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ABSTRACT
This paper addresses the distributed tracking control of multiple uncertain high-order nonlinear
systems with prescribed performance requirements. By introducing a performance function and a
nonlinear transformation, the prescribed fixed-time performance tracking control problem is refor-
mulated as a distributed tracking control problem for multiple special nonlinear systems. With the
aid of the universal approximation theorem for continuous functions and algebraic graph theory,
distributed robust adaptive controllers are designed using the backstepping technique. Simulation
results are presented to demonstrate the effectiveness of the proposed algorithms.
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1. Introduction

Over the past few decades, significant research efforts
have been devoted to distributed cooperative control
of multiple systems. This field has proven to be crucial
across diverse domains, wheremultiple agents or com-
ponents collaborate to achieve shared goals. Applica-
tions span a wide range of areas, including search-
and-rescue operations, swarm robotics, autonomous
vehicles, power distribution networks, wireless sen-
sor networks, and satellite and UAV networks, among
others.

The consensus control problem involves design-
ing distributed control laws for a group of systems
to ensure that their outputs converge to an agree-
ment on a specific quantity of interest. It plays a
crucial role in distributed cooperative control, with
extensive research yielding significant results (Mechali
et al., 2021, 2022; Ullah et al., 2021; R. Yang et al., 2022;
Zhang et al., 2023). A key performance metric for
consensus algorithms is the consensus rate, particu-
larly in the context of multiple first-order linear sys-
tems. The consensus rate is determined by the sec-
ond smallest eigenvalue of the Laplacian matrix of
the communication graph, referred to as the algebraic
connectivity. Strategies to enhance algorithm perfor-
mance often involvemanipulating the communication
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graph to increase algebraic connectivity (Kim & Mes-
bahi, 2006). Another approach focuses on designing
finite-time consensus algorithms that drive consensus
errors to zero within a finite time. For example, in
L. Wang and Xiao (2010), finite-time algorithms were
proposed for single-integrator dynamic systems using
Lyapunov techniques. Similarly, Khoo et al. (2009) and
Ullah et al. (2021) developed finite-time algorithms
using terminal sliding-mode control for multi-robot
systems. In Shi et al. (2019), consensus algorithms for
nonlinear dynamic systems were introduced, employ-
ing integral sliding-mode control and finite-time
observers. Meanwhile, D. Chen et al. (2020), G. Dong
et al. (2021), and Li et al. (2022) explored the use of
fuzzy logic control and neural networks to achieve
practical finite-time convergence of consensus errors.
However, traditional finite-time consensus algorithms
are sensitive to initial conditions, leading to longer set-
tling times when initial errors are large. To address
this, researchers have explored fixed-time consensus
algorithms in recent decades (Hao et al., 2021; Hong
et al., 2017;Mechali et al., 2021, 2022; Ning et al., 2018;
H. Wang et al., 2019; Y. Wang et al., 2019; Zhao
et al., 2022; Zuo & Tie, 2014, 2016). These algo-
rithms ensure that the settling time is independent of
initial conditions, although they rely heavily on the
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communication graph’s topology, which may not be
known in practice. To overcome this limitation, pre-
scribed fixed-time consensus algorithms have been
proposed. For instance, Zuo et al. (2023) addressed
the consensus problem for first-order systems with-
out a leader, developing practical prescribed fixed-time
algorithms by estimating algebraic connectivity.

Fixed-time and prescribed finite-time control algo-
rithms ensure the convergence of consensus errors
to zero within a finite time. However, these algo-
rithms may face limitations in transient performance,
which might not satisfy specific requirements. To
overcome this challenge, the prescribed performance-
based controller design technique has proven effec-
tive (Zhang et al., 2024). For example, the study in F.
Chen and Dimarogonas (2021) investigated the for-
mation control of first-order and second-order sys-
tems with multiple leaders. Distributed tracking con-
trollers were designed to ensure prescribed perfor-
mance by utilising the prescribed performance func-
tion (PPF). Similarly, Huang et al. (2024) explored
prescribed performance formation control for second-
order multi-agent systems, proposing distributed con-
trollers that meet predefined performance crite-
ria using the PPF. Notably, both studies (F. Chen
& Dimarogonas, 2021; Huang et al., 2024) focussed
on linear systems with no uncertainties in their
dynamics.

In this paper, we address the prescribed perfor-
mance consensus control problem for multiple high-
order nonlinear systemswith uncertainties. Our objec-
tive is to design a distributed controller for each sys-
tem, ensuring that the tracking error converges to a
small neighbourhood of the origin within a prescribed
fixed time while meeting specific performance crite-
ria. To achieve this, we adopt a multifaceted approach.
First, we introduce a prescribed performance func-
tion (PPF) that integrates fixed-time, transient, and
steady-state performance requirements into a unified
framework. Next, using the Lyapunov technique, alge-
braic graph theory, and the universal approximation
theorem of functions, we propose distributed virtual
controllers that satisfy the required performance con-
ditions. Finally, we design real controllers employing
the backstepping technique to ensure the system out-
puts converge to the desired outputs within the pre-
scribed fixed time and meet the defined performance
standards. The contributions of this paper are as
follows:

• This paper addresses the leader-following control
problem for multiple nonlinear systems with per-
formance requirements. In contrast, the study in
Zuo et al. (2023) solves the leader-following control
problem for first-order uncertain nonlinear systems
without considering transient performance require-
ments. In this work, both transient and steady-state
performance are incorporated by introducing a per-
formance function in the controller design.

• This paper addresses the leader-following control
problem for multiple uncertain high-order non-
linear systems with performance requirements. In
contrast, the studies in F. Chen and Dimarog-
onas (2021) and Huang et al. (2024) solve the
leader-following control problemwith performance
requirements for first-order and second-order sys-
temswithout uncertainties. In this work, the leader-
following control problem for high-order nonlinear
systems under uncertainty is studied and a system-
atic controller design procedure is proposed.

The subsequent sections of this paper are organised
as follows: Section 2 outlines the problem formula-
tion. Section 3 presents the systematic design of the
controllers. Section 4 provides the simulation results.
Finally, the paper is concluded in Section 5.

