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ABSTRACT
This study employs graph mining and spectral clustering to

analyze patterns in railway crossing accidents, utilizing a com-
prehensive dataset from the US Department of Transportation.
By constructing a graph of implicit relationships between rail-
way companies based on shared accident localities, we apply
spectral clustering to identify distinct clusters of companies with
similar accident patterns. This offers nuanced insight into the
underlying structure of these incidents. Our results indicate that
“Highway User Position” and “Equipment Involved” play piv-
otal roles in accident clustering, while temporal elements like
“Date” and “Time” exert a diminished impact. This research
not only sheds light on potential accident causation factors but
also sets the stage for subsequent predictive safety analyses. It
aims to serve as a cornerstone for future studies that aspire to
leverage advanced data-driven techniques for improving railway
crossing safety protocols.
Keywords: Graph mining, spectral clustering, similar-
ity matrix.

1. INTRODUCTION
Railway transportation remains a cornerstone of modern in-

frastructure, facilitating the movement of goods and ensuring
connectivity across distant locations. As such, its influence ex-
tends far beyond conveyance; railways are a testament to the evo-
lution of engineering, economic progression, and a reflection of
societal growth. However, as with any large-scale system that in-
terfaces directly with the public, safety concerns arise, especially
at intersections where railways cross paths with other modes of
transportation. These intersections, commonly known as rail-
way crossings, have historically been sites of concern due to the
potential for financially disastrous and injury-inducing accidents.

Accidents at railway crossings often result in severe con-
sequences, affecting not only the immediate stakeholders—train
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operators, vehicle drivers, and passengers, but also the wider
community and the reputation of the railway industry itself. The
significance of these incidents transcends mere statistical tallies;
it extends to an in-depth comprehension of the complex inter-
play of contributory elements that precipitate an accident. In this
context, public accident reports emerge as invaluable reservoir of
data. They skillfully capture the multifaceted nature of railway
accidents, encompassing environmental conditions, human error,
and the technical specifics of the involved vehicles. Notably, re-
ports accessible from reputable sources like the US Department
of Transportation (USDOT) and Federal Railroad Administration
(FRA) provide essential and comprehensive data crucial for our
analytical endeavors [1].

When handling complex and voluminous data, traditional
analytical methods may fall short in capturing nuanced relation-
ships and patterns. In this paper, our primary focus thus is on
unearthing these patterns and presenting a structured methodol-
ogy that combines vast detailed data from a public dataset with the
powers of more advanced techniques such as graph mining [2],
spectral clustering [3] and factor-driven element categorization.
The objective is to not only elucidate the current state of railway
crossing accidents but also to uncover broader patterns and clus-
ters to chart their evolution over time and identify potential areas
for intervention. By the end, we aim to provide those involved
with actionable insights that can inform safety protocols, policy
decisions, and future research directions in the realm of railway
safety.

To achieve this objective, we develop a robust framework
for understanding complex relationships behind the railway acci-
dent data that combines the strengths of network theory and data
science, enabling a deeper exploration into the intricate struc-
tures and interconnections that standard analyses might overlook.
Specifically, we propose to first construct a graph that represents
the implicit relationships between various railway companies,
based on shared accident localities and other parameters. With
the constructed graph, we gain a unique perspective on the in-
tricacies of these accidents. We then utilize three techniques to
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perform dimensionality reduction before clustering the data in
fewer dimensions, i.e., 1) apply the Radial Basis Function (RBF)
kernel to the constructed graph to study its intrinsic structure [3];
2) apply t-Distributed Stochastic Neighbor Embedding (t-SNE)
to the RBF-transformed graph to maintain the local structure of
the data in a lower dimension [4]; 3) apply Principal Component
Analysis (PCA) to project the data onto a lower-dimensional space
that captures the most significant structure for clustering [5]. To
determine the optimal number of clusters, we perform grid search
and evaluate the clustering quality using the silhouette score [6].
The final clustering is done by KMeans method [7]. In paral-
lel with our clustering steps, we further incorporate additional
factors into our dataset by quantitatively assessing the relation-
ship between clusters based on these factors using a customized
Jaccard similarity function [8]. The concatenated dataset that
merges the results of the cluster analysis with the original rail-
way accident data, provides a multi-dimensional perspective of
the problem. This comprehensive approach, combining sophis-
ticated graph-based analysis with detailed attribute exploration,
enables us to uncover more profound insights into the patterns
and factors influencing railway crossing accidents.

