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Abstract—Hyperparameter optimization is an essential com-

ponent in many data science pipelines and typically entails

exhaustive time and resource-consuming computations in order

to explore the combinatorial search space. Similar to this

problem, other key operations in data science pipelines exhibit

the exact same properties. Important examples are: neural

architecture search, where the goal is to identify the best

design choices for a neural network, and query cardinality

estimation, where given different predicate values for a SQL

query the goal is to estimate the size of the output. In

this paper, we abstract away those essential components of

data science pipelines and we model them as instances of

tensor completion, where each variable of the search space

corresponds to one mode of the tensor. Now the goal is to

identify all missing entries of the tensor, corresponding to all

combinations of variable values, starting from a very small

sample of observed entries. In order to do so, we first conduct

a thorough experimental evaluation of existing state-of-the-

art tensor completion techniques. We also introduce domain-

inspired adaptations (such as smoothness across the discretized

variable space) and an ensemble technique which is able to

achieve state-of-the-art performance. We extensively evaluate

existing and proposed methods in a number of generated

datasets corresponding to (a) hyperparameter optimization for

non-neural network models, (b) neural architecture search, and

(c) variants of query cardinality estimation. By doing this, we

demonstrate the effectiveness of tensor completion as a tool for

automating data science pipelines. Furthermore, we release our

generated datasets and code in order to provide benchmarks

for future work on this topic.

1. Introduction

In many different data science pipelines, it is necessary
to automate the pipeline’s design, such as choosing the
optimal hyperparameters for a machine learning model,
searching for optimal architecture for a deep neural net-
work, and predicting the (distinct) output cardinality of all

predicate values for SQL queries. Unfortunately, this usually
requires exhaustive computation of all candidate design
combinations, resulting in expensive computing time and
resources, exponential with respect to the number of search
components (e.g. hyperparameters or SQL query predicates).

Finding the optimal hyperparameter configuration of a
machine learning model is commonly known as hyper-
parameter optimization. Standard approaches include grid
search and random search [1]. Grid search (such as Grid-
SearchCV [2]) exhaustively trains and evaluates a machine
learning model’s performance using a grid of hyperparam-
eter combinations. The grid represents the hyperparameters
on each axis, and the different axis values are the prede-
fined values that hyperparameter takes. These predefined
hyperparameter combinations are all trained and evaluated
on a downstream task [3]. As the number of hyperpa-
rameters grow, the number of combinations of values they
take grow exponentially, making an exhaustive search very
difficult. An exhaustive search becomes impractical with
even more intricate deep learning model architectures as
well. Another simple approach, random search, evaluates a
model on the hyperparameters that are drawn independently
from a predefined distribution, such as uniform distribution.
However, these algorithms often do not converge to the
optimal configuration [1].

In the domain of hyperparameter optimization, there
have been efforts to address the computational challenges
of the standard methods posed by manual programming and
testing. Bayesian optimization [4] uses probabilistic models
such as random forests, Gaussian processes, and gradient
boosting to decide which data sample to be fed for the
evaluation in each iteration [5]–[7]. Stochastic population-
based optimization methods, evolution strategies, iteratively
find hyperparameter configurations with high fitness values,
i.e., the (inverted) generalization error [8]–[10]. Other ad-
vanced frameworks include Hyperband [11], iterated racing
[12], and Gradient-based optimization methods [13], [14].
The aforementioned methods have been shown promising
results in searching for good hyperparameter configurations,



but none of them are designed to explicitly take advantage
of the underlying low-rank structure. In practice, there is
often a small subset of the whole set of hyperparameters
that influence the downstream task performance, and several
values of the same hyperparameter, e.g., learning rate, are
likely to yield similar or the same performance [15], [16].
There exists work on approaching hyperparameter optimiza-
tion problem as a tensor completion task which assumes the
tensor being low rank [17]–[19].

