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Abstract— As the complexity of both products and systems 
increases across a wide range of industry sectors, there has been 
an influx in demand for methods of system organization and 
optimization. MBSE enhances the ability to obtain, analyze, 
communicate, and manage data on a comprehensive 
architecture of a system.   In this study, a military combat 
surveillance scenario is modeled using SysML generating state 
machine diagrams and activity diagrams using the Magic Model 
Analyst execution framework plugin. This study seeks to prove 
the feasibility of an MBSE-enabled framework using SysML to 
create and simulate a surveillance system that monitors and 
reports on the health status and performance of an armored 
fighting vehicle (combat tank) through an Unmanned Ariel 
Vehicle (UAV). The Magic System of Systems Architect, which 
actively promotes system development architectural 
frameworks, was used to construct SysML-compliant models, 
allowing the creation of intricate model diagrams. The 
construction of the UAV surveillance scenario emphasized the 
capability of modifying a diagram feature and ensuring that the 
alteration is communicated to all linked model diagrams. This 
study builds on a previously published MBSE-enabled 
conceptual framework for creating digital twins. The purpose of 
this research is to test and validate the framework's procedures. 
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I. INTRODUCTION  
As defined in the 2007 INCOSE Model-Based Systems 

Engineering (MBSE) Initiative, Model-based systems 
engineering (MBSE) is the formalized application of 
modeling to support system requirements, design, analysis, 
verification, and validation, beginning in the conceptual 
design phase and continuing throughout development and 
later life cycle phases [1]. MBSE improves the capacity to 
acquire, analyze, distribute, and manage data related to a 
system's in-depth architecture.  Attested by several latest 
studies, MBSE techniques demonstrate enhanced 
interconnectivity among system stakeholders, allowing a 
system model to be understood from several viewpoints while 
assessing the implications of alternative solutions. MBSE 
adoption has successfully resulted in increased system 
dependability by providing a clear and comprehensive model 
of a system that can be examined for stability and reliability. 
Three pillars facilitate MBSE: a modeling approach, a 
modeling language, and a modeling tool. A 
modeling approach is a specified set of procedures that 
supports system interoperability that allows for consistent 
system model construction. A modeling language is a formal 
language that is used to represent, express, and communicate 
the structure, behavior, or other aspects of a system or 

process. A modeling language provides a way to describe a 
system or process using symbols, rules, and syntax that are 
defined in a formal specification. Modeling tools are software 
applications that enable the creation, analysis, and 
manipulation of models using a specific modeling language 
or notation. These tools are used to create and manage models 
of complex systems and processes in various domains, 
enabling users to visualize, simulate, and test different 
scenarios and solutions. They also help to improve 
collaboration and communication between team members by 
providing a shared language and framework for 
understanding complex systems. Modeling tools can vary in 
complexity, features, and usability. Magic System of Systems 
Architect is one MBSE tool that is used in this paper to 
actively support system development and analyze different 
system parameters. Magic System of Systems Architect, 
formally known as MagicDraw, is a tool based on a unique 
data repository that allows the design of complex multi-
domain systems [2]. This software can provide organizations 
with a better understanding of how changes to a component 
or subsystem can affect the overall system. To aid users 
in evaluating potential design options, Magic System of 
Systems Architect makes use of MBSE methods and a variety 
of modeling languages. This encourages improved risk 
management and may result in fewer problems throughout 
many phases of the system's life cycle. This MBSE tool is just 
one of many with the features indicated. Technologies like 
IBM Rhapsody, Capella, Enterprise Architect, and Papyrus, 
among others, provide features comparable to the Magic 
System of Systems Architect. There are numerous modeling 
languages that can be used with MBSE tools; however, 
Systems Modeling Language (SysML) is used as the primary 
modeling language of this study. SysML is a comprehensive 
graphical modeling language that enables the visualization 
and communication of the main components of system 
architecture: structure, behavior, requirements, and 
parametric [3]. SysML was designated as the primary 
modeling language attributed to the fact that its semantics are 
more customizable and comprehensive but will be utilized to 
specify performance and quantitative measures. SysML 
models were executed by animating state machine diagrams 
and activity diagrams using Magic Model Analyst, an 
execution framework plugin for Magic System of Systems 
Architect [2]. 

