act (CARLA).  The results indicate an improved accuracy of up to 98% compared to the existing 

methods.  The performance of the proposed model is further analyzed using various evaluation 

metrics.
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CHAPTER I 

 

INTRODUCTION 

 

Human errors are the primary cause of accidents on the road, underscoring the urgency of 

developing autonomous technologies to mitigate such risks (Singh, 2015). These technologies 

will improve road safety, increase productivity, and transform the future of transportation. 

Autonomous technologies, driven by artificial intelligence and advanced sensing capabilities, 

offer a promising solution to these challenges (Kuutti et al., 2021). By lowering human error, 

autonomous technologies will increase road safety and make all users' experience on the roads 

safer. Autonomous vehicles (AVs) are trained to perform at a level of accuracy and attentiveness 

that is often difficult for humans to match when it comes to avoiding collisions with other cars, 

navigating hazardous weather, or reacting to unforeseen obstacles. 

Furthermore, integrating AVs into our transportation ecosystem promises to increase traffic 

efficiency (Martinez-Diaz & Soriguera, 2018). One of the most essential advantages of AVs is 

their potential to reduce traffic, especially in many urban areas (Talebpour & Mahmassani, 

2016). Researchers aim to create AV technologies that can communicate with each other to 

maintain a consistent distance between vehicles. This coordinated movement optimizes traffic 

flow by minimizing needless lane changes and abrupt stops, lowering aerodynamic drag, and 

increasing fuel efficiency.
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All these are just some of the few benefits AVs will have in our ecosystem. Although the 

future is promising, researchers and engineers need help reaching level 5 of automation, which is 

the maximum level without human intervention (Yaqoob et al., 2018). AV technologies present 

challenges such as safety concerns, infrastructure adaptation, cost and accessibility, and ethical 

considerations. One of the biggest challenges for engineers is the variability of real-world 

scenarios. The real world is highly dynamic and unpredictable. Researchers are trying to 

duplicate human perception in autonomous technologies. However, human perception is 

characterized by the ability to adapt to complex and unpredictable situations. On the other hand, 

AVs are limited by the amount of data. They rely on a variety of sensors to handle real-world 

scenarios. These sensors, such as cameras, LiDAR, and radar, are required to perceive the 

environment.  

This thesis aims to contribute to this transformative era by addressing specific challenges 

related to perception and semantic segmentation in autonomous vehicles, thereby playing a 

pivotal role in realizing a safer, more efficient, and sustainable transportation future. 

Statement of the Problem 

AV perception systems exhibit accuracy and real-time processing limitations, which are 

crucial for safety in urban settings.  The challenge lies in developing an image semantic 

segmentation algorithm to process and interpret complex visual data in real-time accurately.  

Most traffic accidents can be traced back to erroneous human perceptions and decisions.  As a 

result, the reliability of AV's perception systems is a critical safety and technical concern. 

 

 



 

3 

Purpose of the Study 

The purpose of this study is to design, develop, and validate an image semantic 

segmentation algorithm that significantly enhances the perception capabilities of AVs in 

simulated smart city environments. This research is driven by the imperative to improve the 

safety features of AVs, thereby reducing the risk of accidents attributed to the limitations of 

current perception systems. Through the use of a U-Net-based algorithm and a synthetic dataset 

generated within the CARLA simulation environment, the ambition is to achieve a remarkable 

enhancement in the perception capabilities of AVs. By conducting the training and testing of the 

model within the simulator, this study avoids the risks and ethical dilemmas that come with real-

world testing.  

The second purpose of this study is to contribute to the field of smart city development. 

By improving the perception systems of AVs. The study aims to facilitate the integration of AVs 

into urban environments, where they can function efficiently and autonomously. 

Significance of the Study 

The significance of the study lies in the technological advancement and social benefit of 

focusing on the development of image semantic segmentation algorithms for AVs. The potential 

to reduce traffic accidents underscores the profound impact this study could have on public 

safety and the quality of urban life. Additionally, this study explores the territory of applying 

sophisticated computer vision techniques in a simulated environment that closely mirrors real-

world urban settings. The success of this algorithm in a simulated environment could serve as a 

benchmark for future AV technologies, offering a reliable blueprint for safe, effective, and 

ethical AV development. Moreover, the study has the potential to substantially contribute to the 
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smart city paradigm, which emphasizes the importance of fully integrating technology and urban 

infrastructure. This research aligns with the objectives of smart cities to optimize resource use, 

reduce congestion, minimize environmental impact, and improve overall urban livability. The 

contributions of this thesis are: 

• The thesis involves implementing a U-Net semantic segmentation model, 

demonstrating high accuracy in segmenting urban scene elements like roads, 

sidewalks, vehicles, and pedestrians. The model's training, validation, and test 

performances highlighted its robustness and potential for real-world application.  

• The thesis employs synthetic data from the CARLA simulator and utilizes the 

MICC-SRI Semantic Road Inpainting Dataset for its comprehensive collection of 

road scenes. This approach ensures quality and diversity in the input data, which 

is crucial for the accuracy and reliability of semantic segmentation models. 

• The study extensively reviews hyperparameters used in past studies, focusing on 

tuning learning rate, epochs, and batch size. This process includes random and 

grid search methods to determine the best-performing hyperparameters. 

Motivation for the Thesis 

The motivation of this thesis is to solve the challenges of autonomous technologies, 

particularly the limitations of existing AV perception systems. This thesis is driven by the 

ambition to push the boundaries of computer vision and machine learning in the domain of AVs 

and to do so within the ethical constraints of simulated environments that reflect the complexity 

of urban life.  
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Organization of the Thesis 

This thesis is organized into five chapters, each focusing on a different aspect of 

integrating autonomous vehicles in smart cities. Chapter I introduces the topic and sets the 

context for the research. Chapter II reviews relevant literature, covering critical computer vision 

and semantic segmentation developments.  Chapter III details the methodology, explaining how 

the semantic segmentation model was developed and trained.  Chapter IV presents the results, 

analyzing the model's performance and effectiveness.  Finally, Chapter V concludes the thesis, 

summarizing the findings and suggesting directions for future research.  This structure guides the 

reader through the study's clear and logical progression.
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CHAPTER II 

 

 

LITERATURE REVIEW 

 

 

Image semantic segmentation is a fundamental task in computer vision, with applications 

ranging from autonomous driving to medical image analysis. This section reviews the existing 

literature by highlighting significant approaches, advancements, and challenges in three parts. 

The first part reviews studies on deep learning methods in the area of computer vision for object 

detection and semantic segmentation. Turning to the context of the study, which is focused on 

autonomous driving systems, the second part reviews the relevant studies using the CARLA 

simulation. The last part discusses the present study in comparison with the research studies.  

Computer Vision for Object Detection and Semantic Segmentation 

Computer vision is a subset of artificial intelligence that uses computers to understand 

visual information from the world, using a similar approach to human visual systems. Among the 

existing four sub-fields, this study focuses only on object detection and semantic segmentation 

(the areas of image classification and instance segmentation are out of the scope of this study). 

Accordingly, this section delves into various algorithms pertinent to visual perception tasks, 

exploring their functionalities and applications in the context of this specialized area. It provides 

a comprehensive overview of current methodologies, examining how they contribute to 

advancements in object detection and semantic segmentation. This exploration not only 
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highlights the strengths and limitations of existing approaches but also identifies potential areas 

for future innovation and research within the realm of computer vision. 