However, the existing methods are limited to suggesting
a single optimal hyperparameter configuration, depending
on strong underlying statistical assumptions, or being con-
strained to low-rank structure. For data science pipeline
design, one may be interested in multiple optimal hyper-
parameter configurations or knowing the outcome of every
configuration, or if one cannot make any statistical or struc-
tural assumptions. In databases, users tend to care about
the cardinality of every query. To this end, we offer a
generic model for automating data science pipelines through
tensor completion. We model the outputs of the data science
pipeline design (e.g., cardinality of SQL query searches and
machine learning model evaluation scores) as the entries of
a tensor, and each search variable (e.g., hyperparameter or
a query predicate value) as one mode of the tensor. Given
a very small fraction of observed entries, our goal is to
estimate all missing entries of the tensor.

In this paper, we thoroughly explore a broad spectrum
of the existing state-of-the-art (SOTA) tensor completion
techniques including CPD, TuckER [20], CoSTCo [21],
and NeAT [22], and apply them to automating data sci-
ence pipelines. Leveraging the advances of CPD, we also
propose a new tensor completion method, namely CPD-
S, by enforcing the smoothness constraints on the latent
CPD components, since any two similar values of the same
search variable most likely lead to similar design output.
Furthermore, to fully take advantage of the individual SOTA
models, we propose ensemble methods. Specifically, we
consider: 1) straight-forward schemes such as taking the
mean or median of several predictions corresponding to
the same tensor entry from the same model (CPD-S or
CoSTCo) with different pre-defined tensor ranks, and 2)
more advanced framework, i.e., learning the contributions
of the results from multiple CPD-S or CoSTCo through a
neural network such as multi-layer perceptron and aggregat-
ing the results nonlinearly to form a single prediction result
for every design configuration.

In this work, we make several distinct contributions in
sparse tensor completion for surrogate modeling as follows:

• Broad Data Science Applications: we take a broader
view and demonstrate how this can generalize to a
variety of data science problems in machine learning
and database management.

• Investigating Tensor Completion Variants: we ex-
plore the performance of different tensor completion
variants and identify pros and cons.

• Leveraging and Exploring Tensor Modeling: we
explore the expressive power of tensor modeling in
exploring ways to further improve surrogate modeling.

• Proposed Methods: Motivated by the problem struc-
ture, we propose applying a smoothness constraint to
factor matrices in CPD tensor completion to improve
performance for this application. Furthermore, we pro-
pose an ensemble tensor completion to aggregate the
results of several tensor completion methods, for im-
proved performance and reliability.

• Public Code and Benchmark Datasets: In order
to promote reproducibility and follow-up research,
we make our implementation and the benchmark
datasets created for (i) hyperparameter optimization,
(ii) neural architecture search, and (iii) query cardinal-
ity estimation publicly available at https://github.com/
shaanpakala/STC_AutoML.

2. Preliminaries and Problem Formulation

2.1. Preliminaries

2.1.1. Data Science Pipelines. Below are the three bottle-
neck tasks within a data science pipeline that we focus on.
Hyperparameter Optimization: We are finding the best
combination of hyperparameters [1] for a non-deep learning
machine learning model (e.g. K-Nearest Neighbors, Deci-
sion Trees). This involves adjusting the values of various
hyperparameters of the machine learning model, then train-
ing the model and evaluating its performance.
Neural Architecture Search: This is a similar task to
Hyperparameter Optimization, except with Neural Networks
(e.g. Dense Neural Networks, Convolutional Neural Net-
works) [23]–[25]. Now there are different hyperparameters,
such as layer size or number of layers. The goal here is to
find the Neural Network architecture that gives the best per-
formance, by training and evaluating different architectures.
Query Cardinality Estimation: We want to estimate the
cardinality of the output for complex database queries [26],
[27]. In this application, we use tensor completion to extract
the complex relationships between the predicates of a query,
in order to infer the entire output cardinality. In this case,
the hyperparameters would be the attribute in the predicates,
and the hyperparameter values would be the range for that
predicate’s attribute.
Query Distinct Cardinality Estimation: We want to esti-
mate the cardinality of the distinct values of a given attribute
in the output for database queries. Here the focus is to infer
the cardinality of the distinct values of the output, rather
than just the entire output. This is almost identical to Query
Cardinality estimation, except the entries in the tensor repre-
sent cardinality of distinct values (of a specificied attribute).