 
In Section II, the authors explore a theoretical conceptual 

framework that has been previously established to facilitate 
the development of MBSE-driven digital twins [4].
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Section III outlines a scenario that was created to assess the 
practicality of the MBSE-enabled framework, along with the 
relevant modeling tool and language. Section IV breaks down 
the surveillance scenario into four segments: problem 
domain, solution domain, UAV subsystem, and ground 
control unit (GCU). Additionally, a brief overview is 
provided on how the simulation of time-based transfer of 
UAV flight and image data was carried out. 

II. MBSE ENABLED FRAMEWORK 
In a prior study [4], an effort was made to establish a 

theoretical conceptual framework facilitated by MBSE for 
developing a digital twin. To design, develop, and implement 
a digital twin for a physical system, the framework specifies 
the development of system requirements before system design 
or employment (see Figure 1). According to the framework, 
several MBSE modeling languages can be used to represent 
system requirements. SysML is identified as the most utilized 
modeling language, which is used in this study.  Modeling 
tools should then be used to build complex model diagrams 
that are interconnected and allow for an organized system 
design and implementation process. Magic System of Systems 
Architect was used in this study to develop models following 
SysML, enabling the development of complicated model 
diagrams. The next step is to create data connectivity through 
executable program files written in a suitable programming 
language. Depending on the desired virtual model type 
(Digital Model, Digital Shadow, or Digital Twin), information 
gathered from changes in either the physical system or virtual 
model is implemented manually or automatically. The final 
virtual model type is determined by the amount and 
combination of model diagrams utilized and the method by 
which data is transferred between the physical system and the 
virtual model [4]. After implementing the initial stages of the 
framework, the development of the UAV surveillance 
scenario using Magic System of Systems Architect 
demonstrated the interconnectedness of modifying a 
diagram's feature, which in turn updates any other associated 

model diagrams. This interconnectivity allows for more 
coordinated and efficient system design and execution. This 
paper’s research evaluated the first two phases of the 
framework's validity, while the subsequent phases will be the 
focus of future work. 

III. SURVEILLANCE SCENARIO 
 The focus of this research is to demonstrate the 
applicability of a previously developed MBSE-enabled 
framework. SysML and Magic System of Systems Architect 
were used to model a hypothetical UAV surveillance system 
that monitors and reports on an armored combat vehicle's 
health and performance. 

The tutorial "Aircraft Radar Display SysML MagicGrid 
Sample with Simulation and Analysis" by Saulius Pavalkis 
was used to generate the SysML diagrams depicting the UAV 
surveillance scenario [11]. The tutorial provided a solid 
foundation and valuable insights into the application of 
SysML modeling techniques to an aircraft radar display 
system. This served as the basis for the development of 
diagrams depicting the intricate interdependencies and 
connections present in the UAV surveillance scenario. 

The US Army maintains a fleet of ground combat vehicles 
designed to undertake combat operations against opposing 
troops. The Congressional Budget Office has estimated the 
cost of such vehicles until the year 2050. The total acquisition 
expenditures for the Army's ground combat vehicles are 
estimated to average about $5 billion per year until 2050 [5]. 
Traditionally, the Army's armored combat vehicle 
maintenance standards rely heavily on lengthy manual 
diagnostic processes [6]. Instead of using automated 
diagnostic paradigms, present practice only monitors if 
operational conditions are within the range of acceptability. 
There is a need for automated real-time monitoring of armored 
combat vehicles to evaluate ongoing vehicle health and better 
anticipate vehicle conditions to save both resources and lives. 