Object Detection 

Object detection is a computer vision technique focusing on detecting and locating objects 

within an image or video. It involves teaching a computer to identify and depict bounding boxes 

around particular visual data objects of interest. The first breakthrough is named AlexNet, which 

is a deep learning neural network introduced by Krizhevsky et al. (2012) at the ImageNet Large 

Scale Visual Recognition Challenge (ILSVRC) in 2012. This CNN model makes significant 

progress in the deep learning field by demonstrating that deep CNNs can outperform the 

conventional computer vision methods on image classification. This study wins the ILSVRC 

competition with a test accuracy of 84.6%, meanwhile, their closest competitor achieved 73.8% 

accuracy.  

Two years later, GoogleNet by Szegedy et al. (2015) wins the same competition with a 

test accuracy of 93.3%. It comprises 22 layers and introduces a new term called inception 

module. This module helps to capture features in different levels of abstraction. By doing this, 

the neural network can capture information while effectively allocating computational resources.  

Previous studies concentrated on identifying a specific category of provided objects. 

However, more recent research utilizes deep learning methods to advance object detection. For 

instance, R-CNN by Ross Girshick et al. (2014), which stands for region-based Convolutional 

Neural Network, combines the power of deep learning (CNNs) with conventional computer 

vision techniques (region proposals and classifiers), which at the time represented a significant 

advancement in object detection. Using the PASCAL VOC 2012 dataset, R-CNN outperforms 
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earlier state-of-the-art techniques regarding object detection accuracy, as indicated by mean 

average precision (mAP). R-CNN generates a mAP of 53.3%, significantly improving on the 

previous best result. Unfortunately, because this model requires multiple steps, it is 

computationally expensive and unsuitable for real-time applications. 

Object detection with CNNs becomes more feasible for real-world applications with the 

introduction of Fast R-CNN and Faster R-CNN, two subsequent advancements in this field that 

addressed some of these limitations by combining the region proposal generation and feature 

extraction into a more efficient end-to-end model. Fast R-CNN (Girshick, 2015) improves the 

detection efficiency of R-CNN by using a Region of Interest (RoI) pooling layer to extract 

features from the proposed regions, resulting in faster processing. A better version is Faster R-

CNN (Ren et al., 2015), which combines the use of Regional Proposal Network (RPN) and Fast-

RCNN into an end-to-end network. This model achieves state-of-the-art performance for 

multiple datasets. Faster-RCNN achieves a mAP that exceeds 70% on the PASCAL VOC dataset 

on the VOC 2007 and VOC 2012 test sets. 

Subsequently, Mask R-CNN (He et al., 2017) is introduced as a continuation of Faster R-

CNN, merging object detection with pixel-level instance segmentation. In the context of MS-

COCO in 2017, Mask R-CNN demonstrates the highest levels of detection accuracy by 

employing ResNet101-FPN as its backbone network architecture. 

While highly accurate, two-stage R-CNN architectures are inefficient in real-time 

applications due to their longer processing time. This circumstance leads to the preference for 

one-stage architectures.  In order to avoid the need for a second region proposal stage, one-stage 

architectures seek to detect objects in a single network pass.  YOLO (Redmon et al., 2016) is one 

of the pioneers in single-stage detection.  YOLO formulates the object detection task as a 
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regression problem rather than as a classifier problem.  The architecture of YOLO is based on a 

CNN that consists of two fully connected layers after 24 convolutional layers.  In the output, 

YOLO forecasts bounding box coordinates for every grid cell based on the location of the cell.  

For every bounding box, an object score is predicted to show whether an object is present in that 

grid cell.  It assists in removing blank or meaningless boxes.  YOLO achieves a mAP of 63% on 

the PASCAL VOC 2007 dataset.  In addition, YOLO can reach 45 frames per second in real-

time, making it fast enough to compete with R-CNN architectures.  However, one of the 

significant limitations of YOLO is that it only predicts two boxes and one class and has a lower 

accuracy than two-stage approaches. Another example of a one-stage object detection method is 

the single-shot MultiBox detector (SSD) (Leibe et al., 2016). It outperforms the two-stage 

method because it eliminates the need for a separate region proposal network.  It has a 

competitive efficiency compared to YOLO and achieves 76.9% mAP on the PASCAL VOC 

2007 dataset. Although this method is fast and accurate, newer versions of YOLO outperform it 

because they have demonstrated faster processing times and higher accuracy.  

Later iterations of YOLO are built on top of it, with the goal of improving its 

shortcomings without sacrificing its effectiveness. For instance, YOLOv2 (Redmon & Farhadi, 

2017) outperforms the original by implementing a classification method. YOLOv2 is optimized 

for classification and detection tasks, leading to a versatile model capable of handling up to 9000 

elements. The result of YOLOv2 shows a 76.8% mAP on the PASCAL VOC 2007 dataset, 

representing a significant advancement over its predecessor. The integration of Darknet-19 into 

YOLOv2 exemplifies the model’s balance between accuracy and speed, affirming its suitability 

for real-time object detection. 
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Another better version of YOLO is YOLOv3 (Redmon & Farhadi, 2018). This newer 

version better represents small objects, although it performs less on medium and larger objects. 

Instead of using Darknet-19, this version of YOLO utilizes darknet-53, which is a more complex 

and deeper convolutional neural network. This version introduces a multi-label classification, 

which was a significant improvement in comparison with older versions. Additionally, YOLOv3 

improves efficiency by adding a score for each bounding box. While there are plenty of exciting 

advancements in object detection, such as the latest YOLO versions, this study does not dive into 

all of them. The focus of this study is on semantic segmentation, which is reviewed in the next 

part of this section. 

Deep Learning-based Semantic Segmentation 

In the particular case of semantic segmentation models, the process can be slightly 

different. As mentioned before, semantic segmentation is based on the association of labels with 

every pixel in the image. The input image is preprocessed separately, and it is divided into 

pixels. In the field of semantic segmentation, fully convolutional layers (FCNs) represent a 

prevalent architectural choice. FCNs are used by replacing any fully connected layer with a 

convolutional layer. By doing this, the model requires fewer parameters, which makes the 

networks more accesible to train (Long et al., 2015). FCN has flexibility but needs more 

precision and accuracy due to the high-level maps.  This constraint causes the final maps to lack 

the detail of objects. 

 In addition to the FCN architecture, researchers develop other variations to change a 

network intended for classification into one appropriate for segmentation. One of these variations 

is the encoder-decoder network, composed of three main steps. The encoder, the initial stage, is 

responsible for taking a network and classifying it by deleting any fully connected layers. 
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Feature map representations in low resolution are produced as a result. The second stage is the 

bottleneck, which is responsible for transitioning from the encoder to the decoder. This layer 

compresses the information to preserve the relevant information needed to reconstruct the input 

data. The last stage is the decoder layer, which is responsible for upsampling the feature maps to 

correspond with the spatial dimensions of the image to reconstruct the output image.  

Noh et al. (2015) introduce a novel semantic segmentation algorithm called DeconvNet, 

comprising an encoder and decoder. Based on VGG16 architecture, the encoder extracts feature 

vectors, while the decoder utilizes deconvolution to generate pixel-wise probability maps, 

maintaining class information and spatial details. 

DeepLabv1 (Chen et al., 2015) utilizes dilated convolutions, which is a kind of 

convolution operation that expands the receptive field of CNNs without adding more parameters, 

to precisely control feature map resolutions in Deep CNNs, while DeepLabv3 (Chen et al., 2018) 

introduces spatial pyramid pooling, enabling object segmentation at multiple scales by 

employing filters with diverse sampling rates and effective fields-of-views.  

