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ABSTRACT
Expanding on the insights from our initial investigation into

railway accident patterns, this paper delves deeper into the pre-
dictive capabilities of machine learning to forecast potential ac-
cident trends in railway crossings. Focusing on critical factors
such as "Highway User Position" and "Equipment Involved," we
integrate Kernel Ridge Regression (KRR) models tailored to dis-
tinct clusters, as well as a global model for the entire dataset.
These models, trained on historical data, discern patterns and
correlations that might elude traditional statistical methods. Our
findings are compelling: certain clusters, despite limited data
points, showcase remarkably Root Mean Squared Error (RMSE)
values between predictions and real data, indicating superior
model performance. However, certain clusters hint at potential
overfitting, given the disparities between model predictions and
actual data. Conversely, clusters with vast datasets underperform
compared to the global model, suggesting intricate interactions
within the data that might challenge the model’s capabilities.
The performance nuances across clusters emphasize the value of
specialized, cluster-specific models in capturing the intricacies
of each dataset segment. This study underscores the efficacy of
KRR in predicting future railway crossing incidents, fostering the
implementation of data-driven strategies in public safety.

1. INTRODUCTION
The rapid evolution of railway systems worldwide neces-

sitates an equally dynamic approach to ensuring their safety.
This evolution manifests in various forms, such as the adoption
of advanced signaling technologies, the integration of real-time
monitoring systems, and the implementation of automated and
intelligent control mechanisms. In our preceding research [1],
we embarked on an exploratory journey into the realm of rail-
way accidents. Utilizing graph mining techniques, we unearthed
intricate patterns and relationships between railway companies,
centered around shared accident localities. This initial foray into
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the data laid a robust foundation, highlighting potential patterns
ripe for predictive analysis. However, recognizing patterns is
merely the first step; the pivotal challenge lies in forecasting
future trends and incidents, a task that demands sophisticated
predictive tools and methodologies. It is this challenge that our
current paper aims to address.

In transitioning from pattern recognition to predictive anal-
ysis, our research shifts gears towards leveraging the power of
machine learning. Machine learning, with its remarkable abil-
ity to decipher and anticipate complex patterns from voluminous
datasets, presents itself as the ideal choice to accomplish this
task. Our current study is driven by the critical factors iden-
tified in [1], notably "Highway User Position" and "Equipment
Involved." These factors emerged as significant influencers in
railway crossing accidents, shaping our approach to model devel-
opment.

Our methodology involves constructing models specifically
tailored to distinct data clusters identified in our initial research,
as well as developing a comprehensive global model that en-
compasses the entire dataset. This dual approach is designed to
harness insights from a global implementation perspective and a
cluster-specific conceptual connection. By doing so, we aim to
capture both the overarching trends and the nuanced variations
within each cluster. Central to our predictive models is the appli-
cation of Kernel Ridge Regression (KRR) [2], which is adept at
handling the multifaceted nature of the factors influencing rail-
way crossing accidents by utilizing the universality of nonlinear
kernels.

The models are meticulously trained on historical data from a
broad spectrum of railway operators in the United States, includ-
ing major freight companies, national passenger rail services, and
regional transit authorities, with a focus on uncovering patterns
and correlations that might elude traditional statistical methods.
This diversity reflects the varied conditions under which rail-
way accidents occur, from urban commuter lines to long-distance
freight routes. Our findings present a diverse spectrum of results:
some clusters, despite limited data points, showcased remark-
ably low Root Mean Squared Error (RMSE) values, indicating
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high model accuracy. Conversely, certain clusters hinted at over-
fitting, as evidenced by discrepancies between model predictions
and actual occurrences. Intriguingly, larger clusters, despite their
wealth of data, did not perform as well as anticipated, especially in
comparison to the global model. This phenomenon underscores
the complexity within the data-set and the potential limitations
of the models in capturing all underlying dynamics. The dis-
parate outcomes across various clusters underscore the necessity
of developing specialized models for each cluster. These mod-
els, fine-tuned to the unique characteristics of their respective
datasets, are more adept at capturing the intricacies that a univer-
sal model might overlook.

