
NATURAL LANGUAGE PROCESSING FOR AUTOMATED SYSML

DIAGRAM GENERATION

A Thesis

by

JOSHUA ANDRE ONTIVEROS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE IN ENGINEERING

Major Subject: Mechanical Engineering

The University of Texas Rio Grande Valley

August 2024

NATURAL LANGUAGE PROCESSING FOR AUTOMATED SYSML

DIAGRAM GENERATION

A Thesis
by

JOSHUA ANDRE ONTIVEROS

COMMITTEE MEMBERS

Dr. Satya Aditya Akundi
Co-Chair of Committee

Dr. Constantine Tarawneh
Co-Chair of Committee

Dr. Hiram Moya
Committee Member

Dr. Horacio Vasquez
Committee Member

August 2024

Copyright 2024 Joshua Andre Ontiveros

All Rights Reserved

iii

ABSTRACT

Ontiveros, Joshua A., Natural Language Processing for Automated SysML

Diagram Generation. Master of Science in Engineering (MSE), May, 2024, 97 pp., 15 tables, 19

figures, references, 14 titles.

This thesis explores the applications of natural language processing (NLP) techniques in

model-based system engineering (MBSE) to help generate System Modeling Language (SysML)

diagrams. MBSE is a method that aids in enhancing traditional engineering practices by

modeling to help improve understanding and communication in systems development. SysML,

one of the modeling languages for MBSE, helps represent a system's architecture, behavior, and

information flow. Translating systems requirements and specifications into SysML models can

be time-consuming and can lead to errors when created manually. Automating the creation of

SysML diagrams from textual descriptions with the help of NLP techniques can aid in faster

realization and reduce modeling errors. This will simplify the initial stages of system design,

ensuring precision and uniformity in models. Despite the promise, generating SysML diagrams

using NLP faces challenges against natural language’s inherent complexity and the need for

significant domain knowledge, leading to challenges in extracting and interpreting system

requirements from natural language text. This thesis reviews three commonly used NLP-based

approaches to generate system representation from natural language text, i.e., Rule-based,

Machine Learning (ML)-based, and Hybrid methods. The rule-based method relies on predefined

rules to map text to SysML elements, the Machine Learning method learns from data to identify

relationships and patterns, and the Hybrid method aims to combine the strengths of both.

Further, a Rule-based framework is proposed to partially automate the generation of SysML

diagrams to address some of the challenges identified. The framework demonstrates its

effectiveness in creating a SysML representation by implementing an application for generating

Class diagrams. The proposed framework underlines the potential issues related to natural

language variability and complexity, paving the way for a more streamlined generation of system

architectural representations.

iv

v

DEDICATION

This thesis is dedicated to my family who have been encouraging me throughout my

entire educational process. To my mother and father Deborah L Ontiveros, and Cesar Ontiveros,

I am forever thankful for the love and enlightening my beliefs that I would be able to accomplish

my academic goal. My brothers Cesar A Ontiveros, Luis A Ontiveros, and Carlos A Ontiveros

for being amazing role models and inspiring me to become a better individual. To my beautiful

wife Silvia C Ontiveros for the motivation and always supporting me through every trial.

vi

ACKNOWLEDGMENTS

I am grateful for the financial support I received for this research and the support from

the University of Texas Rio Grande Valley Mechanical engineering faculty. The National

Science Foundation (NSF) Award No. 2235999 and CREST Center for Multidisciplinary

Research Excellence in Cyber-Physical Infrastructure Systems (MECIS) under NSF Award No.

2112650 supported and funded this research at the University of Texas Rio Grande Valley.

I want to express my gratitude to Dr. Satya Aditya Akundi for introducing me to this field

of research and opening my perspective to this area of study. You have been the best of help with

your support and guidance throughout my master’s degree. Your mentorship has significantly

shaped my educational and professional journey, and I am deeply grateful. Thank you for

believing in me and inspiring me to strive for excellence, I could not have done it without you.

I am grateful to Dr. Constantine Tarawneh for giving me the opportunity to conduct this

research for the CREST program. Your support and availability during my journey have been

invaluable and this chapter of my career would not have been possible without your assistance.

You have inspired me to become a better individual during my academic excellence and personal

development. Thank you for being a great mentor and making sure I excel throughout my career

and personal life.

I want to thank my friend Timothy Lyons for encouraging me during my research and

master’s program. The obstacles we’ve faced have shown me that nothing is impossible, and I

am forever grateful for your friendship and inspiration.

vii

Page

ABSTRACT ... iii

DEDICATION .. v

ACKNOWLEDGMENTS ... vi

LIST OF TABLES ... ix

LIST OF FIGURES .. x

CHAPTER I: INTRODUCTION ...1

1.1 Natural Langugae Processing .. 1

1.2 Model Based System Engineering .. 2

1.3 Modeling Languages ... 3

1.4 Integrating NLP with MBSE ... 5

CHAPTER II: LITERATURE REVIEW ... 8

2.1 Rule-based Approach for NLP-Driven SysML Diagrams .. 8

2.2 Machine Learning-based Approach for NLP-Driven SysML Diagrams 10

2.3 Hybrid Approach for NLP-Driven SysML Diagrams ... 12

CHAPTER III: CHALLENGES AND ROADBLOCKS OBSERVED 14

3.1 Challenges of Implementing Rule-based Approach .. 14

3.2 Challenges of Implementing Machine Learning-based Approach 14

3.3 Challenges of Implementing Hybrid Approach .. 15

3.4 Motivation For Research ... 17

3.5 Understanding the complexities of Natural Language .. 19

3.6 Hybrid Model Potential ... 19

3.7 Enhanced Interpretability and User Friendly .. 19

CHAPTER IV: METHODOLOGY .. 21

4.1 Normalization Process ...22

TABLE OF CONTENTS

viii

4.2 Linguistic Features ..23

4.2.1 Transforming to Lowercase ..23

4.2.2 Removing Punctuations ..24

4.2.3 Removing Numericals ..24

4.3 NLP Module ..25

4.3.1 Sentence Tokenization ...26

4.3.2 Word Tokenization ...27

4.3.3 Removing Stop Words ...28

4.3.4 Part of Speech (POS) Tagging ...28

4.3.5 Lemmatization ..30

4.3.6 Dependency Parsing ...30

4.3.7 Noun Chunking ..32

4.4 Information Extraction ..32

4.4.1 Extracting Potential Classes ...35

4.4.2 Extracting Potential Methods ...36

4.4.3 Extracting Potential Attributes ...38

4.4.4 Extracting Potential Relationships ...39

4.5 Data Serialization ..41

4.6 Selection Process ...41

4.7 Visualization Script Generator ..42

CHAPTER V: CASE STUDY AND EVALUATION ... 44

CHAPTER VI: CONCLUSION ... 69

REFERENCES ... 71

APPENDIX ... 76

BIOGRAPHICAL SKETCH .. 80

ix

Page

Table 1: A Rule Based Technique to Generate Class Diagrams .. 10

Table 2: Challenges Identified for Generate Individuals SysML Diagrams Using NLP 16

Table 3: Show Tokens Tool .. 34

Table 4: Class Extraction Metrics ... 54

Table 5: Methods Extraction Metrics ... 56

Table 6: Attribute Extraction Metrics ... 57

Table 7: Relationship Extraction Metrics ... 58

Table 8: Case Study 2 Extraction.. 59

Table 9: Case Study 2 Metrics .. 59

Table 10: Case Study 3 Extraction .. 61

Table 11: Case Study 3 Metrics .. 62

Table 12: Case Study 4 Extraction .. 63

Table 13: Case Study 4 Metrics .. 65

Table 14: Case Study 5 Extraction .. 66

Table 15: Case Study 5 Metrics .. 66

LIST OF TABLES

x

Page

Figure 1: Different Types of UML and SysML Diagrams ... 4

Figure 2: Representation of Different SysML Diagrams .. 5

Figure 3: Model Representation of the Implemented Framework .. 21

Figure 4: SpaCy’s NLP Pipeline ... 26

Figure 5: Displacy Visualization .. 33

Figure 6: PlantUML Syntax According to Principle .. 43

Figure 7: UAV Requirment Specification .. 44

Figure 8: Potential Elements Extracted... 45

Figure 9: Class Selection .. 47

Figure 10: Method Selection ... 48

Figure 11: Attributes Selection ... 49

Figure 12: Relationship Selection ... 49

Figure 13: Class Representation Data Serialization .. 50

Figure 14: PlantUML Syntax Generation ... 51

Figure 15: Class Diagram Of Requirment Specification .. 52

Figure 16: Class Diagram Of Case Study 2 .. 60

Figure 17: Class Diagram Of Case Study 3 .. 62

Figure 18: Class Diagram Of Case Study 4 .. 64

Figure 19: Class Diagram Of Case Study 5. ... 67

LIST OF FIGURES

1

CHAPTER I

INTRODUCTION

1.1 Natural Language Processing

Natural language processing (NLP) is a helpful technology in machine learning and for

software requirements specifications. It is a branch of Artificial Intelligence (AI) that helps

bridge the gap between human natural language and machines so that computers can understand,

generate, and interpret human language in a meaningful and useful way [1]. NLP assists in

extracting and analyzing text data gathered from documents to help specify assembling,

classifying, and recording requirements. Although NLP has many advantages in machine

learning and software requirement specification, it can be highly ambiguous and complex when

analyzing and extracting requirements from a text. Many tools help reduce errors and issues

when extracting information from text documents. Using NLP techniques, one can develop

algorithms for machines to process and understand human language that benefit information

retrieval, translation, data analysis, and extraction. NLP accomplished many advances in word

segmentation, parts-of-speech tagging, and syntactic analysis [2]. NLP can analyze large

amounts of textural data, making the process faster and more efficient [3]. This brings us to the

importance of information extraction (IE), which can be crucial in helping identify phrases and

interesting textual data that can help summarize and find entities necessary for many applications

[4]. IE is a powerful method that uses various NLP techniques in extracting useful information

from source documents for classification, identification, building databases, and many more that

2

can be applied to various fields [4]. Integrating automatic identification and IE of vital

information into domain-specific areas alters the search experience from an extensive process to

an efficient and accurate direct search, which is benefitted with the help of NLP [4].

1.2 Model Based System Engineering

Model-based System engineering (MBSE) is a methodology that uses models to illustrate

and support the entire lifecycle of a system [5]. Unlike traditional engineering methods, which

rely on lengthy requirement specifications and having to design and analyze the process

manually, MBSE designs systems using digital modeling and simulations, which showcases an

interactive way to represent a system and how it behaves [5]. These digital models explain the

different structures within a system, the behavior each component is experiencing, and how they

are interconnected with other parts of the system. MBSE automates the system design process by

making understanding and updating information within a complex system easier. It centralizes

information, ensuring it is accessible and visible to the stakeholders who need it [6]. The

Advantages of using MBSE approaches to design systems are that it adds clarity in design, which

improves decision-making and collaboration between engineering teams, it helps comprehend a

greater complexity of systems that use resources from other subsystems to show how they are

interrelated, and it identifies risks and reduces costs and time before implementing a real-world

test, enabling a way to track progress [5].

Various industries and sectors benefit from using MBSE; these industries, such as

aerospace, automotive, defense systems, and beyond, create complicated products that are

demonstrated through modeling to help support how a specific system is designed and operates.

These products include satellite, spacecrafts, weapon systems, surveillance, communication

networks, and many more [5][6]. MBSE helps manage these products, which can contain

3

multiple components that add complexity to the system; this is useful in preventing failures and

helps get products delivered in confidence.

1.3 Modeling Languages

Unified Modeling Language (UML) and System Modeling Language (SysML) are visual

modeling languages used as tools in MBSE to design, specify, and document system artifacts.

Both UML and SysML share the same graphical modeling language. UML is widely used to

create models of software systems. SysML, an extension of UML, is usually used for systems

engineering applications to support specification, requirements, analysis, design verification, and

validation of systems and system-of-systems [7]. SysML reuses a subset of UML diagrams and

heavily modifies others. Some modified system diagrams captured are the block definition

diagram, like the traditional UML class diagrams, and the internal block diagram, used to

describe a block's internals [8]. Two new diagrams are also considered in SysML, a requirement

diagram and a parametric diagram, which are variations of UML diagrams [8]. Figure 1

illustrates the diagrams from UML and SysML and their intersection.

4

Figure 1. Different types of UML and SysML diagrams [9]

SysML includes diagrams that can specify a system’s requirement, behavior, structure,

and parametric relationships [8]. These diagrams illustrate how a system is structured, behaves,

and interacts with other parts, showcasing the rules it must follow. Behavior diagrams include

use-case diagrams that help depict the operation of a system, activity diagram that shows the

stages and flow of a system control according to process, sequence diagrams that illustrate

different elements and the interactions between them over time, and a state machine diagram that

models and tracks an object in response to events [10]. Structural diagrams include block

definition diagrams, which contain subsystems and elements illustrating the system’s hierarchy;

internal block diagrams, which detail components and their connections, illustrating the internal

organization of a system; and package diagrams, which organize and manage a system by

grouping related components in a package [10]. Parametric diagrams focus on specifying system

5

constraints, integrating its performance, reliability, and physical characteristics with engineering

analysis to ensure the system aligns with design goals.

In contrast, the requirement diagrams capture and facilitate traceability through

development by documenting and organizing the system's design [10]. These diagrams help

facilitate a good understanding of how a system is designed and works, displaying the essentials

of all the components in a system’s design. They help highlight what works together in systems

engineering to help turn ideas into real-life solutions. Figure 2 illustrates the different diagrams

in SysML.

Figure 2. Representation of Different SysML Diagrams

1.4 Integrating NLP with MBSE

Integrating Natural Language Processing (NLP) with SysML enhances engineering

systems' design experience. Only some attempts have been observed to include aspects of NLP

for requirements elicitation, tracing, and classification, with a substantial need to preprocess and

structure input data [11]. The emerging field of research at this intersection is how NLP can be

6

used to automatically generate SysML diagrams from textual descriptions such as requirement

documentation. This process involves using NLP techniques to analyze and interpret text

descriptions of a system and then using that information to generate a SysML diagram

automatically. Automatic generation of SysML diagrams from textual input such as requirements

documents has the potential to mitigate common errors in the system design process, reduce

errors when compared to the manual creation of system architectures, and, in addition, make it

easier to consider non-technical stakeholders to contribute to the system design process. The

methodology includes extracting entities and their relationships using NLP and further mapping

them to SysML elements to be refined by engineers [12].

The intersection of NLP and SysML is a groundbreaking advancement in visual

architectures, aiming to automate translating textual descriptions into detailed SysML diagrams.