2.1.2. Surrogate Modeling. Surrogate modeling in machine
learning is used to help guide the optimal hyperparameter
search without exhaustively train and evaluating all combi-
nations [18]. In our case, this will be done by estimating the
performance (according to an evaluation metric, F1 Score)
for all configurations of machine learning models. This will
also be applied to infer the cardinalities of various database
queries, with their own design configurations.



Figure 1: In this work we unify a number of combinatorial and highly computationally intense data science tasks, such as hyperparameter
optimization, neural architecture search, and query cardinality estimation, under the umbrella of tensor completion. We conduct a thorough
and extensive study of existing tensor completion methods and propose a novel method for accurately recovering the entire search space
in those data science tasks from a small number of observations, towards automating data science pipelines.

2.1.3. Tensors. Tensors are multidimensional arrays. In
other words, a vector is a 1-dimensional tensor, and matrix is
a 2-dimensional tensor. We will be looking at tensors of 3 or
more dimensions [28], [29]. The tensors for our application
will also be Sparse Tensors, which are tensors with many
missing values. We use boldface italicized letters (e.g. X)
to denote dense tensors (tensors with no missing values).
For sparse tensors, we will use the same notation, with a
subscript "S". For example, XS would be a sparse tensor
corresponding to dense tensor X.

2.1.4. Tensor Decomposition. Tensor decomposition is the
process of expressing a tensor using smaller factors. For
example, a common method of tensor decomposition is the
Canonical Polyadic Decomposition (CPD) [28], [29]. CPD
expresses a tensor as a sum of rank-one tensors. A third-
order tensor X ∈ R

IxJxK would be expressed as: X ≈
∑R

r=1(ar ◦ br ◦ cr), where ◦ denotes outer product, ar ∈
R

I ,br ∈ R
J , and cr ∈ R

K . We represent a decomposition
of tensor X as XD.

2.1.5. Tensor Completion. Tensor Completion is the pro-
cess of filling in the missing values of a sparse tensor. There
are several forms of Tensor Completion methods, such as:

Classical Tensor Methods: CPD [30] & TuckER [20],

Tensor Network Methods: Tensor Train [31], and

Neural Tensor Methods: CoSTCo [21] & NeAT [22].

Classical Tensor Methods heavily rely upon the tensor
decomposition in order to infer back the missing values.
CPD, for example, uses a series of matrix multiplication
and addition in order to generate the dense tensor again.

Tensor Networks [32] have been witnessing a steady
rise in popularity, as they provide a flexible and modular

framework for expressing otherwise complex tensor mod-
els using elementary tensor operations such as multilinear
maps (which, in a nutshell, describe how a tensor mode is
projected from its original space to a new space) in network
form. One of the most prominent Tensor Network models
is the so-called Tensor Train [31], which we use here as a
representative of Tensor Network methods.

Neural Tensor Methods use an additional neural network
to infer back the missing values of the tensor. CoSTCo [21],
for example, uses a Convolutional Neural Network (CNN)
to extract information from very sparse tensors to accurately
infer back the missing values.

2.1.6. Tensor Completion Training. Training our tensor
completion algorithms begin with randomly initializing a
decomposition of the dense tensor X. Using this random
decomposition XD, we can generate an estimation of the
dense tensor X according to the corresponding method’s
algorithm. For example, CPD uses matrix products and
sums to reconstruct the full tensor, while CoSTCo [21] uses
CNNs. After building the estimation of the dense tensor X,
we calculate the loss using the Mean Squared Error (MSE):

Loss = Mean((XS −R(XD))2 ·MX) (1)

where R(XD) represents the full reconstruction of tensor
X using only the randomly initialized factors XD. MX is
a boolean/mask tensor, whose values are 1 if that entry in
XS is observed, and 0 if it is unobserved. This is because
we only keep the reconstruction for the observed indices of
the sparse tensor to calculate our loss. We multiply the loss
by the mask, to convert the loss for the missing entries to
0, and the non-missing entries remain the same.



