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ABSTRACT
This paper considers the optimal control of a second-order nonlinear system with
unknown dynamics. A new reinforcement learning based approach is proposed with
the aid of direct adaptive control. By the new approach actor-critic reinforcement
learning algorithms are proposed with three neural network approximation. Simu-
lation results are presented to show the effectiveness of the proposed algorithms.
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1. Introduction

Optimal control has lots of applications in control engineering, especially in space
engineering. An optimal control problem can be solved with the aid of the dynamic
programming (DP) or the Pontryagin’s maximum principle. In the DP, by solving
the Hamilton-Jacobi-Bellman (HJB) equation backward in time an optimal controller
can be obtained. However, in practice it is extremely hard to solve the HJB equation
because the HJB equation is a partial differential equation which contains the informa-
tion of the dynamics of the system. In order to overcome this difficulty, approximate
dynamic programming (ADP) and adaptive dynamic programming (ADP) have been
proposed in Bertsekas (1995); Powell (2007); Werbos (1992).

Reinforcement learning (RL) is one of effective methods to solve the optimal con-
trol problems. RL is inspired by natural learning mechanisms, where animals adjust
their actions based on rewards and punishment stimuli received from the environment
(Mendel & McLaren, 1970). In RL an actor or agent interacts with its environment
and modifies its actions based on the stimuli received in response to its actions (Lewis,
Vrabie, & Vamvoudakis, 2012). A RL algorithm is designed based on the idea that a
successful control decision should be a decision that increases the reward or decreases
the punishment. RF learning algorithms have different forms in dealing with different
optimal problems. RL can be applied to solve the optimal problems and the dynamic
programming (DP) problems. Adaptive online controllers can be obtained. One type
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of RL algorithms employs the actor-critic structure. In this structure the critic eval-
uates the reward or punishment based on the measured data and the actor finds an
improved action and applies the action to the environment. Noting that DP problems
can be solved by the approximate/adaptive dynamic programming (ADP) techniques,
in literature the terms RL and ADP are used interchangeably (Liu, Xue, Zhao, Luo,
& Wei, 2021).

RL has been studied for continuous-time systems under the assumption that the
system model information is well-known in Doya (2000); Murray, Cox, Saeks, and
Lendaris (2001). The value iteration method and the policy iteration method have
been proposed. However, in practice the information of the model may not be avail-
able. In order to deal with this case, two types of methods have been proposed: the
identifier-based RL (Bhasin et al., 2013) and the integral RL (Jiang & Jiang, 2012;
Lewis, Vrabie, & Syrmos, 2012; Lewis, Vrabie, & Vamvoudakis, 2012; D. L. Vrabie &
Lewis, 2009). In the identifier-based reinforcement learning (Bhasin et al., 2013) an
identifier system is designed for the uncertain system and then reinforcement learn-
ing algorithms are proposed with the aid of the identifier system in which there is
no uncertainty. In IRL, RL algorithms are proposed with the aid of integrating the
value function over a period of time to partially circumvent or circumvent the un-
known dynamics of the plant. In this method there is no explicit identification of the
unknown dynamics though there are calculations of some parameters using input-
output data along the trajectory of the system state. In D. Vrabie and Lewis (2009);
D. Vrabie, Lewis, and M.Abu-Khalaf (2008); D. Vrabie, Pastravanu, Abu-Khalaf, and
Lewis (2009), IRL algorithms are proposed when partial information of the dynamics
is known. For linear systems with unknown dynamics an adaptive optimal algorithm
is proposed in Gao, Mynuddin, Wunsch, and Jiang (2022); Jiang and Jiang (2012).
For nonlinear systems with unknown dynamics, IRL algorithms are proposed in Jiang
and Jiang (2014, 2015). In Gao, Jiang, Jiang, and Chai (2016), IRL algorithms are
proposed for output feedback systems with unknown dynamics.

In this paper, we consider the optimal control of a second-order nonlinear system
with partially unknown dynamics. A new reinforcement learning approach is proposed.
In this approach, the idea from direct adaptive control is applied and the unknown
dynamics is estimated by a neural network during the reinforcement learning controller
design. In the proposed RL controller, three neural networks are designed for the actor,
the critic, and the unknown dynamics, respectively. Compared with the identifier-
actor-critic reinforcement learning and IRL, in our proposed reinforcement learning
approach there is neither explicit identification of the unknown plant nor integrating
the value function over a period of time. Furthermore, the proposed approach can be
extended to solve the optimal control problem of more general nonlinear systems.