The integration of NLP and SysML can be done by extracting a collection of critical phrases and

relationships related to the phrases to generate an organized list corresponding to a SysML

profile [12]. The automation of creating a visual diagram leverages rule-based and machine-

learning algorithms, which are employed to interpret structural connections and hierarchy and

utilize drawing algorithms to render the data into visual diagrams according to SysML standards.

One of the primary challenges for these algorithms is gathering enough diverse data for training,

which is vital for the model’s ability to accurately recognize and classify entities for the

autonomous generation of SysML elements. Such advancements highlight the promising

integration of AI within the MBSE process [13]. Integrating NLP and SysML diagrams not only

aids in restructuring system modeling diagrams but also enhances the monitoring of all systems.

SysML diagrams are an essential tool, given their role in clarifying an operational understanding

of a system. With the help of NLP, they can become powerful in assisting in translating

7

requirements into understandable models. This underscores the importance of SysML in

advanced systems engineering and highlights its importance for integration.

This thesis explores three approaches to implementing NLP in creating system

architectures: Rule-based, Machine Learning-based, and Hybrid [14]. A rule-based approach

implies a set of predefined rules that analyze and transform information from text-based

requirements to create system architectures. The machine learning approach involves training a

model on large datasets of natural language text using algorithms to recognize elements and

generate a structured text representation to diagram components [15][16]. A hybrid approach

combines rule-based and machine learning techniques; it can use a rule-based approach to

identify relationships and entities from NL text and use a machine learning model to generate a

diagram. Both approaches are used separately or combined to help achieve better performance in

creating diagrams more efficiently.

This thesis extensively examines the relevant methods and frameworks within the

research area. Chapter II offers a review of the three approaches. Chapter III discusses the

challenges and roadblocks observed. Chapter IV examines the methodology used to create

system diagrams using NLP. Chapter V showcases a case study example to illustrate how the

system operates, leading to the conclusion.

8

CHAPTER II

LITERATURE REVIEW

2.1 Rule-based Approach for NLP-Driven SysML Diagrams

A rule-based approach uses a set of heuristic rules that perform the transformation

process of generating system diagrams. This approach is supported by NLP techniques to aid in

processing, interpreting sentences, and extracting elements from given requirement

specifications to generate structured architectural diagrams. This method helps write and

normalize requirement documents to avoid misunderstanding and leverages automation and

human reasoning for enhanced diagram accuracy [17].

Rule-based Natural Language processing techniques have been used to extract elements

of a use case diagram from textual description. The process begins with spell-checking, which is

crucial for ensuring accuracy for the next steps in the analysis. Next, segmentation is used to help

manage data, which divides the text into sentences to help simplify the analysis, followed by

tokenization to further break down sentences into individual words known as tokens, which helps

the parts-of-speech (POS) process in the following stage. The POS tagging assigns grammatical

roles to these tokens, such as verbs, nouns, adjectives, etc., which is crucial for understanding the

meaning of the text. These steps are enhanced by chunking, which groups a sequence of words

under a single tag to create meaningful clusters based on grammatical patterns. Rule-based

techniques are then applied to identify grammar roles from the part-of-speech tags for extracting

elements of the use case diagram. This approach has been successful in identifying the elements

9

of a use case diagram, such as actors (identifying subjects and pronouns of a text), relationships,

and use cases (identifying verbs in text) [18]. A similar approach is using a text-to-model

framework to improve productivity while creating SysML models. The process includes

techniques such as Pre-NLP text cleaning, structural analysis, and Named-Entity Recognition

(NER) to identify actors and their responsible actions for a set of machine-readable natural

language-based policy documents. NER refers to labeling words of a text with their grammatical

category, such as nouns, verbs, etc. This aids in ensuring all the sets of actions required are first

captured using NLP and then translated and compiled into a proper SysML model [19]. Another

approach to assist in developing system models is to use a set of heuristic rules based on the

frequency of unique verbs and actions in a text to help in identifying objects, attributes,

relationships, and actors for developing a use case diagram [20,17]. Chen and Zheng use the

semantic representation of text through an intermediate graphic language called the recursive

object model (ROMA) to generate the use case and class diagrams [21]. This approach depends

on the capability of the intermediate ROMA system used, which is majorly used to capture the

semantics of the natural language used.

Meziane et al. developed a set of rules for attributes, class, and relationship naming

conventions using 45 class diagrams taken from academic textbooks for a syntactic analysis

based on the frequency of how often the textbook uses a specific rule in identifying classes and

relationships. The association identified in most cases is reported to be composed of a single verb

in the third person singular or a verb followed by a preposition. Rules developed were aimed to

understand and disambiguate the names given to classes, relationships, attributes, and operations

in a UML class diagram [22]. Arumugam and Uma use a similar rule-based approach where a

given text input is split into sentences for tagging and marking parts of speech of each word. The

10

text input is simplified into constructs by using a normalizer for ease of mapping words to

object-oriented constituents [23]. Biase et al. propose a high-level model through a semi-

automatic approach containing rules that improve the initial models by creating transitions and

annotating them with triggers, conditions, and actions. This enables the generation of fragments

of SysML state machine diagrams from text requirements [24]. For illustrative purposes, a rule-

based technique identified by Salih and Sahraoui for generating class diagrams [25] is provided

in Table 1. The table represents a set of rules, each separated by a semicolon that helps identify

components of a class diagram from a natural language text document.

Table 1. A Rule-Based Technique to Generate Class Diagrams

Components of a Class

Diagram

Classification Rules

Classes NN + NNP + VBP; NN + NNP; NNP + NN + VBZ; NN + VBZ, base form +

NN; NNP + NNS, NNP + NN, NNS, NNP + NNS; NNP, NNP + VBZ past tense

Methods NN + NN + NNP; NNP + NNP + NN + NN; non-3rd person singular present

VBP + NN; 3rd person singular present VBZ + NN + NN; non-3rd person

singular present VBP + CC + NN + any words; IN + JJ + NN

Attributes JJ + NN

Relationships VBP + NN; VBP + NNP; VBP + VBG

Note: Singular Noun (NN), Plural Noun (NNP), Verb (VBP), Plural Noun (NNS), Verb non 3rd person (VBP),
Cardinal Number (CC), Preposition (IN), Adjective (JJ), Verb Present Participle (VBP); Verb 3rd person singular
present (VBZ); Verb present participle (VBG).

2.2 Machine Learning-based Approach for NLP-Driven SysML Diagrams

The machine learning approach trains a model to study relationships and patterns

between NL text and architectural elements. It automates the process of translating NL text of

requirements that help generate SysML diagrams, which can sometimes be a tedious task to do

11

manually. Using machine learning helps reduce time and errors when creating diagrams.

Machine learning algorithms can study an extent of meaningful understanding in categorizing

and identifying patterns to generate diagrams, depending on the data analyzed. Limited articles

exist on machine learning in developing automated system architectures using NLP.

Narawita and Vidanage developed a web-based UML generator that extracts use cases,

identified actors, and attributes using a combination of NLP preprocessing techniques and

Extensible Markup Language (XML) rules to generate class diagrams. Once identified, a Weka

module helps rate the use cases and extract associations [16]. The Weka Module is a popular

Java-based machine-learning library that provides users access to visualization tools and

algorithms for data analysis and modeling [26]. Kochbati et al. propose a machine-learning

model in which pre-processed text is transformed into numerical vectors to compute semantic

similarity among the words in a text input and identify clusters to generate use case models [27].

Chami et al. propose a text-to-model framework that labels the uploaded raw text data to

identify the actors, use cases, blocks, and associations. Approximately 100 sentences were

labeled and fed into an open-source library for advanced NLP to train and customize a machine-

learning model. This framework is applied to identify actors textually, use cases, and

associations from a text input [13]. Qie et al. propose a deep learning technique that first extracts

semantic relationships from input texts to identify relationships such as composition,

aggregation, and generalization for developing a block definition diagram. The semantic analysis

involves entity recognition and entity relation extraction that gathers domain-specific words and

uses word embedding to implement a deep convolutional neural network (CNN). Once the

relationships are identified, an Rhapsody API dynamically creates models [2]. The proposed

12

techniques highlight the potential of ML models to streamline and aid the automatic translation

of natural language text to system models - but primarily the Use case diagram.

2.3 Hybrid Approach for NLP-Driven SysML Diagrams

The hybrid approach combines rule-based and machine-learning approaches to help

generate UML diagrams from textual requirements and model training. It can be used in parts to

process textual data and locate patterns to create diagrams, combining the strengths of manual

and automated approaches. Generating diagrams with this approach can benefit the overall

design quality; it can accommodate using both automatic and manual methods to resolve

complex solutions that are impracticable with one. Hybrid uses NL processing techniques such

as tokenizing, POS tagging, sentence splitting, word chunking, and other tasks to extract text

information, eventually identifying components such as elements, actors, and relationships to

make up SysML diagrams. Machine learning algorithms are trained to identify relationships

between the processing data and categorize applicable components of SysML diagrams. The

combination of both rule-based and machine-learning approaches allows for a more robust and

accurate system.

Using machine learning and NLP techniques, Narawita and Vidanage save time and

increase precision in generating use case and class diagrams. A text input of requirements is first

analyzed using an NLP module for tokenizing and POS tagging to classify potential actors and

classes using POS tag value nouns. An XML rule removes unwanted words from a list of nouns,

followed by word chunking to find verbs, nouns to represent actions, and two consecutive nouns

where the second noun is a number to define attributes in a use case diagram. A Weka machine

learning model evaluates and rates the actions and relationships to determine their validity [16].

Riesener and Dölle propose a structured Model-Based System Engineering (MBSE) requirement

13

table for processing unstructured text using the spaCy NLP module. The text is tokenized, and

POS is tagged to group noun phrases to identify subjects and objects within a sentence by co-

referencing pronouns to nouns. NER identifies entities added to the requirement table for training

machine learning models to detect requirement properties based on context [28]. Zhong et al.

propose removing relationships and critical phrases from a raw text input to identify blocks and

relationships based on documents such as specifications, manuals, technical reports, and

maintenance reports to generate SysML diagrams, specifically structure and requirement

diagrams. Steps involve manual selection of corpus text documents, extracting key nouns,

extracting relationships, generating a list of phrases and relations, generating SysML model

elements, and manual iterative selecting of the profiles and blocks to be plotted [29].

14

CHAPTER III

CHALLENGES AND ROADBLOCKS OBSERVED

3.1 Challenges of Implementing a Rule-based Approach

Natural language is inherently complex, and developing a set of rules to aid in the

automation of generating system architecture would require rules that address language

variability among different actors of a team while generating text-based requirements. This

demands the use of contexts and synonyms when considering the development of a set of rules.

However, from a domain-specific outlook, as one develops a set of rules, the number of rules to

be created can increase exponentially, and maintaining consistency and scale will become

increasingly difficult. It is also identified that rules, once defined, are rigid, meaning with

changes in technology and terms used across domains, a standard set of terms and keywords are

not applicable across domains, and the change to new terms and what they mean in a sentence

structure needs to be continually updated with significant manual input. Another challenge could

be the propagation of errors if the parts of speech that define a rule must be tagged appropriately,

leading to incorrect set assumptions on constituent SyML diagram elements from a natural

language text.

3.2 Challenges of Implementing Machine Learning-based Approach

The complexity and variability of natural language make it difficult to accurately extract

the information required for general system architectural diagrams from raw text using machine

learning models. Further, ensuring a machine learning model always accurately uses the correct

notations to generate SysML diagrams can be challenging. To mitigate this, machine learning

15

models require large amounts of data to learn from. Considering the nature of SysML diagrams

and their context-specific models, collecting data to train the models could prove difficult.

3.3 Challenges of Implementing Hybrid Approach

A common challenge involves developers' need to manually integrate heuristic rules into

machine learning models to ensure the rules defined are finely tuned and precise. In addition,

generating rules can take time, making it challenging to update from implementing changes.

While machine learning models can analyze substantial amounts of data, one issue is that these

methods demand extensive datasets to tune the model for optimal outcomes to ensure the output

is interpretable in the context of SysML. Training machine learning models with large datasets to

account for variability in natural language is a challenge, and the key is to ensure a cohesive set

of data, such as manually annotated diagrams, is used for training.

Table 2 further dissects these challenges, identifying and categorizing them according to the type

of system architectural diagram.

16

Table 2. Challenges Identified for Generate Individual SysML Diagrams Using NLP.

System Architectural
Diagram Type

Associated Challenges

Use Case Diagrams • Lack of tools for grouping English language text into different bits of meaningful
information [18],

• Requirements specification issues due to continually emerging technical jargon and
frequently observed inconsistencies in large requirements textual documents [30],

• Lack of NLP plugins that support complex part-of-speech relationships, such as
compound nouns between use cases [31],

• Lack of standardized format in which domain requirements are specified [21,16, 32]
and

• Lack of the ability for the user to modify a diagram once automatically generated as
an image [21, 16].

Activity and Sequence

Diagrams

• The ambiguity of natural language could generate different versions of the activity
diagram based on how a model interprets the natural language text [22].

• The difficulty of NLP tools to understand Variable terminology across domains that
may not accurately represent the required transition and the order of actions among
different activities [20]

Class Diagram • Ambiguity and imprecision of natural language may lead to not extracting the
relevant information and relationships between concepts [33]

• Tools such as CM-Builder can generate UML class diagrams. However, they cannot
identify operations for candidate classes, and despite being proficient in analyzing NL
requirements, their efficiency in generating UML models from analyzed requirements
is questioned [33].

• Using grammatical knowledge patterns by machine learning algorithms while training
could lead to assumptions like core classes are always connected, incomplete diagrams,
and the inability to identify the multiplicity of relationships [20,17].

Package Diagram • Poor writing style and document structure, such as implicit headings, can lead to
difficulty automatically creating a package diagram [19]. An example includes the
accuracy of text-to-model results, which was challenging to evaluate, as differences in
writing style between documents could affect the accuracy [19]

Block Definition

Diagram

• Lexical-level features cannot capture compound semantics as they only describe word
similarities, making it difficult for a model to understand NL text, leading to a failure to
capture entity relationships [19,2].

Requirement Diagram • Factors such as writing style and domain expertise can vary the input text's quality,
directly affecting the generated diagram's quality. Developing accurate diagrams
requires obtaining a sufficient corpus of text documents, which can be challenging in
specific domains or topics [29].

Internal Block Diagram • Like Block Definition Diagrams, writing style, domain expertise, and document
complexity affect the quality and accuracy [19,29].

17

3.4 Motivation for Research

Several challenges have been reported in transforming natural language descriptions into

automated system architectural diagrams. These include the inherent complexity of natural

language, the difficulty in maintaining rule-based systems updated and working, the strictness of

these rules, and the amount of data needed to make machine learning models more effective.