Ronneberger et al. (2015) introduces U-Net, an extended version of FCN designed for 

biological microscopy applications, featuring encoding and decoding components. U-Net utilizes 

skip connections between the encoder and decoder to maintain pattern information, resulting in a 

relatively small number of weights and enabling fine-grained segmentation. This model is the 

one used for this study. A more detailed explanation of the model’s structure will appear in 

Chapter 3.  
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Autonomous Driving Research 

Through the development of object detection and semantic segmentation models, 

computer vision plays a critical role in the advancement of autonomous vehicles. These models 

equip vehicles with the capacity to perceive and gain insight into their surroundings, empowering 

them to make well-informed decisions and safely navigate intricate environments. This section 

provides insight into different object detection and semantic segmentation models in the 

autonomous driving field.  

In the field of autonomous driving research, Niranjan et al. (2021) propose an object 

detection model for the classification of 5 different classes (vehicles, bikes and motorcycles, 

traffic lights, and traffic signs). The study emphasizes the efficiency of using only cameras 

compared to other sensors like LiDAR and RADAR. This research paper uses the SSD 

algorithm, which has an efficient CNN structure and obtains an accuracy of 82.81%. 

Furthermore, the paper highlights using open-source simulators like CARLA (Dosovitskiy et al., 

2017). This simulator for autonomous driving research provides the user with a variety of 

sensors that can be used for the training and testing of deep learning models. The author of this 

paper uses CARLA to generate the dataset first by using five different maps. These same images 

were labeled for training purposes. The advantages of using a simulator like CARLA are that it 

offers an open-source API, robustness, and real-world environment modeling. 

The same authors propose a paper with two object detection algorithms, SSD and Faster 

RCNN, for autonomous driving applications (Niranjan et al., 2021). Results show that SSD has 

89% mean average precision and Faster RCNN has 95%. However, SSD has a faster 

computational speed of 30 ms/image than the 109 ms/image of the Faster RCNN. Moreover, the 

models that are trained on the CARLA simulator are also tested to detect real-world vehicles 
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with an accuracy of 60-70%. This flexibility demonstrates that trained models in driving 

simulators can be applied to real-world applications. 

Additionally, a recent paper by Gao et al. (2021) presents an innovative approach to 

object detection in the context of autonomous driving. The authors argue that relying solely on 

real-world automatic driving vehicles for research is costly, less feasible, and challenging to test. 

Instead, they propose an efficient and cost-effective object detection method based on the 

CARLA simulator.  

The Present Study 

This section synthesizes the findings from Parts 2.1 and 2.2. It compares the current study 

with the context of the existing literature on semantic segmentation for object detection, mainly 

focusing on applications in autonomous driving. 

A critical development in the application of CNNs for real-time semantic segmentation is 

presented in a research study by Paszke et al. (2016). This work introduces a novel deep network 

architecture named ENet (efficient neural network) that finds an equilibrium between accuracy 

and speed. This study was tested on the Cityscapes dataset, which consists of 5000 finned-

annotated images. The dataset consisted of 19 classes, and the authors use the intersection over 

union (IoU) to evaluate their results. The results are compared to the SegNet (Badrinarayanan et 

al., 2016), where ENet shows poor performance, although it was faster than SegNet.  

Our study exhibits a marked improvement in segmentation accuracy in static images 

without compromising other metrics. Our model significantly improves IoU scores, achieving 

over 0.95 for several classes and outperforming Enet’s reported scores. In addition, Enet's study 

only reports metrics IoU, which shows a big disadvantage in their model. 
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Another relevant study is Speeding Up Semantic Segmentation for Autonomous Driving 

by Treml et al. (2016). This study proposes a semantic segmentation model that maintains high 

accuracy. The proposed architecture includes the use of ELU (exponential linear unit) activation 

functions, a squeezeNet-like encoder, and a decoder with SharpMask. This model is tested on the 

Cityscapes dataset, a similar benchmark dataset from the previous study. The model was 

compared to ENet and SegNet by using IoU metrics. The results showed that their model 

outperformed both ENet and SegNet models. Although the new model achieved a higher 

accuracy than ENet, it is still falling behind the proposed model of this study. Our model focuses 

on static images and significantly improves accuracy using an encoder-decoder architecture that 

achieves high IoU scores.   

Finally, this section revises a third study focusing on a practical deep fully convolutional 

neural network architecture for semantic pixel-wise segmentation by SegNet. The architecture of 

the model is composed of an encoder-decoder network followed by a classification layer. 13 

convolutional layers are what the encoder network is made up of. These layers correspond to the 

VGG16 network (Simonyan et al., 2015), and their primary use is for object classification. After 

this, the encoder oversees upsampling input feature maps and provides reconstruction to high-

resolution details. This is done by gradually increasing the image to the original size but 

decreasing spatial details to produce an output.  

SegNet presents higher accuracy than ENet but lower performance than Treml's proposed 

study.  Compared with our current model, SegNet's results show much lower IoU scores than 

ours. For instance, in some classes like fences, motorcycles, and traffic lights, the IoU scores are 

relatively low compared to our model, which scores higher with values of 35.7, 38.8, and 52, 

respectively. 
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This section compares our study with current semantic segmentation models. Our model 

excels in segmentation accuracy and achieves high IoU scores. ENet, while efficient, lacks 

performance compared to other models. SegNet stands out for achieving better in some classes 

than ENet but still shows low scores Finally, the work done by Treml improved only the ENet 

results on all but five classes but still struggled with traffic lights and signals, which are critical 

elements of autonomous driving. A major disadvantage for all three studies reviewed in this 

section is that these studies evaluated their models in IoU scores only. Our model is evaluated in 

many more metrics than just IoU scores. Table 1 illustrates the name of the research papers with 

their respective models and types of datasets. These studies are discussed in this chapter, along 

with the benefits and shortcomings of each paper. In conclusion, our model outperforms these 

studies with a high difference in accuracy values for each class.  
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Table 1: List of research papers using deep learning for computer vision applications 

ID # Name  Model Application Dataset Data Type Number 

of Data 

RP1 Deep Learning based Object 

Detection Model for 

Autonomous Driving Research 

using CARLA Simulator. 

SSD 

MobileNet 

(Single Shot 

Multibox 

Detector) 

Object 

Classificati

on in 

CARLA 

Carla  RGB 1028  

RP2 Performance Analysis of SSD 

and Faster RCNN Multi-class 

Object Detection Model for 

Autonomous Driving Vehicle 

Research Using CARLA 

Simulator. 

SSD and 

Faster 

RCNN 

Object 

Detection in 

CARLA 

Carla  RGB  1000  

RP3 An object detection research 

method based on CARLA 

simulation 

YOLOv4; 

CenterNet; 

and Faster 

RCNN 

Object 

Detection 

Carla  RGB  3000  

RP4 Stereo R-CNN based 3D 

Object Detection for 

Autonomous Driving. 