Our exploration with KRR marks a significant stride in the
predictive analysis of railway crossing incidents. It not only
enhances our understanding of the factors contributing to these
accidents but also sets the stage for data-driven strategies to im-
prove public safety. As railways continue to advance, ensuring
their safety remains a paramount concern. While this paper lays
the groundwork for predictive analysis in railway systems, our
journey in this field is far from over. In our subsequent research,
we plan to delve into more efficient machine learning methods,
aiming to leverage the full extent of the dataset for a more com-
prehensive analysis. Our series of papers not only document our
progress but also reflect our commitment to employing cutting-
edge technology and methodologies in fostering a safer and more
efficient future for railway transportation.

2. PRELIMINARIES
2.1 Spectral Clustering for Data Segmentation

Prior to regression analysis, we utilized spectral clustering
to detect inherent groupings within the dataset, based on con-
nectivity principles and distance measures between data points.
Spectral clustering excels at identifying clusters with non-linear
boundaries, outperforming traditional clustering methods by
leveraging the eigenvalues of the similarity matrix.

This process began with the creation of a similarity matrix us-
ing the Gaussian (RBF) kernel to compute the similarity between
data points. The RBF kernel was chosen for its compatibility
with the KRR technique used later in our analysis. We converted
the similarity matrix into a graph representation, where nodes
represent individual data entries and edges indicate the level of
similarity. The normalized Laplacian of this graph is then com-
puted, from which eigenvalues and eigenvectors are extracted to
facilitate data projection into a dimensionally reduced space that
is conducive to clustering. To determine the optimal number
of clusters, we perform grid search and evaluate the clustering
quality using the silhouette score.

2.2 Kernel Ridge Regression
Consider a dataset {𝒙𝑖 , 𝑦𝑖}𝑛𝑖=1 with 𝒙𝑖 ∈ R𝑚 denotes the

features of 𝑖-th data sample and 𝑦𝑖 denotes the output values.
Denote 𝒚 = [𝑦1, . . . , 𝑦𝑛] ∈ R𝑛 and X = [𝒙1; . . . ; 𝒙𝑛] ∈ R𝑛×𝑚.
Assume there exists a linear relationship between 𝒚 and X such
that

�̂� = X𝜷, (1)

where �̂� = [ �̂�1, . . . , �̂�𝑛] ∈ R𝑛 denotes the predicted output and
𝜷 ∈ R𝑚 is the vector of coefficients. Then, traditional ridge

regression seeks to solve the following optimization problem:

min
𝜷

∥𝒚 − X𝜷∥2
2 + 𝜆∥𝜷∥2

2, (2)

where 𝜆 > 0 signifies the regularization parameter. The L2-
norm ∥ · ∥2

2 penalizes the magnitude of the coefficients, thereby
controlling model complexity and preventing overfitting [3].

However, it is usually impractical to have linear assumptions
in reality. Instead, we seek to find a nonlinear function 𝑓 that best
describes the relationship between 𝑦𝑖 and 𝒙𝑖 such that 𝑦𝑖 = 𝑓 (𝒙𝑖)+
𝑒𝑖 ,∀𝑖, where 𝑒𝑖,𝑡 is minimized accordingly to certain optimality
metric. Directly optimizing 𝑓 in the functional space is infeasible
since there are infinitely many possible solutions. To address
this challenge, kernel based methods are usually considered [4].
Suppose that the nonlinear function 𝑓 belongs to the reproducing
kernel Hilbert space (RKHS) H := { 𝑓 | 𝑓 (𝒙) = ∑︁∞