The organization of the remaining part of this paper is as follows. In Section 2,
the problem considered in this paper is defined. In Section 3, the reinforcement learn-
ing algorithm is proposed. The simulation is presented in Section 4. The last section
concludes this paper.

2. Problem Statement

Consider the following second-order nonlinear system

ẋ1 = x2 (1)

ẋ2 = f(x) + g(x)u (2)
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where x1 ∈ Rn and x2 ∈ Rn are the states, x⊤ = [x⊤1 , x
⊤
2 ]

⊤ ∈ Ω ⊂ R2n, u ∈ U ⊂ Rn

is the input, f(x) ∈ Rn with f(0) = 0 being an unknown vector function, and g(x) ∈
Rn is a known input matrix function. It is assumed that f(x) + g(x)u is Lipschitz
continuous and the system (1)-(2) is stabilizable. For the purpose of control, it is
assumed that g(x) is nonsingular for any state x. Let

F =

[
F1

F2

]
=

[
x2
f(x)

]
, G =

[
0n×n

g(x)

]
(1)-(2) can be written in a compact form

ẋ = F (x) +G(x)u. (3)

The control problem considered in this paper is defined as follows.
Optimal Control Problem: Design a control law u for system (1)-(2) such that the

state x converges to zero and the cost

J =

∫ ∞

0
(Q(x) + u⊤Pu)dτ (4)

is minimized, where Q(x) ∈ R is a positive definite function of x and P is a positive
definite matrix.

In order to solve the optimal problem, the value function at time t for an input u
and the state x(t) is defined as

V (x(t), u(t)) =

∫ ∞

t
(Q(x) + u⊤Pu)dτ. (5)

The Hamiltonian function corresponding to the above optimal control problem is

H(x, u, V ) = ∇V ⊤(F +Gu) +Q(x) + u⊤Pu. (6)

Let V ∗ be the value function, i.e.,

V ∗(x(t)) = inf
u

∫ ∞

t
(Q+ u⊤Pu)dτ. (7)

The optimal control u∗ for system (1)-(2) with the cost function (4) can be obtained
with the aid of the Hamiltonian (6) as

u∗ = argmin
u

H(x, u, V ) = −1

2
P−1G⊤∇xV

∗. (8)

The value function and the optimal control satisfy the following Hamilton-Jacobi-
Bellman (HJB) equation

H∗(x, u∗, V ∗) = ∇xV
∗⊤(F +Gu∗) +Q(x) + u∗⊤Pu∗ (9)

= Q(x) +∇xV
∗⊤F − 1

4
∇xV

∗⊤GP−1G⊤∇xV
∗

= 0. (10)
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In order to apply the optimal control law (8), it is required to solve the nonlinear
partial differential equation (10). Generally it is impossible to find the analytic solu-
tion V ∗. To overcome this difficulty, iterative methods have been proposed in the past
decades. For example, if f(x) is known the optimal controller can be obtained by solv-
ing (10) with the aid of the value iteration (VI) or the policy iteration (PI) algorithms
(Lewis, Vrabie, & Syrmos, 2012). If f(x) is unknown, the VI and PI iteration meth-
ods do not work. In order to solve the optimization problem, the identifier-actor-critic
reinforcement learning based algorithms and the IRL algorithms have been proposed.
In this paper, we propose a new actor-critic reinforcement learning based algorithm
with the aid of the idea of direct adaptive control.

3. Actor-critic reinforcement learning controller design

In order to solve the optimal control problem, the following assumptions are made
(Vamvoudakis & Lewis, 2010).

Assumption 3.1. The solution V ∗ to (10) is smooth and positive definite.

Assumption 3.2. ∥f(x)∥ ≤ γ1x
⊤x + γ2∥x∥, where γ1 and γ2 are non-negative con-

stants.