Based on the literature review, approaches have been implemented to overcome these problems

by utilizing NLP techniques such as tokenization, spell-checking, parsing, and named-entity

recognition to refine the accuracy of rule-based methods. Additionally, machine learning

techniques can be implemented with semantic analysis, deep learning, and NLP processing

methods to help with the ambiguity and variability of natural languages. Hybrid models with

rule-based and machine-learning methods demonstrate specific promises, leveraging each other's

strengths to overcome limitations. The aim is to convert text-based descriptions into system

models, like SysML and UML diagrams, more accurately and efficiently.

This thesis presents an architectural generation framework that addresses several

challenges in automating system architectural generation from natural language descriptions, as

observed in the literature. Challenges the proposed framework addresses are the complexity of

understanding complicated language [12], the limitations of inflexible rules [34], the need for

extensive data for training machine learning models [35], and the interpretation of SysML

diagrams [16]. The framework allows the flexibility of processing language change and structure

by utilizing spaCy’s NLP techniques, which include tokenization, part-of-speech tagging,

lemmatization, and dependency parsing [36]. It improves the accuracy of extracting complex

semantics, enhances the quality and relevance of the generated architectural diagrams, and

addresses the limitations observed in literature from rule-based and machine-learning techniques.

18

By utilizing spaCy’s capabilities to understand complex syntactic and semantic language,

the framework addresses challenges such as ambiguities in the multiple meanings words or

phrases have and inaccurately interpreting diverse textual descriptions. This helps generate

SysML diagrams more efficiently and accurately, ensuring that the textual description is

transformed into structured system models, demonstrating a valuable method for automating

architectural diagrams using NLP.

The framework begins by normalizing text through cleaning and segmentation to

simplify the inherent complexity of natural language into a uniform text base, improving

accuracy. The spaCy NLP library is utilized for its advanced parsing capabilities, including POS

tagging, dependency parsing, and noun chunking extraction, to overcome scalability and

maintenance challenges, which enables the framework to process large volumes of text with high

precision. Additionally, advanced visualization tools like displacy and a custom function tool

showcase token relations and characteristics, which helps extract system modeling elements.

This process ensures the accurate extraction of critical elements such as potential classes,

methods, attributes, and relationships, addressing the nuances of natural language inconsistency

and the scalability of rule-based systems. Chapter IV provides a detailed explanation of the

methodology.

The challenges observed in the literature are categorized with a brief explanation of how

this thesis, with the integration of the spaCy NLP library, addresses them.

19

3.5 Understanding the Complexities of Natural Language

Traditional NLP methods need help handling the inconsistencies and distinctions in

natural language, which can lead to the problem of lexical ambiguity found in the text [12]. This

leads to a need for computational approaches that can handle textual inconsistencies [37]. Using

techniques such as Tokenization (breaking text into a block), Part-of-speech tagging (tagging

words to clarify their functionality in a sentence), Lemmatization (ensuring consistent

interpretation), and Dependency parsing (disambiguating sentences with semantically ambiguous

subordinators [38]) by the NLP library spaCy, aids in understanding textual complexities and

further clarify natural language while reducing ambiguity and further providing flexibility to

understand linguistic contexts, a challenge observed typically in rule-based techniques when

interpreting natural language.

3.6 Hybrid Model Potential

Creating complex system modeling diagrams using machine learning methods typically

uses a significant amount of training data and examples to learn from, which can be challenging

to gather. Gathering as much data and different input text as possible is essential to ensure proper

coverage for a machine-learning model [13]. The more data the expert labels, the better the

results are obtained [39]. The spaCy library in this thesis is explored to use pre-trained machine

learning models [34] to organize and understand a text and mitigate the need for linguistic

learning from scratch.

3.7 Enhanced Interpretability and User Friendly

The proposed architectural generation framework utilizes visualization tools, such as

displacy tool and a custom token classifier function, to help stakeholders better glean information

with a visual insight into the linguistic features of natural language text and the critical

20

information needed to identify system architecture elements. The framework's information

extraction and selection process include user-friendly features that allow stakeholders to interact

with the system directly, making diagram generation more accessible and adaptable to their

needs. By allowing stakeholders to make corrections and adjustments during the generation

process, the framework improves its overall satisfaction and user-friendliness in creating

diagrams.

21

CHAPTER IV

METHODOLOGY

Figure 3. Model Representation of the Implemented Framework

22

The proposed methodology utilizes Python’s programming strengths and spaCy’s

sophisticated natural language processing features. It specializes in tasks like tokenization, part-

of-speech tagging, lemmatization, dependency parsing, and the attributes included with each task

to process textual descriptions from .docx files for automatic system architectural representation.

Spyder [40] and PyCharm [41] Community Edition IDEs are used for development along with

PlantUML [42], a PyCharm add-in that generates system representations, alleviating manual

labor in software design documentation and providing an effective transition from textual

analysis to visual modeling.

4.1 Normalization Process

The first step involves processing textual documents using the Python Docx library to

work with a Word document. This library can read paragraphs as structured objects from any

Word document while maintaining the original format [43]. This step is crucial for the

normalization as it is used to clean and structure the document for further analysis. The ‘docx’

library is imported to work specifically with Microsoft Word (.docx) files, allowing textual

descriptions to be pulled from input text documents and prepare text for paragraph segmentation

[44].

Once the textual requirements are gathered, the next step involves text cleaning and

preprocessing to manipulate and prepare text for further analysis. These steps include

transforming all words to lowercase [45], using the regular expression library tool for removing

numerical data and pattern-matching techniques [46], using the string library tool to remove

punctuation symbols [47], and using the spaCy library tool to identify and remove stop words

[48]. These techniques help ensure uniformity and simplification within the text during the

23

normalization process, creating a solid foundation for the advanced parsing tasks that follow into

the spaCy’s NLP module.

Although the spaCy library can handle various text cleaning and preprocessing tasks on

its own [49], establishing a text cleaning stage before NLP analysis ensures a smoother transition

for further study, especially since SysML representations of a system architecture diagram

typically excludes punctuations, stop words, and symbols.

4.2 Linguistic Features

Examples illustrate before-and-after states of a sample text on key linguistic features

focusing on manipulating text, such as transforming lowercase, removing punctuation, removing

stop words, and removing numbers for NLP tasks.

4.2.1 Transforming to Lowercase

Transforming text to its lowercase letters facilitates the preprocessing step by

successfully enhancing classification accuracy [45, 50]. This technique involves transforming

every sentence from text to all lowercase (using the text. lower () method), simplifying data for

further analysis.

• Input: "The UAV-101 model, designed for high-altitude surveillance, includes a

20MP camera and advanced navigation systems. The UAV autonomously

executes missions, adapting swiftly to environmental changes, and submits data

back to the central monitoring station."

• Output: "the uav-101 model, designed for high-altitude surveillance, includes a

20mp camera and advanced navigation systems. the uav autonomously executes

24

missions, adapting swiftly to environmental changes, and submits data back to the

central monitoring station."

4.2.2 Removing Punctuations

The process removes symbols (such as periods, commas, question marks, etc.) usually

found in the text, such as requirement documents. This technique is crucial before the NLP

process so that tokenization can focus only on alphabetic characters [50]. To achieve this, the

string attribute utilizes its ‘string.punctuation’, removing any punctuation from text [47].

• Input: "The UAV-101 model, designed for high-altitude surveillance, includes a

20MP camera and advanced navigation systems. The UAV autonomously

executes missions, adapting swiftly to environmental changes, and submits data

back to the central monitoring station."

• Output: "The UAV101 model designed for high-altitude surveillance includes a

20MP camera and advanced navigation systems The UAV autonomously

executes missions, adapting swiftly to environmental changes and submits data

back to the central monitoring station"

4.2.3 Removing Numericals

This technique removes numbers (such as numerical lists, dates, time, ordinal numbers,

etc.) that are found to have substantial syntactic properties in the text during preprocessing,

which helps the NLP model focus on linguistic analysis when extracting relationships and

behaviors. This method uses the regular expression function ‘re.sub’ to replace any numbers with

an empty string, leaving only alphabetic characters [46]. Architectural diagrams usually exclude

numerals from their designs. However, when specific numerical values are necessary to show

25

how a system functions, the regular expression function can remove and retain specific

numerical for representation.

• Input: "The UAV-101 model, designed for high-altitude surveillance, includes a

20MP camera and advanced navigation systems. The UAV autonomously

executes missions, adapting swiftly to environmental changes, and submits data

back to the central monitoring station."

• Output: "The UAV- model, designed for high-altitude surveillance, includes a MP

camera and advanced navigation systems. The UAV autonomously executes

missions, adapting swiftly to environmental changes, and submits data back to the

central monitoring station."

4.3 NLP Module

After the text is cleaned and prepared, the next step is to extract meaningful information.

For this step, spaCy library was chosen over NLTK because of the user-friendly quality the

library offers. The library provides an object-oriented approach rather than serving as a tool [49].

It’s well known for its speed and efficiency when processing large amounts of textual data,

making it an ideal choice for system requirements [51].

The main objective of information extraction is to establish a pipeline that analyzes text

through different NLP tasks such as tagging, parsing, lemmatization, and named entity

recognition. These pipelines can be tailored by preference regarding specific languages,

capability features, the type of text it’s trained on, and the package size [51]. This research will

be using the “en_core_web_sm” trained model, which uses an English web text pipeline for the

NLP features and because of its optimal balance between speed execution and accuracy the NLP

26

tasks have to offer [36] [51]. These tasks, such as parts of speech tagging and identifying

dependencies from text, are instrumental in identifying potential classes, methods, attributes, and

relationships within a text input.

The first step is to examine the text and split it into sentences to determine the sentence

boundaries and define the word structuring. Each sentence then undergoes word tokenization,

where every word is broken down into building blocks [17]. These two steps are crucial in

creating a linguistic and semantic structure for both sentence and word levels. The next step is to

analyze each token through several attributes: its part of speech (POS), its role in sentence

structure (DEP), its base form of the word (LEMMA), and the token itself with each sentence.

This process involves iterating over each token to capture and record these essential details and

organize each token by successfully storing them in a structured format. This analysis provides a

clear overview of how linguistic structure can be found within input text, which aids in

extracting elements for system architectural representation. Figure 4 shown below illustrates the

NLP pipeline and the tasks being used to produce a document object.

Figure 4. SpaCy’s NLP Pipeline.

4.3.1 Sentence Tokenization

Sentence tokenization allows for examining each sentence as a distinct unit, which is

essential for further analysis of input text [17]. It ensures a more focused and accurate analysis in

identifying specific elements and relationships that assist in creating accurate architectural

27

diagrams. After the paragraphs are cleaned, the command ‘for sentence in doc.sents:’ is used to

iterate over each sentence to tokenize the text [52].

• Input: "The UAV-101 model, designed for high-altitude surveillance, includes a 20MP

camera and advanced navigation systems. The UAV autonomously executes missions,

adapting swiftly to environmental changes, and submits data back to the central

monitoring station."

• Output: {‘The UAV-101 model, designed for high-altitude surveillance, includes a 20MP

camera and advanced navigation systems.', 'The UAV autonomously executes missions,

adapting swiftly to environmental changes, and submits data back to the central

monitoring station.'}

4.3.2 Word Tokenization

Sentence tokenization breaks down the text into fundamental building blocks known as

tokens [49]. Word tokenization involves segmenting the text into words, punctuation, numbers,

etc., found within sentences throughout an input text document. This breakdown is necessary for

understanding the grouping of tokens to recognize relationships, a crucial step in extracting

meaningful elements necessary to create architectural diagrams. Using the command ‘doc = nlp

(cleaned paragraph),’ the cleaned text undergoes tokenization, resulting in a ‘doc’ object [36].

Subsequently, the tokens can be filtered (by utilizing the ‘for token in doc:’ command), which

iterates and identifies specific tokens depending on the rules applied [52]. Organizing the text

through tokenization lays the foundation for further analysis, paving the way toward insightful

architectural generation.

• Input: "The UAV-101 model, designed for high-altitude surveillance, includes a 20MP

camera and advanced navigation systems. The UAV autonomously executes missions,

28

adapting swiftly to environmental changes, and submits data back to the central

monitoring station."

• Output: {'The', 'UAV-101', 'model', ',', 'designed', 'for', 'high', '-', 'altitude', 'surveillance',

',', 'includes', 'a', '20MP', 'camera', 'and', 'advanced', 'navigation', 'systems', '.', 'The',

'UAV', 'autonomously', 'executes', 'missions', ',', 'adapting', 'swiftly', 'to', 'environmental',

'changes', ',', 'and', 'submits', 'data', 'back', 'to', 'the', 'central', 'monitoring', 'station', '.'}

4.3.3 Removing Stop Words

Stop word removal implies removing commonly used words (such as the, in, a, an, etc.) not

helpful in extracting knowledge [20]. This is crucial for transforming natural language text into a

readable format so machine learning models can focus on meaningful text components [27]. In

this thesis, spaCy’s attribute ‘token.is stop’ filters stop words [48].

• Input: "The UAV-101 model, designed for high-altitude surveillance, includes a 20MP

camera and advanced navigation systems. The UAV autonomously executes missions,

adapting swiftly to environmental changes, and submits data back to the central

monitoring station."

• Output: {“UAV-101 model, designed high-altitude surveillance, includes 20MP camera

advanced navigation systems. UAV autonomously executes missions, adapting swiftly

environmental changes, submits data central monitoring station.”}

4.3.4 Part of Speech (POS) Tagging

Speech tagging is necessary to identify the grammatical role of each token within the

sentence and determine whether it’s a noun, verb, adjective, etc. [53]. It is essential to understand

the structure and meaning of a sentence. The syntactic structure of these tokens plays a crucial

29

role in determining what words can be considered for potential class names, actions, or methods

and identifying relationships and attributes. By distinguishing the syntactic structure, POS

tagging can precisely map textual descriptions to determine which tokens can be assigned to the

architectural diagrams. POS tagging is performed (using the attribute ‘token.pos’) to access each

token’s grammatical structure based on applied rules [34].

• Input: "The UAV-101 model, designed for high-altitude surveillance, includes a 20MP

camera and advanced navigation systems. The UAV autonomously executes missions,

adapting swiftly to environmental changes, and submits data back to the central

monitoring station."

• Output: {"The" (DET), "UAV-101" (PROPN), "model" (NOUN), "designed" (VERB),

"for" (ADP), "high" (ADJ), "altitude" (NOUN), "surveillance" (NOUN), "includes"

(VERB), "a" (DET), "20MP" (PROPN), "camera" (NOUN), "and" (CCONJ), "advanced"

(ADJ), "navigation" (NOUN), "systems" (NOUN), "The" (DET), "UAV" (PROPN),

"autonomously" (ADV), "executes" (VERB), "missions" (NOUN), "adapting" (VERB),

"swiftly" (ADV), "to" (ADP), "environmental" (ADJ), "changes" (NOUN), "and"

(CCONJ), "submits" (VERB), "data" (NOUN), "back" (ADV), "to" (ADP), "the" (DET),

"central" (ADJ), "monitoring" (NOUN), "station" (NOUN)}

These POS tag descriptions distinguish lexical and grammatical properties of words [51].

