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A B S T R A C T   

Vehicle use is associated with negative externalities such as traffic congestion, air pollution, and greenhouse gas 
emissions. Particularly in the U.S. as a car-oriented country, vehicle use — in terms of vehicle-miles of travel 
(VMT) — has been on the rise and is projected to increase in the future. To curb the VMT growth and mitigate the 
associated externalities, policy makers can design informed strategies based on VMT predicted by vehicle use 
models. However, traditional vehicle use models capture merely the observed heterogeneity across vehicle decision 
making units (e.g., individuals) and ignore the latent or taste heterogeneity sourced in individuals’ attitudes and 
lifestyle preferences, which may cause biased and inconsistent results that mislead implications for policy 
makers. To address this research gap, the present study introduces a latent class regression model, where a 
probabilistic multinomial logit component endogenously classifies a sample of vehicle use observations so as to be 
homogeneous within and heterogeneous across the classes with respect to VMT. At the same time, a finite set of 
linear regression equations in the number of the latent classes yields class-specific VMT. The model is estimated 
on a sample dataset from the State of California identifying three latent classes, verifying the hypothesis of 
positing vehicle use on both observed and unobserved heterogeneity. The estimation results are analyzed to infer 
implications of potential policies aiming at reducing VMT through increasing fuel cost and switching to telework, 
and to evaluate the efficiency of resource allocation to policies by targeting different classes with distinctive 
characteristics.   

1. Introduction 

Car-oriented societies experience negative externalities, such as 
traffic congestion, air pollution, greenhouse gas (GHG) emissions, and 
dependence on oil import. For instance, 82% of daily trips in the U.S. are 
accomplished by cars, half of which are single-occupant, according to 
the most recent travel trends concluded from the national household 
travel survey (McGuckin and Fucci, 2017). Over time, vehicle use — in 
terms of vehicle-miles of travel (VMT) — has shown an increasing trend 
in the U.S., with a 20% increase over the past decade (US FHWA, 2022). 
Moreover, VMT is anticipated to further increase with the advent of 
emerging transportation technologies, for instance, by adding deadhead 
miles of unoccupied autonomous vehicles (Noruzoliaee and Zou, 2022). 
To curb the VMT growth and mitigate the associated negative exter-
nalities, policy makers can design informed strategies based on the results 
of the VMT prediction models. For instance, the State of California 

envisions a 40% GHG emissions reduction by 2030 and continued to an 
80% reduction by 2050 assuming 5% and 15% reductions in VMT, 
respectively (California Air Resources Board, 2021). To meet that goal, 
VMT reduction strategies are suggested which are related to land use, 
such as residential density and land-use mix diversity, as well as to 
transportation systems, such as public transit improvements, road 
pricing, and programs aimed at changing people’s travel choices (Salon 
et al., 2012; Byars et al., 2017). 

However, these policy strategies need to be effectively designed by 
tailoring them for the population segments with distinctive character-
istic profiles and lifestyle preferences. To do so, there is a research need 
for an in-depth understanding of the process of vehicle use decision 
made by households (or individuals). In addition to the policy relevance 
of such research effort, the expected findings are further intriguing to 
travel behavior analysts due to the key role of vehicle use in explaining the 
individuals’ travel behavior. In particular, the relevant literature on the 

* Corresponding author. 
E-mail addresses: fatemeh.nazari@utrgv.edu (F. Nazari), kouros@uic.edu (A.(K. Mohammadian).  

Contents lists available at ScienceDirect 

Transport Policy 

journal homepage: www.elsevier.com/locate/tranpol 

https://doi.org/10.1016/j.tranpol.2023.01.005 
Received 22 December 2021; Received in revised form 2 January 2023; Accepted 11 January 2023   

mailto:fatemeh.nazari@utrgv.edu
mailto:kouros@uic.edu
www.sciencedirect.com/science/journal/0967070X
https://www.elsevier.com/locate/tranpol
https://doi.org/10.1016/j.tranpol.2023.01.005
https://doi.org/10.1016/j.tranpol.2023.01.005
https://doi.org/10.1016/j.tranpol.2023.01.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tranpol.2023.01.005&domain=pdf


Transport Policy 133 (2023) 45–53

46

vehicle ownership problem1 signifies the role of the vehicle use decision 
in travel behavior-related decisions in both short- and long-term such as 
adoption of autonomous vehicles (Nazari et al., 2018b). 

1.1. Vehicle use modeling 

One approach to modeling vehicle use is through investigating the 
problem at the aggregate level. Rentziou et al. (2012) estimate a random 
parameters model to predict VMT of various road functional classes in 
the U.S., which are then used for assessing the influence of policies 
governing fuel tax and population density on future energy consumption 
and GHG emissions. A recent study verifies a hypothesis that vehicle use 
can be explained mainly by economic factors such as gasoline price 
(Bastian et al., 2016). 