Now we can optimize the randomly initialized decompo-
sition XD in terms of MSE using Adam [33] with backprop-
agation. We are essentially iteratively getting closer to a full
reconstruction of X such that the entries corresponding to
the sparse tensor values are similar to their observed values.

2.2. Problem Definition

The general problem we are solving is to be able to ef-
ficiently and accurately approximate data science pipelines’
outputs across a large combinatorial space of configurations.

2.2.1. Tensor Completion for Hyperparameter Tuning.
Hyperparameter tuning can be modeled as a tensor, where
each axis of the tensor represents a certain hyperparameter
we are optimizing. Each of the values of that axis will
represent the different values the hyperparameter can take.
Each cell will now represent a specific combination of
hyperparameter values, which will be filled in using some
evaluation metric of the Machine Learning model using that
hyperparameter combination. For our purposes, we will be
using F1-Score for classification tasks.

This figure demonstrates how we will use only a portion
of selected hyperparameter combinations, to infer the entire
space of combinations of hyperparameters, using tensor
completion. Above is an example of TuckER tensor comple-
tion, using Tucker tensor decomposition [20] Each of H1,
H2, and H3 represents a different hyperparameter that we
are tuning, corresponding to that axis of the tensor.

In the figure, the tensor represents hyperparameter com-
binations for k-Nearest Neighbors (k-NN). Here, one axis
represents k, with different values k could take, and another
axis represents p (in Lp norm distance), with different
values p could take. The cells represent a combination of
hyperparameters that k-NN could take, using an evaluation
metric. We will be using F1-Score for the evaluation metric.

2.2.2. Tensor Completion for Neural Architecture
Search. Neural Architecture Search will be modeled simi-
larly, where each axis will now represent a different kind of
hyperparameter. Some examples are number of layers, layer
size, and different activation functions. Each cell will also
represent a combination of hyperparameter values, where the
value of that cell will also represent some evaluation metric
of the Deep Learning model using that hyperparameter
combination. We will also be using F1-Score here.

2.2.3. Tensor Completion for Query Cardinality Esti-
mation. Query Cardinality Estimation can be modeled as a
tensor where each axis represents a certain predicate of a
query. Each value of that axis represents a different value
that the predicate could take. Now each cell will represent
the cardinality of the output that is produced using this
combination of predicate values.

2.2.4. Tensor Completion for Query Distinct Cardinality
Estimation. Very similar to Query Cardinality Estimation,
except now we are estimating the cardinality of the distinct
values of an attribute in the output of a database query.

3. Proposed Method

In this work, we investigate the behavior of several types
of Classical, Tensor Network, and Neural Tensor Comple-
tion models for a variety of tasks. We also propose applying
a smoothness constraint [34] on all modes for CPD tensor
completion. In addition to these individual tensor completion
methods, we propose an ensemble tensor completion model,
to aggregate the results of several individual ones.

3.1. Dataset Generation

Dataset generation consists of exhaustively computing
the outcomes of all combinations (of a prespecified range) of
hyperparameters, neural network layers, and queries. From
here, we can remove values from this complete tensor to
produce our sparse tensor, simulating computing only a
fraction of the combinations. Then we can observe how
well we are able to infer them again. This will allow us to
evaluate the performance of our tensor completion methods
for these applications.
Non-Deep Learning We use scikit-learn [2] to exhaustively
train and evaluate non-deep learning model hyperparameter
combinations.
Neural Architecture Search We use PyTorch [36] to create
dense neural networks, to also exhaustively run combina-
tions of hyperparameters for our neural architecture search
tensor.
Query Cardinality Estimation We run queries with com-
binations of predicate values and generate the cardinalities
of the outputs for our Query Cardinality tensors and cardi-
nalities of distinct output values for a given attribute.

A full detailed list of hyperparameters & components
used for each tensor we generated can be found in Table 1.