 

 
Figure 1. MBSE Enabled Process to Develop Varying Virtual Models from a Physical System [4] 
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Any tactical mission's objective is to defend and protect at 
all costs. However, maintaining and repairing tank units may 
be both expensive and dangerous if not managed carefully and 
timely. To minimize servicing time and implement additional 
safety measures, a UAV is employed to track and monitor a 
combat vehicle to detect potential changes in the tank's overall 
physical and structural health status and performance. The 
UAV will record/capture image data via an onboard camera 

 

and will maintain a maximum altitude of 200(m) and a 
minimum altitude of 60(m) from its target to ensure optimal 
surveillance parameters are maintained. The UAV will 
communicate to and from a ground control unit, as seen in 
Figure 2, where a flight operator can make informed decisions 
about the structural health and status of the target from the 
imaging data sent from the UAV. The UAV will also transmit 
data to the operator regarding its own health/battery status and 
performance. In the event of an abnormality in the tank's 
operations, the tank operator and the maintenance personnel 
will be notified and then equipped for unscheduled 
maintenance. In the event of a loss of communication between 
the UAV and the Ground Control Unit (GCU), the UAV will 
continue to track and store imaging data independently, as 
seen in Figure 3. When a connection is lost, the GCU will alert 
the operator. Once the link is re-established, all stored imaging 
and flight data is transmitted to the GCU, along with real-time 
data. If the UAV's link is lost, it will continue to monitor and 
capture data from its target until the battery is down to 25% 
capacity and then returns to its home base. 

The modeling of the scenario will be utilized to 
demonstrate the feasibility of the MBSE-enabled framework 
(Figure 1) by developing and simulating the scenario using 
SysML. The scenario will be modeled and simulated utilizing 
pre-determined optimal UAV flying parameters and weather 
conditions; no physical experiments were performed. It is 
assumed that the operator's only engagement with the 
surveillance systems will be for assigning flight operations 
and analyzing incoming data. 

IV. DEVELOPING SCENARIO MODELS 

A. Problem Domain 
The UAV Surveillance Mission was divided into four 

distinct categories: the problem domain, the solution domain, 
the UAV subsystem, and the GCU. The initial stage is to 
break down system information and categorize it according 
to what information influences each subsystem, the 
environment, or the mission. This is essential for simulating 
the transfer of imaging data, UAV health, and flight data 
among system elements. These elements are then 
deconstructed into separate requirements which allow 
information to be sent from the UAV to the GCU and viewed 
by a human operator. A Black and White Box were created. 
Black box provides external insights into a system. The 
purpose of a black box is to develop a thorough and consistent 
set of requirements to avoid future revisions caused by poor 
specifications. White box, on the other hand, is an internal 
perspective of the system in which the system architecture is 
gradually identified [7].  Critical performance needs might be 
recorded as value attributes of the system's black box or as 
flow properties of moving objects. The needed system 
reaction time may be described as a value property item of 
the system black box, that flows in or out of the system black 
box [8]. The Black Box consisted of Stakeholder 
requirements, Use Cases, System Context, and Performance 
Metrics (MoEs) (see Figure 4).  Functional Analysis, Logical 
architecture, and system analysis constituted the White box. 
Table I. displays the requirements included in the Black Box 
for employing communications between the UAV and GCU.  
 

 

TABLE I.  MISSION COMMUNICATION REQUIREMENTS 

1.1 Imaging data shall display in less than 1s and refresh in 
less than 0.5s 

1.2 GCU shall support the following operation modes: pre-
flight, post-flight, UAV surveillance, and warning 
mode. 

1.3 The in-flight mode system shall display the planned 
trajectory of the UAV on the GCU screen. 

1.4 GCU screen shall provide visual and acoustic warning 
in case of UAV malfunction in less than 2s 

1.5 GCU screen shall provide visual and acoustic warning 
in case of lost connection from UAV to GCU in less than 
2s 

1.6 GCU screen shall provide visual and acoustic warning 
in case of lost connection from GCU to combat tank in 
less than 2s 

 
Figure 5 depicts a package diagram used to develop the use 

case for the GCU operator. The features for the functional 

 
Figure 2. Surveillance Scenario 

 
Figure 3. Lost Connection between UAV and GCU 

 
Figure 4. Functions and MoEs to Stakeholder Needs 
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analysis of the GCU are: display all data on a screen, receive 
imaging data, receive UAV flight data, perform operation 
mode, and provide warnings to the operator and combat tank. 