Stereo R-

CNN 

a 3D object 

detection 

KITTI  RGB 7841  

RP5 

 

2D object detection and 

semantic segmentation in the 

Carla simulator 

YOLOv4 for 

RGB and 

ESPnetv2 for 

semantic 

segmentation 

2D Object 

Detection 

Carla  RGB 400  

RP6 Semantic Segmentation with 

Carla Simulator 

UNet Semantic 

Segmentati

on 

Carla  Semantical 

labeled 

synthetic  

1000  

RP7 Semantic Concept Testing in 

Autonomous Driving by 

Extraction of Object-Level 

Annotations from CARLA 

DeepLabv3+ Semantic 

Segmentati

on 

Carla  RGB, 

semantic 

segmentati

on 

10099  

RP8 Instance Segmentation in 

CARLA: Methodology and 
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oriented Synthetic Data 

Generation in Crowded Scenes 

---- Instance 

Segmentati

on 

Carla  RGB, 

semantic, 

depth map, 

segmentati

on map 

6532  

RP9 Semantic Road Segmentation 

using Deep Learning 

PSPNet; 

FCN; SegNet 

Semantic 

Road  

CitySc

apes  

RGB 5000, 

20000 
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CHAPTER III 

 

 

METHODOLOGY 

 

 

This chapter discusses the methodology used in this thesis to address the challenge of 

semantic segmentation in the context of autonomous driving. The chapter details the systematic 

approach taken to choose data, select the model, and the training procedure.  

Data Collection and Preprocessing 

The accuracy and reliability of semantic segmentation models for autonomous driving 

heavily depend on the input data's quality and diversity. This study employs the use of synthetic 

data generated from the CARLA simulator.  

Dataset Selection 

This study utilizes the MICC-SRI Semantic Road Inpainting Dataset (Berlincioni et al., 

2019) due to its comprehensive collection of road scenes, which are crucial for training semantic 

segmentation models. It contains 11,913 frames, and all are available for RGB images and 

semantic segmentation. The dataset contains dynamic and static objects. The dynamic objects are 

obtained by driving the autopilot function within CARLA with pedestrians and vehicles. 

Additionally, the dataset includes various weather conditions and lighting scenarios, enhancing 

the model's ability to perform under different environmental settings.  
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Furthermore, the dataset has been pre-annotated with high precision, ensuring an accurate 

representation of road elements such as lanes, signs, and traffic lights. 

Data Annotation    

The MICC-SRI dataset provides pre-annotated data, which includes pixel-level labels 

necessary for training semantic segmentation models. In order to check the quality and 

consistency of these annotations, a sample of images is reviewed to verify the consistency of the 

labeling. This set was chosen randomly and Figure 1 displays the images for RGB, segmentation, 

and image overlay. 

 

Figure 1: Preview random masked and unmasked images 

 

The dataset obtained from the CARLA simulator has tags that are represented in Table 2. 

The set of classes is divided into dynamic and static objects. Dynamic entities are pedestrians 

and vehicles (including trucks, buses, cars, bikes, and motorbikes). On the other hand, static 

objects are buildings, fences, road lines, poles, sidewalks, vegetation, walls, traffic signals, and 

unlabeled objects. Chapter 4 introduces the evaluation of each class in a set of metrics.  
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Table 2: Class labels for urban elements 

Value Tag 

0 Unlabeled 

1 Buildings 

2 Fences 

3 Other 

4 Pedestrians 

5 Poles 

6 Road Lines 

7 Roads 

8 Sidewalks 

9 Vegetation 

10 Vehicles 

11 Walls 

12 Traffic Signs 

Data Preprocessing 

A good performance semantic segmentation model depends on the quality of the dataset. 

The data undergoes a preprocessing phase to have a high-quality dataset. This subsection 

explains the following preprocessing steps.  

Image Normalization. The images are normalized, which helps in stabilizing the 

learning process and achieving faster convergence during model training. The normalization 

process scales the pixel values to a range of 0 to 1.  

Resolution Standardization. The original dimension of the images was 800x600 pixels, 

but both images were resized to 128x128. This dimension matches the input requirements of the 

neural network architecture.  

Mask Processing. Masks represent the ground truth for the segmentation tasks. Mask 

processing requires extracting the relevant features, which involves reducing the color channels 

to a single channel that captures the essential segmentation information. After this, each RGB 

image is paired with its correct mask.  
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Optimization. The dataset undergoes a randomization process to prevent the model from 

memorizing the sequence of the data, which is crucial for avoiding potential biases. This step 

ensures that each training iteration presents the model with a diverse and representative sample 

of the data. Furthermore, batch processing contains a specified number of image-mask pairs that 

the model processes together during a single iteration. 

Model Selection 

This section gives a detailed description of the semantic segmentation models selected for 

this study. The main model is U-Net, but a comprehensive description of other architectures is 

provided.  

Convolutional Neural Networks 

Convolutional Neural Networks (CNNs) are feed-forward neural networks composed of 

several feature maps extracted from an input. CNNs are suitable for grid data applications where 

fully connected neural networks may not be efficient because of computational power (speed 

time and memory) and spatial adjacency. These applications include image and video 

recognition, image classification, image segmentation, and natural language processing. 

CNN comprises different layers: convolutions, pooling, and fully connected.  The 

convolutional layer works by placing a filter or kernel (small matrix of numbers) over an array of 

image pixels, which creates a convolved feature map. This map is created by using convolutional 

multiplication which is element-wise with Equation (1). 

𝑥𝑙−1 ∗ 𝑤𝑙 (1) 
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Where 𝑥𝑙−1 represents the input feature layer, and 𝑤𝑙 is the kernel size. The summation of all 

layers plus a bias term, 𝑏𝑗
𝑙, allows models to fit the data, and a non-linear operation shows the 

following equation for the 2D kernel with Equation (2).  

𝑥𝑗
𝑙 = 𝜎 ( ∑ 𝑥𝑖

𝑙−1

𝑁𝑙−1

𝑖=𝑙

∗ 𝑤𝑖,𝑗
𝑙 + 𝑏𝑗

𝑙 (2) 

After a convolution operation, an activation function is applied elementwise (σ), illustrated in 

Equation (3).  

𝜎 (𝑥)  =  𝑚𝑎𝑥{𝑥, 0} (3) 

By doing this, the system becomes non-linear, which enables the network to recognize intricate 

patterns.  Pooling reduces the feature map's sample size, reducing the number of parameters.  

There are two main approaches for pooling: max pooling and average pooling.  Max pooling is 

the most common method of pooling, which takes the maximum element of a feature map.  On 

the other hand, average pooling calculates the average of the elements of the feature map.  

Finally, a fully connected layer is connected to all the activations in the previous layer so they 

can act as classifiers because they have enough information.   

Fully Convolutional Networks  

Fully convolutional networks (FCNs) are a class of CNNs designed explicitly for 

semantic segmentation.  The main difference between these two networks is that FCNs replace 

the fully connected layers with convolutional layers.  This modification allows them to process 

input images of any size and produce segmentation maps corresponding to the input image 

dimensions.  
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The architecture of FCNs consists of multiple layers designed for the segmentation 

process.  First, FCNs use the same approach as an CNN to extract the image features.  This 

approach starts with an input image, which can be any size.  After this, the network uses multiple 

layers of filters (or kernels) to scan and extract the features of the image.  As the filters move 

over the image, they extract important features like edges, textures, or specific shapes.  Each 

layer captures fundamental features of the image little by little until deeper layers can identify 

more complex patterns.  The creation of a feature map is the result of this feature extraction.  A 

traditional CNN would use a fully connected layer to classify the image categories. However, an 

FCN replaces this with a 1x1 convolutional layer to convert the number of channels into classes.  

At this point, the feature map is smaller than the original image due to the convolution process.  

To return to the original size, FCN employs an upsampling layer, enlarging the feature map to 

the original size.  During this process, labels are assigned to every pixel in the original image.  