Alternatively, vehicle use can be modeled at the disaggregate level,2 

which is the focus of the present study, as a function of demographic 
attributes of decision makers, built environment factors, and vehicle 
attributes. Mannering (1983) investigates vehicle use of two-vehicle 
households in the U.S. by simultaneously estimating two linear equa-
tions. The findings signify the influences of household income and 
vehicle fuel efficiency on the allocation of vehicle use to the household 
vehicles, which are subsequently utilized for analyzing the relevant 
policy implications. Focused on multi-vehicle households in the U.S., 
Greene and Hu (1985) estimate linear equations and conclude that a 
25% increase in gasoline price leads to a 5% decline in vehicle use. Guo 
(2013) explores VMT by estimating two linear equations on households 
with and without garage parking space to suggest policies on residential 
parking in New York. The results reveal the larger impact of street 
parking than access to garage on trips made by vehicles, and less vehicle 
use for households without access to off-street parking. Singh et al. 
(2018) present a joint modeling framework of the household residential 
location choice and VMT in New York, which is considerably affected by 
socio-demographic attributes and built environment factors. In another 
joint modeling system of a quadratic generalized multilevel structural 
equation, Zhang et al. (2021) evaluate the impacts of land use densifi-
cation policies on vehicle use in Beijing, China. The impact of such 
policies on vehicle use reduction in low-density neighborhoods are 
found to be significant but indirect through the mediation of other travel 
decisions. 

1.2. Latent or taste heterogeneity 

While providing valuable insights, most of the existing studies on 
vehicle use can capture merely the observed heterogeneity across the 
decision-making units, e.g., individuals, by associating the model 
outcome to their observed attributes such as income. However, the de-
cision process might be further influenced by, for instance, the in-
dividuals’ attitudes and lifestyle preferences unknown to the analyst, 
which are referred to as the latent (unobserved) or taste heterogeneity. 
Ignoring taste heterogeneity in the estimation process may cause bias 
and in turn lead to inconsistent model estimation results and misleading 
implications for analysts and policy makers (Greene, 2000). The earlier 
attempts to address this issue exogenously segment a sample dataset into 

heterogeneous classes based only on the observed attributes and then 
estimate class-specific vehicle use models. Yet, this “deterministic” 
segmentation cannot fully account for latent heterogeneity, thereby 
calling for a “probabilistic” model. 

A promising solution is employing latent class or finite mixture 
models to probabilistically segment a sample into a finite number of 
mutually exclusive classes to have attributes and preferences homoge-
nous within and heterogeneous across the classes (see Heckman and 
Singer (1986) for a related theoretical discussion). The latent class 
model sometimes may be superior to its counterparts3 in addressing the 
heterogeneity issue due to yielding more intuitive market segmentation 
(Greene and Hensher, 2003). 

The contribution of the present study is to close the above-discussed 
gap by presenting the first empirical attempt to relate the vehicle use 
decision to both observed and unobserved/taste heterogeneities through 
estimating a latent class model. The study outcome, which is the 
continuous variable describing VMT, requires the model specification to 
be a latent class regression (LCR) (McCullagh and Nelder, 1983; DeSarbo 
et al., 1989; Wedel and Kistemaker, 1989; Wedel and DeSarbo, 1994). 
There exists limited applications of the LCR model in, for instance, so-
ciology (Yamaguchi, 2000) and logistics theory (Garver et al., 2008). 
The empirical analysis of the proposed model identifies three hetero-
geneous classes with respect to vehicle use verifying the hypothesis that 
both observed and latent heterogeneities shape vehicle use. Moreover, 
the study findings can be leveraged for an effective design of policies 
tailored for the identified classes instead of a one-shot policy for the 
entire sample. The policies are used to evaluate the goal of the State of 
California for the 5% reductions in VMT through increasing fuel cost and 
telework. 

The next section presents the methodology of the LCR model. The 
empirical estimation on a dataset described in section 3 is analyzed in 
section 4. The paper concludes in section 5. 

2. Methodology 

Fig. 1 shows the conceptual framework of the LCR model entailing a 
multinomial logit (MNL) model which endogenously segments the sample 
of vehicles into a finite number of latent classes so as to be homogeneous 
within and heterogeneous across the classes with respect to vehicle use 
(see Ben-Akiva et al. (2002) for a discussion on the endogeneity bias). At 
the same time, a finite set of linear regression equations in the number of 
the latent classes yields the vehicle use for each class. The simultaneous 
estimation of the MNL model and the class-specific linear equations 
avoids any measurement error possibly caused by the sequential estima-
tion (Greene, 2000). 

The LCR model is built on the linear regression equation yi = x′

iα+

1 The vehicle ownership problem has various aspects, which are compre-
hensively discussed in a review study by Anowar et al. (2014), such as: (i) 
vehicle ownership level (Zhang et al., 2017); (ii) choice of vehicle attributes 
such as fuel type (Nazari et al., 2018a, 2019); (iii) vehicle transaction decision 
(Gilbert, 1992); and (iv) vehicle utilization or use (Zhang et al., 2021), which is 
the focus of the present study.  

2 Due to the possible endogeneity of vehicle use to the other aspects of the 
vehicle ownership decision, a stream of disaggregate studies analyze a hy-
pothesis on this endogeneity by jointly estimating vehicle use and, for instance, 
vehicle ownership level (Liu and Cirillo, 2016). This is out of the scope of the 
present study. 