While our analytical approach provides valuable insights and
enhances our ability to predict future incidents, it is essential to
note that our current methodology does not engage in causal
modeling per se. Instead, our analysis aids in the formulation of
hypotheses regarding the factors influencing railway accidents.
These hypotheses are not conclusive assertions of causality but
starting points for further investigation and rigorous testing. Sig-
nificant contributions of our study to railway safety include:

• Identification of key factors: Developing from graph min-
ing and factor-driven element categorization, our analysis
underscores the significant roles of “Highway User Position”
and “Equipment Involved” in accident clustering. This find-
ing steers the focus toward critical areas needing enhanced
safety regulations and more targeted preventive measures.

• Re-evaluating the role of temporal factors: Challenging
traditional beliefs, our study finds that “Date” and “Time”
have a limited impact on accident causation. This rev-
elation emphasizes the necessity to prioritize human and
equipment-related factors over temporal aspects in accident
analysis.

• Impact of environmental conditions: The study high-
lights the moderate yet notable influence of “Visibility” and
“Weather Conditions” on accident occurrences. This aspect
is particularly crucial in regions with extreme weather, sug-
gesting a need for tailored safety strategies under varying
environmental conditions.

• Directions for future research: The hypotheses and
methodologies developed in this study pave the way for fu-
ture exploration, particularly in employing machine learning
techniques in the realm of predictive analysis through the im-
plementation of a Kernel Ridge Regression model. These
methods promise to enhance the predictive capabilities and
facilitate the development of proactive safety protocols in
railway crossings.

2. PROPOSED FRAMEWORK
This section first introduces the dataset studied in this pa-

per and then provides details of the techniques utilized in our
proposed framework.

2.1 Data acquisition and preprocessing
Our study leverages a comprehensive, publicly available

data-set from Kaggle, titled “US Highway Rail Road Crossing
Accident” [1]. This dataset, compiled by the US Department
of Transportation, provides extensive details on railway crossing
incidents throughout the United States from January 1, 1975, to
February 28, 2021. It includes a wealth of information such as
geographic locations, time frames, types of crossings, accident
specifics, vehicle types, and highway user data, amongst others.
Given the depth and breadth of this data-set, our preprocessing
involves several crucial steps to ensure the data was primed for
effective analysis. Our primary goal during preprocessing is to
organize and consolidate the data, focusing on key attributes rel-
evant to our study.

To do this, we utilize the Python library pandas [9] for data
manipulation and aggregation, grouping by relevant categories
such as “Railroad Code”, “Incident Year”, and “State Name”,
etc. This approach allows us to create a structured framework
for our subsequent graph-based analysis with a focus on temporal
and geographical distribution patterns. We also perform essential
data cleaning tasks to ensure accuracy and consistency across the
dataset. By organizing the data in this manner, we are able to
identify and analyze trends and relationships within the context
of both time and location.

2.2 Graph construction
The core of our methodology lies in the construction of

a graph representing the implicit relationships between various
railway companies, which allows us to analyze and visualize the
complex network of relationships and interactions among the
railway companies, providing insights into patterns and trends in
railway crossing accidents. Specifically, we construct an undi-
rected graph 𝐺 = (𝑉, 𝐸), where each vertex 𝑖 ∈ 𝑉 corresponds to
a railway company, and each edge 𝑒(𝑖, 𝑗) ∈ 𝐸 represents a shared
accident locality between companies 𝑖 and 𝑗 . The weight of each
edge, denoted as 𝑒(𝑖, 𝑗), is assigned based on the total number
of accidents that occurred between the two companies, which is
mathematically expressed as

𝑒(𝑖, 𝑗) = Accidentshared (𝑖, 𝑗). (1)

The granularity of the data per accident is carefully con-
sidered, particularly the geographic specifics such as the county
or state of occurrence. This level of detail in our approach en-
sures a comprehensive and nuanced portrayal of the network of
relationships. It enables us to not just delineate a complex web
of inter-company connections but also to discern the variations
and patterns that emerge in these relationships across diverse
geographical landscapes and temporal scales.