The final output is a segmentation map matching the input image's original size.  This 

segmentation map contains labeled features with a representative color.  For instance, in an 

image of a street scene, pixels that are part of a building might be colored green.  This detailed 

segmentation map divides the image into defined segments, each representing a different feature. 

U-Net Architecture 

U-Net is an extended FCN version initially designed for biomedical image segmentation.  

This network has been chosen as the primary resource for model training due to its segmentation 

accuracy and effectiveness in working with fewer images.  The name of this network came from 

its particular 'U' shape.  The architecture is formed by two main parts: the contraction path (also 

called downsampling) and the expansion path (also called upsampling).  The left side of the 

architecture is the contraction path.  This process is very similar to a typical CNN.  It involves a 
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series of convolutional and pooling layers.  Further details on each stage of U-Net architecture 

are provided in the following parts. 

Encoding Blocks. Each encoding block in the U-Net architecture follows a sequence of 

two convolutional layers, each followed by batch normalization and a rectified linear unit 

(ReLU) activation. The convolutional layers use a 3x3 kernel with the same padding to preserve 

spatial dimensions and the He Normal kernel initializers for robust weight initialization. Batch 

normalization is employed after each convolution to stabilize learning and normalize the inputs 

to each activation layer. The ReLU activation function introduces non-linearity, enabling the 

network to learn complex patterns in the data. After each sequence of convolutions, a skip 

connection is created by setting aside the output of the second ReLU activation. This output is 

also potentially downsampled using a 2x2 max pooling operation, reducing the spatial 

dimensions and increasing the receptive field of the convolutional layers. The downsampled 

output is then passed to the following encoding block that serves as the input to the 

corresponding decoding block. 

Decoding Block. This part merges the skip-connection input with the previous layer, 

processes it, and then returns an output. The decoding block begins with a transposed 

convolution (Conv2DTranspose) that upsamples the feature map and halves the number of 

filters, followed by a concatenation with the corresponding skip connection from the encoding 

path. This concatenation ensures that the high-resolution features from the encoding path are 

combined with the upsampled features to enable precise localization. After the merge operation, 

the combined feature map undergoes two more convolutional operations, each followed by batch 

normalization and ReLU activation, similar to the encoding block. 
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Final Assembly. The model follows a contracting path to capture context and an 

expanding path that enables precise localization, forming the 'U' shape of U-Net. After the final 

decoding block, a 3x3 Conv2D layer with ReLU activation is applied, followed by a 1x1 

Conv2D layer with a sigmoid activation to map the output to the desired number of classes for 

pixel-wise classification. In the final assembly of the U-Net model, the input layer takes the 

shape of the input data, followed by successive encoding blocks that reduce the dimensionality 

while increasing the depth of the feature maps. The lowest level of the U-shape is the bridge 

between the encoding and decoding paths, where the feature map is at its most abstract 

representation. The decoding path then progressively recovers spatial resolution, combining the 

abstracted features with the detailed spatial information from the skip connections. The final 

layer of the network uses a sigmoid activation function to produce the final segmentation map, 

indicating the class probabilities for each pixel. 

The U-Net model is defined by a function that takes the input size of the original image, 

number of filters, and number of classes as parameters, allowing for flexibility and adaptability of 

the network architecture to various input sizes and types of segmentation tasks. The detailed steps 

of the U-Net model's implementation process have been abstracted into a high-level pseudocode, 

which can be found in Appendix A. This pseudocode provides a clear and concise representation 

of the sequence of operations within the U-Net architecture, further illustrating the processes 

described in this section. 

Model Training 

This section describes the training procedure undertaken for the semantic segmentation 

model. The model training process starts with finding hyperparameter optimization for the model 

and culminates in the training of the final model with the identified best parameters. 
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Hyperparameter Optimization 

The initial training phase involves an extensive review of what hyperparameters authors 

have used in past studies. This study focuses on tuning three hyperparameters: learning rate, 

epochs, and batch size. Table 3 shows the literature review in past studies for the selected 

hyperparameters of this study.  

Informed by the literature, a preliminary set of hyperparameters is chosen as a baseline. 

Because of this, the initial hyperparameter space for the random search method is set to a 

learning rate in the range of -5 to -1 with a logarithmic base, epochs space is set from 10 to 101, 

and batch size space is set from 16 to 256. The random search is executed over a defined number 

of iterations (five). The best-performing set from this phase, which is determined by the highest 

validation accuracy, provides a starting point for the grid search. The best hyperparameters are 

learning rate equal to 0.00233, 98 epochs, and a batch size of 32. These numbers define the grid 

set. This method involves a more targeted range of values, allowing a precise calibration of 

hyperparameters. The hyperparameter optimization concludes with the best hyperparameters 

(learning rate equals 0.0025, 32 epochs, and a batch size of 98), which are the input of the final 

training, and it is described in the following section.  
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Table 3: Hyperparameters for segmentation models obtained from literature review 

 

Final Model Training 

Following the rigorous hyperparameter optimization, the optimal hyperparameters are 

employed in the final training stage. The optimizer chosen is Adam, a popular choice for deep 

learning tasks due to its adaptive learning rate capabilities. The loss function of sparse 

categorical cross-entropy is chosen for its suitability in multi-class classification problems. The 

optimal hyperparameters, loss function, and optimizer go into a compilation step.  This step is a 

critical phase in preparing the neural network for training. 

After this, the model is fit to the data, with the training and validation datasets 

appropriately assigned. The training is executed over the optimal number of epochs, with a batch 

size determined to be the most effective from the hyperparameter tuning stage. A callback setup 

  Hyperparameters 

ID # Method Learning Rate Batch Size Epochs 

RP1 SSD 0.004 10 4000 

RP2 SSD 0.004 10 4000 

Faster RCNN 0.0002 1 7000 

RP3 YOLOv4 0.001 8 50 

1e-4 4 500 

CenterNet 1.25e-4 16 600 

Faster RCNN 0.01 1 400 

RP4 Stereo RCNN 0.001, reduced to 0.1 512 20 

RP5 YOLOv4 0.0013 4000 2000 

RP6 UNet 5e-4 10 50 

RP7 DeepLabv3+ 5e-3 2 50 

RP8 --- NA NA NA 

RP9 SPNet; FCN; SegNet NA NA 100 

Random Search U-Net 0.00233 32 98 

Grid Search  U-Net 0.0025 32 95 

Final  U-Net 0.0025 32 95 
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is employed to ensure effective learning and to avoid overfitting. This setup consists of an early 

stopping and a reduced learning rate, and they are passed to the function. The data is shuffled 

during training, which is a good practice to prevent the model from learning any accidental 

patterns from the order of the data. 

In conclusion, the model combines strategies for preventing overfitting, optimizing 

learning, and monitoring performance with the validation accuracy metric. The model training 

process was not just about fitting the model to the data but ensuring that it could generalize well 

to new, unseen data.  

Evaluation Metrics 

The evaluation of this model is judged by the evaluation metrics that reflect the model’s 

relevance in autonomous driving applications. The primary evaluation metric is accuracy 

(Equation (4)), which reflects the overall proportion of correctly classified pixels in the 

segmentation maps compared to the ground truth.  