The descriptions are as follows adjective (ADJ), Determiner (DET), adverb (ADV), auxiliary

(AUX), coordinating conjuncture (CCONJ), adposition (ADP), interjection (INTJ), noun

(NOUN), numerical (NUM), particle (PART), pronoun (PRON), proper noun (PROPN),

punctuation (PUNCT), symbol (SYM), subordination conjunction (SCONJ), and verb

(VERB) [54].

30

4.3.5 Lemmatization

Lemmatizing transforms words based on their tagged token to their root or dictionary form

based on their POS tag [17]. This step normalizes words such as changing “installed” to “install”

or “engines” to “engine,” ensuring consistency and uniformity in the terminology used across

diagram elements. It is performed by iterating over tokens in a sentence (using the command

‘token.lemma_’) to access each token’s base form [34]. This method helps refine the extraction

process, permitting a more accurate depiction of classes, methods, and other architectural

elements.

• Input: "The UAV-101 model, designed for high-altitude surveillance, includes a 20MP

camera and advanced navigation systems. The UAV autonomously executes missions,

adapting swiftly to environmental changes, and submits data back to the central

monitoring station."

• Output: {"the" "UAV-101" "model" "," "design" "for" "high" "-" "altitude" "surveillance"

"," "include" "a" "20MP" "camera" "and" "advanced" "navigation" "system" "." "the"

"UAV" "autonomously" "execute" "mission" "," "adapt" "swiftly" "to" "environmental"

"change" "," "and" "submit" "datum" "back" "to" "the" "central" "monitoring" "station"

"."}

4.3.6 Dependency Parsing

Dependency parsing builds a categorized tree of relationships between tokens, illustrating

their grammatical structure and clarifying how words interact [34]. This tree analogy helps

determine and visualize connections like trailing family ties, which helps identify relationships

between entities within the text. It analyzes which tokens function as modifiers or are associated

with others to confirm potential attributes or relationships in architectural diagrams. In general,

31

dependency parsing focuses on how child tokens are associated with their parent tokens,

revealing their contribution to the overall meaning of a sentence. This method (using the

command ‘token.dep_’) helps distinguish syntactic roles, including subjects, objects, and

modifiers, essential for mapping characteristics and relationships within system diagrams [34].

• Input: "The UAV-101 model, designed for high-altitude surveillance, includes a 20MP

camera and advanced navigation systems. The UAV autonomously executes missions,

adapting swiftly to environmental changes, and submits data back to the central

monitoring station."

• Output: {"The" (det)}, {"UAV-101" (compound)}, {"model" (nsubj)}, {"," (punct)},

{"designed" (acl)}, {"for" (prep)}, {"high" (amod)}, {"-" (punct)}, {"altitude"

(compound)}, {"surveillance" (pobj)}, {"," (punct)}, {"includes" (ROOT)}, {"a" (det)},

{"20MP" (amod)}, {"camera" (nmod)}, {"and" (cc)}, {"advanced" (conj)}, {"navigation"

(compound)}, {"systems" (dobj)}, {"." (punct)}, {"The" (det)}, {"UAV" (nsubj)},

{"autonomously" (advmod)}, {"executes" (ROOT)}, {"missions" (dobj)}, {"," (punct)},

{"adapting" (advcl)}, {"swiftly" (advmod)}, {"to" (prep)}, {"environmental" (amod)},

{"changes" (pobj)}, {"," (punct)}, {"and" (cc)}, {"submits" (conj)}, {"data" (dobj)},

{"back" (advmod)}, {"to" (prep)}, {"the" (det)}, {"central" (amod)}, {"monitoring"

(compound)}, {"station" (pobj)}, {"." (punct)}

These syntactic dependency descriptions help correlate the relation between tokens [51]. The

descriptions are as follows: determiner (DET), adjectival modifier (AMOD), the object of a

preposition (POBJ), adverbial modifier (ADVMOD), clausal complement (CCOMP), direct

object (DOBJ), prepositional modifier (PREP), compound modifier (COMPOUND), clausal

32

modifier of a noun (ACL), nominal subject (NSUBJ), open clausal complement (XCOMP),

coordinating conjunction (CC), conjunct (CONJ), etc. [54].

4.3.7 Noun Chunking

Noun chunking splits sentences into noun phrases tagged with nouns from the POS tagger,

typically comprising a head noun and its modifiers [34]. This method highlights critical entities

and their descriptions, helping extract information and providing a deeper understanding of the

text’s structure. Noun chunking can be performed by using the ‘for chunk in

sentence.noun_chunks:’ command after the text has been processed [52].

• Input: "The UAV-101 model, designed for high-altitude surveillance, includes a 20MP

camera and advanced navigation systems. The UAV autonomously executes missions,

adapting swiftly to environmental changes, and submits data back to the central

monitoring station."

• Output: {"The UAV-101 model", "high-altitude surveillance", "a 20MP camera and

advanced navigation systems", "The UAV", "missions", "environmental changes", "data",

"the central monitoring station"}

4.4 Information Extraction

After the text is cleaned and processed, the next step is extracting information. Two

powerful tools help in this process: ‘displacy’ and a custom function named ‘show tokens’ to

reveal the text structure, guiding the extraction of essential information for architectural

representation diagrams.

The ‘displacy’ tool is a feature within the spaCy library that connects word relationships

within a sentence, known as a dependency tree [36]. It visualizes how tokens are related, using

33

arrows to connect child tokens to their parents, illustrating a sentence’s grammatical structure.

This visualization helps understand how words work together, which can be used to define

attributes and identify relationships between potential classes in the system.

The ‘show tokens’ function acts as a guide showing insights into each token’s

characteristics. It is used to shed light on a token’s part of speech, its base form (or lemma), and

how it connects to other tokens (its dependencies), which all three are displayed side by side for

a better understanding of the extraction. This function offers insights that help navigate the text

more effectively using an in-depth detail token analysis.

Both tools do more than help dissect sentences; they help chunk nouns representing

potential classes in a system and identify verb-noun pairs that capture potential methods more

broadly than isolated tokens. These tools' approach makes the syntactic structure of a sentence

clear and helps us pull vital information from text, paving the way for creating accurate and

insightful diagrams. The figures below illustrate a textual description example, showing how

both tools are utilized.

Textual Description: "The engine drives the conveyor belt.”

Figure 5: Displacy Visualization

34

Table 3. Show Tokens Tool.

Token Lemma POS Dep

the the DET det

engine engine NOUN nsubj

drives drive VERB ccomp

the the DET det

conveyor conveyor ADJ compound

belt belt NOUN dobj

Figure 5 and Table 3 illustrate the linguistic analysis results from the textual description.

Figure 5 shows a graphical representation of the sentence syntactic structure; it illustrates each

word part-of-speech tag (such as NOUN, VERB, DET, etc.) and their grammatical relationships,

which are connected by lines to represent the dependency relation (such as nominal subject

‘nsubj’, direct object ‘dobj’, etc.), crucial for understanding the sentences meaning and grammar.

Table 3 showcases the descriptions list of tokens, lemmatized tokens, POS tags, and the

dependencies representing the sentence's detailed linguistic breakdown, which is essential for

identifying elements for extraction.

The element extraction framework begins by creating sets (using the ‘set()’ function) to

store collections of potential classes, methods, attributes, and relationships. This ensures that

35

each collected element avoids duplication after extraction. These sets can be unordered

collections of elements, which is critical for analyzing extracted elements from text [55].

4.4.1 Extracting Potential Classes

After cleaning, the text data is analyzed to extract potential classes from textual descriptions.

It filters out any digits and the stop words and takes each token's lemmatized form in each

sentence to refine the necessary tokens relevant to diagram modeling. The process of identifying

potential classes is found by observing nouns that are singular, multiword, and chunking nouns

which represent a mixture of simple and complex entities within a sentence [56]. The rules

shown below illustrate how class elements can be found within textual descriptions alongside an

example description.

• Class-Rule 1: If the POS tag contains [NOUNS] or [PROPN], singular nouns are

extracted for potential classes, capturing the lemmatized noun. These singular nouns form

the base of potential class identification.

• Class-Rule 2: Multiword nouns adjacent to each other, which represent class names such

as [NOUN] [NOUN] or [NOUN] [PROPN] are extracted.

• Class-Rule 3: Noun chunks that contain [NOUNS] and their modifiers are extracted to

capture a class description. These chunks include a combination of [NOUNS] with their

modifiers, which can be [VERBS], [ADJ], or both their combination. Noun chunking

helps capture the full description of class attributes from simple to complex forms.

• Class-Rule 4: If the DEP tag contains [nsubj] and [nsubjpass], their tokens are extracted

for potential classes, capturing the lemmatized token. If modifiers such as [compounds]

or [adj] precede the subjects, extract both subject and modifier to create a descriptive

36

entity. These subjects can be considered as potential entities since they are assigned to the

syntactic heads of nouns or pro nouns.

The singular nouns, multiword nouns, and chunking nouns are then added to a list of potential

classes, identifying the entities to be considered for the system.

o Example sentence: "The UAV-101 model, designed for high-altitude surveillance,

includes a 20MP camera and advanced navigation systems. The UAV

autonomously executes missions, adapting swiftly to environmental changes, and

submits data back to the central monitoring station."

o Potential Classes Extracted: {'highaltitude', 'the central monitoring station',

'surveillance', 'datum', 'station', 'change', 'navigation system', 'navigation', 'the uav',

'mission', 'monitoring', 'monitoring station', 'environmental change', 'model', 'uav',

'a mp camera and advanced navigation system', 'highaltitude surveillance',

'system', 'the uav model', 'camera'}

4.4.2 Extracting Potential Methods

Potential methods are identified by examining verbs within sentences [53]. The process of

identifying potential methods begins by analyzing the structure of a sentence, and looking for

verbs that indicate actions alongside nouns or proper nouns as possible objects of these actions.

A set list is created before forming verb-noun pairs to avoid word overlapping, helping capture

unique pairing for each sentence being analyzed. This step helps examine the interactions within

each sentence to find possible elements that are appropriate for potential methods. In each

sentence, it filters out digits and stops words and takes the tokens lemmatized form. The rules

shown below illustrate a description of how potential methods are found and extracted alongside

an example description.

37

• Method-Rule 1: Begin by creating a new set at the start of each sentence to capture verb-

noun pairs to ensure the sentence is analyzed independently. This step helps prevent

duplications in potential method identification and pairs actions with their objects.

• Method-Rule 2: Singular [VERBS] are identified after iterating over each sentence token

and added to the potential method set considering their lemmatized word. The [VERB] is

also stored for a possible pairing with the following noun in the next step.

• Method-Rule 3: Verb noun pairs are extracted by identifying a [NOUN] or [PROPN]

that’s found after a [VERB] from the pairing list to capture a potential method by

combining an action and their object. This step takes both lemmatized words for the pair.

• Method-Rule 4: The pairs are then added to a list of potential methods, identifying the

actions and their respective objects within the system.

• Method-Rule 5: To provide a deeper insight, this analysis can be extended to capture

verb noun triples which find a [VERB] its direct [NOUN] and an additional [NOUN] to

expand the context of understanding an action and extracting additional elements for a

system being designed.

To illustrate an example

o Example sentence: "The UAV-101 model, designed for high-altitude surveillance,

includes a 20MP camera and advanced navigation systems. The UAV

autonomously executes missions, adapting swiftly to environmental changes, and

submits data back to the central monitoring station."

o Potential Methods Extracted: {'design', 'include camera', 'submit station', 'design

highaltitude', 'include systems', 'include uav', 'submit data', 'adapt', 'include

38

navigation', 'submit', 'adapt changes', 'include', 'execute missions', 'execute',

'submit monitoring', 'design surveillance'}

4.4.3 Extracting Potential Attributes

Potential attributes are found by examining words describing a class’s characteristic or

properties [57]. The process of identifying these attributes is by locating nouns modified by

adjectives or, less commonly, by a compound relationship. This step analysis child tokens to

identify class characteristics by examining the adjective or compound child tokens related to the

noun, modifying them to present an accurate representation of attributes in a diagram. Using

child tokens in the analysis helps identify a wide range of attributes that provide enhanced

detailed descriptions of class characteristics. The rule shown below illustrates how potential

attributes are identified and extracted, along with a description example.

• Attribute-Rule 1: POS tagging is used to identify [NOUNS] after iterating over each

token in a sentence. These nouns are used for the next step to help capture a representing

attribute.

• Attribute-Rule 2: For each [NOUN] captured, children tokens connected to it labeled

[ADJ] or [compound] are identified with it. These modifiers provide a descriptive context

for the noun.

• Attribute-Rule 3: The modifiers collected with the noun create a complete attribute

phrase. This phrase captures a more sophisticated description of the attribute.

• Attribute-Rule 4: These attributes are added to a set to ensure each is unique and not

duplicated, creating a list of potential attributes.

39

o Example sentence: "The UAV-101 model, designed for high-altitude surveillance,

includes a 20MP camera and advanced navigation systems. The UAV

autonomously executes missions, adapting swiftly to environmental changes, and

submits data back to the central monitoring station."

o Potential Attributes Extracted: {'missions', 'highaltitude', 'navigation systems',

'uav model', 'environmental changes', 'highaltitude surveillance', 'monitoring',

'data', 'camera', 'central monitoring station', 'navigation', 'monitoring station'}

4.4.4 Extracting Potential Relationships

Potential relationships are identified by connecting entities that associate with one another

[53]. Patterns of verb-noun pairs are examined to extract potential relationships, suggesting a

relationship between classes. Each verb identified is examined in connection with its dependency

children, to determine if the token matches any nouns or proper nouns that could be used as

subjects related to potential classes. Relationships are recorded between the verb in its

lemmatized form and the child token’s text when a match is found. This method can be further

altered by identifying verb-noun pairs between classes, where the two nouns bridging the pair are

considered potential classes from the first extraction step. This method can identify any

relationship between classes stated in the text document, illustrating the system's structure. The

rules below illustrate how potential relationships are identified and extracted, along with a

description of the example.

• Relationship-Rule 1: The text is scanned for [VERBS] using the POS tagger, identifying

actions within sentences for relationship identification.

40

• Relationships-Rule 2: For each [VERB] found, its child tokens are examined to see if it

is associated with potential subjects. These subjects are considered among previously

identified potential classes, such as [NOUNs] or [PROPN].