3 An alternative is the random parameters model, which allows parameters to 
have a continuous random distribution over the sample (McFadden and Train, 
2000). This model has the flexibility advantage over the latent class model, 
since the latter approximates the underlying continuous random distribution of 
parameters with a discrete one. The latent class model has the semiparametric 
specification superiority to the fully parametric random parameters model 
developed earlier, which is limited to have “a priori” assumption about the 
mixture distribution of the parameters, thus cannot find the source of hetero-
geneity. More recent versions of the random parameters model, however, can 
effectively identify these sources. Examples are random parameters model with 
heterogeneity in means and variances (Waseem et al., 2019), correlated random 
parameters ordered probit model (Fountas et al., 2018), grouped random pa-
rameters bivariate probit model (Sarwar et al., 2017), and correlated random 
parameters model with heterogeneity in means (Ahmed et al., 2021). Regard-
less, both latent class and random parameters models implicitly treat taste het-
erogeneity, while an approach to explicitly address the issue incorporates the 
underlying observed psychometric indicators into choice models (Ben-Akiva 
et al., 2002). Interested readers in the recent methodological advancements are 
referred to Washington et al. (2020). 
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εi, εi ∼ N[0, σ2
i ], wherein yi denotes vehicle use for vehicle 

i (i= 1, 2,3, ..., I) in terms of the logarithm of annual VMT, which is 
explained by a linear function of the set of the exogenous variables (xi)

multiplied by the set of the associated parameters (α). The logarithmic 
specification follows the former vehicle use models (Kim and Kim, 2004; 
Spissu et al., 2009; Eluru et al., 2010; Singh et al., 2018). 

Estimation of the above equation results in only one set of parame-
ters α for all sample vehicles. However, vehicle use may vary across 
heterogeneous classes of vehicles with various features which are held 
by households and driven by individuals with distinctive characteristics. 
In other words, there might be a taste heterogeneity in vehicle use that, 
if ignored, the estimation results might be unreliable and inconsistent 
(Greene, 2000). To tackle, the equation is extended to the LCR (or finite 
mixture) model assuming a discrete random distribution for the pa-
rameters (McCullagh and Nelder, 1983; DeSarbo et al., 1989; Wedel and 
Kistemaker, 1989; Wedel and DeSarbo, 1994). The LCR endogenously 
segments I vehicles into J classes and simultaneously regresses a linear 
regression of VMT for each class. 

The probability of VMT for vehicle i belonging to class j is expressed 
as equation (1). The first term is the probability of VMT conditional on 
placing in class j (equation (2)). The second term, which is the proba-
bility of vehicle i belonging to class j (j = 1,2,…,J), is an MNL (equation 
(3)). The utility equation of the MNL is written as Uij = z′

iβj + μij, 
wherein zi is the set of the exogenous variables, βj is the set of the cor-
responding parameters, and μij is the error component with the extreme 
value distribution. 

Prob (yi, class= j)=Prob (yi|class= j) • Prob (class= j) (1)  

Prob (yi|class= j)=N
[
x′

iαj, σ2
ij

]
=

1
σij

̅̅̅̅̅
2π

√ • exp

(

−

(
yi − x′

iαj
)2

2σ2
ij

)

i= 1, 2,…, I; j= 1, 2,…, J (2)  

Prob (class= j)=
exp
(
z′

iβj
)

∑J
j=1 exp

(
z′

iβj
) j= 1, 2,…, J (3) 

The log-likelihood function of the LCR model is written as equation 
(4), which is solved using maximum likelihood to estimate the 
parameters. 

Ln L=
∑I

i=1
ln
∑J

j=1
Prob (yi, class= j)=

∑I

i=1
ln
∑J

j=1
Prob (yi|class= j)

• Prob (class= j) (4)  

3. Data 

The LCR model of vehicle use is empirically estimated on California 
Vehicle Survey (National Renewable Energy Laboratory, 2019). We use 
a sample dataset on 7387 residential light duty vehicles which are held 
by 3963 households and driven by 6444 individual principal drivers (i. 
e., the household members driving the vehicles more than the other 
members). 

3.1. Vehicle attributes 

The statistical distribution of the sample vehicles is presented in 

Fig. 1. Conceptual framework: Latent class regression model of vehicle use.  

Table 1 
Statistical distribution of vehicle attributes.  