The value function can be written as

V ∗ = V ∗
1 + V ∗

2 (11)

where

V ∗
1 = 2

∫ x2

0
[g−⊤(x1, τ)Pg−1(x1, τ)f(x1, τ)]

⊤dτ

V ∗
2 = V ∗ − V ∗

1

and we use the notations f(x) = f(x1, x2) and g(x) = g(x1, x2). V ∗
1 is chosen in this

way because we want to make sure there is one term to cancel f in the optimal control.
Since f(x1, x2) is smooth, with the aid of the universal approximation theorems
of functions in Cybenko (1989), Hornik, Stinchcombe, and White (1989), and Stone
(1948), there exists a vector Sf such that

f(x) = W⊤
f Sf (x) + ϵf (x) (12)

where Wf is the ideal weight vector and ϵf is the residue error and can be made as
small as possible by choosing the basis matrix Sf carefully.

Since V ∗ is smooth, V ∗
2 is also smooth. There exists a vector ϕ such that

V ∗
2 = W⊤

V ϕ(x) + ϵ(x) (13)

where WV is the ideal weight vector and ϵ is the residue error and can be made as
small as possible by choose the basis vector ϕ carefully.
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The gradient of V ∗ is

∇xV
∗ = ∇xV

∗
1 +∇xV

∗
2

= 2Λ +∇xϕ
⊤WV +∇xϵ

= 2Λ + S⊤
V WV + ϵV (14)

where

Λ = 0.5∇xV
∗
1 =

[
0.5∇x1

V ∗
1

g−⊤Pg−1f

]
=

[
Y ⊤Wf + ϵ2

g−⊤Pg−1(S⊤
f Wf + ϵf )

]
SV = ∇xϕ

ϵV = ∇xϵ

Y =

∫ x2

0
∇x1

[Sf (x1, τ)g
−⊤(x1, τ)Pg−1(x1, τ)]dτ

ϵ2 = ∇x1

∫ x2

0
[g−⊤(x1, τ)Pg−1(x1, τ)ϵf (x1, τ)]

⊤dτ

and we apply the notations Sf (x) = Sf (x1, x2) and ϵf (x) = ϵf (x1, x2). The optimal
control input is

u∗ = −1

2
P−1G⊤(2Λ + S⊤

V WV + ϵV )

= −P−1G⊤Λ− 1

2
P−1G⊤S⊤

V WV − 1

2
P−1G⊤ϵV . (15)

The Hamiltonian in (9) can be written as

H∗(x, u∗,∇xV
∗) = Q(x) + (u∗)⊤Pu∗ + [2Λ + S⊤

V WV + ϵV ]
⊤[F −GP−1G⊤Λ

−1

2
GP−1G⊤S⊤

V WV − 1

2
GP−1G⊤ϵV ] (16)

= Q(x) + (u∗)⊤Pu∗ + [2Λ + S⊤
V WV

+ϵV ]
⊤[F − P̄Λ− 1

2
P̄S⊤

V WV − 1

2
P̄ ϵV ] (17)

where

P̄ = GP−1G⊤ =

[
0n×n 0
0 gP−1g⊤

]
.

Since ϵV , Wf , and WV are unknown, it is impossible to implement the optimal
control u∗ in (15). In order to make the control input implementable, we employ the
actor-critic architecture of the reinforcement learning to implement the controller (15).

Let the estimate of the unknown function f(x) be

f̂(x) = Ŵ⊤
f Sf (x) (18)

where Ŵf is an estimate of Wf and will be proposed later. Let an estimate of the
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gradient of V ∗ be

∇xV̂
∗ = 2Λ̂ + S⊤

V Wc (19)

where Wc is an estimate of WV for the critic (13) and will be proposed later, and

Λ̂ =

[
Λ̂1

Λ̂2

]
=

[
Y ⊤Ŵf

g−⊤Pg−1S⊤
f Ŵf

]
.

With the aid of the approximations of f(x) and ∇xV
∗, the optimal control input is

u = −P−1G⊤Λ̂− 1

2
P−1G⊤S⊤

V Wa

= −P−1g⊤Λ̂2 −
1

2
P−1G⊤S⊤

V Wa (20)

where Wa is an estimate of WV for the actor (15) and will be proposed later.
With the aid of (18)-(20), the approximation of the Hamiltonian in (9) is

H∗(x, u,∇xV̂
∗) = Q+ u⊤Pu+ (2Λ̂ + S⊤

V Wc)(F̂ +Gu)

= Q(x) + Λ̂⊤P̄ Λ̂ + Λ̂⊤P̄S⊤
V Wa +

1

4
W⊤

a SV P̄S⊤
V Wa

+2Λ̂⊤(F̂ − P̄ Λ̂)− Λ̂⊤P̄S⊤
V Wa + Ŵ⊤

c ξ

where F̂ =
[
x⊤2 , (S

⊤
f Ŵf )

⊤
]⊤

and ξ = SV (F̂ +Gu) = SV [F̂ − P̄ Λ̂− 1
2 P̄S⊤

V Wa].