Accuracy =  
True Positive + True Neg

True Positive + False Positive + True Positive + False Neg
 (4) 

Accuracy alone might not be a complete measure because of the possible class imbalance 

in the road scenes. Therefore, the model is evaluated by its loss function. The loss function 

quantifies the model’s error in predictions. This study utilizes sparse categorical cross-entropy, 

which computes the loss between the labels and predictions. It is a type of probabilistic loss, and 

it is chosen for its efficiency in handling classification problems with multiple classes that are 

mutually exclusive. A lower value of loss function indicates good performance. This metric is 

vital for safety-critical applications since it shows the difference between the predicted 

probabilities and the actual distribution of classes. 
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The performance of a semantic segmentation model cannot solely rely on accuracy and 

loss function. A model that excels in maximizing its accuracy and minimizing its loss function 

could fail in real-world situations if it does not balance precision and recall. Recall, also called 

sensitivity or true positive rate (TDR), identifies true positives among all actual positives. In 

other words, recall measures the model's ability to identify all actual instances of an object. On 

the other hand, precision identifies true positives among all predicted positives. It ensures that 

when a model predicts an object's presence, that prediction is accurate. A balance between these 

two metrics is essential, especially for autonomous driving applications, which are highly safety-

critical. For example, consider the crucial role of an autonomous vehicle’s system in 

distinguishing road signs from other roadside objects. The system must identify every road sign 

correctly (achieving high recall) to comply with traffic rules and ensure passenger safety. At the 

same time, it is equally important to avoid misclassifying other objects as road signs 

(maintaining high precision) to prevent confusion and erratic driving behavior. If the system fails 

to maintain this delicate balance, the consequences could range from traffic violations to 

engaging in unnecessary and potentially hazardous maneuvers. For autonomous driving 

applications, it is expected that precision and recall values are equal to or greater than 90 %. 

Equations (5) and (6) illustrate recall and precision, respectively.   

Recall =  
True Positive

True Positive + Fase Positive
 (5) 

Precision =
True Positive

True Positive + False Negative
  (6) 

 

Another key metric in this study is the IoU, which is a crucial measure in image 

segmentation tasks. This metric is illustrated in Equation  (7). It quantifies the extent of overlap 
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between the predicted segmentation and the ground truth segments. On other words, this metric 

measures how much the model's predicted boundaries for objects in an image coincide with the 

actual. For autonomous driving, IoU values are expected to be 0.70 or higher. This level of 

precision is vital for autonomous vehicles that rely on exact and prompt interpretations of their 

environment to navigate complex and dynamic driving conditions safely. Complementing all 

these values is the F1-score, which combines precision and recall into a single metric, illustrated 

in Equation (8). A good trade-off between these two metrics is important for autonomous driving 

applications. Generally, an F1 score of 0.7 or higher is often considered good. The last metric 

used in this study is specificity. It indicates the ratio of true negatives among all actual negatives. 

In the context of autonomous driving, specificity concerns accurately identifying objects that are 

neither hazardous nor necessary when driving.  A high-specificity model helps prevent 

unwarranted evasive maneuvers that could cause confusion or accidents on the road by ensuring 

that an autonomous vehicle will not mistakenly interpret benign scenarios as threats.  A value 

close to 100 % is crucial for autonomous driving applications. 

IoU =  
Target ∩ Predicted

Target ∪ Predicted
 (7) 

F1 − score = 2 ∗
(Precision ∗ Recall)

(Precision + Recall)
 

(8) 

 

Experimental Setup 

This section clarifies the experimental framework (hardware and software specifications) 

used in developing and evaluating the semantic segmentation model. 
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Hardware Configuration 

The training and testing of the model are conducted on equipment with a 12th Gen Intel i7 

processor, 16 GB of RAM, and NVIDIA GeForce RTX 3060 GPU with 12 GB. The choice of 

hardware is driven by the need for high computational power and memory bandwidth to handle 

the large datasets typical of autonomous driving scenarios and to expedite the training process 

with GPU acceleration. This GPU was selected for its ability to perform parallel processing, a 

critical feature for deep learning algorithms. The VRAM allows for handling large neural 

networks and datasets, a common characteristic in autonomous driving scenarios, and the 

advanced GPU architecture significantly accelerates the training and inference processes. 

Software Environment 

The experiment is run within a Windows Operating System environment. The specific 

library used for this model is TensorFlow, chosen for its robustness and extensive library 

support. The programming is primarily conducted in Jupyter Notebook with Python 3.9. The 

additional libraries utilized in this study are Numpy for numerical processing, Matplotlib for 

visualization, Pandas for data manipulation, ImageIO for image reading, Scikit-Learn for 

machine learning classification and preprocessing data, and Keras for training deep learning 

models. 

In the setup of TensorFlow, the CUDA toolkit version 11.2.2 is installed along with 

cuDNN library version 8.10.77. These versions are compatible with the Windows Operating 

System and the installed CUDA version of the machine. CUDA serves as the underlying layer 

that allows direct access to the GPU's virtual instruction set and parallel computational elements, 

essential for efficiently running complex deep learning algorithms.  The required TensorFlow 
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version is 2.9, compatible with the selected CUDA version.  All these libraries are installed in an 

Anaconda virtual environment to avoid damage to the central system. 

In conclusion, the configuration of hardware and software environments plays a crucial 

role in the development of the semantic segmentation model. The chosen setup reflects a 

thoughtful balance between computational capability and efficiency, ensuring that the model is 

trained within a robust framework and subjected to rigorous testing that mimics real-world 

conditions.  Full details are provided to facilitate replication of the study, underscoring the 

commitment to transparency and rigor in this research.
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CHAPTER IV 

 

 

RESULTS 

 

 

This chapter introduces the results obtained from the implementation and evaluation of 

the semantic segmentation model designed for autonomous driving perception. This section of 

the thesis analyzes the model’s performance and highlights its effectiveness and reliability, 

building on the evaluation metrics presented in Chapter 3. The findings provide insight into the 

algorithm’s potential to improve AV perception systems, decision-making processes, and safety 

on the road.  

Model Performance 

Accuracy and Loss Function 

The main metrics of evaluation are accuracy and loss function. Figure 2 shows the 

model’s accuracy. The blue line represents the training accuracy, and the orange line represents 

the validation accuracy. Both accuracy measures show a steep increase within the initial epochs, 

rapidly approaching a plateau near 100%. This rapid convergence suggests the model's ability to 

learn from the training data quickly.  The close alignment between training and validation 

accuracy indicates that the model generalizes well to unseen data, a crucial factor for real-world 

deployment in autonomous vehicles. The graph is configured to display an axis limited to the  
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first 30 epochs of training. While the original configuration extended up to 95 epochs, the model 

achieves peak performance quickly, suggesting limited benefits from additional training epochs. 

This observation implies that the model has sufficient robustness, reducing the need for 

prolonged training periods. 

 

Figure 2: Accuracy Plot for training and validation datasets 

 

The loss function of the model is evaluated in Figure 3. This figure illustrates a decline in 

training loss during the early stage, suggesting that the model learns quickly and effectively from 

the training data.  The small gap between the training and validation loss strongly indicates the 

model's ability to generalize.  An early stopping stops this gap. Suppose the validation dataset 
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starts to diverge from the training set, the early stopping actives, and stop the training.  The 

minor fluctuations observed in the validation loss are typical and can be attributed to the 

variability inherent in the validation dataset.  These fluctuations do not indicate model instability, 

as they do not demonstrate a consistent upward trend or substantial spikes. 

 

Figure 3: Loss Function plot for training and validation datasets 

 

Supplementary Evaluation Metrics 

Since model accuracy alone may not always be enough to determine whether a model is 

optimal, precision and recall are the commonly chosen metrics used in addition to accuracy to 

judge model performance. In addition, this model is rated specific, IoU, and F1-score as 
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supplementary metrics for model performance in all datasets (training, validation, and test 

datasets).  