• Relationships-Rule 3: The [VERB] is matched with any potential subjects to see if it acts

upon any entity recognized as a class from the previous analysis.

• Relationships-Rule 4: A relationships entry is created if a match is found, indicating that

the subject is indeed recognized as a potential class. This entry pairs the [VERB] in its

lemma form with the subject’s text, capturing the action-entity relationship within the

relationship set.

• Relationships-Rule 5: Relationships can also be extracted by examining verb-direct

object connections, capturing another action-entity within the text.

• Relationships-Rule 6: For each [VERB] found, its [dobj] is identified among the verb’s

child tokens. If the direct object is found in relation to the verb, they are both paired in

their lemma form, creating a relationship entry.

• Relationship-Rule 7: Another relationship can be formed by identifying a [VERB] and a

DEP tag [prep] that follows it. If the [prep] is present, both [VERB] and [prep] are paired

creating an association within the text.

o Example sentence: "The UAV-101 model, designed for high-altitude surveillance,

includes a 20MP camera and advanced navigation systems. The UAV

autonomously executes missions, adapting swiftly to environmental changes, and

submits data back to the central monitoring station."

o Potential Relationships Extracted: {'include systems'}, {'execute uav'}, {'submit

data'}, {'include model'}, {'execute missions'}

41

4.5 Data Serialization

The data serialization step occurs before and after the selection process, which stores

analysis in a JSON file for further use following the selection and PlantUML syntax generation.

After applying the extraction method, all potential elements are verified through the JSON file

and are pending to be selected in the selection process. JSON files were used in this research due

to their simplicity and handling of large amounts of data to help confirm the extraction of

essential elements [58]. This format offers the advantage of re-executing the extraction method

with modified rules to find elements that were missed or not correctly captured, ensuring the data

serialization remains current without storing any previous markers. After the selection process,

the elements selected are stored in an object-oriented format to showcase which elements will be

used through diagram generation for the system. The serialization data is then converted into

PlantUML syntax through the visualization script generator for further diagram visualizations.

4.6 Selection Process

The selection process is an interactive interface that allows users to select suitable

elements for diagram visualization. This process loads the JSON file from the extraction analysis

and prompts users to create classes with their matching characteristics and operations. Users are

instructed to select a new class and select methods and attributes belonging to that class. This

step is repeated until all necessary class entities are created and move on to selecting

relationships. Users are prompted to choose relationships and pair them with classes that have

already been previously selected to create an association among the classes within the system.

After all required elements are chosen and assigned, they are saved into a JSON file in object-

oriented format. The file is then used in the visualization script generator, which successfully

transforms the JSON data into a structured representation of a system.

42

4.7 Visualization Script Generator

The final step is the visualization stage, where the selected elements are generated into a

system architecture. The visualization script generator operates by translating the selected

elements stored from the selection process into PlantUML syntax required to create system

architectures. PlantUML was chosen in this research because of its straightforward and user-

friendly syntax, making it easy to create, share, and modify diagrams. It can handle JSON

formats as they both use object-oriented representations, which can be transformed into visual

diagrams to help understand and visualize data structures. PlantUML can also be integrated

through various IDE’s such as spyder or PyCharm to create and modify diagrams within the

coding environment, making it an easy, productive process [59].

First, the selected elements chosen by the user are imported from the JSON file. The

visualization script generator begins with an @startuml to indicate the beginning of the diagram

definition. Multiword class names are formatted by replacing spaces with an underscore to

ensure they are suitable identifiers in PlantUML code. Each class’s methods and attributes that

contain multiword spaces are also replaced with underscores to comply with PlantUML

principle. Methods are joined immediately with parenthesis declaring a field name to signify

their function nature, and all elements are then organized into an object-oriented blueprint under

the corresponding class [59]. Relationships are directly included as strings in the PlantUML code

after being formatted during the selection process to fit appropriate syntax. Once all classes and

relationships have been added to the PlantUML code, the process concludes with an @enduml

statement indicating the end of the diagram definition. Finally, the visual script generator outputs

a printed PlantUML code for viewing. It can be manually copied to a PlantUML renderer using

either software or a plugin used in PyCharm IDE to automate system architectural generation.

43

An example of PlantUML syntax below showcases how a hypothetical Class 1 is connected to

Class 2, with both classes having methods and attributes.

Figure 6: PlantUML Syntax According to Principle.

44

CHAPTER V

CASE STUDY AND EVALUATION

The case study in this section demonstrates the process and extraction of a requirement

specification to generate a class diagram representation. A detailed case was generated to

describe a UAV and its integration of advanced technology and operational needs, as shown in

Figure 7. The requirement was examined and tested for validation through the approach in this

chapter.

Figure 7: UAV Requirement Specification.

In the processing stage, the visualization tools examine the tokens’ grammatical structure

and relationships, illustrating the POS and dependencies tags. Potential elements can be extracted

from the token’s examination to generate a class diagram.

The system integrates a sophisticated UAV network, streamlining both surveillance and logistical deliveries.

Each UAV, at the core of the network, is outfitted with leading-edge navigational tech and cameras for

comprehensive monitoring tasks, alongside cargo bays designed for precise delivery missions. Centralized

control is managed through sophisticated software, enabling intricate data processing, UAV tracking, and task

allocation in real-time. Surveillance operations utilize the UAVs' cameras to secure live feed analysis, while

delivery missions are executed with pinpoint accuracy thanks to advanced GPS guidance. Data integrity and

operational security are upheld through robust communication protocols, ensuring data protection and system

reliability. Moreover, the system is adept at assigning UAVs dynamically, catering to emergent needs or

enhancing operational efficacy. This UAV network epitomizes the fusion of aerial technology and data analytics,

delivering unparalleled capabilities for contemporary surveillance and logistical needs.

45

Figure 8. Potential Elements Extracted

46

Figure 8 illustrates the text's potential classes, attributes, methods, and relationships using

the aforementioned rules. These elements are saved to a JSON file for the next step, where the

user can select possible elements for the selection process to generate a class diagram.

The user is prompted to create the first entity in the selection process. The process goes in

order of creating a class, its methods, and its attributes, and then the user is asked if another class

creation is necessary. Once all the classes and their elements are selected, the last step of the

selection process is to select associations and link them with the chosen entities. Figure 9

illustrates the available elements that can be chosen for class selection. It depicts a list of nouns,

noun chunks, and multiple nouns tagged from the textual requirement. Class selection is the only

process that can choose more than one option for a single entity to distinguish a multiple-word

entity that might not have been recognized from the extraction process.

47

Figure 9: Class Selection.

48

Figure 10 shows the potential methods list. These lists of words were tagged by verbs that

denote nouns to characterize an object's action. After choosing a class, the user can pick relevant

methods, separated by dashes, to incorporate into the class. For instance, methods that pertain to

the entity UAV based on the textual description can be that it executes a ‘pinpoint destination’ or

‘utilizes a camera.’

Figure 10: Methods Selection.

Figure 11 illustrates a list of potential attributes that can be selected from the textual

description. Nouns tagged the list of words and their modifiers using children tokens to identify

class characteristics representing properties that pertain to entities. After selecting the methods

for a particular class, the user can pick as many attributes as possible, separated by dashes, to

incorporate them into the specific class.

49

Figure 11. Attributes Selection

Figure 12: Relationship Selection

50

After collecting each entity’s methods and attributes, the user can select and associate

potential relationships with the previously chosen classes. These lists of relationships were

tagged by verbs paired with nouns or direct objects using the dependency children to suggest

possible subjects being associated between entities. Figure 12 illustrates the potential

relationships found within the textual description. The complete set of relationships discovered

in the requirement specification can be selected together, separated by dashes for the pairing

step. After all the necessary relationships are selected, the user can combine each collection with

two previously picked classes, creating an association between the entities.

After the user finishes selecting and pairing potential relationships between classes, the

selections are saved into a JSON file as an object-oriented UML class representation. This file

saves the selection data for the visualization script generator, which is considered the most

critical phase, to generate the selections of PlantUML syntax for diagram generation. Figure 13

illustrates an example of the selection representation saved into the JSON data serialization.

Figure 13. Class Representation Data Serialization.

51

Once the class representation data is saved, the visualization script generator converts it

into appropriate PlantUML syntax and pastes its output. The syntax can then be copied and used

in the same Python environment using the PlantUML plugin or in software for diagram

generation. Figure 14 below illustrates the syntax output after using the script generator.

Figure 14: PlantUML Syntax Generation.

After the extraction process, selection process, and the PlantUML syntax are finalized,

the class diagram is generated for visualization. Figure 15 illustrates the class diagram

representation of the UAV requirement specification. Each class shows the named entity located

on the top, the methods towards the bottom of the class, and the attributes in between them. The

52

lines with an arrowhead going from one class to another represent the relationship between the

two entities, labeled with an association description specifying their connection's nature.

Figure 15. Class Diagram of Requirement Specification.

The elements extracted from the requirement specification are evaluated on their

effectiveness in creating a class diagram. The essential elements utilized for the classes, methods,

attributes, and relationships are measured to show the system’s ability to identify them from the

requirement text. The process aids in assessing the system’s accuracy in classifying these

elements, which offers insight into the precision of capturing the appropriate details needed for

creating an accurate and comprehensive diagram.

This approach of extracting information in developing a class diagram doesn’t focus only

on word-for-word matches. It also employs an adaptable approach that accounts for semantic

similarities. The approach recognizes phrases and terms in the textual description that can be

53

used as equivalent selections for the diagram with similar meanings. This strategy improves the

system’s precision in element extraction by recognizing relevant information that might be

implied and explicitly mentioned in the description, which ensures an accurate and

comprehensive representation even when the wording varies. This flexible interpretation helps

with the system’s performance and accuracy in capturing the essence of the described elements,

providing an understanding of modeling complex textual data.

Precision and recall are vital measures to help understand how well the system identifies

and selects appropriate elements [60, 61, 62]. These two metrics' flexibility will be used to

evaluate the case study description and will only consider exact and semantically aligned

information with the intended concept; the measurement equations to calculate the extracted

analysis are shown below.

• Precision measures the ratio of correctly identified elements out of all elements, which

helps identify the system’s prediction by checking how many elements are relevant.

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

• Recall – This evaluates the system’s ability to identify all relevant elements belonging to

a particular class out of all the items that belong to that class. This metric checks how

many of the correct items the system identified.

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

54

The tables below show the identified elements found within the requirement text, along

with their precision and metric ratings.

Table 4: Class Extraction Metrics

Sentences Correct Classes Extracted Classes Pre-
cision

Re-
call

The system integrates a
sophisticated UAV network,
streamlining both
surveillance and logistical
deliveries.

“System”
“Sophisticated uav Network”
“Surveillance”
“Logistical deliveries”

‘delivery’, ‘network’, ‘system’,
‘sophisticated uav network’,
‘surveillance’, 'logistical delivery' 0.66 1.0

Each UAV, at the core of
the network, is outfitted with
leading-edge navigational
tech and cameras for
comprehensive monitoring
tasks, alongside cargo bays
designed for precise delivery
missions.

“UAV”
“Network”
“Navigational tech”
“Camera”
“Monitoring tasks”
“Cargo bays”
“Delivery missions”

delivery mission’, ‘tech’, ‘uav’,
‘delivery’, ‘comprehensive monitoring
task’, ‘leadingedge navigational tech’,
‘core’, ‘monitoring task’, ‘leadingedge’,
‘task’, ‘network’, ‘bay’, ‘monitoring’,
‘cargo’, ‘mission’, ‘camera’, ‘precise
delivery mission’, ‘cargo bay’

0.38 1.0

Centralized control is
managed through
sophisticated software,
enabling intricate data
processing, UAV tracking,
and task allocation in real-
time.

“Centralized control”
“Sophisticated software”
“Intricate data”
“UAV tracking”
“Task allocations”

‘sophisticated software’, ‘intricate
datum’, ‘task’, ‘control’, ‘allocation’,
‘tracking’, ‘task allocation’, ‘uav
tracking’, ‘centralize control’, ‘datum’,
‘software’

0.36 0.8

Surveillance operations
utilize the UAVs’ cameras
to secure live feed analysis,
while delivery missions are
executed with pinpoint
accuracy thanks to advanced
GPS guidance.

“Surveillance operations”
“UAVs’ cameras”
“camera”
“Live feed analysis”
“Delivery missions”
“Advanced GPS guidance”
“GPS guidance”

‘feed’, ‘delivery mission’, ‘surveillance’,
‘pinpoint accuracy thank’, ‘live feed
analysis’, ‘surveillance operation’,
‘pinpoint accuracy’, ‘analysis’, ‘gps’,
‘guidance’, ‘accuracy’, ‘gps guidance’,
‘delivery’, ‘thank’, ‘mission’,
‘operation’, ‘accuracy thank’, ‘pinpoint’,
‘advanced gps guidance’, ‘uavs camera’,
‘feed analysis’, ‘camera’

0.22 1.0

Data integrity and
operational security are
upheld through robust
communication protocols,
ensuring data protection and
system reliability.

“Data integrity”
“Operational security”
“Communication protocol”
“Data protection”
“System reliability”

‘communication’, ‘operational security’,
‘datum integrity’, ‘system reliability’,
‘security’, ‘reliability’, ‘data protection’,
‘robust communication protocol’,
‘communication protocol’, ‘system’,
‘protocol’, ‘data’, ‘datum’, ‘protection’,
‘integrity’

0.31 1.0

Moreover, the system is
adept at assigning UAVs
dynamically, catering to
emergent needs or
enhancing operational
efficacy.

“System”
“UAVs”
“Emergent needs”
“Operational efficacy”

'emergent need', 'system', 'operational
efficacy', 'need', 'efficacy', 'uavs' 0.66 1.0

This UAV network
epitomizes the fusion of
aerial technology and data
analytics, delivering
unparalleled capabilities for
contemporary surveillance
and logistical needs.

“UAV network”
“Fusion”
“Ariel technology”
“Data analytics”
“Contemporary surveillance”
“Logistical needs”

'unparalleled capability', 'analytic', 'data
analytic', 'uav network', 'contemporary
surveillance', 'network', 'logistical need',
'technology', 'data', 'capabilities',
'surveillance', 'need', 'aerial technology
data analytic', 'fusion'

0.35 0.83

55

Table 4 shows the evaluation results of the two metric measurements used to identify

correct classes from the textual description. The correct classes can be considered nouns or

proper nouns found in the textual requirement. All classes were correctly identified for each

sentence based on the recall measurement, and good results were generated for both metrics.

Table 5 showcases the metric results from the identified methods in the description.

These methods are typically verbs paired with nouns to represent an action happening to an

object. The table shows that the precision is relatively high apart from sentence three, which

happened to extract more methods than needed for the diagram generation. Recall measurements

generated good results as all methods were correctly identified from the description.