𝑖=1 𝛼𝑖𝜅(𝒙, 𝒙𝑖)}
induced by a positive semidefinite kernel 𝜅(𝒙, 𝒙𝑖) : R𝑚×R𝑚 → R
that measures the similarity between 𝒙 and 𝒙𝑖 . By the Representer
Theorem [5], the nonlinear function 𝑓 can be expressed by a
weighted kernel expansion over the data samples as

𝑓 (𝒙) =
𝑛∑︂
𝑖=1

𝛼𝑖𝜅(𝒙𝑖 , 𝒙) = 𝜶⊤𝜿X (𝒙), (3)

where 𝜿X (𝒙) ∈ R𝑛 collects all 𝜅(𝒙𝑖 , 𝒙), and 𝜶 ∈ R𝑛 is the coeffi-
cient vector to be learned. Among various kernel functions, the
RBF kernel is frequently used, defined as:

𝜅(𝒙𝑖 , 𝒙) = exp(−𝛾∥𝒙𝑖 − 𝒙∥2), (4)

where 𝛾 is a scale parameter that adjusts the kernel’s sensitivity.
KRR that uniquely blends the regularization principles of

ridge regression with the functional mapping capabilities of ker-
nel methods is then adopted [2]. The objective function thus
becomes

min
𝜶

∥𝒚 − K𝜶∥2
2 + 𝜆𝜶⊤K𝜶. (5)

Here, K is the kernel matrix and 𝜶 is the coefficient vector in the
kernel-transformed space.

For the specific case of predicting railway crossing acci-
dents, KRR allows for a nuanced modeling of the intricate and
non-linear relationships between various factors and accident oc-
currences. This aligns with the patterns identified in our previous
research. The judicious selection of a kernel and a suitable reg-
ularization parameter enables the development of a model that is
both predictive and generalizable, offering reliable forecasts for
future accident trends.

3. MATERIALS AND METHODS
3.1 Data Acquisition and Preprocessing

The foundational data for this study is sourced from the "US
Highway Rail Road Crossing Accident" dataset, available on Kag-
gle and compiled by the US Department of Transportation. This
dataset spans from January 1, 1975, to February 28, 2021, and
includes a multitude of variables reflecting the complex nature of
railway crossing incidents in the United States. To ensure compu-
tational efficiency while preserving data integrity, we randomly
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FIGURE 1: This heatmap illustrates the varying impact of Equip-
ment Involved on accident prediction across clusters, reinforcing
the hypothesis that the equipment involved significantly influences
the frequency and severity of accidents.

sample 10% of the original dataset. The chosen subset under-
went meticulous preprocessing, with a focus on pivotal features
such as "Highway User Position", "Equipment Involved", and
"Incident Year", alongside the critical target variable, "Accident
Count". These features were prioritized based on their known
significance in accident causation and prediction. For instance,
"Highway User Position" provides crucial information about the
relative positions of vehicles and other users in the vicinity of
the railway crossing, which is essential for understanding colli-
sion dynamics. Similarly, "Equipment Involved" offers insights
into the types of equipment present during accidents, shedding
light on potential hazards and safety vulnerabilities. "Incident
Year" serves as a temporal factor, capturing trends and variations
in accident rates over time. This stage of processing included
thorough cleaning to prepare the data for the advanced analyti-
cal techniques that followed. Furthermore, Figure 1, depicting
a heatmap of the relative importance of "Equipment Involved,"
visually demonstrates its higher significance compared to other
factors such as "Date" in Figure 2. These heatmaps are provided
here for illustration, offering visual confirmation of the prioriti-
zation of certain features over others in accident prediction.

3.2 Feature Preparation and Model Training

We partition the dataset into training and testing sets with
an 80-20 split to ensure robust training and reliable testing. The
categorical features are one-hot encoded to be compatible with
machine learning algorithms, while all features are standardized
to a common scale to eliminate bias from data scale differences.
The processed dataset is then used for KRR with an RBF kernel,
which is known for its effectiveness in capturing non-linear rela-
tionships within data. We apply KRR to develop both a global
model for the entire dataset and cluster-specific models for the
data clusters identified through spectral clustering.