2.3 Spectral clustering
Our analysis progress with the application of spectral cluster-

ing, a method suitable for identifying inherent groupings within
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complex network data [3]. The initial step in spectral clustering
involves translating the complex network of graph 𝐺 into a form
that can be mathematically and computationally managed. This
is accomplished by generating the adjacency matrix 𝐴 that is
associated with the graph, where each element 𝑎𝑖 𝑗 indicates the
presence (𝑎𝑖 𝑗 =1) or absence (𝑎𝑖 𝑗 = 0) of an edge between nodes 𝑖
and 𝑗 ,∀𝑖, 𝑗 ∈ 𝑉 . The generation of the adjacency matrix is a cru-
cial intermediary step as it encapsulates the presence or absence
of edges between the nodes in the graph with a two-dimensional
array. To incorporate the edge weight in the adjacency matrix,
we further define a weighted adjacency matrix 𝑊 , where each el-
ement 𝑤𝑖 𝑗 quantifies the connection weight between nodes 𝑖 and
𝑗 . Mathematically, we have

𝑤𝑖 𝑗 = 𝑎𝑖 𝑗 × 𝑒(𝑖, 𝑗). (2)

Note that the weighted adjacency matrix is symmetric and the
its elements not only reflect the presence of connections between
different nodes but also the strength of the connections.

We then apply a Radial Basis Function (RBF) kernel to𝑊 to
enhance the graph’s intrinsic structure:

𝑊RBF = exp(−𝛾 ·𝑊2), (3)

where 𝛾 is a scale parameter that determines the kernel’s width.
Subsequently, we apply t-Distributed Stochastic Neighbor

Embedding (t-SNE) [4], a nonlinear dimensionality reduction
technique to 𝑊RBF to maintain the local structure of the data
while viewing it in a lower dimension. Principal Component
Analysis (PCA) is then employed to project the data onto a lower-
dimensional space that captures the most significant structure for
clustering [5].

In seeking the optimal number of clusters in the reduced di-
mension, a grid search strategy was employed, utilizing silhouette
scores as a measure of clustering quality [6]:

𝑠 =
𝑏 − 𝑎

max(𝑎, 𝑏) (4)

where 𝑎 is the mean intra-cluster distance, and 𝑏 is the mean
nearest-cluster distance for each sample.

The final step of spectral clustering involves the normalized
Laplacian matrix of the graph, which is given by

𝐿 = 𝐼 − 𝐷−1/2𝑊RBF𝐷
−1/2, (5)

where 𝐼 is the identity matrix, and 𝐷 is the degree matrix of the
graph𝐺. Upon determine the number of principle components 𝑀
and the optimal number of clusters 𝑁 , we then perform KMeans
clustering to cluster form 𝑁 clusters using the first 𝑀 principal
eigenvectors of 𝐿.

2.4 Integration of additional factors
In parallel with our clustering analysis, we incorporate ad-

ditional factors into our data-set. To quantitatively assess the
relationship between clusters based on these factors, we employ a
customized Jaccard similarity function [8]. The standard Jaccard
similarity index is defined as the size of the intersection divided
by the size of the union of the sample sets. However, in our

case, we adapted this measure to suit the unique characteristics of
our data-set, particularly focusing on categorical data like “High-
way User Position”, “Equipment Involved”, etc. The customized
Jaccard matrix funtion is thus defined as

𝐽 (𝐴, 𝐵) = |𝐴 ∩ 𝐵|
|𝐴 ∪ 𝐵| , (6)

where 𝐴 and 𝐵 are sets of categorical attributes for two different
clusters. This adaptation is necessary to capture the nuances
of our specific data-set, where traditional numerical similarity
measures might not be entirely applicable.

The concatenated dataset, which merges the results of the
cluster analysis with the original railway accident data, provided
a multi-dimensional perspective of the problem. This amalgama-
tion is crucial as it allows us to examine the clusters not only in
the context of their graph-based relationships but also in terms of
real-world attributes and accident characteristics. By doing so,
we could explore deeper into the specific attributes contributing
to railway crossing accidents within each cluster, offering a richer
and more informative analysis. Specifically, the final step of our
proposed framework involves in-depth exploration of the result-
ing concatenated dataset using similarity matrices, which leads
to the formulation of several hypotheses regarding the factors
influencing accident clustering.