To develop connections between each subsystem so that 
communication can occur, a BDD was developed with 
corresponding ports that are referenced across multiple 
models as seen in Figure 6. Now that the connections have 
been developed, signals such as ‘location data’ or ‘warning’ 
can be sent between subsystems. For each port, activity 
diagrams (Figures 7 and 8) representing the operator's 
response to information received via the GCU were 
constructed [11].  

 

 
 
These varied characteristics composed the problem domain, 
allowing for the incorporation of system requirements in the 
solution domain. 
 
B. Solution Domain 
 Each action or activity must be meticulously documented 
with its corresponding requirements so that the 
implementation of each system adheres to the intended 
objective as seen in Figure 9, the model's primary purpose is 
to quantitatively characterize the information given to the 

operator through the GCU. Depending on the system's 
abilities, various quantities of data representing various 
quantitative information, such as the time between delivered 
messages or imaging data, will be sent. 

 Modeling the system behavior within the scope of the 
surveillance scenario is the next phase. This stage employs 
both state and activity diagrams for enhanced customization 
and adaptability. The mission is subdivided into several states 
that correspond to distinct parts of the event. The system states 
and activities are modeled to reflect what is occurring with the 
UAV during the operation. An example of a system state is 
having sufficient battery life for the mission and providing a 
warning if it is insufficient. To describe the relationships 
between the GCU, the operator, and the UAV, an IBD 
representing each subsystem block was built (see Figure 10) 
[11]. Due to the scope of this research phase, information was 
restricted to the transmission and reception of data between 
subsystems. The following simulation data depicts the number 
of milliseconds required for the UAV to transmit image data 
to the GCU so that the operator may make judgments on the 
combat tank's health. 

C. Simulation 
 As mentioned prior, the scope of this research was to 
simulate the communication between the operator, GCU, and 
UAV. A duration analysis was conducted to calculate the time 
(milliseconds) each message was sent and how long it was 
displayed on the GCU, see Figure 11 [11]. These results can 
also be referenced to the previously made GCU Display 
Screen Activity Diagram (Figure 8). The information can then 
be seen on the GCU screen. Figure 12 provides an example of 
the GCU interface and a type of imaging data that can be sent 
from the UAV [11]. 

D. Shared Workspace 
Magic Systems of Systems Architect (MSOSA) supports 

various simulation features. MSOSA provides four different 
kinds of simulation engines: Activity engine, State Machine 
engine, Interaction engine, and Parametric engine [2]. In this 
phase of the case study, the Parametric engine and Activity 
engine were employed to simulate and model the UAV's 
flight sequence. In addition, MATLAB® and Simulink® 
were used to simulate and illustrate the scenario described in 
section III. Simulink® is a block diagram environment 
that supports MBSE by providing system-level design, 
simulation, code generation, and embedded system testing 
and verification where MATLAB scripts can be integrated 
into Simulink models [10]. 

 
Figure 5. Operator Use Case 

 
Figure 6. BDD For System Port Connections 

 
Figure 7. GCU Operation Mode Activity Diagram 

 

 
Figure 8. GCU Display Screen Activity Diagram 
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Figure 9. System Requirements 

 
Figure 10. IBD Mission Communication 
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Using coordinate tracking, the drone follows the combat 
vehicle. While traveling to a predetermined destination, the 
tank transmits its GPS position to the UAV. The UAV 
functions by maintaining a fixed distance to these coordinate 
positions, where the operator will receive incoming flight 
and image data based on a time interval to verify whether 
the UAV is functioning properly. For the scope of this case 
study, the trajectory of the combat vehicle is predetermined. 
Chun-Wei Kong's 6-DOF (degrees of freedom) Quadcopter 
Simulation and Control MATLAB/Simulink project laid the 
groundwork for the simulations that were developed for this 
case study [9]. 