Variable description Category # 
observations 

Share 
(%) 

Annual vehicle-miles of 
travel or VMT 

Mean = 9527.921, 
SD* = 7971.461 

– – 

Logarithm of annual VMT+ Mean = 8.879, SD =
0.796 

– – 

Vehicle age (years) Mean = 2.937, SD =
4.599 

– – 

Vehicle fuel efficiency (miles 
per gallon) 

Mean = 31.127, SD =
21.533   

Fuel cost per mile (dollars) Mean = 0.183, SD =
0.072 

– – 

Fuel cost per mile (dollars) 
for households with:    

low income (<$50K) Mean = 0.027, SD =
0.073 

– – 

medium income ($50K ≤ <

$150K) 
Mean = 0.087, SD =
0.104 

– – 

high income (≥$150K) Mean = 0.052, SD =
0.089 

– – 

Vehicle ownership type at 
acquisition time 

Purchased new 3876 52.47 
Purchased used or 
previously owned 

2446 33.11 

Leased (new or used) 861 11.66 
Other 204 2.76 

Sample size = 7387. 
*SD: standard deviation. 
+ Model outcome. 
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Table 1. The logarithm of annual VMT specifies the model outcome with 
the average and standard deviation values observed respectively at 
8.879 and 0.796 per year. To capture the economic aspects of vehicle 
use, namely operating cost, a factor on fuel cost per mile (in dollars) is 
calculated for each vehicle, which is equal to the average fuel price (in 
dollars) in the residence county of the household who holds the vehicle 
divided by the vehicle fuel efficiency. This factor is computed for three 
household groups with three annual income levels. The lowest and the 
highest average fuel costs are respectively observed for households with 
low- and medium-income levels. 

3.2. Household-related factors 

The sample households are defined by socio-economic characteris-
tics and the built environment factors. The statistical distribution of the 
relevant factors is presented in Table 2. For instance, 82.44% of the 
households have access to parking space at their residence. 

3.3. Individual-related factors 

The individuals, who are the principal drivers of the sample vehicles, 
are characterized by their socio-economic attributes (Table 3). 

4. Estimation results 

4.1. The number of classes 

The number of classes for a latent class model is exogenously 
determined through trying various models to select the best one based 
on both model fitness and interpretability. The former is measured by 
the log-likelihood value at the estimated parameters (LL(β)), the Akaike 
information criterion (AIC), which is equal to (2K − 2LL(β))/ N, and the 
Bayesian information criterion (BIC), which is calculated as ( − 2LL(β) +
K ln(N))/N. The indices K and N respectively denote the number of 
model parameters and the number of observations. The superior model 
has smaller values of − LL(β), AIC, and BIC, conditional on providing 
more intuitive estimation results with better interpretability (Greene, 
2000). The statistics of five models with similar specifications except for 
the number of classes is summarized in Table 4, indicating that the 

3-class model provides better behaviorally interpretable results despite 
marginal improvements in LL(β), AIC, and BIC for higher number of 
classes. 

4.2. Interpretation of results 

4.2.1. Class-specific vehicle use 
The estimation results of the vehicle use specific for the three latent 

classes and the pooled sample of vehicles are presented in Table 5. The 
set of exogenous variables is restricted to be the same across the equa-
tions during the estimation process. Almost all parameters are found to 
be statistically significant at a 95% confidence interval, indicating their 
statistical reliability. Comparing the estimated parameters reveals that 
the taste variation in VMT across the three classes is mainly rooted in 
distinctive attributes of vehicles belonging to each class and held by 
households and driven by individuals with different characteristics, as 
shown in Table 6 and discussed in section 4.2.2. 

The constant parameters vary across the classes which are explained 
by unknown factors omitted from the model. The associated absolute 
values in a descending order belong to classes 2, 1, and 3, reflecting the 
corresponding order of vehicle use if all exogenous factors entering the 
model are identical. 

Among the vehicle attributes influencing vehicle use, vehicle fuel cost 
per mile (in dollars), which partly reflects commodity price of travel, 
negatively affects VMT of the members of the second and the third 
classes. This is in line with the findings of the previous studies in the U.S. 
(Mannering, 1983; Mannering and Winston, 1985; Kim and Kim, 2004; 
Hang et al., 2016; Liu and Cirillo, 2016; Bastian et al., 2016). However, 
the magnitudes of the corresponding parameters vary across the three 
income levels for the two classes, signifying the two-fold heterogeneity. 
Within class 2, the largest impact of fuel cost is on the vehicle use of 
those with medium-income level, followed by high- and low-income 
levels. In contrast, the largest and the smallest impacts of fuel cost on 
vehicle use of members of class 3 are respectively on the low- and the 
medium-income households. The results further suggest that the vehicle 
use response of the members of the third class to fuel cost almost follows 
the same pattern found for the pooled sample. 

Vehicle age affects the vehicle use of only the members of the second 

Table 2 
Statistical distribution of households-related factors.  

Variable description Category # 
observations 

Share 
(%) 

Socio-demographic characteristics 
Household structure  – – 
# kids (age <5 years) Mean = 0.098, SD* 

= 0.377 
– – 

# teenagers (5 years ≤ age 
<12 years) 

Mean = 0.126, SD 
= 0.424 

– – 

# young children (12 years ≤
age <16 years) 

Mean = 0.089, SD 
= 0.332 

– – 

# adults (age ≥16 years) Mean = 1.992, SD 
= 0.818 

– – 

Decision on future household 
vehicle(s) 

Solely by one 
member 

1678 42.34 

Primarily by one 
member 

1027 25.91 

Shared among 
members 

1258 31.75 

Built environment factors 
Access to parking space at 

residence 
Yes 3267 82.44 
No 696 17.56 

Residential location Urban area 3220 81.25 
Suburban area 594 14.99 
Rural area 149 3.76 

Sample size = 3963. 
*SD: standard deviation. 