The Bellman residue error is defined as

z = H∗(x, u,∇V̂ ∗)−H∗(x, u∗,∇V ∗)

= H∗(x, u,∇V̂ ∗). (21)

In order to solve the problem, the following assumption is made.

Assumption 3.3 (Uniform Approximations). The vector functions Sf and SV , the
value function approximation errors ϵf , and ϵV , and the Hamiltonian residual error
z are all uniformly bounded on the set Ω ⊂ R2n, in the sense that there exist finite
positive constants δf , δV , δz, αV , αg, and αf such that ∥Sf∥ ≤ αf , ∥g−⊤Pg−1∥ ≤ αg,
∥SV ∥ ≤ αV , ∥ϵf∥ ≤ δf , ∥ϵV ∥ ≤ δV , and |z| ≤ δz.

In order to find the critic update law Wc, we minimize the residue error z2 by the
gradient descent method. The update law Wc is proposed as

Ẇc = −kc
∂z2

∂Wc
= −2kcz

∂z

∂Wc
= −2kcξz (22)

where kc is a positive constant.
In order to find the actor update laws Wa and Ŵf , we choose a Lyapunov function

V3 = V ∗ +
1

2
W̃⊤

a ΓaW̃a +
1

2
W̃⊤

c ΓcW̃c +
1

2
W̃⊤

f ΓfW̃f
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where W̃a = WV −Wa, W̃c = WV −Wc, W̃f = Wf − Ŵf , Γa, Γf , and Γc are positive
definite matrices. With the control law (20), we have

V̇3 = ∇V ∗⊤(F +Gu∗) +∇V ∗⊤G(u− u∗) + W̃⊤
a Γa

˙̃Wa + W̃⊤
c Γc

˙̃Wc + W̃⊤
f Γf

˙̃Wf

= −Q− (u∗)⊤Pu∗ + (2Λ + S⊤
V WV + ϵV )

⊤P̄ (Λ̃ + 0.5S⊤
V W̃a + 0.5ϵV )

+W̃⊤
a Γa

˙̃Wa + W̃⊤
c Γc

˙̃Wc + W̃⊤
f Γf

˙̃Wf

= −Q− (u∗)⊤Pu∗ + (2Λ̂ + S⊤
V Wc)

⊤
[
0
I

]
S⊤
f W̃f

+0.5(2Λ̂ + S⊤
V Wc)

⊤P̄S⊤
V W̃a + 2Λ̃⊤P̄ Λ̃ + Λ̃⊤P̄S⊤

V W̃a + W̃⊤
c SV P̄ Λ̃

+0.5W̃⊤
c SV P̄S⊤

V W̃a + Λ⊤P̄ ϵV + 0.5W⊤
V SV P̄ ϵV + ϵ⊤V P̄ Λ̃ + 0.5ϵ⊤V P̄S⊤

V W̃a

+0.5ϵ⊤V P̄ ϵV + W̃⊤
a Γa

˙̃Wa + W̃⊤
c Γc

˙̃Wc + W̃⊤
f Γf

˙̃Wf .

We choose

˙̂
Wf = Γ−1

f Sf [0, I]
(
2Λ̂ + S⊤

V Wc

)
− kfΓ

−1
f SfS

⊤
f Ŵf (23)

Ẇa =
1

2
Γ−1
a SV P̄

(
2Λ̂ + S⊤

V Wc

)
− kaΓ

−1
a SV S

⊤
V (Wa −Wc)

−keΓ
−1
a SV S

⊤
V Wa (24)

and modify the update law for Wc in (22) as follows:

Ẇc = −2kcΓ
−1
c ξz − kaΓ

−1
c SV S

⊤
V (Wc −Wa)− Γ−1

c kdSV S
⊤
V Wc. (25)