3.2. CPD-S: Smooth CP Decomposition

The indices of the hyperparameter tensors are sequen-
tially ordered and the corresponding performance values
change smoothly as shown in Figure 2. Based on this ob-

(a) SVM Tensor (b) Neural Network Tensor

Figure 2: Indicative tensor slices where the nature of the hyperpa-
rameters involved results in smoothness across those dimensions
motivating our proposed smoothness constrained CPD-S method.

servation, resulting factor matrices will exhibit smoothness
property, where each row of factors is similar to its adjacent
rows. To enforce this smoothness property, we use a kernel
smoothing regularization [34] applied to all factor matrices.



Table 1: Hyperparameters & Ranges

Tensor File Tensor Size H1 H2 H3 H4 H5

Non-Deep Learning

KNN_car_evaluation_828 3x7x2x9x11 scaler[None,minmax,standard] PCA[1,2,3,4,5,6,None] weights[’distance’,’uniform’] p[1-10] n_neighbors[1-75]

DT_Dermatology_828 8x8x8x9 max_depth[1-15,None] max_features[1-15,None] min_samples_leaf[1-100] - -

RF_Dermatology_828 8x8x8x9 min_samples_leaf[1-75] max_features[1-15,None] max_depth[1-15,None] n_estimators[1-100] -

SVM_Biodeg_905 3x2x7x9x11 scaler[None,minmax,standard] SMOTE[False,True] C[0.125-8] degree[1-15] max_iter[2-500]

SVM_Dermatology_905 3x2x7x9x11 scaler[None,minmax,standard] SMOTE[False,True] C[0.125-8] degree[1-15] max_iter[2-500]

SVM_Alzheimers_905 3x2x7x9x11 scaler[None,minmax,standard] SMOTE[False,True] C[0.125-8] degree[1-15] max_iter[2-500]

DT_Spambase_829 3x4x8x7x9 scaler[None,minmax,standard] min_impurity_decrease[0-0.1] min_samples_leaf[1-75] max_features[1-10,None] max_depth[1-15,None]

RF_Spambase_829 3x4x8x7x9 scaler[None,minmax,standard] min_impurity_decrease[0-0.1] min_samples_leaf[1-75] max_features[1-10,None] max_depth[1-15,None]

ET_Spambase_829 3x4x8x7x9 scaler[None,minmax,standard] min_impurity_decrease[0-0.1] min_samples_leaf[1-75] max_features[1-10,None] max_depth[1-15,None]

GB_Spambase_829 3x4x8x7x9 scaler[None,minmax,standard] min_impurity_decrease[0-0.1] min_samples_leaf[1-75] max_features[1-10,None] max_depth[1-15,None]

Neural Architecture Search

FCNN_Dermatology_829 3x6x3x6x5 scaler[None,minmax,standard] num_epochs[3-25] batch_size[16-256] num_layers[1-10] hidden_size[32-5000]

FCNN_Alzheimers_902 3x6x3x6x4 scaler[None,minmax,standard] num_epochs[2-25] batch_size[128-2048] num_layers[1-15] hidden_size[32-512]

FCNN_car_evaluation_903 3x6x3x6x4 scaler[None,minmax,standard] num_epochs[2-25] batch_size[128-2048] num_layers[1-15] hidden_size[32-512]

FCNN_Dermatology_903 3x6x3x6x4 scaler[None,minmax,standard] num_epochs[2-25] batch_size[128-2048] num_layers[1-15] hidden_size[32-512]

FCNN_Particle_ID_903_02 3x6x3x6x4 scaler[None,minmax,standard] num_epochs[2-25] batch_size[128-2048] num_layers[1-15] hidden_size[32-512]

FCNN_Spambase_902 3x6x3x6x4 scaler[None,minmax,standard] num_epochs[2-25] batch_size[128-2048] num_layers[1-15] hidden_size[32-512]

FCNN_Spambase_905_50 3x6x5x5x5 activation[relu,sigmoid,tanh] lr[0.0005-0.1] num_epochs[5-50] hidden_size[10-250] num_layers[1-10]