3. RESULTS
Facilitated by graph mining techniques and similarity

matrices, we are able to cluster railway companies into four
distinct groups, enabling comprehensive data analysis. These
techniques are crucial for unraveling the complex relationships
and patterns within our data. For instance, the similarity matrices
for each factor, displayed as tables 1 to 8, provide in-depth
insights into how various attributes influence the formation of
clusters. This approach involves calculating a baseline similarity
matrix that includes all factors and then assessing the impact of
each factor when it is excluded. Such an analysis allows us to
determine the unique contribution of each factor to the clustering
of railway accidents.

The values within these matrices are interpreted as follows:

• Positive Values: Indicate that the absence of a factor leads
to a decrease in similarity between clusters compared to
the baseline, signifying a significant role in distinguishing
between clusters.

• Negative Values: Suggest that removing a factor actually
increases the similarity, implying that the factor might be
adding noise or redundancy.

• Zero Values: Imply no unique contribution to the differen-
tiation between clusters when all factors are considered.

This nuanced understanding of factors, achieved through
graph mining and matrix analysis, enhances our interpretation
of the most pertinent factors in railway crossing accidents. We
examine the distribution of clusters in Figure 1 and analyze the
temporal and geographical spread of accidents in Figures 2 and
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FIGURE 1: Spectral clustering visualization, demonstrating
the grouping of railway companies based on shared accident
characteristics.

FIGURE 2: Temporal cluster distribution, illustrating the
change in accident clustering over time, emphasizing pe-
riods of higher incidence and identifying potential cyclic
trends within the data.

3. Additionally, tools like seaborn [10] are utilized to create
heat maps, effectively illustrating the distribution and influence
of various factors across the clusters.

Our analysis of the railway crossing accident data has led
to the formulation of several key hypotheses. These hypotheses
are centered around the impact of various factors on accident
causation and clustering.

• Hypothesis 1: “Highway User Position” and “Equipment
Involved” are important Factors. Our analysis reveals that
both “Highway User Position” and “Equipment Involved”
are significant in differentiating accident clusters, as shown
in Tables 1 and 6. These factors consistently exhibit high
relative importance values, indicating their pivotal roles in
accident causation and clustering. The variations in highway
user positions, including pedestrians, cyclists, and motorists,
coupled with the diverse types of equipment involved (such

FIGURE 3: Geographic cluster distribution, visualizing the
spatial distribution of railway accidents across different re-
gions, revealing areas with higher frequencies and poten-
tial geographic risk factors, suggesting the influence of local
traffic conditions, infrastructure quality, and regional safety
policies on the incidence of accidents.

TABLE 1: Relative importance matrix for Highway User Posi-
tion.

Cluster 0 Cluster 1 Cluster 2 Cluster 3
Cluster 0 0.00 0.0029 0.0084 0.0413
Cluster 1 0.0029 0.00 0.0069 0.0401
Cluster 2 0.0084 0.0069 0.00 0.0375
Cluster 3 0.0413 0.0401 0.0375 0.00

as trucks, cars, and bicycles), are key elements in under-
standing the dynamics of railway crossing accidents. These
findings suggest a strong correlation between these factors
and the occurrence of accidents, highlighting the need for
targeted investigations into their specific impact and pat-
terns.

• Hypothesis 2: “Date” and “Time” have limited impact.
The relative importance matrices for “Date” and “Time,” as
presented in Tables 3 and 4, indicate a generally lower im-
pact of these factors on clustering compared to others. This
observation suggests that the temporal aspects of accidents,
such as the specific date or time of occurrence, have limited
influence on accident causation and clustering. This hy-
pothesis implies that the likelihood and nature of accidents
might be more closely related to factors directly associated
with the individuals and equipment involved in the incidents,
rather than being heavily dependent on the temporal context
in which they occur.

• Hypothesis 3: “Visibility” and “Weather Condition”
may play a role. The relative importance matrices for “Vis-
ibility” and “Weather Condition,” shown in Tables 5 and 2,
reveal a varied influence of these factors on clustering. These
factors exhibit a moderate impact on accident causation, as
indicated by their mixed positive and negative values in the
matrices. Specific visibility conditions (clear, foggy) and
diverse weather conditions (sunny, snowy) appear to con-
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TABLE 2: Relative importance matrix for Equipment Involved.