Table 6 shows the metric results for the identified attributes in the description. These are

typically nouns modified by words that help describe a class’s characteristics. The table shows

that precision and recall have good results for all sentences, correctly extracting all identified

attributes. Sentence six has the lowest ratings for both metrics as it did not capture one of the

correct words in the description.

Table 7 illustrates the metric results for the identified relationships in the description.

These are typically verb-noun pairs found between two classes to represent an association. The

table shows high results for each sentence, showcasing that all relationships were correctly

extracted from the description.

56

Table 5: Methods Extraction Metrics

Sentences Correct Methods Extracted Methods Pre-
cision

Re-
call

The system integrates a
sophisticated UAV network,
streamlining both surveillance
and logistical deliveries.

“Integrates network”
“Streamlining
surveillance”
“Streamlining deliveries”

'streamline', 'streamline
surveillance', 'integrate network',
'integrate', 'streamline deliveries' 0.6 1.0

Each UAV, at the core of the
network, is outfitted with
leading-edge navigational tech
and cameras for comprehensive
monitoring tasks, alongside
cargo bays designed for precise
delivery missions.

“outfitted tech”
“outfitted cameras”
“outfitted monitoring”
“outfitted task”
“design delivery”

'design', 'outfit', 'design delivery',
'design missions', 'outfit cameras',
'outfit tech', 'outfit cargo', 'outfit
monitoring', 'outfit bays', 'outfit
leadingedge', 'outfit tasks'

0.45 1.0

Centralized control is managed
through sophisticated software,
enabling intricate data
processing, UAV tracking, and
task allocation in real-time.

“enable”
“enable data”
“process”

'process tracking', 'manage',
'centralize', 'process', 'enable',
'enable datum', 'process allocation',
'process task', 'centralize control',
'manage software'

0.3 1.0

Surveillance operations utilize
the UAVs’ cameras to secure
live feed analysis, while
delivery missions are executed
with pinpoint accuracy thanks
to advanced GPS guidance.

“utilize”
“utilize camera”
“secure”
“secure feed”
“executed”
“execute GPS”

'utilize camera', 'secure analysis',
'secure', 'execute', 'utilize', 'secure
feed', 'secure delivery', 'secure
mission', 'execute pinpoint',
'execute guidance', 'execute
accuracy', 'execute gps',

0.5 1.0

Data integrity and operational
security are upheld through
robust communication
protocols, ensuring data
protection and system
reliability.

“uphold”
“ensure”
“ensure protection”
“ensure reliability”

'ensure', 'ensure protection',
'uphold', 'uphold communication',
'uphold protocol', 'ensure system',
'ensure reliability', 'ensure data'

0.5 1.0

Moreover, the system is adept
at assigning UAVs
dynamically, catering to
emergent needs or enhancing
operational efficacy.

“Adept”
“Assign”
“Catering”
“Catering needs”
“Enhance”
“Enhancing efficacy”

'catering', 'enhance efficacy',
'assign', 'adept', 'enhance',
'cater need' 1.0 1.0

This UAV network epitomizes
the fusion of aerial technology
and data analytics, delivering
unparalleled capabilities for
contemporary surveillance and
logistical needs.

“Epitomize fusion”
“Epitomize”
“Deliver capabilities”
“Deliver”

'epitomize fusion', 'deliver
capability', 'deliver', 'epitomize'

1.0 1.0

57

Table 6: Attribute Extraction Metrics

Sentences Correct Attributes Extracted Attributes Pre-
cision

Re-
call

The system integrates a
sophisticated UAV network,
streamlining both surveillance
and logistical deliveries.

“Sophisticated UAV
network”
“Logistical deliveries”
“Surveillance”

'logistical deliveries', 'system',
'sophisticated uav network',
'surveillance' 0.75 1.0

Each UAV, at the core of the
network, is outfitted with
leading-edge navigational tech
and cameras for comprehensive
monitoring tasks, alongside
cargo bays designed for precise
delivery missions.

“navigational tech”
“comprehensive
monitoring tasks”
“precise delivery missions”
“cargo bays”
“cameras

'comprehensive monitoring
tasks', 'uav', 'delivery', 'core',
'network', 'monitoring', 'cargo',
'navigational tech', 'cargo bays',
'precise delivery missions',
'cameras'

0.45 1.0

Centralized control is managed
through sophisticated software,
enabling intricate data
processing, UAV tracking, and
task allocation in real-time.

“sophisticated software”
“intricate data”
“UAV tracking”
“task allocation”
“real-time”

'sophisticated software',
'centralized control', 'intricate
data', 'task allocation', 'uav
tracking', 'realtime', 'task'

0.71 1.0

Surveillance operations utilize
the UAVs’ cameras to secure
live feed analysis, while
delivery missions are executed
with pinpoint accuracy thanks
to advanced GPS guidance.

“UAVs’ cameras”
“live feed analysis”
“pinpoint accuracy”
“advanced GPS guidance”
“delivery”
“surveillance”
“feed”

'feed', 'delivery missions', 'gps',
'delivery', 'pinpoint', 'advanced
gps guidance', 'pinpoint
accuracy', 'accuracy thanks',
'surveillance', 'surveillance
operations', 'live feed analysis',
'uavs cameras'

0.58 1.0

Data integrity and operational
security are upheld through
robust communication
protocols, ensuring data
protection and system
reliability.

“data integrity”
“operational security”
“robust communication
protocols”
“data protection”
“system reliability”

'communication', 'operational
security', 'robust communication
protocols', 'system reliability',
'data protection', 'system', 'data
integrity', 'data'

0.63 1.0

Moreover, the system is adept
at assigning UAVs
dynamically, catering to
emergent needs or enhancing
operational efficacy.

“assigning UAV’s”
“dynamically”
“emergent needs”
“operational efficacy”

'operational efficacy', 'emergent
needs'

1.0 0.5

This UAV network epitomizes
the fusion of aerial technology
and data analytics, delivering
unparalleled capabilities for
contemporary surveillance and
logistical needs.

“aerial technology”
“data analytics”
“unparalleled capabilities”
“contemporary
surveillance”
“logistical needs”

'uav network', 'aerial
technology', 'contemporary
surveillance', 'logistical needs',
'unparalleled capabilities', 'data
analytics', 'data', 'fusion'

0.63 1.0

58

Table 7: Relationship Extraction Metrics

Sentences Correct relationships Extracted relationships Precision Recall

The system integrates a sophisticated
UAV network, streamlining both
surveillance and logistical deliveries.

“System integrates”
“integrates network”
“integrates”
“streamlining”

'streamline surveillance',
'streamlining', 'integrates',
'integrate system', 'integrate
network'

0.8 1.0

Each UAV, at the core of the
network, is outfitted with leading-
edge navigational tech and cameras
for comprehensive monitoring tasks,
alongside cargo bays designed for
precise delivery missions.

“outfitted with”
“designed for”
“outfitted”

'outfitted with', 'outfit uav',
'design for', 'outfitted'

0.75 1.0

Centralized control is managed
through sophisticated software,
enabling intricate data processing,
UAV tracking, and task allocation in
real-time.

“managed through”
“enabling”
“enabling data”
“manage”

'process in', 'manage through',
'process tracking', 'enabling
data', 'manage control',
'manage', 'enabling'

0.57 1.0

Surveillance operations utilize the
UAVs’ cameras to secure live feed
analysis, while delivery missions are
executed with pinpoint accuracy
thanks to advanced GPS guidance.

“utilize camera”
“utilize”
“execute with”
“execute”
“secure analysis”
“secure”

'execute with', 'utilize
cameras', 'secure analysis',
'execute', 'execute missions',
'utilize', 'secure'

0.85 1.0

Data integrity and operational
security are upheld through robust
communication protocols, ensuring
data protection and system reliability.

“upheld though”
“upheld”
“ensuring”
“ensure protection”
“ensure reliability”

'uphold integrity', 'uphold',
'uphold through', 'ensure
protection', 'ensuring' 0.8 0.8

Moreover, the system is adept at
assigning UAVs dynamically,
catering to emergent needs or
enhancing operational efficacy.

“adept at”
“adept”
“catering to”
“enhancing efficacy”

'adept at', 'cater to', 'adept
system', 'adept', 'enhance
efficacy' 0.8 1.0

This UAV network epitomizes the
fusion of aerial technology and data
analytics, delivering unparalleled
capabilities for contemporary
surveillance and logistical needs.

“epitomizes fusion”
“epitomize”
“delivering
capabilities”

'epitomize', 'epitomize
network', 'epitomize fusion',
'deliver capabilities' 0.75 1.0

59

Table 8. Case Study 2 Extraction

Case Study 2:

“Each product has a description, a price and a supplier. Suppliers have addresses, phone
numbers, and names. Each address is made up of a street address, a city, and a postcode. Each
product has a single supplier. There is nothing to stop a supplier supplying many products.”

Potential Classes Potential Attributes Potential Relationships

Correct:
Product
Supplier
Address

Correct:
Description
Price
Address
Phone Number
Name
Street Address
City
Postcode
Single supplier

Correct:
Has a
Has description
Have
Made of
Stop
Stop supplier
Supply
Supply product
Is a

Extracted:
'products', 'numbers', 'phone
number', 'phone', 'name', 'address',
'supplier', 'number', 'description',
'product', 'postcode', 'names',
'street', 'city', 'supplier supplier',
'addresses', 'street address', 'address
phone', 'price', 'address phone
number', 'suppliers'

Extracted:
'many product', 'product',
'address', 'postcode', 'price',
'street address', 'phone number',
'supplier', 'street', 'city',
'description', 'phone', 'supplier
supplier', 'single supplier',
'name'

Extracted:
'have a' 'has description' 'has
supplier' 'has a' 'is a' 'made a'
'supply products' 'stop supplier'
'stop a' 'supplying products'
'have numbers' 'has of' 'stop'
'made of' 'made each' 'has each'
'supply'

Table 9: Case Study 2 Metrics

Potential Elements Precision Recall

Classes/Entities 0.14 1.0

Attributes 0.6 1.0

Relationships 0.53 1.0

60

Figure 16. Class Diagram of Case Study 2.

Table 8 illustrates a new case study example along with its correct and extracted potential

elements. The textual description was taken from example 1 used in Baginski thesis [62]. Table 9

showcases the metric evaluation using the rules applied to extract these potential elements,

followed by the class diagram construction of case study 2, as shown in Figure 16. The precision

and recall values compared to Baginski’s findings for this example showed to get a precision of

(1.0, 0.88, 1.0) and a recall of (1.0, 1.0, 1.0) for the classes, attributes, and relationships

respectively [62]. The metric results shown in Table 9 display that the system correctly

identified all correct elements by having a recall of 100% and having low values for the

precision, which indicates the system captured a broad list of potential elements.

61

Table 10: Case Study 3 Extraction

Case Study 3:

“Participants at the summer school are either students or teachers. Each student registers for the NEMO Summer
School providing, amongst others, their level of study (Bachelor, Master or PhD) and their field of study.
Additionally each student provides her/his first name, last name, their country of provenience and e-mail address.
Students attend courses during the summer school. Courses can be a lecture, a fundamentals exercise or
application exercises. [The fundamental exercise is considered as one unit as it covers one topic, although it takes
place in several sessions.] Each course has a title, is being given by one or more lecturers and takes places in a
room. Every room has a name, a seating capacity, and technical equipment. Lectures and application exercises take
place in a lecture hall, while fundamental exercises are conducted in PC-labs. Within the fundamentals exercise
students are split in groups. Each group has a group number, a room (i.e. PC-lab) and a tutor. Teachers can be
either lecturers or tutors. Each teacher has a first name, last name, host institution, and country.”

Potential Classes Potential Attributes Potential Relationships

Correct:
'Participant', 'Student', 'Teacher',
'Course', 'Room', 'Group', 'Session',
'Application Exercises',
'Fundamental Exercise', 'Lecturer',
'PCLab', 'Tutor'

Correct:
'First name', 'Last name', 'Country', 'Email
address', 'Level of study', 'Field', 'Country
of provenience', 'Host institution', 'Title',
'Lecture', 'Room', 'Name', 'Seating
capacity', 'Technical equipment', 'Lecture
hall', 'PClab', 'Group number', 'Student',
'Tutor', 'Phd', 'Bachelors', 'Masters',
'Seating'

Correct:
'Attend', 'Attends courses', 'Registers',
'Given in', 'Given a', 'Takes place', 'Split
students', 'Conduct exercises', 'Has a',
'Conducted in', 'Covers topic', 'Includes',
'Provide level', 'considered as'

Extracted:
'fundamentals', 'lecture', 'email
address student', 'email', 'lectures',
'fundamental', 'bachelor', 'session',
'equipment lecture', 'exercises',
'bachelor master', 'courses', 'email
address', 'tutors', 'school course',
'nemo', 'register', 'lecture hall',
'application exercise', 'course',
'address', 'students', 'tutor',
'participants', 'nemo summer',
'provenience', 'teachers', 'number',
'study bachelor', 'title', 'fundamental
exercise', 'level', 'equipment', 'hall',
'unit', 'exercise student', 'address
student', 'host institution', 'group',
'country', 'summer school',
'lecturers', 'student', 'places', 'it',
'pclab', 'lecturer', 'tutor teacher',
'participant', 'host', 'study bachelor
master', 'technical equipment
lecture', 'pclabs', 'phd', 'groups',
'seating capacity', 'teacher',
'institution', 'application', 'room',
'capacity', 'place', 'student register',
'seating', 'exercise', 'last name',
'registers', 'summer', 'study', 'topic',
'master', 'field', 'sessions', 'group
number', 'school'

Extracted:
'lecture', 'email', 'equipment lecture',
'fundamental', 'bachelor', 'bachelor master',
'email address', 'school course', 'lecture
hall', 'name', 'first name', 'application
exercise', 'course', 'tutor', 'provenience',
'title', 'fundamental exercise', 'level',
'several session', 'unit', 'address student',
'exercise student', 'host institution', 'group',
'country', 'summer school', 'student',
'lecturer', 'pclab', 'tutor teacher',
'participant', 'host', 'phd', 'seating capacity',
'teacher', 'student register', 'other',
'application', 'place', 'room', 'seating',
'exercise', 'last name', 'summer', 'study',
'topic', 'technical equipment', 'field', 'group
number'

Extracted:
'cover topic' 'provide' 'takes places' 'split a'
'given in' 'consider exercise' 'provides the'
'provides amongst' 'attend courses' 'split'
'provides name' 'take a' 'take place'
'provides herhis' 'attend during' 'name
each' 'considered the' 'has every' 'cover'
'takes a' 'name for' 'conduct' 'split in'
'provides for' 'give title' 'take in' 'split each'
'attend students' 'has each' 'attend the'
'providing level' 'provide student' 'conduct
exercises' 'attend' 'takes in' 'take within'
'provide level' 'name the' 'name amongst'
'name country' 'has a' 'covers in' 'take'
'name herhis' 'providing amongst' 'name of'
'consider' 'considered as' 'provides of'
'considered in' 'has room' 'name during'
'providing of' 'provides each' 'conducted in'
'conducted the' 'split students' 'has in'
'takes place' 'give' 'covers topic' 'has name'
'given a' 'take the' 'name at' 'take places'
'takes every' 'conducted within' 'has
number' 'provides at' 'given every'

62

Table 11. Case Study 3 Metrics

Potential Elements Precision Recall

Classes/Entities 0.17 1.0

Attributes 0.45 0.96

Relationships 0.18 0.93

Figure 17. Class Diagram of Case Study 3.