FCNN_Biodeg_905 3x6x5x5x5 activation[relu,sigmoid,tanh] lr[0.0005-0.1] num_epochs[5-50] hidden_size[10-250] num_layers[1-10]

Query Cardinality

AND_AND_801 10x10x10 surname_pcode[’B’,’V’,’Q’,’G’,’L’] name_pcode_nf[’G’,’I’,’M’,’O’,’K’] person_id[1e5-1e6] - -

AND_OR_801 10x10x10 surname_pcode[’B’,’V’,’Q’,’G’,’L’] name_pcode_nf[’G’,’I’,’M’,’O’,’K’] person_id[1e5-1e6] - -

OR_AND_801 10x10x10 surname_pcode[’B’,’V’,’Q’,’G’,’L’] name_pcode_nf[’G’,’I’,’M’,’O’,’K’] person_id[1e5-1e6] - -

OR_OR_801 10x10x10 surname_pcode[’B’,’V’,’Q’,’G’,’L’] name_pcode_nf[’G’,’I’,’M’,’O’,’K’] person_id[1e5-1e6] - -

Query Distinct Cardinality

AND_AND_distinct_817 10x10x10 surname_pcode[’B’,’V’,’Q’,’G’,’L’] name_pcode_nf[’G’,’I’,’M’,’O’,’K’] person_id[1e5-1e6] - -

AND_OR_distinct_817 10x10x10 surname_pcode[’B’,’V’,’Q’,’G’,’L’] name_pcode_nf[’G’,’I’,’M’,’O’,’K’] person_id[1e5-1e6] - -

OR_AND_distinct_817 10x10x10 surname_pcode[’B’,’V’,’Q’,’G’,’L’] name_pcode_nf[’G’,’I’,’M’,’O’,’K’] person_id[1e5-1e6] - -

OR_OR_distinct_817 10x10x10 surname_pcode[’B’,’V’,’Q’,’G’,’L’] name_pcode_nf[’G’,’I’,’M’,’O’,’K’] person_id[1e5-1e6] - -

This table displays each tensor we generated and the hyperparameters or components used, along with its range of values.
The Query Tensors (Query Cardinality & Distinct Cardinality) are generated on the IMDB dataset [35], and each cell

represents the attribute along with the values the attribute will be compared against. For example, surname_pcode
[’B’,’V’,’Q’,’G’,’L’] means the predicates are surname_pcode >= ’B’, surname_pcode <= ’B’, surname_pcode >= ’V’, etc.
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in Equation (2) introduces the smoothness into a factor by
regularizing the inth row of the factor to the smoothed vector
from the neighboring rows. The weight w(in, is) denotes the
weight to give to the isth row of the factor matrix. We use
the Gaussian kernel to give the weight to a row closer to
the itth row should be given a higher weight. Given a target
row index in, an adjacent row index is, and a window size
S, Gaussian kernel weight is defined as follows:
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)

Note that σ affects the degree of smoothing; a higher value
of σ imposes more smoothing.

3.3. Proposed Ensemble Method

Utilizing the results of multiple tensor completion meth-
ods will allow for improved accuracy and consistency. The
same intuition behind ensemble machine learning models
(e.g. random forest) comes into play here: Using the results
of several “weak learners” we generate a single prediction.

3.3.1. Simple Aggregation Functions. First we use some
simple functions to aggregate the results of several models,
such as mean, median, max and min. For this method,
we fully train each individual model on the sparse ten-
sor, and each individual model makes its own prediction.
After this, for each prediction, the median, for instance,
is taken from all the individual’s prediction. For predict-
ing the element at index xi, the ensemble model’s pre-
diction, PEnsemble(xi), can be written as: PEnsemble(xi) =
median{P1(xi), P2(xi), ...Pn(xi)}, where Pj(xi) is the jth
individual model’s prediction.