Then

V̇3 = −Q+ W̃⊤
f Sf [0, I]S

⊤
V W̃a + 2W̃⊤

f Sfg
−⊤Pg−1S⊤

f W̃f + W̃⊤
c SV

[
0
I

]
S⊤
f W̃f

−(u∗)⊤Pu∗ +
1

2
W̃⊤

c SV P̄S⊤
V W̃a + f⊤[0, I]ϵV +

1

2
W⊤

V SV P̄ ϵV + ϵ⊤V

[
0
I

]
S⊤
f W̃f

+0.5ϵ⊤V P̄S⊤
V W̃a + 0.5ϵ⊤V P̄ ϵV − kaW̃

⊤
a SV S

⊤
V W̃a − kaW̃

⊤
c SV S

⊤
V W̃c

+kaW̃
⊤
a SV S

⊤
V W̃c + kaW̃

⊤
c SV S

⊤
V W̃a −

kf
2
W̃⊤

f SfS
⊤
f W̃f −

kf
2
Ŵ⊤

f SfS
⊤
f Ŵf

+
kf
2
W⊤

f SfS
⊤
f Wf − ke

2
W̃⊤

a SV S
⊤
V W̃a −

ke
2
W⊤

a SV S
⊤
V Wa +

ke
2
W⊤

V SV S
⊤
V WV

−kd
2
W̃⊤

c SV S
⊤
V W̃c −

kd
2
W⊤

c SV S
⊤
V Wc +

kd
2
W⊤

V SV S
⊤
V WV + 2kczW̃

⊤
c SV

[
x2
0

]
+kczW̃

⊤
c SV P̄S⊤

V W̃a − kczW̃
⊤
c SV P̄S⊤

V WV .

Since Q(x) is positive definite, there exists a positive matrix q such that Q(x) ≥
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x⊤Q̄x for x ∈ Ω. Then

V̇3 ≤ −x⊤Q̄x− (u∗)⊤Pu∗ + W̃⊤
f Sf [0, I]S

⊤
V W̃a + 2W̃⊤

f Sfg
−⊤Pg−1S⊤

f W̃f + W̃⊤
c SV

[
0
I

]
S⊤
f W̃f

+0.5W̃⊤
c SV P̄S⊤

V W̃a + γ1δV x
⊤x+ γ2∥x∥δV + 0.5W⊤

V SV P̄ ϵV + ϵ⊤V

[
0
I

]
S⊤
f W̃f

+0.5ϵ⊤V P̄S⊤
V W̃a + 0.5ϵ⊤V P̄ ϵV − kaW̃

⊤
a SV S

⊤
V W̃a − kaW̃

⊤
c SV S

⊤
V W̃c

+kaW̃
⊤
a SV S

⊤
V W̃c + kaW̃

⊤
c SV S

⊤
V W̃a −

kf
2
W̃⊤

f SfS
⊤
f W̃f −

kf
2
Ŵ⊤

f SfS
⊤
f Ŵf

+
kf
2
W⊤

f SfS
⊤
f Wf − ke

2
W̃⊤

a SV S
⊤
V W̃a −

ke
2
W⊤

a SV S
⊤
V Wa +

ke
2
W⊤

V SV S
⊤
V WV

−kd
2
W̃⊤

c SV S
⊤
V W̃c −

kd
2
W⊤

c SV S
⊤
V Wc +

kd
2
W⊤

V SV S
⊤
V WV + 2kczW̃

⊤
c SV

[
x2
0

]
+kczW̃

⊤
c SV P̄S⊤

V W̃a − kczW̃
⊤
c SV P̄S⊤

V WV .