2. Problem statement and preliminaries

Consider a group ofm nonlinear systems described by
the following equations

ẋij = xi+1,j + fij(x̄ij)

i = 1, . . . , n − 1 (1)

ẋnj = uj + fnj(x̄nj) (2)

yj = x1j (3)

where xij ∈ R denotes the state, uj ∈ R is the control
input, yj is the output, fij is a smooth function of x̄ij
and is unknown, and x̄ij = [x1j, . . . , xij]�. The initial
condition x̄nj(0) ∈ X where X = {ζ | ‖ζ‖ < r, ∀ ζ ∈
Rn} is a compact set in Rn for some positive constant r.

It is assumed that there exists a virtual systemwhose
dynamics are represented by the following equations.

ẋi,m+1 = xi+1,m+1 + fi,m+1(x̄i,m+1),

i = 1, . . . , n − 1 (4)

ẋn,m+1 = um+1 + fn,m+1(x̄n,m+1) (5)
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ym+1 = x1,m+1 (6)

where um+1 is a known time-varying function. The
virtual system is labelled as (m + 1)th system.

The systems indexed by j for 1 ≤ j ≤ m are referred
to as the follower systems, while the system indexed
by (m + 1) is referred to as the leader system. In the
context of m follower systems and one leader system,
there is communication between systems. If we con-
sider each system as a vertex and the indexes of the
vertexes are the same as the labels of the systems, the
communication between systems can be defined by a
graph denoted as G = {V , E}. Here, V = {vj}m+1

j=1 rep-
resents the vertex set, andE = {Ekj}1≤k�=j≤m+1 denotes
the edge set. It is assumed that the communication
between systems is bidirectional. An edge Ekj means
that the information of system j is available to system k
and vice versa. For convenience, we assign a tail and a
head for each edge. Without loss of generality, vertex k
is considered as the head and vertex j is considered as
the tail for edge Ekj. A path between vertex k and vertex
j is a set of edges which connect vertex k and vertex j. A
path forms a simple cycle if the path is closed. A graph
is connected if for every pair of vertexes there is a path
to connect them. A tree is defined as a connected graph
without cycles. A tree is a spanning tree if it contains all
the vertexes in the graph.

For a vertex j, the set of its neighbours, represented
as Nj, comprises all vertexes directly connected to
vertex j through edges. For (m + 1) vertexes and K
edges, the incidence matrix D(G) = [dkj] ∈ R(m+1)×K

can be defined to characterise the graph structure. For
K edges, we label them by 1, 2, . . . ,K. If the pth edge
is Ekj, dkp = 1 and djp = −1. It is obvious that D(G)
is not unique and depends on the labels of the edges.
The Laplacian matrix of the graph G is denoted as
L = D(G)D(G)�. The edge Laplacianmatrix is defined
as Le = D(G)�D(G).

For system j, it is assumed that system k is one of
its neighbours. We define the tracking error between
system j and system k as

ejk = yj − yk (7)

for 1 ≤ j ≤ m and k ∈ Nj. The transient and steady-
state performance requirements on the tracking
error ejk can be defined by a PPF (Bechlioulis
& Rovithakis, 2008). With the aid of a given PPF, the
problem considered in this paper is as follows.

Control Problem: For the follower systems in (1)–(3)
and the leader system in (4)–(6), the problem consid-
ered in this article is to design a distributed control law
for system jusing its neighbours’ information such that

|ejk(t)| < ρ(t) (8)

lim
t→T

|yj(t)− ym+1(t)| ≤ ε (9)

lim
t→∞(yj(t)− ym+1(t)) = 0 (10)

for 1 ≤ j ≤ m and i ∈ Nj, where ρ is a PPF, T and ε
are prescribed time constant and the threshold of the
tracking errors.

In order to solve our problem, the following
assumptions are made on the communication graph.

Assumption 2.1: The communication graph G has a
spanning tree with the node m+ 1 as the root node.

Assumption 2.2: The state of the leader system is
bounded.

Assumption 2.1 indicates that the information of
the leader can be shared among all follower systems.
This assumption is crucial for controller design and
is a requirement in all literature on leader-following
control problems. Assumption 2.2 is reasonable, as it is
practical for all state values of a system to be bounded.

3. Distributed controller design

3.1. Prescribed fixed-time performance function

In order to meet the transient performance in (8) and
the steady-state performance in (9), the prescribed
performance function is chosen as

ρ(t) =
⎧⎨
⎩(ρ0 − ρ∞)exp

(
− c3Tt
T − t

)
+ ρ∞, 0≤ t<T

ρ∞, t ≥ T

where |eji(0)| < ρ0 for 1 ≤ j ≤ m and 1 ≤ i ≤ m +
1, ρ∞ < ε

m , and c3 > 1. The constant T is the pre-
specified maximum allowable convergence time for
ρ(t) converging from the given maximum initial error
ρ0 to the maximum allowable steady-state error ρ∞,
and c3 denotes the prespecifiedminimumconvergence
rate. The PPF has the following properties (Bechlioulis
& Rovithakis, 2008; P. Yang & Su, 2022): (1) ρ(t) is
bounded, i.e. 0 < ρ∞ ≤ ρ(t) ≤ ρ0 and ρ̇(t) ≤ 0; and
(2) limt→Tρ(t) = ρ∞ and ρ(t) = ρ∞ for any t ≥ T.



4 E. ALVAREZ ANDW. DONG

With the aid of the PPF, the following tracking error
is defined

vjk = F(ejk) = ln
(ejk + ρ

ρ − ejk

)
(11)

where F(ejk) is a natural logarithm function of ejk.
Then,

v̇jk = Ajk(ėjk +�ejk) (12)

where

Ajk = 1
ejk + ρ

+ 1
ρ − ejk

, � = − ρ̇
ρ
.

For the PPF ρ, the following results have been proved
in P. Yang and Su (2022).

Lemma 3.1: For the PPF ρ,

(1) ρ(t) is monotonically decreasing and� > 0.
(2) Ajk >

2
ρ ≥ 2

ρ0
> 0.