 
In MATLAB scripts, simulation-required UAV flight 

parameters were generated. MSOSA enables the integration 
of MATLAB and the establishment of a collaborative 
workspace. Even though these variables are editable and 
modifiable within MATLAB, visualizing and defining inputs 
and parameters expedites model development and assures 
consistency across many platforms/software. MSOSA 
recognizes expressions written in MATLAB syntax, which 
may be modified in MSOSA and imported into saved 
MATLAB files simultaneously. 

 
A block definition diagram was created to specify and 

visualize certain parameters in the previously established 
MATLAB code files. As shown in Figure 13, four blocks 
were incorporated into this diagram: test, 
A_SetDroneControl, C_XYZSignal, and E_animation. The 
first block 'test' was constructed to verify that a shared 
workspace was established correctly. 

 
 

As shown in Figure 14, the test block is separately chosen 
and simulated to verify the shared workspace. MSOSA will 
create a shared workspace with MATLAB after the 
simulation has begun, and the new mass should be 
represented in the corresponding file as seen in Figure 15. 
This shared workspace ensures interoperability by allowing a 
user to make a modification on one platform and have it 
simultaneously updated on another. Not only does this save 
time, but it also ensures that all parameters, values, and inputs 
stay constant throughout product and system development. 
Once each block has been independently simulated, resulting 
in updated values in the appropriate MATLAB code, an 
activity diagram was created to begin the required processes 
for executing all the MATLAB scripts to provide a simulation 
output.  
 

 
 

 

 
Figure 11. IBD Mission Communication 

 
Figure 12. GCU Operator Screen with Imaging Data. 

 
Figure 13: Block Definition Diagram, defining MATLAB code 

 
Figure 14: Simulating Test Block 

 
Figure 15: Updated Test Parameter 
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Although MSOSA offers some simulation capabilities, its 
range of simulation outputs is limited. To overcome this, 
MATLAB and Simulink were employed to provide a more 
advanced and dynamic simulation output. Rather than 
attempting to construct a simulation output for the flight path 
of the UAV within MSOSA, an activity diagram was created 
to develop a shared workspace with MATLAB and Simulink. 
Cameo Simulation Toolkit was utilized to call 
MATLAB/Simulink functions directly from Magic Systems 
of System Architect.  

 
MATLAB is one of the supported evaluation tools, 

meaning that SysML model parameters can be input and run 
through MATLAB/Simulink models, resulting in outputs that 
can be integrated back into the SysML models. After the 
parameters have been imported using a block definition 
diagram, the necessary MATLAB and Simulink files can be 
loaded via the activity diagram, which provides a simulation 
output of the UAV's flight path. To achieve a complete 
simulation, five files must be executed or loaded, as shown in 
Figure 16. This integration of MSOSA, MATLAB, and 
Simulink enables the creation of more sophisticated 
simulation outputs, facilitating the assessment and 
improvement of the UAV's flight route. 

 

  
 
The initialization of the UAV's parameters is achieved 

through the use of A_SetDroneControl. The target path for 
the drone is determined by B_DroneSignal, which establishes 
the X, Y, and Z coordinates, as well as the T (time) required 
to reach each set of coordinates using a matrix. After this is 
complete, the C_XYZsignal MATLAB script is executed to 
calculate the UAV's velocity and Euler's angles at each of the 
specified points. 

 
Once these calculations are complete, the output values 

are input into the Simulink File D_DroneControl, and 
subsequently sent into E_animation. The chronological 
sequence of the files' execution is depicted in the activity 
diagram, with each step clearly illustrated in Figure 17. 