Let

y =


y1
y2
y3
y4

 =


x

S⊤
f W̃f

S⊤
V W̃c

S⊤
V W̃a


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then

V̇3 ≤ −y⊤1 Q̄y1 − (u∗)⊤Pu∗ + 2αgy
⊤
2 y2 + y⊤2 [0, I]y4 + y⊤3

[
0
I

]
y2

+0.5y⊤3 P̄ y4 + γ1δV y
⊤
1 y1 + γ2δV ∥y1∥ − kay

⊤
4 y4 − kay

⊤
3 y3 + 2kay

⊤
4 y3

−
kf
2
y⊤2 y2 −

ke
2
y⊤4 y4 −

kd
2
y⊤3 y3 + 2kczy

⊤
3

[
0 I
0 0

]
y1 + kczy

⊤
3 P̄ y4

−kczy
⊤
3 P̄S⊤

V WV + 0.5W⊤
V SV P̄ ϵV + ϵ⊤V

[
0
I

]
y2 + 0.5ϵ⊤V P̄ y4 + 0.5ϵ⊤V P̄ ϵV

−
kf
2
Ŵ⊤

f SfS
⊤
f Ŵf +

kf
2
W⊤

f SfS
⊤
f Wf − ke

2
W⊤

a SV S
⊤
V Wa +

ke
2
W⊤

V SV S
⊤
V WV

−kd
2
W⊤

c SV S
⊤
V Wc +

kd
2
W⊤

V SV S
⊤
V WV

≤ −y⊤1 Q̄y1 − (u∗)⊤Pu∗ + 2αgy
⊤
2 y2 + y⊤2 [0, I]y4 + y⊤3

[
0
I

]
y2

+0.5y⊤3 P̄ y4 + γ1δV y
⊤
1 y1 + γ2δV ∥y1∥ − kay

⊤
4 y4 − kay

⊤
3 y3 + 2kay

⊤
4 y3

−
kf
2
y⊤2 y2 −

ke
2
y⊤4 y4 −

kd
2
y⊤3 y3 + kcδzy

⊤
3 y3 + kcδzy

⊤
1 y1 + 0.5kcδzy

⊤
3 y3 + 0.5kcδzy

⊤
4 y4

−kczy
⊤
3 P̄S⊤

V WV + 0.5W⊤
V SV P̄ ϵV + ϵ⊤V

[
0
I

]
y2 + 0.5ϵ⊤V P̄ y4 + 0.5ϵ⊤V P̄ ϵV

−
kf
2
Ŵ⊤

f SfS
⊤
f Ŵf +

kf
2
W⊤

f SfS
⊤
f Wf − ke

2
W⊤

a SV S
⊤
V Wa +

ke
2
W⊤

V SV S
⊤
V WV

−kd
2
W⊤

c SV S
⊤
V Wc +

kd
2
W⊤

V SV S
⊤
V WV

≤ −y⊤Hy + y⊤D + γ2δV ∥y1∥+ ϵ1 (26)

where

H =


H11 0 0 0

0 kf−4αg

2 I H23 H24

0 H⊤
23 H33 H34

0 H⊤
24 H⊤

34 H44


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H11 = Q̄− γ1δV I − kcδz, H23 = −[0, 0.5I]

H24 = −[0, 0.5I]

H34 = −0.5P̄ + 2kaI

2
H33 = (ka + 0.5kd − 1.5kcδz)I

H44 = (ka + 0.5ke − 0.5kcδz)I

D =


0

[0, I] ϵV
−kczP̄S⊤

V WV

0.5P̄ ϵV


ϵ1 = 0.5ϵ⊤V P̄ ϵV +

kf
2
W⊤

f SfS
⊤
f Wf +

ke
2
W⊤

V SV S
⊤
V WV +

kd
2
W⊤

V SV S
⊤
V WV

+0.5WV SV P̄ ϵV

Based on the above procedure, we have the following results.

Theorem 3.4. The controller in (20) with the critic-actor weight update laws in (24)-
(25) and the learning update law (23) of uncertainty f(x) in the model ensure that the
state x and the weight errors W̃c, W̃a, and W̃f uniformly ultimately bounded (UUB)
if the control parameters are chosen such that H is positive definite. Furthermore, the
state x can be made as small as possible by choosing large control parameters.

Proof: Based on (26), we have

V̇3 ≤ −∥y∥2σm + ∥D∥∥y∥+ γ2δV ∥y1∥+ ∥ϵ1∥
≤ −∥y∥2σm + (∥D∥+ γ2δV )∥y∥+ ∥ϵ1∥.

where σm is the smallest eigenvalue of H. If

∥y∥ >
∥D∥+ δV γ2

2σm
+

√
(∥D∥+ δV γ2)2

4σ2
m

+
∥ϵ1]
σm

,

V̇3 is negative. Therefore, the state and the estimate errors of the weights Wf , Wa, and
Wc are UUB. Furthermore, the state x can be made as small as possible by choosing
large control parameters.

The block diagram of the proposed controller is shown in Fig. 1. Different from the
Identifier-Actor-Crtic RL and the IRL, in Theorem 1 the unknown dynamics f(x) is
estimated online with the aid of direct adaptive theory. An identifier system is not
required.