FIGURE 2: This heatmap captures the relative importance of the
Date factor, reinforcing the hypothesis that while Date has an im-
pact, it’s less definitive than physical and environmental condi-
tions.

3.3 Model Evaluation and Comparative Analysis
Model performance is evaluated using the RMSE, which

measures the average magnitude of prediction errors, providing
a clear indicator of model accuracy. We conduct a comparative
analysis between the global model and the cluster-specific models
to underscore the unique predictive capacities of each segment
within the dataset. This analysis is instrumental in demonstrating
the efficacy of customized models tailored to the distinct charac-
teristics of each cluster.

4. RESULTS
4.1 Global Model Performance

The global KRR model, encompassing the entirety of the
dataset, record a scaled RMSE of 0.17. This metric serves as a
baseline for subsequent model comparisons. The model’s per-
formance is visually represented through a line plot contrasting
the actual versus predicted yearly accident counts, as shown in
Figure 3. This visualization provides a macroscopic view of the
model’s ability to capture the overarching trends and fluctuations
in railway accidents over an extended period.

4.2 Cluster-specific Model Performance
In assessing the performance of cluster-specific models, the

following results were observed:

• Cluster 0: Reported a scaled RMSE of 0.22, which is in-
dicative of a solid model performance overall. This value,
however, points to certain instances where the model faced
predictive challenges, providing clear direction for targeted
enhancements. See Figure 4.

• Cluster 1: Showed a scaled RMSE of 0.16, reflecting a
highly accurate model performance that effectively captures
this cluster’s internal variability, marking it as a robust pre-
dictive tool for this specific data subset. See Figure 5.
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FIGURE 3: Yearly Accident Counts for Global Model: Actual
vs. Predicted. The graph presents the global model’s overar-
ching performance, capturing a long-term declining trend in ac-
cidents which corresponds with the actual data. Notable is the
model’s adeptness at reflecting major trends across the timeline
while also revealing areas of overestimation and underestimation,
suggesting opportunities for further model refinement.

FIGURE 4: Yearly Accident Counts for Cluster 0: Actual vs.
Predicted. The graph demonstrates the model’s difficulty in ac-
curately predicting the highly variable accident data of this cluster,
with apparent over-estimations during certain periods.

• Cluster 2: Demonstrated a scaled RMSE of 0.19, denot-
ing a competent level of accuracy. While the predictions
are generally reliable, there is potential for incremental im-
provements to achieve even closer alignment with observed
outcomes. See Figure 6.

• Cluster 3: Reported the highest scaled RMSE at 0.23. De-
spite this, the model’s performance is considered reason-
able, as it navigates the multifaceted and complex interac-
tions inherent to this cluster’s accident data, maintaining a
commendable degree of predictive reliability. See Figure 7.

These results highlight the distinctive characteristics of each
cluster, underlining the value of customized models for accurate
predictions in railway safety analysis.

4.3 Interpretation and Insights
The variation in RMSE values across the global and cluster-

specific models highlights the intricate nature of railway accident
data. The global model, with a scaled RMSE of 0.17, reflects

FIGURE 5: Yearly Accident Counts for Cluster 1: Actual
vs. Predicted. The predictive performance for Cluster 1 ex-
hibits a moderate level of accuracy, capturing the general declin-
ing trend of accidents over time but undershooting the peak acci-
dent counts, indicative of the model’s challenges with abrupt fluc-
tuations.

FIGURE 6: Yearly Accident Counts for Cluster 2: Actual vs.
Predicted. The model for Cluster 2 closely tracks the actual data,
including the early peak in accidents, though it tends to slightly
overestimate the magnitude of these peaks.