Lemma 3.2: For the transformation (11), if vjk is
bounded for 1 ≤ j ≤ m and k ∈ Nj, Equations (8) and
(9) are satisfied.

3.2. Controller design

Under Assumption 2.1, the graph G has a spanning
tree. The edge set E can be written as Et ∪ Ec where
Et includes the edges of the spanning tree and Ec
includes the edges which are not in the spanning tree.
Based on the decomposition of the edges, the graph
G can be decomposed as G = Gt ∪ Gc. Since there are
m+ 1 vertexes, the number of edges in Et is m. We
label the edges in Et first and then label the edges in
Ec. The corresponding incidence matrix D(G) can be
written as

D = [Dt ,Dc] (13)

where Dt ∈ R(m+1)×m and Dc ∈ R(m+1)×(K−m) repre-
sent, respectively, the incidence matrices correspond-
ing to the spanning tree edges and other edges. It is
shown that the columns of Dc are linearly depend on
the columns of Dt (Chowdhury et al., 2018; Mesbahi

& Egerstedt, 2010) and

DtZ = Dc

where

Z = (D�
t Dt)

−1D�
t Dc.

The incidence matrix D can also be written as the
following block matrix

D =
[
D1
D2

]
=
[
D1t D1c
D2t D2c

]
(14)

where D1 ∈ Rm×K , D2 ∈ R1×K , D1t ∈ Rm×m, D1c ∈
Rm×(K−m),D2t ∈ R1×m, andD2c ∈ R1×(K−m). It can be
verified that

D1tZ = D1c, D2tZ = D2c, Z = D−1
1t D1c.

Let

η =
⎡
⎢⎣
η1
...
ηK

⎤
⎥⎦ = D�

[
y

ym+1

]
=

⎡
⎢⎢⎣

...
ejk
...

⎤
⎥⎥⎦ (15)

where y = [y1, . . . , ym]�. Noting the definition of the
incidence matrix, we have

η = D�
[

y
ym+1

]
− D�1ym+1

= [D1t ,D1c]�ỹ =
[

D�
1t ỹ

Z�D�
1t ỹ

]

=
[
Im×m
Z�
]
D�
1t ỹ (16)

where 1 is a vector whose elements are one and ỹ =
y − 1ym+1.

Let

z =
⎡
⎢⎣
z1
...
zK

⎤
⎥⎦ = F(η) =

⎡
⎢⎣
F(η1)

...
F(ηL)

⎤
⎥⎦ =

⎡
⎢⎢⎣

...
vjk
...

⎤
⎥⎥⎦ (17)

with the aid of (12), we have

ż = A(η̇ +�η) = AD�
1 (

˙̃x1∗ +�x̃1∗) (18)

where A = diag(Aji) is a diagonal positive definite
matrix and x̃1∗ = [x̃11, . . . , x̃1m]� = [x11 − x1,m+1,
. . . , x1m − x1,m+1]�.
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Lemma 3.3: Under Assumption 2.1, if z is bounded,
and

lim
t→∞ z�AD�

1 D1Az = 0 (19)

then limt→∞ η = 0 and Equations (8) and (9) are sat-
isfied.

Proof: Let ηI = [η1, . . . , ηm]� and ηII = [ηm+1, . . . ,
ηK]�. By Equation (16), we have

ηII = Z�ηI . (20)

Let zI = [z1, . . . , zm]� and zII = [zm+1, . . . , zK]�. By
the mean value theorem and the property of the func-
tion F(·) in Lemma 3.1,

zI = F(0)+ GηI = GηI

zII = F(0)+ HηII = HZ�ηI

where G = diag([G1, . . . ,Gm]) and H = diag([H1,
. . . ,Hm]) are diagonal matrices with Gi ≥ 2

ρ0
> 0 and

Hi ≥ 2
ρ0
> 0. Equation (19) means that limt→∞ D1

Az = 0. Noting that

D1Az = [D1t ,D1c]A
[

G
HZ�

]
ηI

= D1t[I,Z]A diag(G,H)
[
I
Z�
]
ηI

= D1t(AIG + ZAIIHZ�)ηI = D1t�ηI

where A = diag(AI ,AII), AI ∈ Rm×m, and AII ∈
R(K−m)×(K−m), � = (AIG + ZAIIHZ�) is a posi-
tive definite matrix. So, Equation (19) means that
limt→∞ ηI = 0. By (20), limt→∞ η = 0.

By Lemma 3.2, the boundedness of z means that
Equations (8) and (9) are satisfied. �

Lemma 3.4: Under Assumption 2.1, if limt→∞ η =
0, and |ejk(t)| ≤ ρ(t) for 1 ≤ j ≤ m and k ∈ Nj, then
Equation (10) is satisfied.

Proof:

lim
t→∞ L

[
y

ym+1

]
= lim

t→∞DD�
[

y
ym+1

]

= lim
t→∞Dη = 0.

If the graph G has a spanning tree, the elements of y
and ym+1 reach consensus based on the property of

the Laplacian matrix L. So, y − 1ym+1 converges to
zero. �

Next, we design distributed controllers with the aid
of the universal approximation theorem of continuous
function and the backstepping technique.

In the dynamics (1) and (2), there is uncertainty
fij(x̄ij). With the aid of the uniform approximation
theoremof functions (Hornik et al., 1989; Stone, 1948),
in the compact set X for selected basis vectors ψij(x̄ij)
there exists an ideal constant weight vector θij such that

fij(x̄ij) = ψ�
ij (x̄ij)θij + εij (21)

where εij is the approximation error and is bounded
by unknown constants δij and δ̄ (i.e. |εij| ≤ δij ≤ δ̄).
Then (1) and (2) can be written as

ẋij = xi+1,j + ψ�
ij (x̄ij)θij + εij,

i = 1, . . . , n − 1 (22)

ẋnj = uj + ψ�
nj (x̄nj)θnj + εnj. (23)

Substitute (22) into (18) for i = 1, we have

ż = AD�
1 (x2∗ + ψ�

1∗θ1∗ +�x1∗
−�x1,m+11 − ẋ1,m+11 + ε1∗) (24)

where x1∗ = [x11, . . . , x1m]�, x2∗ = [x21, . . . , x2m]�,
ψ1∗ = diag([ψ11, . . . ,ψ1m]), and ε1∗ = [ε11,
. . . , ε1m]�.