In (12) and (13) the vectors Sf and ϕ should be chosen carefully such that ϵf
and epsilon are small. One can choose each element of Sf and ϕ to be sigmoidals
with appropriate weights (see Cybenko (1989) and Hornik et al. (1989)) or high-order
polynomials of x (see Stone (1948)).

In this paper, we considered the second-order nonlinear system. The proposed
method can be applied to the optimal control of the high-order nonlinear system.

10



Figure 1. The block diagram of the proposed controller

4. Simulation

Two simulation examples are considered.
Example 1: Consider a second-order system in (1)-(2) where

f(x) = −(x1 + x2)

(
9

4
− cos 2(x1 + x2)

2

)
, g(x) = 1.

In the optimal problem, P = 1 and

Q(x) = x21 + (x1 + x2)
2 + (x1 + x2)

2 sin2(x1 + x2).

If f(x) is known, it can be verified that

V ∗ =
1

2
x21 +

1

2
(x1 + x2)

2.

and

V ∗
1 = −9

4
(x1 + x2)

2 +
9

4
x21 +

(x1 + x2) sin 2(x1 + x2)

2
− x1 sin 2x1

2

+
cos 2(x1 + x2)

4
− cos 2x1

4

In controller design, we choose the elements of the vectors Sf and ϕ are high-order
polynomials of x1 and x2. In the simulation we choose Sf = [x1, x2, x

2
1, x

2
2, x1x2]

⊤ and
ϕ = [x21, x

2
2, x1x2, x

3
1, x

3
2, x

2
1x2, x1x

2
2]
⊤. The control input is (20). The update laws for

Ŵf , Wc, and Wa are in (23), (25), and (24), respectively.
The simulation results are obtained for a group of control parameters. Fig. 2 shows

the response of the state, which converges to a small neighborhood of the origin. Fig.

11



Figure 2. Time response of x.

Figure 3. Time response of the input u.

3 shows the control input u. Figs 4, 5, and 6 show the response of Ŵf , Wc, and Wa,
respectively. It is shown that they are all bounded. The simulation results show that
the state converge to a small neighborhood of the origin.

Example 2: Consider the system[
ẋ1
ẋ2

]
=

[
x2
−0.5x1 − 0.5(x1 + x2)(1− (cos(2x1) + 2)2)

]
+

[
0

cos(2x1) + 2

]
u (27)

the optimal control problem is to find an optimal control u such that the cost J is
minimized where Q(x) = x21 + (x1 + x2)

2 and P = 1. This optimal control problem
has been studied in D. Vrabie and Lewis (2009) with a state transformation y1 = x1
and y2 = x1 + x2. Here we solve this problem using the results in this article.

If the dynamics is well-known, the optimal value function is

V ∗(x) =
1

2
x21 + (x1 + x2)

2

12



Figure 4. Time response of Ŵf

Figure 5. Time response of Wc

Figure 6. Time response of Wa
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and

V ∗
1 = −(2− (cos(2x1) + 2)2)x1x2 −

x22
2
(1− (cos(2x1) + 2)2)

V ∗
2 =

1

2
x21 + (x1 + x2)

2 + (2− (cos(2x1) + 2)2)x1x2

+
x22
2
(1− (cos(2x1) + 2)2)

and the optimal control law is

u∗(x) = −(cos(2x1) + 2)(x1 + x2).

Since f(x) is unknown, V ∗, V ∗
1 , and V ∗

2 are unknown. In the simulation, we choose Sf

and ϕ are high-order polynomials of x1 and x2 as follows Sf = [1, x1, x2, x
2
1, x

2
2, x1x2]

⊤

and ϕ = [x21, x
2
2, x1x2, x

3
1, x

3
2, x

2
1x2, x1x

2
2]
⊤. The control input is (20). The update laws

for Ŵf , Wc, and Wa are in (23), (25), and (24), respectively.
The simulation results are obtained for a group of control parameters. Fig. ?? shows

the response of the state, which converges to a small neighborhood of the origin. Fig.
?? shows the control input u. Figs ??, ??, and ?? show the response of Ŵf , Wc, and
Wa, respectively. It is shown that they are all bounded. The simulation results show
that the state converge to a small neighborhood of the origin.

5. Conclusion

This paper considered the optimal control of a second-order nonlinear system with
unknown dynamics. A new reinforcement learning algorithm was proposed with the
aid of direct adaptive control. The future research is on how to extend the results in
this paper to more general nonlinear system with uncertainty.
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