FIGURE 7: Yearly Accident Counts for Cluster 3: Actual
vs. Predicted. Cluster 3’s model shows respectable accuracy,
closely following the actual data’s trend, with a notable initial over-
estimation during the peak period.
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a broad analysis across various railway companies, encompass-
ing both freight and passenger services, without being confined to
specific geographic regions. In contrast, the cluster-specific mod-
els, with scaled RMSE values from 0.16 to 0.23, offer insights into
more localized patterns and trends. These clusters are derived
from relationships between railway companies sharing accident
localities within the same state and year, as constructed in a graph
network. The clusters are not strictly location-specific; they rep-
resent shared accident attributes between companies, which may
include accident frequencies and environmental conditions. This
nuanced view highlights the need for predictive models that can
accommodate the unique characteristics of each cluster, under-
scoring the multifaceted requirements of railway safety.

The visual representations of model outcomes, depicted in
line plots contrasting actual versus predicted accident counts,
serve as an intuitive means to gauge the models’ performance.
These visualizations facilitate a deeper interpretation of complex
data patterns and are instrumental in identifying areas that may
benefit from further analysis and model refinement.

The predictive outcomes and corresponding graphs are in-
valuable tools for hypothesis testing, enabling us to evaluate the
validity of our hypotheses. They demonstrate how well our theo-
retical understanding of the influential factors aligns with actual
data. While these outcomes do not offer definitive proof, they
provide a directional guide for further investigation and hypoth-
esis refinement. It is through the confluence of model perfor-
mance, domain expertise, and analytical interpretation that we
derive insightful conclusions. For example, the cluster-specific
models with lower RMSE values, such as Cluster 1 with 0.16
and Cluster 2 with 0.19, support the hypothesis that factors like
"Highway User Position" and "Equipment Involved" have a sig-
nificant influence on accident occurrences. The higher RMSE
values observed for Cluster 0 (0.22) and Cluster 3 (0.23) may
suggest a need to consider additional variables or more complex
interactions not previously accounted for in our models. The
predictive models thus act as a lens through which we view the
data, with each model’s performance either reinforcing or chal-
lenging our preconceived notions regarding accident causation
and prevention.

Ultimately, the true value of our models lies not just in their
predictive accuracy but also in their ability to inform and refine
our hypotheses about railway safety, leading to more effective
safety measures and policies.

4.3.1 Reinforcement of Previous Hypotheses. Sim-
ilarity matrices for each factor provide in-depth insights into how
various attributes influence the formation of clusters. Please see
section 3 of our preceding research [1] for a more in depth ex-
planation of how these values are calculated and interpreted. See
Figure 1 and Figure 2 for a visualization of the most and least
influential factors based on our results. Please refer to the legend
adjacent to each heatmap for precise values, as reliance on color
intensity alone may not accurately convey the relative importance
of each factor.

The high accuracy of predictions within certain clusters
aligns with our previous hypothesis that "Highway User Posi-
tion" and "Equipment Involved" are critical factors in accident
occurrences. Models demonstrating lower RMSE in clusters with

pronounced accident patterns indicate that these features indeed
play a significant role in shaping accident trends. This finding
reinforces the need for heightened safety measures and targeted
interventions focusing on these particular elements to mitigate
risks.

4.3.2 New Insights into Railway Safety. On the other
hand, the varying model performances across clusters suggest
that factors such as "Visibility" and "Weather Condition," which
showed moderate similarity scores previously, might exhibit a
more complex relationship with accident rates than initially sur-
mised. Clusters with higher RMSE values may indicate the
presence of additional, less obvious variables that interact with
visibility and weather conditions, affecting the predictability of
accidents. This revelation points to the potential benefits of devel-
oping more granular safety protocols that account for the interplay
of environmental conditions with human and equipment-related
factors.

4.3.3 Temporal Factors and Accident Prediction.
The limited impact of "Date" and "Time" on accident causation,
as hypothesized in our previous paper, is further corroborated
by the cluster-specific models. These models indicate that while
temporal factors may influence accident occurrences, their role
is not as definitive as the physical and environmental conditions
present at the crossing. This insight shifts the focus of railway
safety measures from time-based to condition-based strategies,
potentially leading to more effective risk management practices.