Cluster 0 Cluster 1 Cluster 2 Cluster 3
Cluster 0 0.00 0.0029 0.0084 0.0413
Cluster 1 0.0029 0.00 0.0069 0.0401
Cluster 2 0.0084 0.0069 0.00 0.0375
Cluster 3 0.0413 0.0401 0.0375 0.00

TABLE 3: Relative importance matrix for Date.

Cluster 0 Cluster 1 Cluster 2 Cluster 3
Cluster 0 0.00 -0.0074 -0.0232 -0.0845
Cluster 1 -0.0074 0.00 -0.0242 -0.0856
Cluster 2 -0.0232 -0.0242 0.00 -0.0873
Cluster 3 -0.0845 -0.0856 -0.0873 0.00

tribute to the occurrence of accidents. This finding suggests
that visibility and weather conditions might play a signif-
icant role in the dynamics of railway crossing accidents.
It calls for more detailed exploration, especially in regions
with extreme weather, to fully understand how these factors
influence accident patterns and risks.

• Hypothesis 4: “Equipment Type” and “Equipment
Struck” are moderately important. The analysis of the
relative importance matrices for “Equipment Type” and
“Equipment Struck,” as presented in Tables 7 and 8, sug-
gests a moderate influence of these factors on the clustering
of accidents. These matrices show mixed positive and nega-
tive values, indicating that these factors have a varied impact
on differentiating clusters. This implies that while the spe-
cific types of equipment involved and the manner in which
they are struck in accidents (such as front or rear collisions)
play a role in accident scenarios, their influence may not
be as dominant as factors like "Highway User Position" or
"Weather Condition." Further detailed analysis of these fac-
tors is necessary to understand their specific contributions
to the dynamics of railway crossing accidents.

These hypotheses, derived from our similarity matrix anal-
ysis, lay the groundwork for future research. To validate these
hypotheses and draw more definitive conclusions, the applica-
tion of machine learning techniques, such as classification or
regression models, is proposed. These models will enable us to
predict accident outcomes based on the identified factors, thereby
enhancing our understanding of railway crossing accidents and
contributing to more effective preventive strategies.

4. CONCLUSION
This research marks a substantial advancement in unravel-

ing the complexities of railway crossing accidents. Utilizing
graph mining techniques, we meticulously constructed a graph
that captures the intricate relationships among various railway
companies. Our application of spectral clustering effectively re-
vealed distinct clusters within this network, each signifying a
group of companies sharing similar accident profiles. This nu-
anced approach allowed us to delve deeper into the patterns and
trends underlying these accidents. Our methodology and findings

TABLE 4: Relative importance matrix for Time.

Cluster 0 Cluster 1 Cluster 2 Cluster 3
Cluster 0 0.00 0.0007 0.0042 -0.0349
Cluster 1 0.0007 0.00 0.0042 -0.0357
Cluster 2 0.0042 0.0042 0.00 -0.0385
Cluster 3 -0.0349 -0.0357 -0.0385 0.00

TABLE 5: Relative importance matrix for Visibility.

Cluster 0 Cluster 1 Cluster 2 Cluster 3
Cluster 0 0.00 0.0029 0.0084 0.0127
Cluster 1 0.0029 0.00 0.0069 0.0115
Cluster 2 0.0084 0.0069 0.00 0.0090
Cluster 3 0.0127 0.0115 0.0090 0.00

have significant implications for enhancing railway safety. They
provide valuable insights for policymakers, railway companies,
and public safety officials, advocating a shift toward data-driven
analysis and predictive modeling. However, we recognize cer-
tain limitations, particularly the reliance on publicly available
accident reports, which might not encompass the entirety of inci-
dents or capture all relevant nuances. Additionally, our high-level
approach of analyzing data through similarity matrices, while
insightful, may not fully convey the complexity of individual
accidents. Such an approach tends to generalize patterns and
relationships, which could overlook unique, case-specific fac-
tors. Future research could address these gaps by incorporating
more comprehensive data-sets, including unreported incidents
and near-misses. This expansion would provide a more holis-
tic view of railway crossing accidents. Additionally, integrating
more granular, case-by-case analyses could complement the high-
level insights from similarity matrices, offering a more nuanced
understanding of each incident.
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