Step 1:Assume that x2j is a virtual control input. The
virtual controller is chosen as

α1j = −λ1
∑
l∈Nj

Ajlzjl −�x1j − ψ�
1j θ̂1j

−
s1j
∑

l∈Nj
Ajlzjl√(∑

l∈Nj
Ajlzjl
)2 + h(t)

(25)

= −λ1(D1Az)j −�x1j − ψ�
1j θ̂1j

− s1j(D1Az)j√
((D1Az)j)2 + h(t)

(26)

where λ1 > 0, θ̂1j is an estimate of θ1j and will be cho-
sen later, s1j is the magnitude of a robust term and
will be chosen later, (·)j denotes the jth element of its
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argument vector, and h(t)(> 0) satisfies∫ ∞

0

√
h(t) dt < ∞. (27)

There are different choices of h. For example, h(t) =
e−t, h(t) = 1

(t+1)4 , etc.
In order to find the update laws for θ̂1j and s1j, we

choose a Lyapunov function

V1 = 1
2
z�z + 1

2

m∑
j=1

θ̃�
1j


−1
1j θ̃1j

+ 1
2

m∑
j=1

γ−1
1j s̃21j (28)

where 
1j is a positive definite constant matrix, γ1j is a
positive constant, and

θ̃1j = θ1j − θ̂1j (29)

s̃1j = s1,m+1 − s1j (30)

where

s1,m+1 = max
1≤j≤m

max
t∈[0,∞)

|ẋ1,m+1 +�x1,m+1 − ε1j|

is a positive constant. The derivative of V1 is

V̇1 = z�AD�
1 (x2∗ − α1∗)− λ1z�AD�

1 D1Az

+ z�AD�
1 ψ

�
1∗θ̃1∗ −

m∑
j=1

s1j((D1Az)j)2√
((D1Az)j)2 + h

+ z�AD�
1 (ε1∗ −�x1,m+11 − ẋ1,m+11)

+
m∑
j=1

θ̃�
1j


−1
1j

˙̃θ1j +
m∑
j=1

γ−1
1j s̃1,j˙̃s1j

= z�AD�
1 (x2∗ − α1∗)− λ1z�AD�

1 D1Az

−
m∑
j=1

s1,m+1((D1Az)j)2√
((D1Az)j)2 + h

+
m∑
j=1
(D�

1 Az)j(ε1j −�x1,m+1 − ẋ1,m+1)

+
m∑
j=1

θ̃�
1j (


−1
1j

˙̃θ1j + ψ1j(D1Az)j)

+
m∑
j=1

s̃1j

⎛
⎜⎝γ−1

1j
˙̃s1j + ((D1Az)j)2√

((D1Az)j)2 + h

⎞
⎟⎠

≤ z�AD�
1 (x2∗ − α1∗)− λ1z�AD�

1 D1Az

−
m∑
j=1

s1,m+1((D1Az)j)2√
((D1Az)j)2 + h

+
m∑
j=1

s1,m+1(D�
1 Az)j

+
m∑
j=1

θ̃�
1j


−1
1j (

˙̃θ1j + 
1jψ1j(D1Az)j)

+
m∑
j=1

s̃1j

⎛
⎜⎝γ−1

1j
˙̃s1j + ((D1Az)j)2√

((D1Az)j)2 + h

⎞
⎟⎠

≤ z�AD�
1 (x2∗ − α1∗)− λ1z�AD�

1 D1Az

+ ms1,m+1
√
h(t)+

m∑
j=1

θ̃�
1,j


−1
1j (

˙̃θ1j

+ 
1jψ1,j(D1Az)j)

+
m∑
j=1

s̃1jγ−1
1j

⎛
⎜⎝˙̃s1j + γ1j((D1Az)j)2√

((D1Az)j)2 + h

⎞
⎟⎠

where α1∗ = [α11, . . . ,α1m]� and we apply the
inequality ζ − ζ 2√

ζ 2+h
≤ √

h for any scalar ζ .

If we choose the update laws

˙̂θ1j = 
1jψ1,j(D1Az)j =: τ [1]1j (31)

ṡ1j = γ1j((D1Az)j)2√
((D1Az)j)2 + h(t)

, (32)

then

V̇1 ≤ z�AD�
1 (x2∗ − α1∗)− λ1z�AD�

1 D1Az

+ m
√
h. (33)

Step 2: Since x2j is not the control input, it cannot be
α1j. Let

ξ2j = x2j − α1j. (34)

Then

ξ̇2j = x3j + ψ�
2j θ2j + ε2j − α̇1j (35)

= x3j + ψ�
2j θ2j + ε2j − ∂α1j

∂x1j
(x2j + ψ�

1j θ1j)

−
∑
l∈Nj

∂α1j

∂x1l
(x2l + ψ�

1l θ1l)− ∂α1j

∂x1j
ε1j
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−
∑
l∈Nj

∂α1j

∂x1l
ε1l − ∂α1j

∂θ̂1j

˙̂
θ1j − ∂α1j

∂h
ḣ

− ∂α1j

∂s1j
ṡ1j (36)

It is assumed that x3j is a virtual control input. The
following virtual input is proposed as

α2j = −λ2jξ2j − ψ�
2j θ̂2j − (D1Az)j

− s2jξ2jβ22j√
ξ 22jβ

2
2j + h

+ ∂α1j

∂x1j
(x2j + ψ�

1j θ̂1j)

+ ∂α1j

∂θ̂1j

˙̂θ1j +
∑
l∈Nj

∂α1j

∂x1l
(x2l + ψ�

1l θ̂1l)

+ ∂α1j

∂h
ḣ + ∂α1j

∂s1j
ṡ1j (37)

where

β2j = 1 +
√(

∂α1j

∂x1j

)2
+ h

+

√√√√√
⎛
⎝∑

l∈Nj

∂α1j

∂x1l

⎞
⎠

2

+ h

λ2 > 0, θ̂2j and s2j are estimates of θ2j and δ̄2∗ =
max1≤j≤m δ2j, respectively. In order to design the
update laws for θ̂1j, θ̂2j, and s2j, we choose a Lyapunov
function

V2 = V1 + 1
2

m∑
j=1

ξ 22j +
1
2

m∑
j=1

θ̃�
2j


−1
2j θ̃2j

+ 1
2

m∑
j=1

γ−1
2j s̃22j (38)

where θ̃2j = θ2j − θ̂2j, s̃2j = δ̄2∗ − s2j, 
2j is a positive
definite constant matrix, and γ2j is a positive constant.