Table 10 illustrates a third case study example taken from example 8 used in Baginski

thesis [62], along with its correct and extracted potential elements. Table 11 showcases the

metric evaluation using the rules applied to extract the potential elements followed by the class

63

diagram construction of case study 3 shown in figure 17. Baginski’s precision and recall values

for this example showed to get a precision of (0.71, 0.42, 0.63) and a recall of (0.77, 0.53, 0.42)

for the classes, attributes, and relationships respectively [62]. The metric results shown in table

11 display that the system correctly identified more correct elements compared to Baginski’s

recall but still captured a broad list of potential elements as the values of the system’s precision

are low.

Table 12. Case Study 4 Extraction

Case Study 4:

“A database for storing a private collection of books is required (yours or somebody else's). It should
function both as an inventory of books as well as a help to find books to read. This database should focu
on books and provide information surrounding those. Consider that books come in different editions (1s
2nd etc.) and each edition is owned once at most. Some books are written by one author, others by many
and others can also have editors. The existence of series (Dark Tower, Discworld etc.) being a collection
several books should also be considered in the data structure. Additionally the data structure should sup
finding books for a specific mood. It should also be possible to enter books that are not yet obtained, bu
are planned to be added to the collection, or in other words a wish list. The wish list should contain som
extra data (e.g. date added, a price limit etc.) in addition to the normal information about books.”

Potential Classes Potential Attributes Potential Relationships

Correct:
'Book', 'Author', 'Editor', 'Series',
'Mood', 'Wish List', 'data structure',
'inventory', 'edition', 'datum',
'database', 'price', 'help'

Correct:
 'Date Added', 'Price Limit',
'different edition', 'specific mood',
'price', 'several books', 'wish', 'eg
date', 'normal information', 'private
collection', 'inventory', 'data',
'database', 'edition'

Correct:
'Written by', 'Have', 'Contain',
'have editors', 'provide
information', 'own edition',
'focus on', 'enter books', 'find
books', 'finding books',
'support', 'function as', 'added
to', 'add', 'find books'

Extracted:
'collection', 'wish', 'data structure',
'existence', 'wish list', 'series dark',
'date', 'nd', 'author', 'dark', 'help',
'datum', 'edition st', 'st nd', 'inventory',
'addition', 'information', 'eg', 'limit',
'datum eg', 'series', 'dark tower',
'somebody', 'tower discworld', 'st',
'structure', 'it', 'most book', 'eg date',
'list', 'price limit', 'database', 'word',
'book', 'different edition', 'edition',
'mood', 'series dark tower discworld',
'price', 'editor', 'data', 'discworld',
'that', 'tower'

Extracted:
'collection', 'data structure', 'wish',
'existence', 'wish list', 'author', 'help',
'datum', 'normal information',
'specific mood', 'inventory',
'addition', 'information', 'datum eg',
'most book', 'eg date', 'price limit',
'database', 'book', 'different edition',
'edition', 'other', 'price', 'private
collection', 'editor', 'several book',
'data', 'other word', 'author other'

Extracted:
'provide' 'add' 'require database'
'added limit' 'focus on' 'support
list' 'provide information' 'focus
etc' 'contain' 'enter books'
'support structure' 'store
collection' 'read database' 'have
editors' 'read' 'surrounding
those' 'considered in' 'contain
list' 'require' 'come in' 'finding
for' 'own' 'support' 'added to'
'function as' 'added in' 'own
edition' 'have existence' 'contain
date' 'storing collection' 'finding
books' 'store' 'add limit' 'find
books'

64

Figure 18: Class Diagram of Case Study 4.

65

Table 13: Case Study 4 Metrics

Potential Elements Precision Recall

Classes/Entities 0.3 1.0

Attributes 0.45 0.93

Relationships 0.38 0.93

Table 12 illustrates a fourth case study example taken from example 7 used in Baginski

thesis [62], along with its correct and extracted potential elements. Table 13 showcases the

metric evaluation using the rules applied to extract the potential elements followed by the class

diagram construction of case study 4 shown in Figure 18. Baginski’s results conducted for this

example showed a precision of (0.38, 0.07, 0.20) and a recall of (0.75, 0.08, 0.25) respectively

[62]. The metrics shown in Table 8 shows that the system’s precision and recall have a better

accuracy and exact extraction rate as the systems recall was a perfect score for the entities and

almost perfect for the attributes and relationships. The system’s precision did show to identify

less incorrect items, since the values were higher for each elements precision compared to

Babinski’s results.

66

Table 14: Case Study 5 Extraction

Case Study 5:

“A university consists of a number of departments. Each department offers several courses. A number of modules
make up each course. Students enroll in a particular course and take modules towards the completion of that
course. Each module is taught by a lecturer from the appropriate department, and each lecturer tutors a group of
students.”

Potential Classes Potential Attributes Potential Relationships

Correct:
'university', 'department', 'course',
'module', 'student', 'lecturer'

Correct:
'department', 'appropriate department',
'course', 'several courses', 'particular course',
'modules', 'students', 'lecturer'

Correct:
'consists of', 'offers', 'enrolls in',
'takes module', 'teach', 'teach
module', 'offers courses'

Extracted:
'student', 'course', 'module', 'completion',
'lecturer', 'course student', 'tutor', 'number',
'department', 'lecturer tutor', 'university',
'group'

Extracted:
'course', 'students', 'modules', 'particular
course', 'completion', 'lecturer', 'appropriate
department', 'number', 'department', 'lecturer
tutor', 'several courses', 'university', 'group'

Extracted:
'offer' 'consists of' 'takes module'
'teach' 'consist university' 'enrolls
in' 'make course' 'offers courses'
'take towards' 'consist' 'offer
department' 'teach module'

Table 15: Case Study 5 Metrics

Potential Elements Precision Recall

Classes/Entities 0.5 1.0

Attributes 0.57 1.0

Relationships 0.58 1.0

67

Figure 19: Class Diagram of Case Study 5.

Table 14 illustrates a fifth case study example taken from example 5 used in Baginski

thesis [62], along with its correct and extracted potential elements. Table 15 showcases the

metric evaluation using the rules applied to extract the potential elements followed by the class

diagram construction of case study 5 shown in figure 19. Baginski’s results conducted for

example 5 showed a precision of (1.0, n/a, 1.0) and a recall of (1.0, n/a, 0.71) respectively [62].

Although this sentence is shown to be simple, the text only primarily outlines the entities and the

associations between them which is why n/a for attributes is used in its evaluation. The metric

results shown in table 15 display that the system correctly identified all correct elements by

68

having a recall of 100% for both classes and relationships compared to Baginski’s methods.

However, the system’s precision was relatively low, which indicates that the system captured a

broader list of potential elements than the other method.

It is shown through Baginski’s method that the smaller and simpler the text description is,

the easier it is to capture exact correct words and have a possible higher precision

simultaneously. Examples 1 and 5 show the text to have a simple sentence structure compared to

the others, which is why the system’s recall performed better in extracting the correct elements

for both examples. Example 7, the system experienced the same problem as Baginski’s methods

for mistakenly identifying “e.g.” as an attribute, highlighting a challenge for refinement. The

system identified numerous elements, for example, 7 and 8, because of the length and structure

of the description and the rules being applied for the extraction process, which is ultimately why

a low precision score is received. The rules used for extraction ensure that no possible elements

have been overlooked, which shows that a broad list of elements can inspire more flexible design

decisions. The low precision serves as a strategy by providing a more extensive set of elements

that cater to a variety of user needs and scenarios in the development of a system diagram.

69

CHAPTER VI

CONCLUSION

This thesis systematically reviews and analyzes natural language processing techniques

for the automated generation of SysML diagrams. It demonstrates common challenges with rule-

base, machine learning, and hybrid methods when utilizing NLP to extract system requirements

from text for generating modeling language diagrams. A rule-based method is used in this

research to showcase the importance of information extraction in extracting vital system

architectural elements. This thesis tackles the challenges against natural language complexity by

simplifying the text through normalization and using a robust NLP library for its parsing

capabilities to understand the structure of ambiguous linguistics better. It also demonstrates a

potential hybrid method using pre-trained models and a list of rules that accurately extract class

elements for diagram generation. The extraction and selection process aims to be simple and

easy to understand so that the user can adjust it before processing the required elements into

comprehensive PlantUML syntax for rendering.

Based on the case studies shown in Chapter V, the proposed method has demonstrated

tremendous success in utilizing NLP to extract elements from complex descriptions. These

elements are generated into system modeling diagrams according to subjectivity, allowing the

creation of models with a range of diverse options. Additionally, the method can be explored

further to reduce the number of rules used during the extraction process and serve as a fully

automated SysML diagram generator. The versatility of rules used to extract

70

elements from textual descriptions of various sizes can help in the development process of a

product through its entire lifecycle for multiple projects. It can be used as a vital tool for system

engineers.

The rule-based approach provides consistency in mapping textual patterns to SysML

diagram elements by evaluating their precision and recall measurements. The measurements

underscore the accuracy of extracting correct semantic similarity elements from system

requirements for modeling. Future work would address the rules used to extract potential

elements to improve precision while maintaining recall, enhancing the systems extracting

method, which can be used for a full-potential machine learning or hybrid approach.

71

REFERENCES

[1.] Rayhan, A., Kinzler, R., & Rayhan, R. (2023). Natural language processing:
Transforming how machines understand human language.
https://doi.org/10.13140/RG.2.2.34900.99200

[2.] Qie, Y., Zhu, W., Liu, A., Zhang, Y., Wang, J., Li, T., ... & Wang, Y. (2018, August).
A Deep Learning Based Framework for Textual Requirement Analysis and Model
Generation. In 2018 IEEE CSAA Guidance, Navigation and Control Conference
(CGNCC) (pp. 1-6). IEEE.

[3.] Johri, P., Khatri, S. K., Al-Taani, A. T., Sabharwal, M., Suvanov, S., & Kumar, A.
(2021). Natural language processing: History, evolution, application, and future work.
In Proceedings of 3rd International Conference on Computing Informatics and
Networks: ICCIN 2020 (pp. 365-375). Springer Singapore.

[4.] Khurana, D., Koli, A., Khatter, K., & Singh, S. (2023). Natural language processing:
State of the art, current trends and challenges. Multimedia tools and
applications, 82(3), 3713-3744.

[5.] McGrath, A., & Jonker, A. (2023, December 2). What is model-based systems
engineering (MBSE)? IBM. Retrieved June 2024, from
https://www.ibm.com/topics/model-based-systems-engineering

[6.] Kaelble, S. (2022). MBSE For Dummies® (Siemens Special Edition). Hoboken, NJ:
John Wiley & Sons, Inc.

[7.] Theobald, M., & Tatibouet, J. (2019, February). Using fUML Combined with a
DSML: An Implementation using Papyrus UML/SysML Modeler. In
MODELSWARD (pp. 248-255).

[8.] Hause, M. (2006, September). The SysML modelling language. In Fifteenth
European systems engineering conference (Vol. 9, pp. 1-12).

[9.] Kulvatunyou, B., Ivezic, N., & Srinivasan, V. (2016). On architecting and composing
engineering information services to enable smart manufacturing. Journal of
computing and information science in engineering, 16(3), 031002.

[10.] Alenazi, M., Niu, N., & Savolainen, J. (2019, September). SysML modeling mistakes
and their impacts on requirements. In 2019 IEEE 27th International Requirements
Engineering Conference Workshops (REW) (pp. 14-23). IEEE.

[11.] Zhao, Liping, et al. "Natural language processing for requirements engineering: A
systematic mapping study." ACM Computing Surveys (CSUR) 54.3 (2021): 1-41.

https://doi.org/10.13140/RG.2.2.34900.99200
https://www.ibm.com/topics/model-based-systems-engineering

72

[12.] Zhong, Shaohong, Andrea Scarinci, and Alice Cicirello. "Natural Language
Processing for systems engineering: Automatic generation of Systems Modelling
Language diagrams." Knowledge-Based Systems 259 (2023): 110071.

[13.] Chami, M., Zoghbi, C., & Bruel, J. M. (2019). A First Step towards AI for MBSE:
Generating a Part of SysML Models from Text Using AI. A First Step towards AI.

[14.] Ahmed, S., Ahmed, A., & Eisty, N. U. (2022, May). Automatic Transformation of
Natural to Unified Modeling Language: A Systematic Review. In 2022 IEEE/ACIS
20th International Conference on Software Engineering Research, Management and
Applications (SERA) (pp. 112-119). IEEE.

[15.] Petrotta, M., Sterling Heights, M. I., & Peterson, T. (2019, July). Implementing
Augmented Intelligence in Systems Engineering. In INCOSE International
Symposium (Vol. 29, No. 1, pp. 543-543).

[16.] Narawita, C.R., & Vidanage, K. (2018). UML generator – use case and class
diagram generation from text requirements. International Journal on Advances in Ict
for Emerging Regions (icter), 10, 1.

[17.] Abdelnabi, E.A., Maatuk, A.M., Abdelaziz, T.M., & Elakeili, S.M. (2020).
Generating UML Class Diagram using NLP Techniques and Heuristic Rules. 2020
20th International Conference on Sciences and Techniques of Automatic Control and
Computer Engineering (STA), 277-282.

[18.] Z. A. Hamza and M. Hammad, “Generating UML Use Case Models from Software
Requirements Using Natural Language Processing,” 2019 8th International
Conference on Modeling Simulation and Applied Optimization (ICMSAO),
Manama, Bahrain, 2019, pp. 1-6, doi: 10.1109/ICMSAO.2019.8880431.

[19.] Chen, Max & Bhada, Shamsnaz. (2022). Converting natural language policy article
into MBSE model. INCOSE International Symposium. 32. 73-81.
10.1002/iis2.12897.

[20.] Shinde, S.K., Bhojane, V., & Mahajan, P. (2012). NLP based Object Oriented
Analysis and Design from Requirement Specification. International Journal of
Computer Applications, 47, 30-34.