 
After all the stages are completed, Figure 18 shows the 

successful conclusion of the simulation. By following this 
process, the simulation can accurately determine the UAV's 
flight path and ensure that it follows the specified target path. 

 
 

 
 
MSOSA, MATLAB, and Simulink work together to provide 
a unified workspace that enhances the capabilities of 
simulations. When simulating the flight route of a UAV, the 
number of required files and input parameters can lead to 
errors. However, MSOSA ensures that the necessary input 
values are not only visualized but also maintained in 
MATLAB and Simulink, even when user or system 
requirements change. This functionality not only helps to 
prevent errors but also makes it easier for other users to 
replicate the simulation process.  

 
Thanks to the shared workspace created by MSOSA, even 

a user with no prior knowledge of MATLAB can execute the 
corresponding files. This greatly enhances the accessibility of 
the simulation process and allows for more collaboration 
between different stakeholders.  

 
The overall objective of Model-Based Systems 

Engineering (MBSE) is to provide a framework that makes 
complex system models more understandable and 
manageable throughout the development process. By using 
MSOSA, users and stakeholders can be confident that the 
architecture of the system satisfies their requirements. The 
models and shared workspace created by MSOSA allow for 
a more comprehensive representation of the system, ensuring 
that all users can understand its behavior and interactions. 

E. Future Work 
Real-time data can be obtained from a variety of 

operational factors, such as velocity, battery mAh, picture 
resolution, and GPS coordinates. These variables can be 
simulated using game engines such as Unity or Unreal Engine. 

 
Figure 16: MATLAB/Simulink Simulation Activity Diagram 

 
Figure 17: Simulating Activity Diagram and Establishing Shared 

Workspace  

 
Figure 18: UAV Flight Path Simulation 
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State machine diagrams can be created and exported as code, 
which can then be utilized to set game engine parameters. 
While both MSOS and MATLAB offer simulation features, 
they have limits in terms of visualization. However, using 
algorithms and scripting languages in a game engine like 
Unity 3D can significantly enhance simulations. 

Unity 3D is a well-known game engine that enables the 
creation of 2D and 3D visual effects, making it an ideal tool 
for dynamic simulations. By integrating MSOS and 
MATLAB with Unity, it is possible to create a cross-platform 
shared workspace where any scenario or system can be 
recreated. 

In order to create a dynamic simulation, reliable and 
confirmed data as well as time are required for modeling. This 
involves discovering the necessary computations, equations, 
and data for the simulation. While this process may be time-
consuming, the use of a game engine like Unity can help to 
create more engaging and dynamic simulations. 

V. CONCLUSION 
MBSE tools, languages, and methodologies offer a 

framework for organizing system data, which can be used for 
quantitative analysis and simulation. The development of 
models using SysML is motivated by the belief that it 
provides a comprehensive architecture that illustrates the 
behavior characteristics of an operationally realistic situation. 
This methodology enables the creation of system blocks with 
specific properties and behaviors that can be modified 
continuously, thus avoiding wastage of resources. 

 
To simulate scenarios with greater dynamic complexity, 

the parameters for the surveillance scenario are classified into 
their corresponding diagrams. The next stages of the study 
involve the development of more detailed models, which will 
be simulated using a gaming engine like Unity 3D or Unreal 
Engine. The aim is to extract data from generated SysML 
models and export it to MATLAB and the appropriate game 
engine, and vice versa, to develop a digital twin. 

 
Testing the established framework is a crucial objective to 

validate the procedures necessary for creating an MBSE-
enabled digital twin. Displaying the created surveillance 
scenario in greater detail using a game engine will enable 
stakeholders to gain a better understanding of the ideal flying 
settings, weather conditions, and scenario test runs. Game 
engines employ algorithms that more accurately imitate the 
behavior of real-world objects such as unmanned aerial 

vehicles (UAVs) or combat vehicles. These methods are 
essential for verifying the SysML-developed parameters and 
requirements. This experimentation eliminates the need for 
physical testing, saving both money and physical resources. 
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