The derivative of V2 is

V̇2 ≤ z�AD�
1 (x2∗ − α1∗)− λ1z�AD�

1 D1Az

+ ms1,m+1
√
h(t)+

m∑
j=1

θ̃�
1,j


−1
1j (

˙̃θ1j + τ
[1]
1j )

+
m∑
j=1

s̃1jγ−1
1j

⎛
⎜⎝˙̃s1j + γ1j((D1Az)j)2√

((D1Az)j)2 + h

⎞
⎟⎠

+
m∑
j=1

ξ2j(x3j − α2j)+
m∑
j=1

[
−λ2jξ 22j

− ξ2j(D1AZ)j −
s2jξ 22jβ

2
2j√

ξ 22jβ
2
2j + h

+ ξ2jψ
�
2j θ̃2j + ξ2jε2j − ξ2j

∂α1j

∂x1j
ψ�
1j θ̃1j

− ξ2j
∑
l∈Nj

∂α1j

∂x1l
ψ�
1l θ̃1l − ξ2j

∂α1j

∂x1j
ε1j

−ξ2j
∑
l∈Nj

∂α1j

∂x1l
ε1l

⎤
⎦

+
m∑
j=1

θ̃�
2j


−1
2j

˙̃θ2j +
m∑
j=1

γ−1
2j s̃2j˙̃s2j

≤ −λ1z�AD�
1 D1Az + ms1,m+1

√
h

+
m∑
j=1

θ̃�
1j


−1
1j

(
˙̃θ1j + τ

[1]
1j

−
1jψ1jξ2j
∂α1j

∂x1j
− 
1jψ1j

∂α1j

∂x1j

∑
l∈Nj

ξ2l

⎞
⎠

+
m∑
j=1

s̃1jγ−1
1j

⎛
⎜⎝˙̃s1j + γ1j((D1Az)j)2√

((D1Az)j)2 + h

⎞
⎟⎠

+
m∑
j=1

ξ2j(x3j − α2j)+
m∑
j=1

[
−λ2jξ 22j

− s2jξ 22jβ
2
2j√

ξ 22jβ
2
2j + h

+ |ξ2j|
⎛
⎝1 +

√(
∂α1j

∂x1j

)2
+ h

+

√√√√√
⎛
⎝∑

l∈Nj

∂α1l

∂x1l

⎞
⎠

2

+ h

⎞
⎟⎠ δ̄2∗

+
m∑
j=1

θ̃�
2j (


−1
2j

˙̃θ2j + ψ2jξ2j)

+
m∑
j=1

γ−1
2j s̃2j˙̃s2j
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≤ −λ1z�AD�
1 D1Az + (s1,m+1 + δ̄2∗)m

√
h

+
m∑
j=1

θ̃�
1j


−1
1j

(
˙̃θ1j + τ

[1]
1j

−
1jψ1jξ2j
∂α1j

∂x1j
− 
1jψ1j

∂α1j

∂x1j

∑
l∈Nj

ξ2l

⎞
⎠

+
m∑
j=1

s̃1jγ−1
1j

⎛
⎜⎝˙̃s1j + γ1j((D1Az)j)2√

((D1Az)j)2 + h

⎞
⎟⎠

+
m∑
j=1

ξ2j(x3j − α2j)−
m∑
j=1

λ2jξ
2
2j

+
m∑
j=1

θ̃�
2j


−1
2j (

˙̃θ2j + 
2jψ2jξ2j)

+
m∑
j=1

γ−1
2j s̃2j

⎛
⎜⎝˙̃s2j +

γ2jξ
2
2jβ

2
2j√

ξ 22jβ
2
2j + h

⎞
⎟⎠

We choose the update law (32) for s1j and the update
laws for θ̂1j, θ̂2j, and s2j as

˙̂θ1j = τ1j − 
1jψ1jξ2j
∂α1j

∂x1j

− 
1jψ1j
∂α1j

∂x1j

∑
l∈Nj

ξ2l =: τ [2]1j (39)

˙̂θ2j = 
2jψ2jξ2j =: τ [2]2j (40)

ṡ2j = γ2jξ
2
2jβ

2
2j√

ξ 22jβ
2
2j + h

(41)

Then

V̇2 ≤ −λ1z�AD�
1 D1Az −

m∑
j=1

λ2jξ
2
2j

+
m∑
j=1

ξ2j(x3j − α2j)+ (s1,m+1 + δ̄2∗)m
√
h.

Step i: Since xij is not a real control input, it cannot be
αi−1,j. Let

ξij = xij − αi−1,j (42)

Then

ξ̇ij = xi+1,j + ψ�
ij θij + εij − α̇i−1,j (43)

= xi+1,j + ψ�
ij θij + εij

−
i−1∑
k=1

∂αi−1,j

∂xkj
(xk+1,j + ψ�

kj θkj + εkj)

−
i−1∑
k=1

∑
l∈Nj

∂αi−1,j

∂xkl
(xk+1,l + ψ�

kl θkl + εkl)

−
i−1∑
k=1

∂αi−1,j

∂θ̂kj

˙̂
θkj −

i−1∑
k=1

∑
l∈Nj

∂αi−1,j

∂θ̂kl

˙̂
θkl

−
i−1∑
k=1

∂αi−1,j

∂skj
ṡkj. (44)

It is assumed that xi+1,j is a virtual control input. The
following virtual control input is proposed.