Table 3 
Statistical distribution of individual principal drivers’ socio-economic 
characteristics.  

Variable description Category # 
observations 

Share 
(%) 

Gender Male 3175 49.28 
Female 3200 49.65 
Other 69 1.07 

Employment status Full-time 2856 44.32 
Part-time 721 11.19 
Self-employed 439 6.81 
Not paid 2428 37.68 

Job location type One location 2938 45.59 
Regularly varied 665 10.32 
Telework 413 6.41 
Not paid 2428 37.68 

Educational 
attainment 

High school graduate or less 701 10.88 
Associate degree 1749 27.14 
College graduate 1988 30.85 
Post-graduate 2006 31.13 

Ethnicity Hispanic, Latino, or Spanish 
origin 

636 9.87 

Non-Hispanic 5534 85.88 
Prefer not to answer 274 4.25 

Race White 4382 68.00 
Asian 1090 16.92 
African American 202 3.13 
American Indian 114 1.77 
Other 656 10.18 

Sample size = 6444. 
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class, meaning that they drive older vehicles less than newer ones. A 
similar behavior is found for the pooled sample, yet the associated 
impact is smaller, as suggested by the smaller absolute value of the 
corresponding parameter than that of the second class. The negative 
influence of this factor on vehicle use is consistent with the findings of 
the past studies in the U.S. (Greene and Hu, 1985; Hang et al., 2016). 
Besides, the logarithmic form of this factor implies the associated 
diminishing impact as vehicles become older. 

Vehicle ownership type appears in the model as two dummy variables, 
which are found to be a possible source of heterogeneity across the three 
classes. The first variable equals 1 for the vehicles that are either pur-
chased as used vehicles or previously owned and 0 otherwise. This 
variable appears in the equation of the members of class 2 with a posi-
tive sign, meaning that this ownership type increases VMT. This factor 
influences the pooled sample in the same direction, yet with a smaller 
magnitude. The second variable takes the value 1 if a vehicle is leased. 
This variable enters the VMT equations of the first and the third classes 
with a larger parameter for the third class, revealing the associated 
positive effects, especially on the third class. Besides, this factor posi-
tively affects VMT of the pooled sample with a magnitude larger and 
smaller than those of the first and the third classes, respectively. 

As for the built environment factors influencing vehicle use, the first 
factor appears in the model as a dummy variable taking the value 1 for 

those with access to parking space at their residence. This factor, which 
reflects the availability or affordability of parking supply, is found to 
positively affect only the members of class 3. The same impact is also 
found for the pooled sample, though with a smaller magnitude. This 
finding is previously reported by a study on households residing in the 
New York City (Guo, 2013). 

The residential location of the households appears as a dummy variable 
taking the value 1 for those who reside in rural areas. The results signify 
the influential role of this factor in the equations of the three classes yet 
with different signs, implying the presence of taste variation. Living in 
rural areas increases VMT of the persons who belong to the first and the 
second classes, especially the second class. This might be due to the fact 
that rural areas usually have lower residential and population density 
and thus, have lower accessibility to and availability of public transit 
due to the lack of sufficient infrastructure support for public transit. This 
is in line with the previous studies which report less vehicle use for 
urban areas (Mannering, 1983; Greene and Hu, 1985; Schimek, 1996; 
Stevens, 2017; Singh et al., 2018; Zhang et al., 2021). Conversely, 
residing in rural areas decreases VMT of the members of class 3, whose 
smaller VMT, which seems contradictory with the common sense, might 
be due to the gradual change in their behavior over time by adjusting 
their travel needs for rural residence through less frequent activity 
involvement. In contrast, VMT of the pooled sample is found not to be 

Table 4 
Summary statistics for latent class regression models with different number of classes.   

Model without classification Models with latent classification 

Number of classes 1 2 3 4 5 
Number of parameters (K) 16 40 64 88 112 
LL(β) − 8431.645 − 7946.685 ¡7853.916 − 7221.023 − 7032.506 
AIC 2.287 2.162 2.144 1.979 1.934 
BIC 2.302 2.200 2.204 2.061 2.039 

Note: Boldfaced column indicates the model with the best number of classes. 

Table 5 
Estimation results of the latent class regression model: Class-specific vehicle use.  

Exogenous variable Latent class regression 1-class regression 

Class 1  Class 2  Class 3  

coef. t-stat coef. t-stat coef. t-stat coef. t-stat 

Constant 9.265*** 517.43 9.674*** 145.80 8.568*** 137.42 8.975*** 300.50 

Vehicle attributes 
Fuel cost per mile (dollars) for households with: 

low income (<$50K) − 0.040 − 0.41 − 0.755** − 2.13 − 1.287*** − 5.57 − 1.161*** − 7.64 
medium income ($50K ≤ < $150K) − 0.064 − 0.90 − 1.107*** − 4.48 − 0.654*** − 3.39 − 0.795*** − 6.73 
high income (≥$150K) 0.056 0.74 − 1.000*** − 3.90 − 0.902*** − 4.05 − 0.901*** − 6.95 