[21.] Chen, Lei & Zeng, Yong. (2009). Automatic Generation of UML Diagrams From
Product Requirements Described by Natural Language. 2. 10.1115/DETC2009-
86514.

[22.] Bajwa, I.S., & Choudhary, M.A. (2006). Natural language processing based
automated system for UML diagrams generation.

[23.] Arumugam, Chandrasekar & Uma, G.. (2006). Automatic Construction of Object
Oriented Design Models [UML Diagrams] from Natural Language Requirements
Specification. 4099. 1155-1159. 10.1007/11801603_152.

[24.] de Biase, Maria Stella & Marrone, Stefano & Palladino, Angelo. (2022). Towards
Automatic Model Completion: from Requirements to SysML State Machines.
10.48550/arXiv.2210.03388.

73

[25.] Dawood, O. S. (2018). Toward requirements and design traceability using natural
language processing. European Journal of Engineering and Technology Research,
3(7), 42-49.

[26.] Eibe Frank, Mark A. Hall, and Ian H. Witten (2016). The WEKA Workbench. Online
Appendix for "Data Mining: Practical Machine Learning Tools and Techniques",
Morgan Kaufmann, Fourth Edition, 2016.

[27.] Kochbati, T., Li, S., Gérard, S., & Mraidha, C. (2021). From User Stories to Models:
A Machine Learning Empowered Automation. MODELSWARD, 10,
0010197800280040.

[28.] Riesener, M., Dölle, C., Becker, A., Gorbatcheva, S., Rebentisch, E., & Schuh, G.
(2021, July). Application of natural language processing for systematic requirement
management in model‐based systems engineering. In INCOSE International
Symposium (Vol. 31, No. 1, pp. 806-815).

[29.] Zhong, S., Scarinci, A., & Cicirello, A. (2023). Natural Language Processing for
systems engineering: Automatic generation of Systems Modelling Language
diagrams. Knowledge-Based Systems, 259, 110071.

[30.] Seresht, S. M., & Ormandjieva, O. (2008). Automated assistance for use cases
elicitation from user requirements text. In Proceedings of the 11th Workshop on
Requirements Engineering (WER 2008) (Vol. 16, pp. 128-139).

[31.] Elallaoui, M., Nafil, K., & Touahni, R. (2018). Automatic transformation of user
stories into UML use case diagrams using NLP techniques. Procedia computer
science, 130, 42-49.

[32.] Osman, M. S., Alabwaini, N. Z., Jaber, T. B., & Alrawashdeh, T. (2019, April).
Generate use case from the requirements written in a natural language using machine
learning. In 2019 IEEE Jordan International Joint Conference on Electrical
Engineering and Information Technology (JEEIT) (pp. 748-751). IEEE.

[33.] Joshi, S. D., & Deshpande, D. (2012). Textual requirement analysis for UML diagram
extraction by using NLP. International journal of computer applications, 50(8), 42-46.

[34.] Chantrapornchai, C., & Tunsakul, A. (2021). Information extraction on tourism
domain using SpaCy and BERT. ECTI Transactions on Computer and Information
Technology, 15(1), 108-122.

[35.] Shah, U. S., Patel, S. J., & Jinwala, D. (2016). Specification of Non-Functional
Requirements: A Hybrid Approach. In REFSQ Workshops.

[36.] Fantechi, A., Gnesi, S., Livi, S., & Semini, L. (2021, September). A spaCy-based tool
for extracting variability from NL requirements. In Proceedings of the 25th ACM
International Systems and Software Product Line Conference-Volume B (pp. 32-35).

[37.] Joseph, S. R., Hlomani, H., Letsholo, K., Kaniwa, F., & Sedimo, K. (2016). Natural
language processing: A review. International Journal of Research in Engineering and
Applied Sciences, 6(3), 207-210.

74

[38.] Yamamoto, Y., Matsumoto, Y., & Watanabe, T. (2022). Dependency patterns of
complex sentences and semantic disambiguation for abstract meaning representation
parsing. Journal of Natural Language Processing, 29(2), 515-541.

[39.] Chami, M., Abdoun, N., & Bruel, J. M. (2022, July). Artificial Intelligence
Capabilities for Effective Model‐Based Systems Engineering: A Vision Paper.
In INCOSE International Symposium (Vol. 32, No. 1, pp. 1160-1174).

[40.] Spyder IDE Contributors. (2023). Spyder (Version 5.4.1) [Software]. Available from
https://www.spyder-ide.org/

[41.] JetBrains. (2023). PyCharm 2023.2.1 (Community Edition) [Software]. Build #PC-
232.9559.58, built on August 22, 2023. Retrieved from
https://www.jetbrains.com/pycharm/

[42.] PlantUML Integration. (2023). PlantUML integration (Version 7.0.0-IJ2023.2) for
PyCharm [Software plugin]. Available from JetBrains Marketplace.

[43.] Claghorn, R., & Shubayli, H. (2021, July). Requirement Patterns in the Construction
Industry. In INCOSE International Symposium (Vol. 31, No. 1, pp. 391-408).

[44.] Kulkarni, A., & Shivananda, A. (2019). Natural language processing recipes. Apress.

[45.] Octavially, R. P., Priyadi, Y., & Widowati, S. (2022, November). Extraction of
Activity Diagrams Based on Steps Performed in Use Case Description Using Text
Mining (Case Study: SRS Myoffice Application). In 2022 2nd International
Conference on Electronic and Electrical Engineering and Intelligent System
(ICE3IS) (pp. 225-230). IEEE.

[46.] Mande, R., Yelavarti, K. C., & JayaLakshmi, G. (2018, December). Regular
Expression Rule-Based Algorithm for Multiple Documents Key Information
Extraction. In 2018 International Conference on Smart Systems and Inventive
Technology (ICSSIT) (pp. 262-265). IEEE.

[47.] Ismukanova, A. N., Lavrov, D. N., Keldybekova, L. M., & Mukumova, M. Z. (2018).
USING THE PYTHON LIBRARY WHEN CLASSIFYING SCIENTIFIC TEXTS.
In EUROPEAN RESEARCH: INNOVATION IN SCIENCE, EDUCATION AND
TECHNOLOGY (pp. 9-13).

[48.] Srinivasa-Desikan, B. (2018). Natural Language Processing and Computational
Linguistics: A practical guide to text analysis with Python, Gensim, spaCy, and
Keras. Packt Publishing Ltd.

[49.] Jugran, S., Kumar, A., Tyagi, B. S., & Anand, V. (2021, March). Extractive
automatic text summarization using SpaCy in Python & NLP. In 2021 International
conference on advance computing and innovative technologies in engineering
(ICACITE) (pp. 582-585). IEEE.

[50.] Uysal, A. K., & Gunal, S. (2014). The impact of preprocessing on text
classification. Information processing & management, 50(1), 104-112.

https://www.spyder-ide.org/
https://www.jetbrains.com/pycharm/

75

[51.] Explosion AI. (n.d.). spaCy: Industrial-strength Natural Language Processing in
Python. Retrieved April 4, 2024, from https://spaCy.io

[52.] Vasiliev, Y. (2020). Natural language processing with Python and spaCy: A practical
introduction. No Starch Press.

[53.] Bashir, N., Bilal, M., Liaqat, M., Marjani, M., Malik, N., & Ali, M. (2021, March).
Modeling class diagram using nlp in object-oriented designing. In 2021 National
Computing Colleges Conference (NCCC) (pp. 1-6). IEEE.

[54.] Universal Dependencies. (n.d.). Dependency Relations Index. Retrieved [03/20/24],
from https://universaldependencies.org/u/dep/index.html

[55.] Sarkar, D. (2016). Text analytics with python (Vol. 2). New York, NY, USA:: Apress.

[56.] Herchi, H., & Abdessalem, W. B. (2012). From user requirements to UML class
diagram. arXiv preprint arXiv:1211.0713.

[57.] Almazroi, A. A., Abualigah, L., Alqarni, M. A., Houssein, E. H., AlHamad, A. Q. M.,
& Elaziz, M. A. (2021). Class diagram generation from text requirements: An
application of natural language processing. Deep Learning Approaches for Spoken
and Natural Language Processing, 55-79.

[58.] Arachchi, K. D. (2022). AI Based UML Diagrams Generator (Doctoral dissertation).

[59.] PlantUML. (2009). Retrieved from https://plantuml.com/

[60.] Arachchi, K. D. (2022). AI Based UML Diagrams Generator (Doctoral dissertation).

[61.] Bozyiğit, F. (2019). Object oriented analysis and source code validation using natural
language processing.

[62.] Baginski, J. (2018). Text analytics for conceptual modelling

https://spacy.io/
https://universaldependencies.org/u/dep/index.html

76

APPENDIX

77

APPENDIX

The tables below show the algorithms used to extract potential classes, methods,

attributes and relationships for system modeling language diagram generation.

ALGORITHM 1: ALGORITHM TO EXTRACT POTENTIAL CLASSES
Input: Document
Output: set of potential Classes

1 Create empty set for a potential class
2 #Classes from Noun Chunks
3 for each sentence in the document:
4 for each noun chunk in the sentence (chunk):
5 if chunk doesn’t contain digits or stop words:
6 Add its lemma of the chunk to the set of potential classes
7
8 #Classes from Singular Nouns
9 for each token in document:
10 if token is noun or proper noun (POS):
11 Add its lemma of the token to the set of potential classes
12
13 #Classes from Noun Pairs
14 for i from 0 → 2nd to last token in document:
15 if token i is noun or proper noun (POS):
16 if token at i+1 is also noun or proper noun (POS):
17 Combine lemmas of tokens i and i+1 to form noun pairs
18 Add noun pairs to the set of potential classes
19
20 #Classes from Subjects and Their Modifiers
21 for each token in document:
22 if token dependency: ‘nominal’ or ‘passive subject’:
23 Get dependency: ‘compounds’ to the left of token
24 Get dependency: ‘amods’ to the left of token
25 Combine lemmas of compounds and amods with lemma of token
26 Add the combined string to the set of potential classes
27
28 Return the set of potential classes

78

ALGORITHM 2: ALGORITHM TO EXTRACT POTENTIAL METHODS
Input: Document
Output: set of potential Methods

1 Create empty set for a potential Methods
2 Initialize Verb_Noun pair empty set
3 Initialize Last_Verb as None
4 #Methods from Verb Noun Pairs
5 for each token in sentence:
6 if token is Verb (POS):
7 Add token lemma to set of potential methods
8 Update Last_Verb to lemma token
9 elif token is noun or proper noun and Last_Verb is not None
10 Add Last_Verb and lemma token pair to Verb_Noun pair
11 #Update Potential Methods with Verb_Noun pairs
12 for each pair in Verb_Noun pair:
13 Combine pair into string
14 Add string to set of potential Methods
15
16 Return the set of potential methods

ALGORITHM 3: ALGORITHM TO EXTRACT POTENTIAL ATTRIBUTES
Input: Document
Output: set of potential Attributes

1 Create empty set for potential attributes
2 #Attributes from Noun Dependency Pairs
3 for each token in document:
4 if token is Noun (POS):
5 Get dependency: ‘compound’ left of token
6 Get dependency: ‘amod’ left of token
7 if dependencies found:
8 Add both tokens to set of potential attributes
9
10 #Attributes from Noun Child Pairs
11 for each token in document:
12 if token is Noun (POS):
13 Get child dependency: ‘compound’
14 Get child dependency: ‘amod’
15 Add child tokens to a list and include noun itself
16 Combine parts to form attribute phrase
17
18 Return the set of potential attributes

79

ALGORITHM 4: ALGORITHM TO EXTRACT POTENTIAL RELATIONSHIPS
Input: Document
Output: set of potential Relationships

1 Create empty set for potential relationships
2 #Relationships from Verbs and Nouns
3 for each token in document:
4 if token is Verb (POS):
5 for each child of the verb:
6 if child is Noun or Proper Noun (POS) and appears in potential classes:
7 Add (verb, child) in lemmas to relationships
8 Add (verb) to relationships
9
10 #Relationships from Direct Objects
11 for each token in document:
12 if token is Verb (POS):
13 for each child of the verb:
14 if child dependency: ‘direct object’:
15 Add (verb, child) to relationships
16
17 #Relationships from Determiners and Prepositions
18 for each token in document:
19 if token is Verb (POS):
20 for each child of the verb:
21 if child dependency: ‘preposition’ or ‘determiner’
22 Add (verb, child) to relationships
23
24 Return the set of potential relationships

80

BIOGRAPHICAL SKETCH

Joshua Andre Ontiveros attended South Texas College and pursued his educational career

as an undergraduate at the University of Texas Rio Grande Valley, where he graduated Magna

Cum Laude with a Bachelor’s degree in mechanical engineering in May 2022. During his

undergraduate studies, Joshua helped design a three-stage refrigeration system to store COVID-

19 vaccines for his senior design project, displaying his skills in advanced system designs.

Joshua continued for his Master’s degree at the University of Texas Rio Grande Valley in Fall

2022 joining the National Science Foundation CREST Center for Multidisciplinary Research

Excellence in Cyber-Physical Infrastructure Systems (MECIS) as a research assistant. His

research was funded by the National Science Foundation and focused on how AI can bridge the

gap between human language to create system modeling diagrams for system engineers. Joshua

completed his Master of science in Engineering degree in Mechanical Engineering in May 2024.

Joshua Andre Ontiveros can be reached at Josh.ontiveros77@gmail.com.

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	1.1 Natural Language Processing
	2.1 Rule-based Approach for NLP-Driven SysML Diagrams
	2.2 Machine Learning-based Approach for NLP-Driven SysML Diagrams
	2.3 Hybrid Approach for NLP-Driven SysML Diagrams
	3.1 Challenges of Implementing a Rule-based Approach
	3.2 Challenges of Implementing Machine Learning-based Approach
	3.3 Challenges of Implementing Hybrid Approach
	3.4 Motivation for Research

	4.1 Normalization Process
	4.2 Linguistic Features
	4.2.1 Transforming to Lowercase
	4.2.2 Removing Punctuations
	4.2.3 Removing Numericals

	4.3 NLP Module
	4.3.1 Sentence Tokenization
	4.3.2 Word Tokenization
	4.3.3 Removing Stop Words
	4.3.4 Part of Speech (POS) Tagging
	4.3.5 Lemmatization
	4.3.6 Dependency Parsing
	4.3.7 Noun Chunking

	4.4 Information Extraction
	4.4.1 Extracting Potential Classes
	4.4.2 Extracting Potential Methods
	4.4.3 Extracting Potential Attributes
	4.4.4 Extracting Potential Relationships

	4.5 Data Serialization
	4.6 Selection Process
	4.7 Visualization Script Generator

	REFERENCES
	BIOGRAPHICAL SKETCH