αij = −λijξij − ψ�
ij θ̂ij +

i−1∑
k=1

∂αi−1,j

∂xkj
(xk+1,j

+ ψ�
kj θ̂kj)+

i−1∑
k=1

∑
l∈Nj

∂αi−1,j

∂xkl
(xk+1,l

+ ψ�
kl θ̂kl)+

i−1∑
k=1

∂αi−1,j

∂θ̂kj

˙̂θkj

+
i−1∑
k=1

∑
l∈Nj

∂αi−1,j

∂θ̂kl

˙̂θkl −
sijξijβ2ij√
ξ 2ijβ

2
ij + h

+
i−1∑
k=1

∂αi−1,j

∂skj
ṡkj − ξi−1,j (45)

where

βij = 1 +
i−1∑
k=1

√(
∂αi−1,j

∂xkj

)2
+ h

+
i−1∑
k=1

∑
l∈Nj

√(
∂αi−1,j

∂xkl

)2
+ h

λij > 0, θ̂ij and sij are estimates of θij and δ̄i∗ =
max1≤j≤m δij, respectively. In order to design the
update laws for θ̂ij and sij, we choose a Lyapunov
function

Vi = Vi−1 + 1
2

m∑
j=1

ξ 2ij + 1
2

m∑
j=1

θ̃�
ij 


−1
ij θ̃ij
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+ 1
2

m∑
j=1

γ−1
ij s̃2ij (46)

where θ̃ij = θij − θ̂ij, s̃ij = δ̄i∗ − sij,
ij is a positive def-
inite constant matrix, and γij is a positive constant.

The derivative of Vi is

V̇i ≤ −λ1z�AD�
1 D1Az +

(
s1,m+1 +

i−1∑
k=2

δ̄k∗

)
m

√
h

+
i−1∑
k=1

m∑
j=1

θ̃�
kj


−1
kj (

˙̃θkj + τ
[i−1]
kj )

+
m∑
j=1

s̃1jγ−1
1j

⎛
⎜⎝˙̃s1j + γ1j((D1Az)j)2√

((D1Az)j)2 + h

⎞
⎟⎠

+
m∑
j=1

ξij(xi+1,j − αij)−
i∑

k=2

m∑
j=1

λkjξ
2
kj

+
i−1∑
k=2

m∑
j=1

γ−1
kj s̃kj

⎛
⎜⎝˙̃skj +

γkjξ
2
kjβ

2
kj√

ξ 2kjβ
2
kj + h

⎞
⎟⎠

+
m∑
j=1

ξijψ
�
ij θ̃ij +

m∑
j=1

ξijεij

−
m∑
j=1

ξij

i−1∑
k=1

∂αi−1,j

∂xkj
(ψ�

kj θ̃kj + εkj)

−
m∑
j=1

ξij

i−1∑
k=1

∑
l∈Nj

∂αi−1,j

∂xkl
(ψ�

kl θ̃kl + εkl)

−
m∑
j=1

sijξ 2ijβ
2
ij√

ξ 2ijβ
2
ij + h

+
m∑
j=1

θ̃�
ij 


−1
ij

˙̃θij +
m∑
j=1

γ−1
i,j s̃ij˙̃sij

Noting that |εij| ≤ δ̄i∗, we have

V̇i ≤ −λ1z�AD�
1 D1Az

+
(
s1,m+1 +

i−1∑
k=2

δ̄k∗

)
m

√
h

+
i−1∑
k=1

m∑
j=1

θ̃�
kj


−1
kj

(
˙̃θkj + τ

[i−1]
kj

−
kjψkjξij
∂αi−1,j

∂xkj
− 
kjψkj

∂αi−1,j

∂xkj

∑
l∈Nj

ξil

⎞
⎠

+
m∑
j=1

s̃1jγ−1
1j

⎛
⎜⎝˙̃s1j + γ1j((D1Az)j)2√

((D1Az)j)2 + h

⎞
⎟⎠

+
m∑
j=1

ξij(xi+1,j − αij)−
i∑

k=2

m∑
j=1

λkjξ
2
kj

+
i−1∑
k=2

m∑
j=1

γ−1
kj s̃kj

⎛
⎜⎝˙̃skj +

γkjξ
2
kjβ

2
kj√

ξ 2kjβ
2
kj + h

⎞
⎟⎠

+
m∑
j=1

|ξij|βijδ̄i∗ −
m∑
j=1

δ̄i∗ξ 2ijβ2ij√
ξ 2ijβ

2
ij + h

+
m∑
j=1

s̃ijξ 2ijβ
2
ij√

ξ 2ijβ
2
ij + h

+
m∑
j=1

θ̃�
ij 


−1
ij (

˙̃θij

+ 
ijψijξij)+
m∑
j=1

γ−1
i,j s̃ij˙̃sij

Next, we apply

|ξij|βij ≤ ξ 2ijβ
2
ij√

ξ 2ijβ
2
ij + h

+ √
h

then

V̇i ≤ −λ1z�AD�
1 D1Az

+
(
s1,m+1 +

i∑
k=2

δ̄k∗

)
m

√
h

+
i−1∑
k=1

m∑
j=1

θ̃�
kj


−1
kj

(
˙̃θkj + τ

[i−1]
kj

−
kjψkjξij
∂αi−1,j

∂xkj
− 
kjψkj

∂αi−1,j

∂xkj

∑
l∈Nj

ξil

⎞
⎠

+
m∑
j=1

s̃1jγ−1
1j

⎛
⎜⎝˙̃s1j + γ1j((D1Az)j)2√

((D1Az)j)2 + h

⎞
⎟⎠

+
m∑
j=1

ξij(xi+1,j − αij)−
i∑

k=2

m∑
j=1

λkjξ
2
kj
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+
i−1∑
k=2

m∑
j=1

γ−1
kj s̃kj

⎛
⎜⎝˙̃skj +

γkjξ
2
kjβ

2
kj√

ξ 2kjβ
2
kj + h

⎞
⎟⎠

+
m∑
j=1

θ̃�
ij 


−1
ij (

˙̃θij + 
ijψijξij)

+
m∑
j=1

γ−1
ij s̃ij

⎛
⎜⎝˙̃sij +

γijξ
2
ijβ

2
ij√

ξ 2ijβ
2
ij + h

⎞
⎟⎠

We choose the update laws for skj (1 ≤ k ≤ i − 1) the
same as before and the update laws for θ̂kj (1 ≤ k ≤ i)
and sij as follows.