Logarithm of vehicle age (years) − 0.004 − 0.40 − 0.863*** − 22.67 0.021 0.55 − 0.205*** − 11.64 
Vehicle ownership type at acquisition time 

Purchased used or previously owned − 0.019 − 1.22 0.282*** 5.33 0.036 0.82 0.094*** 3.78 
Leased (new or used) 0.050*** 3.20 − 0.052 − 0.74 0.186*** 2.66 0.113*** 3.88 

Built environment factors 
Access to parking space at residence 

Yes 0.007 0.55 0.007 0.14 0.095** 2.16 0.055** 2.39 
Residential location 

Rural area 0.073*** 2.85 0.371*** 3.88 − 0.140* − 1.91 0.028 0.60 

Principal driver characteristics 
Employment status 

Full-time employed 0.008 0.76 0.372*** 8.86 0.353*** 10.47 0.311*** 16.31 
Self-employed − 0.008 − 0.31 0.178** 2.10 0.258*** 3.47 0.191*** 4.64 

Job location type 
Regularly varied 0.027* 1.66 0.165*** 2.71 0.235*** 4.74 0.198*** 6.65 
Telework − 0.033 − 1.22 − 0.227*** − 2.69 − 0.072 − 0.99 − 0.097** − 2.34 

Ethnicity 
Hispanic, Latino, or Spanish origin 0.032** 2.02 0.134* 1.94 0.085* 1.72 0.097*** 3.24 

Race 
Asian − 0.030** − 2.15 − 0.102* − 1.92 0.054 1.18 0.009 0.38 

Note: ***, **, and * respectively indicate parameters statistically significant at the 99%, 95%, and 90% confidence intervals. 
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influenced by this factor. 
Switching the focus to the principal drivers’ characteristics, the 

employment status appears in the model in the form of two dummy var-
iables; one taking the value 1 for full-time employment and the other 
equals 1 for self-employment. Being a full-time employee or self- 
employed is expected to increase vehicle use presumably due to work 
trips (Giuliano and Dargay, 2006; Zhang et al., 2021). The estimation 
results verify more VMT for both groups, especially the full-time em-
ployees who are the members of classes 2 and 3. The magnitude of the 
relevant parameters is almost similar for both classes, which is slightly 
larger than that of the pooled sample. Conversely, self-employed persons 
belonging to the third class drive more than those who are places in the 
second class, as indicated by the corresponding larger parameter. 

Job location type of principal drivers enters the model as two dummy 
variables. One variable equals 1 for individuals with varied job locations 
and the other variable takes the value 1 for individuals who telework. As 
expected, the former increases VMT for all three classes and the pooled 
sample, whereas the latter decreases VMT, but only for class 2 and the 
pooled sample. Also, there is a taste variation with respect to both fac-
tors across the three classes. The varied job location increases VMT of 
classes 3, 2, and 1 in a descending manner. Also, smaller VMT is likely 
tied with telework if the person belongs to class 2, whose behavior 
almost mimics the travel pattern of the pooled sample. 

Ethnicity, defined as a dummy variable, which takes the value 1 for 
Hispanic or Latino individuals, is found to have positive effect on VMT of 
classes 2, 3, and 1 in a descending order, signifying the ethnicity-related 
heterogeneity. Besides, the magnitudes of this factor on all three classes 
are different from that of the pooled sample. 

One race type is found to be statistically significant in the model as a 
dummy variable taking 1 for Asians. The appearance of this variable in 
the equations of classes 1 and 2 with the negative signs implies that 
Asians who belong to these two classes, especially class 2, likely drive 
less than others. Similarly, previous studies report the negative tendency 

of Asians to vehicle use in the State of California (Brownstone and Golob, 
2009; Spissu et al., 2009). Besides, the race factor is found to be insig-
nificance in the VMT of the pooled sample. 

4.2.2. Multinomial logit of class membership 
The LCR model also entails the MNL component to endogenously 

distinguish the three vehicle classes based on the characteristics of the 
households holding the vehicles and their principal drivers (Table 6). 
The estimation results reveal that almost all parameters are statistically 
reliable attributed to their statistical significance at a 95% confidence 
interval. The set of the exogenous variables are restricted to be the same 
across the equations during the estimation process. 

The constant parameters reveal that if all conditions are equal, the 
probability of belonging to classes 1 or 2 is less than that of class 3, and 
the lowest probability is for class 1. 

The three classes are distinguished in part by household structure 
which is defined by the numbers of household kids, teenagers, and 
adults. It is found that vehicles held by households with more kids are 
most (respectively, least) likely placed in class 1 (respectively, class 2). 
The numbers of teenagers and adults in a household appear only in the 
equation of the first class with a positive sign, meaning that the presence 
of more teenagers and adults in a household leads to placing its vehicles 
in the first class. The class membership is also influenced by the role of 
household members in future vehicle decision(s), which is significant as a 
dummy variable taking the value 1 for households whose vehicle de-
cisions are made solely by one member. Specifically, the vehicle(s) of the 
households with a positive response to this factor are less likely cate-
gorized in the second class. 