4.3.4 Implications for Equipment Design and
Policy. The moderate importance of "Equipment Type" and
"Equipment Struck" in accident causation, as indicated by our
earlier hypotheses, has been further nuanced by the predictive
models. Clusters with better predictive outcomes suggest that
where certain types of equipment are involved, and specific parts
are struck, there are identifiable patterns that could be critical for
designing safer railway equipment and formulating policies that
address these specific scenarios.

4.3.5 Forward-Looking Safety Enhancements. The
results of our predictive modeling provide a robust validation of
our initial hypotheses while also paving the way for new inquiries
into railway crossing safety. The insights gained underscore the
importance of developing specialized predictive models for each
cluster, considering the unique characteristics inherent in differ-
ent segments of the data. As we continue to unravel the com-
plex fabric of railway accident causation, these models become
invaluable in formulating forward-looking, data-driven safety en-
hancements. The transition from recognizing patterns to actively
predicting and preventing accidents marks a paradigm shift in
railway safety management, with the ultimate goal of safeguard-
ing lives and improving the resilience of railway infrastructure.

5. CONCLUSION
This research represents a substantial leap in understanding

and predicting railway crossing accidents through the integration
of machine learning techniques. Building on our initial explo-
ration with graph mining, we have now ventured into the predic-
tive realm, employing KRR to forecast potential accident trends.
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Our dual approach, comprising both global and cluster-specific
models, has provided a comprehensive and nuanced understand-
ing of the data.

1. Efficacy of KRR: The application of KRR has proven to
be effective in capturing the complex relationships within
our data. The variance in RMSE values across different
clusters and the global model underscores KRR’s capability
to handle diverse data patterns.

2. Insights from Cluster-specific Analysis: The disparate
performances of cluster-specific models highlight the im-
portance of tailored predictive strategies. This approach is
crucial for addressing the unique characteristics and chal-
lenges posed by each cluster.

3. Global Model vs. Cluster-specific Models: Our analysis
draws attention to the strengths and limitations of a univer-
sal modeling approach versus more focused, cluster-specific
models. This comparison provides valuable insights for fu-
ture predictive modeling in railway safety.

4. Implications for Future Research and Practice: The
methodologies and findings from this study offer a solid
foundation for future research, especially in the application
of more advanced machine learning techniques for compre-
hensive accident prediction.

However, our study is not without limitations. The reliance
on a subset of the data for computational feasibility may af-
fect the completeness of our analysis. Additionally, while the
global model provides a broad overview, it may not capture the
intricate details evident in the cluster-specific models. Future
research could address these limitations by incorporating larger,
more diverse datasets and employing more sophisticated machine
learning algorithms. Such advancements would allow for a more
accurate and holistic understanding of railway crossing accidents.

As we progress, we eagerly anticipate further exploring the
predictive capabilities of machine learning in our subsequent pa-
per. This next phase will utilize the extensive insights gained
thus far, applying advanced algorithms for a deeper and more
predictive analysis. Our goal is to transition from understand-
ing past patterns to effectively anticipating and mitigating future

risks, thereby enhancing railway safety at a broader scale. In our
pursuit of this goal, we will explore techniques that enable us
to approximate complex, high-dimensional feature spaces more
effectively. By employing methods that enrich our feature set and
capture the nuanced interactions within our data, we can construct
models that offer greater precision and reliability. This strategy,
intrinsic to our next phase of research, aligns with our objective
of shifting towards a more predictive analytical framework—a
transformative step in our continuous efforts to bolster railway
safety. This progression from descriptive to anticipatory analyt-
ics signifies a crucial leap in our ongoing quest. It embodies our
commitment to harnessing the full potential of machine learning,
paving the way for identifying key predictors of accidents and,
ultimately, formulating more efficacious preventative strategies.
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