Training Data Performance. Table 4 outlines the model’s performance on the training 

data. The model exhibits strong recall and precision across most classes, with high road, 

sidewalk, car, and building scores.  The unlabeled class shows excellent results, representing 

areas not covered by other classes.  The IoU and F1 scores are notably high for these classes, 

demonstrating the model's precise segmentation capabilities.  The classes with the lowest scores 

are traffic signs, poles, and fences.  This has to deal with the limited training data containing 

these features.  Overall, the training dataset shows excellent performance, with numbers that are 

higher than or equal to the metrics threshold. 

Table 4: Evaluation metrics of the training images 

Class Recall Precision Specificity IoU F1-Score 

All Classes 0.91 0.94 1.0 0.87 0.92 

Unlabeled 0.99 0.99 0.99 0.97 0.99 

Building 0.99 0.98 1.0 0.97 0.98 

Fence 0.73 0.85 1.0 0.65 0.79 

Other 0.83 0.9 1.0 0.76 0.86 

Pedestrian 0.86 0.93 1.0 0.81 0.89 

Pole 0.86 0.93 1.0 0.81 0.89 

Road Line 0.93 0.92 1.0 0.86 0.92 

Road 1.0 1.0 1.0 0.99 1.0 

Sidewalk 0.99 0.98 1.0 0.97 0.98 

Vegetation 0.95 0.94 0.99 0.9 0.94 

Car 0.99 0.98 1.0 0.97 0.98 

Wall  0.94 0.93 1.0 0.88 0.93 

Traffic Sign 0.8 0.89 1.0 0.73 0.84 

 

Validation Data Performance. Table 5 shows the performance of the validation data. 

Performance metrics are anticipated to decline as the model is evaluated on unseen. However, 

the model maintains high precision and specificity, indicating a solid predictive performance 
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with low false-positive rates. The car and sidewalk classes continue to show high accuracy, while 

classes like pedestrian, pole and traffic sign present opportunities for improvement, as indicated 

by their lower recall and IoU scores. 

Table 5: Evaluation metrics of the validation images 

Class Recall Precision Specificity IoU F1-Score 

All Classes 0.82 0.87 1.0 0.75 0.84 

Unlabeled 0.98 0.98 0.99 0.96 0.98 

Building 0.98 0.97 1.0 0.94 0.97 

Fence 0.68 0.79 1.0 0.58 0.73 

Other 0.72 0.83 1.0 0.63 0.77 

Pedestrian 0.62 0.83 1.0 0.55 0.71 

Pole 0.62 0.75 1.0 0.51 0.68 

Road Line 0.7 0.71 1.0 0.54 0.7 

Road 0.99 0.99 0.99 0.97 0.99 

Sidewalk 0.96 0.95 1.0 0.92 0.95 

Vegetation 0.94 0.92 0.99 0.86 0.93 

Car 0.98 0.98 1.0 0.96 0.98 

Wall  0.9 0.89 1.0 0.81 0.89 

Traffic Sign 0.61 0.76 1.0 0.51 0.68 

 

Test Data Performance. The testing data results are presented in Table 6. The model 

shows consistency in the road, sidewalk, and car classes.  These classes show high precision and 

IoU scores similar to training and validation scores.  This consistency is critical, reflecting the 

model's ability to maintain high segmentation standards even on entirely new data.  Lower scores 

in classes such as pedestrian and traffic signal suggest areas where the model might benefit from 

additional training data or algorithmic refinement. 
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Table 6: Evaluation metrics of the test images 

Class Recall Precision Specificity IoU F1-Score 

All Classes 0.82 0.87 1.0 0.75 0.84 

Unlabeled 0.98 0.98 0.99 0.97 0.98 

Building 0.98 0.96 1.0 0.94 0.97 

Fence 0.68 0.8 1.0 0.58 0.74 

Other 0.69 0.81 1.0 0.6 0.75 

Pedestrian 0.67 0.83 1.0 0.59 0.74 

Pole 0.61 0.74 1.0 0.5 0.67 

Road Line 0.69 0.7 1.0 0.53 0.69 

Road 0.99 0.98 0.99 0.97 0.98 

Sidewalk 0.96 0.95 1.0 0.92 0.95 

Vegetation 0.94 0.92 0.99 0.87 0.93 

Car 0.98 0.98 1.0 0.96 0.98 

Wall  0.9 0.89 1.0 0.81 0.89 

Traffic Sign 0.62 0.76 1.0 0.52 0.68 

 

The average results are shown in Table 7. The results indicate that the model performs 

consistently across the three datasets with slightly better performance on the training set than the 

validation and test sets.  The model demonstrates high accuracy (97%-98%) across all datasets, 

indicating that most predictions are correct.  However, there is a slight drop in recall, precision, 

IoU, and F1-Score when moving from training to validation and test datasets, which could 

suggest the model is slightly overfitting to the training data.  Still, the differences need to be 

more significant to indicate insufficient generalization capabilities.  The specificity is perfect at 

100%, indicating that the model is excellent at identifying negative cases.  Overall, the results are 

promising, but there may be room for improvement, particularly in enhancing the model's recall 

and precision on the validation and test datasets. 

Table 7: Average results for each metric in distinct datasets 

Dataset Model 

Accuracy 

Mean 

Recall 

Mean 

Precision  

Mean 

Specificity 

Mean 

IoU 

Mean 

F1-Score 

Training  98.24% 91% 94% 100% 87% 92% 

Validation 96.64% 82% 87% 100% 75% 84% 

Test 96.6% 82% 87% 100% 75% 84% 
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Image Segmentation Evaluations 

Image segmentation evaluations are crucial in validating the performance of a 

segmentation model. These evaluations compare the predicted segmentation (predicted mask) 

with the ground truth data (true mask) across various datasets. The input image is the original, 

unaltered image. This image is what the model will attempt to segment. The true mask is the pre-

annotated ground truth segmentation. This mask delineates the features in the image. Finally, the 

predicted mask is the output from the segmentation model. It represents the model's attempt to 

replicate the true mask based on what it has learned during training. 

Training Data Performance  

Figure 4 shows the performance of the model on the training data. The visual inspection 

of the segmentation output reveals that the model has achieved a high level of proficiency in 

recognizing and segmenting larger distinct objects within the urban landscape. The color 

consistency between the true and predicted masks indicates the model's accurate classification 

capabilities, which form the backbone of reliable segmentation.  The analysis also uncovers 

some challenges faced by the model.  The boundary delineation around smaller or more complex 

objects is less clear than the true mask.  This limitation suggests a difficulty in the model's edge 

detection capabilities, which is crucial for high-fidelity segmentation tasks.  To address this 

challenge, the model may benefit from increasing the resolution of the input images during 

training.  Unfortunately, the hardware could not handle higher resolution due to a memory issue 

with the GPU.  This challenge can be fixed by upgrading the hardware, and it does not affect the 

main goal of this study. 
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Figure 4: Predict and compare masks of images in the training set 

 

Validation Data Performance 

Figure 5 shows the performance of the validation data. The predicted mask mirrors the 

true mask, indicating that the model has generalized well from the training data to the validation 

data. This suggests that the features learned during training are robust and transferable to new, 

unseen images. The predicted mask output demonstrates the model’s capacity to identify and 

segment various features within an urban scene. For instance, the car is identifiable with its 

respective colored label. However, there are observable discrepancies at the edges, and the model 

has not perfectly captured the contour of the car. This flaw can be easily fixed by increasing the 

image resolution, like the situation from the training data. In the predicted mask, it can be 

observed that pedestrians are segmented with a different color in the true mask, emphasizing 

their importance as dynamic and critical objects in urban settings.  