Gender of principal driver, defined as a dummy variable equaling 1 for 
males, appears in the equations of classes 1 and 2. Male drivers less 
likely drive vehicles categorized in these two classes, especially class 2. 
Education is found to be influential in the equations of classes 1 and 2 as 
two dummy variables; one is equal to 1 for the college graduates with a 
4-year degree and the other takes the value 1 for the post-graduate in-
dividuals. Both factors positively influence the membership in these two 
classes, with a larger impact on the second class, indicating that those 
who are highly educated most likely belong to these two classes, espe-
cially class 2. 

4.3. Sensitivity analysis and policy implications 

The estimated LCR model can be further analyzed by measuring the 
sensitivity of VMT of the three latent classes with respect to two policy- 
sensitive factors found significant in the model, namely, fuel cost per mile 
in dollars and telework. The results can be utilized for inferring policy 
implications, based on which policies can be effectively designed by 
tailoring them for the three classes instead of a one-shot policy for the 
entire sample. 

Assuming that the impact of the fuel cost change is merely through 
the direct change in VMT, fuel cost is changed within the range of 
− 100%–100% in 10% intervals to predict the VMT of each vehicle in the 
sample in response to the fuel cost variations. Then, the percentage 
changes (compared to a base case with no changes in fuel cost) in the 
cumulative VMT are calculated for nine groups of vehicles. These groups 
are the three latent classes which are further categorized by the three 
household annual income levels, i.e., low, medium, and high levels. The 
results are displayed in Fig. 2(a), which overall reveal that the order of 
VMT variations for the nine groups follows the magnitudes of the 
associated parameters (presented in Table 5). 

The highest impact of the fuel cost change is found to be in the VMT 
of the third-class vehicles and held by low-income households, as shown 
by the dotted red line. Specifically, the VMT of this group decreases by 
21.94% if fuel cost doubles (given that the average fuel price of the 
sample is 4.507 dollars per gallon, doubling fuel cost means increasing 
the average value to 9.014 dollars per gallon). On the other extreme, the 
fuel cost reduction down to almost 0 dollars leads to the 29.10% increase 

Table 6 
Estimation results of the latent class regression model: Multinomial logit of class 
membership.  

Exogenous 
variable 

Class 1 Class 2 Class 3 

coef. t-stat coef. t-stat coef. t- 
stat 

Constant − 1.933*** − 9.57 − 0.600** − 2.08   

Household characteristics 
Household structure 

# kids (age 
<5 years) 

0.203* 1.88 − 0.391* − 1.73 0.000 – 

# teenagers 
(5 years ≤
age <12 
years) 

0.243** 2.36 0.050 0.32 0.000 – 

# adults (age 
≥16 years) 

0.203*** 3.52 − 0.096 − 1.05 0.000 – 

Decision on future household vehicle(s) 
Solely by one 
household 
member 

− 0.058 − 0.49 − 0.509*** − 3.05 0.000 – 

Principal driver characteristics 
Gender 

Male − 0.284*** − 2.66 − 0.324** − 2.36 0.000 – 
Educational attainment 

College 
graduate 

0.314** 2.45 0.534*** 3.07 0.000 – 

Post- 
graduate 

0.367*** 2.73 0.787*** 4.67 0.000 – 

Predicted class 
membership 
(%) 

14.710  26.866  58.425  

Note: ***, **, and * respectively indicate parameters statistically significant at 
the 99%, 95%, and 90% confidence intervals. 
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in the VMT of this group. This sensitive group likely encompasses ve-
hicles held by households with an income less than $50K, less teenagers 
and adults, and whose vehicle decisions are made solely by one house-
hold member, as well as vehicles driven by male principal drivers who 
are not highly educated. The second highest sensitive group to the fuel 
cost variations is vehicles of class 2 and held by medium-income 
households (shown by the dashed purple line). The fuel cost increase 
and decrease up to 100% lead to respectively 16.67% less and 20.62% 
more VMT of the vehicles of this group, whose principal drivers are 
probably not-highly-educated males and are held by households with an 
income between $50K and $150K, less kids, and whose vehicle decisions 
are not made solely by one member. 

Moreover, Fig. 2(b) exhibits the percentage change in the cumulative 
VMT of the three classes regardless of the income level, as well as that of 
the sample vehicles altogether, in response to the changes in fuel cost. 
The lowest impact is on the vehicles placing in class 1, shown by the 
solid green line, which are held by households with more kids, teen-
agers, and adults, and are driven by highly educated male principal 
drivers. 

The changes in VMT of all classes, which is depicted by the black 
solid line, suggest a 10.71% decrease and an 8.84% increase in VMT in 
response to the extreme changes (± 100%) in fuel cost. This can indicate 
the fuel cost elasticity of the whole sample as 10.71%, which is consis-
tent with the findings of the previous research efforts in the U.S. For 
instance, Mannering (1983) finds the 11.3% fuel price elasticity in 
multivehicle households and Greene and Hu (1985) predict a 5% decline 
in vehicle use due to a 25% increase in gasoline price. More recently, 
Bastian et al. (2016) finds a gasoline price elasticity of 14% in the U.S. 
Besides, it can be concluded that, without narrowing down the target 
population to any specific group of people, the changes in fuel cost 
would induce at most a 10.71% change in VMT. Clearly, this is an 

underestimation of the change in VMT vehicles of classes 2 and 3, which 
can be captured through the LCR model. 