˙̂θkj = τ
[i−1]
kj − 
kjψkjξij

∂αi−1,j

∂xkj
(47)

− 
kjψkj
∂αi−1,j

∂xkj

∑
l∈Nj

ξil =: τ [i]kj

1 ≤ k ≤ i − 1, (48)
˙̂θij = 
ijψijξij =: τ [i]ij (49)

ṡij = γijξ
2
ijβ

2
ij√

ξ 2ijβ
2
ij + h

(50)

Then

V̇i ≤ −λ1z�AD�
1 D1Az −

i∑
k=2

m∑
j=1

λkjξ
2
kj

+
m∑
j=1

ξ�
ij (xi+1,j − αij)

+
(
s1,m+1 +

i∑
k=2

δ̄k∗

)
m

√
h.

Step n: Since xnj is not a real control input, it cannot be
αn−1,j. Let

ξnj = xnj − αn−1,j (51)

Then

ξ̇nj = uj + ψ�
nj θnj + εnj − α̇n−1,∗

= uj + ψ�
nj θnj + εnj

−
n−1∑
k=1

∂αi−1,j

∂xkj
(xk+1,j + ψ�

kj θkj + εkj)

−
n−1∑
k=1

∑
l∈Nj

∂αi−1,j

∂xkl
(xk+1,l + ψ�

kl θkl + εkl)

−
n−1∑
k=1

∂αi−1,j

∂θ̂kj

˙̂θkj −
n−1∑
k=1

∑
l∈Nj

∂αi−1,j

∂θ̂kl

˙̂θkl

The control input uj is proposed as

αnj = −λnjξnj − ψ�
nj θ̂nj

+
n−1∑
k=1

∂αi−1,j

∂xkj
(xk+1,j + ψ�

kj θ̂kj)

+
n−1∑
k=1

∑
l∈Nj

∂αi−1,j

∂xkl
(xk+1,l + ψ�

kl θ̂kl)

+
n−1∑
k=1

∂αi−1,j

∂θ̂kj

˙̂θkj +
n−1∑
k=1

∑
l∈Nj

∂αi−1,j

∂θ̂kl

˙̂θkl

− snjξnjβ2nj√
ξ 2njβ

2
nj + h

− ξn−1,j (52)

where

βnj = 1 +
n−1∑
k=1

√(
∂αn−1,j

∂xkj

)2
+ h

+
n−1∑
k=1

∑
l∈Nj

√(
∂αn−1,j

∂xkl

)2
+ h

λnj > 0, θ̂nj and snj are estimates of θnj and δ̄n∗ =
max1≤j≤m δnj, respectively. In order to design the
update laws for θ̂nj and snj, we choose a Lyapunov
function

Vn = Vn−1 + 1
2

m∑
j=1

ξ 2nj +
1
2

m∑
j=1

θ̃�
nj


−1
nj θ̃nj

+ 1
2

m∑
j=1

γ−1
nj s̃2nj (53)

where θ̃nj = θnj − θ̂nj, s̃nj = δ̄n∗ − snj, 
nj is a positive
definite constant matrix, and γnj is a positive constant.

The derivative of Vn is

V̇n ≤ −λ1z�AD�
1 D1Az

+
(
s1,m+1 +

n∑
k=2

δ̄k∗

)
m

√
h
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+
n−1∑
k=1

m∑
j=1

θ̃�
kj


−1
kj

(
˙̃θkj + τ

[n−1]
kj

−
kjψkjξij
∂αn−1,j

∂xkj
− 
kjψkj

∂αn−1,j

∂xkj

∑
l∈Nj

ξil

⎞
⎠

+
m∑
j=1

s̃1jγ−1
1j

⎛
⎜⎝˙̃s1j + γ1j((D1Az)j)2√

((D1Az)j)2 + h

⎞
⎟⎠

−
n∑

k=2

m∑
j=1

λkjξ
2
kj

+
n−1∑
k=2

m∑
j=1

γ−1
kj s̃kj

⎛
⎜⎝˙̃skj +

γkjξ
2
kjβ

2
kj√

ξ 2kjβ
2
kj + h

⎞
⎟⎠

+
m∑
j=1

θ̃�
nj


−1
nj (

˙̃θnj + 
njψnjξnj)

+
m∑
j=1

γ−1
nj s̃nj

⎛
⎜⎝˙̃snj +

γnjξ
2
njβ

2
nj√

ξ 2njβ
2
nj + h

⎞
⎟⎠

We choose the update laws for skj (1 ≤ k ≤ n − 1) the
same as before and the update laws for snj and θ̂kj (1 ≤
k ≤ n) as follows.

ṡnj = γnjξ
2
njβ

2
nj√

ξ 2njβ
2
nj + h

(54)

˙̂θkj = τ
[n−1]
kj − 
kjψkjξij

∂αn−1,j

∂xkj

− 
kjψkj
∂αn−1,j

∂xkj

∑
l∈Nj

ξil) =: τ [n]kj

1 ≤ k ≤ n − 1 (55)
˙̂θnj = 
njψnjξnj =: τ [n]nj (56)

then

Vn ≤ −λ1z�AD�
1 D1Az −

n∑
k=2

m∑
j=1

λkjξ
2
kj

+
(
s1,m+1 +

n∑
k=2

δ̄k∗

)
m

√
h.

With the aid of the above design procedure, the follow-
ing theorem can be proved.

Theorem 3.1: For the systems in (1) and (2), under
Assumptions 2.1 and 2.2 the distributed control law

uj = αnj (57)

with the update laws

˙̂
θij = τ

[n]
ij (58)

ṡij = γijξ
2
ijβ

2
ij√

ξ 2ijβ
2
ij + h

, 1 ≤ i ≤ n, 1 ≤ j ≤ m (59)

ensure that (8)–(10) are satisfied, where the control
parameters are defined in the above controller design
procedure.