In summary, the model demonstrates a competent level of segmentation for large and 

distinct objects. It requires a small refinement in handling smaller objects, such as boundary 

delineation. However, similar to the training data, this situation can be easily fixed by increasing 

the dimension of the input image.  
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Figure 5: Predict and compare masks of images in the validation set 

 

Test Data Performance 

Figure 6 provides evaluation results for the test data. The predicted mask presents the 

model's ability to generalize and apply its learned segmentation to new, unseen data, which is 

essential for determining its real-world applicability.  In the output image, the pedestrian is 

recognized by its label color.  There is room for improvement because the predicted mask 

exhibits minimal blending at the boundaries of the background.  Beyond the pedestrian 

segmentation, the performance of other urban landscape elements within the predicted mask 

indicates a solid understanding of the larger, more uniform segments, such as the road surface 

and building facades. 

 

Figure 6: Predict and compare masks of images in the test set 
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The semantic segmentation model discussed in this chapter shows impressive capabilities 

in autonomous driving perception. Its rapid learning curve is evident from the high accuracy and 

low loss demonstrated in early training epochs, with near-perfect performance in classifying roads, 

sidewalks, and vehicles. Despite slight declines in performance on validation and test datasets, the 

model maintains strong generalization, indicating its potential for real-world application. Visual 

evaluations further confirm its proficiency in segmenting larger urban features. However, it faces 

challenges with smaller or complex objects, a limitation that could be mitigated with improved 

image resolution or hardware upgrades.  Overall, this model stands out for its robustness and 

accuracy in autonomous vehicle perception tasks. 
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CHAPTER V 

 

 

CONCLUSION 

 

 

The research presented in this thesis offers a comprehensive analysis and implementation 

of a U-Net-based semantic segmentation model for enhancing autonomous vehicle perception 

systems. The main objective of this thesis is to demonstrate the feasibility and effectiveness of 

using a deep learning architecture to accurately identify and classify various elements within 

urban driving environments, which is critical for the development of safe and reliable 

autonomous vehicles. 

This chapter provides a summary of the model, a review of the study design, an 

examination of limitations, and a summary of major findings, along with conclusions and 

recommendations for further studies. 

Summary of Findings 

This study aims to improve autonomous car perception systems by applying a semantic 

segmentation model based on U-Net. The study explores the model’s training, optimization, and 

performance across various urban scene elements, revealing an exemplary level of accuracy in 

segmenting roads, sidewalks, vehicles, and pedestrians. The consistent performance across 

training, validation, and test datasets underscores the model's robustness and generalizability. 

The results demonstrate that the model achieves impressive accuracy, with the ability to learn 
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and generalize well to unseen data. The training dataset exhibits superior performance, with the 

validation and test datasets following closely, indicating the model's potential for real-world 

application. However, certain classes, such as traffic signs and poles, presented challenges, 

suggesting a need for further model refinement.  The results highlight the model's remarkable 

accuracy, reaching up to 97% on the training set and consistently maintaining high performance 

across validation and test datasets.  The model's precision and specificity, essential for the safe 

navigation of autonomous vehicles in dynamic urban environments, are particularly impressive. 

Conclusion and Implications 

The study concludes that deep learning methods are viable and effective approaches for 

semantic segmentation in autonomous driving applications. The U-Net model showcases 

impressive segmentation accuracy, with IoU scores exceeding 0.95 for several classes, 

significantly higher than some existing models like ENet, SegNet, and other versions of FCNs 

tested on similar datasets. 

The model demonstrates remarkable precision and specificity, which are crucial for the 

accurate navigation of autonomous vehicles. The ability to distinguish between different 

elements of urban landscapes, such as roads, sidewalks, and cars, with high precision and recall 

rates underscores the model’s potential in real-world scenarios. However, it was observed that 

the segmentation of smaller objects, like traffic signs and poles, needed to be more accurate, 

possibly due to the limited resolution of the input images. 

Despite these limitations, the consistency in performance across training, validation, and 

test datasets speaks to the model's generalizability. This consistency is a key advantage, as 

models that perform well only on training data but fail to generalize are of limited practical use. 
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Moreover, the high specificity scores across all datasets indicate the model's proficiency in 

correctly identifying negative cases, which is vital for the safety of autonomous vehicles to avoid 

unnecessary or hazardous maneuvers. 

In conclusion, the U-Net-based semantic segmentation model developed and analyzed in 

this thesis represents a significant step forward in autonomous vehicle perception. Its ability to 

accurately interpret complex urban scenes can reduce the likelihood of accidents and improve the 

overall safety of autonomous navigation.  However, the challenges identified in segmenting 

smaller objects and needing higher-resolution images point to areas where further improvements 

are necessary.  Addressing these limitations will be important in advancing the field and ensuring 

that autonomous vehicles can operate reliably in all driving conditions. 

Limitations 

Despite the high accuracy, certain challenges were identified, such as the model's edge 

detection capabilities and handling smaller or more complex objects.  Due to hardware 

constraints, these issues are attributed to the limited resolution of input images.  However, the 

model demonstrates robust generalization abilities, with minimal performance drops when 

transitioning from training to validation and test datasets, which indicates its real-world 

applicability. 

Recommendations 

The research recommends an increased resolution of input images, where hardware 

capabilities allow for improved model accuracy, especially in edge detection and segmentation 

of smaller objects.  Further, it suggests incorporating multimodal sensor data to enhance 

perception accuracy. 
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Recommendations for Future Work 

Image Cleaning for Overfitting Prevention 

Future work should focus on developing algorithms that can evaluate the similarity 

between images within the dataset, thereby identifying and eliminating redundant or highly 

similar instances that may contribute to overfitting. Ensuring a diverse and representative 

training dataset could significantly improve the model's ability to generalize to new, unseen data. 

Multimodal Sensor Fusion 

Future models should incorporate a multimodal sensor fusion framework. This approach 

would combine data from various sensor types, such as LiDAR, radar, and cameras, to 

comprehensively understand the vehicle's surroundings.  Training the semantic segmentation 

model to utilize this fused data effectively could enhance the perception system's accuracy, 

especially in challenging visibility conditions. 

Semantic Instance Segmentation 

Beyond semantic segmentation, future work could also look into instance segmentation, 

which involves identifying each instance of a particular object class separately. Instance 

segmentation would enable the perception system to count and track multiple objects of the same 

class individually, such as distinguishing between two cars of the same make and model. 

The recommendations provide a roadmap for advancing autonomous vehicle technology, 

emphasizing the importance of machine learning in improving safety and efficiency. This thesis 

makes a significant contribution to this dynamic field, underlining the necessity of continuous 

innovation and research. 
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APPENDIX A 

 

 

PSEUDOCODE OF U-NET SEMANTIC SEGMENTATION 

 

 

The following pseudocode, illustrated in Figure 7, is a structured representation of the U-

Net architecture for image segmentation. It abstracts the Python code into a conceptual 

algorithm, encapsulating the U-Net model's essential components and steps.  This pseudocode 

includes setting up the environment, preparing the data, defining the model structure, and 

executing the training process. 

 

Figure 7. Algorithm U-Net Image Segmentation 
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