Overall, it can be concluded that there exists heterogeneity across the 
nine groups with respect to the changes in VMT in response to change in 
fuel cost. This finding can be leveraged for suggesting effective policies 
specific to the nine groups instead of a uniform policy for the entire 
sample. For instance, targeting a 5% VMT reduction, which is the goal of 
the State of California by 2030 (California Air Resources Board, 2021), 
requires an average 60% increase in fuel cost (e.g., through increasing 
fuel tax) for the entire sample. Alternatively, this goal can be effectively 
met if fuel cost change is determined specific to the nine groups. In 
details, VMT can be reduced by 5% through increasing fuel cost, for 
instance, by almost 20% and 40% for the members of class 3 who have 
respectively low- and medium-income levels. On implementation of 
such group-specific policies, one suggestion is applying the required 
changes in fuel cost on the counties of the State by matching the de-
mographic attributes of each county with the characteristic profiles of 
each of the nine groups. 

The estimated model is further analyzed by focusing on a factor 
describing the principal drivers’ job location, in particular, telework 
which is usually assessed as a policy strategy to directly affect VMT. For 
individuals who do not telework, the telework time is increased up to 
100% in 10% increments. Then, the corresponding changes in their VMT 
is calculated, which is distinguished for the members of the three classes 
shown by the three colored lines in Fig. 3. As an example, a 20% increase 
in telework in exchange for a 20% less work time in the current job 
location results in 4.53% less VMT for those individuals who drive ve-
hicles of class 2 and work either at only one or regularly varied locations. 

The most sensitive class to the telework factor involves individuals of 
the second class, such that their VMT drops by 20.48% if they switch 
fully to telework. This highlights the maximum expected change in VMT 

Fig. 2. The modeled VMT sensitivity to fuel cost.  
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through devising policies that encourage telework and are geared to-
wards the second-class members, which likely encompasses vehicles 
held by households with less kids whose vehicle decisions are not made 
solely by one member, and vehicles driven by non-male highly educated 
individuals. 

Conversely, the first-class vehicles experience the slightest changes 
in VMT in response to the telework factor, as evidenced by the maximum 
decrease in VMT of vehicles in class 1 being less than 1% in response to 
switching to full telework. This determines the least sensitive class to 
telework policies, which encompasses vehicles held by households with 
more kids, teenagers, and adults, and driven by male individuals who 
are highly educated. The corresponding changes for the third class are 
also small, which is up to a 3.02% reduction in VMT. 

Regardless of the class membership, the cumulative changes in VMT 
of all vehicles in response to the telework factor are shown by the black 
line. It can be concluded that employing telework policies without tar-
geting any specific group of population is likely expected to lead to up to 
a 5.45% reduction in VMT. 

These findings can be further utilized for recommending effective 
policies. For instance, the target of up to 17% VMT reduction only 
through telework, which is concluded by California Center for Jobs and 
the Economy (2020) as the potential contribution of telework to the 
VMT reduction, can be achieved, for instance, by an almost 80% in-
crease of telework time only for the individuals who belong to class 2 
with no need to target the entire sample. Given the characteristic pro-
files of the class 2 members, whose VMT is more sensitive to telework 
compared to the other classes, policy makers can effectively identify 
them and apply the telework policies to achieve higher returns in 
investment. 

5. Conclusions 

The present study updates the conventional vehicle use models, 
which are prone to bias due to the ignorance of latent or taste hetero-
geneity stemming from individuals’ attitudes and lifestyle preferences. 
To do so, a latent class regression model is presented which hypothesizes 
that vehicle use — in terms of vehicle-miles of travel (VMT) — is 
affected by both observed and latent heterogeneities. The latent het-
erogeneity is inferred by a probabilistic market classification of the 
sample through a multinomial logit and the class-specific linear 
regression equations. The empirical estimation of the model on a sample 
dataset from the State of California supports the study hypothesis. The 
results are further utilized to assess the implications of policies targeted 
at reducing VMT by increasing fuel cost and telework specific to each of 
the three classes. 

To address the study limitations, two directions are suggested for 

future research. On the modeling approach, further research can 
comparatively analyze the estimation results of the latent class model 
with the random parameters model (see footnote 3 for a relevant dis-
cussion). The outcomes are expected to shed lights on the applicability 
of the two models for policy analysis in the context of vehicle use. On the 
sample dataset, this study uses one collected in 2019 which is right 
before the COVID-19 pandemic. A future study can focus on examining 
whether and how the pandemic influences the individuals’ travel 
behavior, specifically their vehicle use, by collecting more recent data-
sets measuring VMT during and after the pandemic. The results can be 
noteworthy from the policy-making perspective since the pandemic 
likely shifts the individuals’ travel patterns, such as VMT, mainly due to 
the shift in job location from conventional workplaces to homes. 
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