Proof: With the control law (57), we have

V̇n ≤ −λ1z�AD�
1 D1Az −

n∑
k=2

m∑
j=1

λkjξ
2
kj

+
(
s1,m+1 +

n∑
k=2

δ̄k∗

)
m

√
h (60)

≤
(
s1,m+1 +

n∑
k=2

δ̄k∗

)
m

√
h. (61)

Integrating both sides of (61), we have

Vn(t) ≤ Vn(0)

+
(
s1,m+1 +

n∑
k=2

δ̄k∗

)
m
∫ t

0

√
h(τ ) dτ

< ∞
which means that V(t) is bounded (i.e. V ∈ L∞).
Therefore, z, ξij, θ̂ij, and sij are bounded for all i and
j. Integrating both sides of (60), we have

λ1

∫ t

0
z�AD�

1 D1Az dτ +
n∑

k=2

m∑
j=1

λkj

∫ t

0
ξ 2kj dτ

≤ Vn(0)− Vn(t)

+
(
s1,m+1 +

n∑
k=2

δ̄k∗

)
m
∫ t

0

√
h(τ ) dτ < ∞

which means that D1Az and ξij (2 ≤ i ≤ n, 1 ≤ j ≤
m) are square-integrable. With the aid of Barbalat’s
lemma, D1Az and ξij (2 ≤ i ≤ n, 1 ≤ j ≤ m) converge
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to zero. By Lemma 3.3, Equations (8) and (9) are sat-
isfied. Since the communication graph G is connected,
Equation (10) is satisfied by Lemma 3.4. �

Leveraging the properties of the prescribed perfor-
mance function ρ, the proposed controllers facilitate
the convergence of tracking errors betweenneighbour-
ing systems to a specified value within finite time. In
the controller design, to simplify notation, the PPF
ρ remains consistent across different systems. How-
ever, one can substitute ρ with ρj specifically for sys-
tem j. Furthermore, the PPF ρ can be tailored to
different functions, accommodating diverse transient
and steady-state performance requirements. Within
the controller design, the transformation (11) is rep-
resented by a natural logarithm function. However,
alternative choices for ρ are viable.

To approximate unknown functions, one can
choose the basis to be polynomial functions, sig-
moid functions, logistic functions, or other functions.
To effectively implement the proposed controllers,
obtaining the partial derivatives of the virtual con-
trollers is imperative. With the aid of the command
filtered backstepping technique (W. Dong et al., 2012;
Farrell et al., 2009; Yu et al., 2018), simplified dis-
tributed controllers can be proposed. Due to space
limitations, it is omitted.

4. Simulation

Consider three second-order systems in (1)–(3), where

f1j = x21j + sin(2x1j)

f2j = x22j + 3x21j + 2 sin 5x2j.

There is one second-order leader system in (4)
and (5) with f14 = sin(2x14), f24 = 5 cos 3x14 − 2x24,
and u4 = 3 cos 2t. The communication between sys-
tems is shown in Figure 1. It is obvious that the
communication graph G is connected. The incidence
matrix D is

D =
[
D1
D2

]
=

⎡
⎢⎢⎣

1 0 0 1 1
−1 1 0 0 0
0 −1 1 0 −1
0 0 −1 −1 0

⎤
⎥⎥⎦ .

The PPF is chosen as

ρ(t) =
⎧⎨
⎩20 exp

( −20t
10 − t

)
+ 0.1, if 0 ≤ t < 10

0.1, if t ≥ 10

Figure 1. The communication graph G between systems.

The control problem is to design distributed con-
trollers such that yj − y4 converge to zero for 1 ≤ j ≤ 3
and the performance (9) is satisfied.

In the controller design, we choose

ψ1j = [1, x1j, x21j]
�, ψ2j = [1, x1j, x21j, x2j, x

2
2j]

�

The boundedness of the approximation errors is evi-
dent. The distributed controllers proposed in Sec-
tions 3 and 4 effectively address the control problem.

The proposed controllers from Theorem 3.1 were
implemented in a simulation with specified control
parameters. Figure 2 illustrates the convergence of the
response yj − y4 for 1 ≤ j ≤ 3 to zero. In Figure 3, the
responses of e12, e14, e23, e34, −ρ, and ρ are depicted,
revealing that e12, e14, e23, and e34 are bounded by
−ρ and ρ, thereby confirming the satisfaction of (9).
Figure 4 showcases the response of θ̂1j for 1 ≤ j ≤ 3.
Additionally, Figure 5 illustrates the response of s1j for
1 ≤ j ≤ 3. Figure 6 presents the response of θ̂2j for
1 ≤ j ≤ 3. Lastly, Figure 7 demonstrates the response
of s2j for 1 ≤ j ≤ 3. The simulation results affirm that

Figure 2. The tracking error of yj − y4 for 1 ≤ j ≤ 4.
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Figure 3. The tracking errors e12, e14, e23, and e34 and−ρ and ρ.

Figure 4. The response of θ̂1j for 1 ≤ j ≤ 3.

Figure 5. The response of s1j for 1 ≤ j ≤ 3.

θij and sij are bounded for 1 ≤ i ≤ 2 and 1 ≤ j ≤ 3.
These findings robustly substantiate the validity of the
claim made in Theorem 3.1.

Figure 6. The response of s2j for 1 ≤ j ≤ 3.

Figure 7. The response of θ̂2j for 1 ≤ j ≤ 3.

5. Conclusion

In this paper, the distributed tracking control of
high-order uncertain nonlinear systems with pre-
scribed performance requirements was studied. Dis-
tributed robust adaptive controllers were proposed
to ensure that tracking errors converge to a small
neighbourhood around the origin within a speci-
fied finite time while satisfying prescribed perfor-
mance criteria. The results presented in this paper
provide a new approach to addressing the distributed
control of uncertain nonlinear systems with perfor-
mance requirements. Throughout our study, bidirec-
tional communication between systems is assumed;
however, these findings can potentially be extended
to scenarios where the communication graph is
directed.
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