3.3.2. Learned Aggregation Functions. In addition to ag-
gregating the individual model’s results using a fixed func-
tion, we can learn an aggregation function. We experiment
with training a Multi-Layer Perceptron (MLP) or Convo-
lutional Neural Network (CNN) to aggregate the results of
the individual tensor completion models. Here, each model’s
predictions would be the features, and each index that is
being predicted would be the samples. This would be trained
on the entire sparse tensor, besides the validation set. The
individual models can be further trained while training the
aggregation function, or their training can be stopped before.

3.3.3. Multiple Ranks for Tensor Completion. Introduc-
ing an ensemble tensor completion algorithm also allows
us to perform different rank tensor completions on a sparse
tensor. For example, we can use CPD tensor completion
models that use rank 5, 10, and 15 decompositions, and
aggregate all their results. The intuition behind this is that
we will not know the true rank of the sparse tensor we are
dealing with in the real world. For this reason, aggregating
the results of multiple methods with different ranks, could
offer us reliability regardless of the true rank of the tensor.

3.3.4. Splitting Data. We can also split up the sparse tensor
slightly differently for each of the individual tensors in the
ensemble model. For instance, if we have multiple models,
we can train each individual model using only 90% of the
entire sparse tensor. If we make sure each of the 10% unused
is different for each model, each model would have slightly
different data to train on. The intuition here is for the tensor
completion models to extract different information about the
data, by using different pieces of the sparse tensor.

3.3.5. Notation. We will refer to an ensemble instance as
"TenSemble-model_aggregation." For example, an ensemble
of CPD models, with median aggregation, will be referred
to as TenSemble-CPD_median.

4. Experimental Evaluation

We use the full tensors that we generated as our ground
truth. In a real world scenario, we obviously do not have
access to the missing values, so there is no way to tell how
well we are inferring the values. Since we generated the
full tensors in this work, we will be experimenting with
various types of sparse tensors (e.g. different downstream
tasks, different levels of sparsity) in order to examine how
well we are inferring the missing values.

4.1. Benchmarking Tensor Completion Methods

As a first step, we test and compare a number of existing
tensor completion methods, in order to confirm whether
our goal is feasible to begin with. To do this, we fix 5%
observed values in each of our tensors (randomly sampled),
and compute the error when recovering the 95% of missing
values. We can observe in Figure 3 the performance of
sparse tensor completion for our applications using a variety

of tensor completion algorithms and a wide range of tasks
and datasets. We compare these algorithms with a Naive
method, which is just randomly sampling from the given
sparse tensor (i.e. filling in the 95% of missing values by
randomly sampling the 5% of observed values).

4.2. Ensemble Tensor Completion Performance

We want to explore the effect of aggregating the results
of multiple tensor completion models together, in com-
parison with the individual tensor completion models. In
these experiments we compare several tensor completion
models with an ensemble, which consists of multiple tensor
completion models of the same type. For example, Table
2 displays 3 individual CPD models, of rank 1, 3, and 5,
compared with different ways to aggregate these 3 mod-
els into an ensemble. We compare the individual models
with their various ensembles on our four tasks: Non-Deep
Learning (NDL), Neural Architecture Search (NAS), Query
Cardinality (QC), and Query Distinct Cardinalty (QDC).

Table 2: CPD Individual vs Ensembles (5% observed values)

NDL NAS QC QDC

Rank 1 .062 ± .00 .154 ± .01 .190 ± .06 .149 ± .05
Rank 3 .071 ± .00 .180 ± .02 .207 ± .03 .187 ± .02
Rank 5 .071 ± .01 .158 ± .01 .214 ± .03 .180 ± .02

TenSemble-CPD_∗

* = Median .060 ± .00 .151 ± .01 .170 ± .03 .149 ± .01
* = Mean .058 ± .00 .150 ± .00 .167 ± .03 .145 ± .01
* = MLP .058 ± .01 .127 ± .02 .170 ± .03 .141 ± .02

Table 3: CPD-S Individual vs Ensembles (5% observed values)

NDL NAS QC QDC

Rank 1 .061 ± .00 .190 ± .08 .184 ± .10 .123 ± .02
Rank 3 .048 ± .00 .177 ± .04 .164 ± .01 .176 ± .03
Rank 5 .047 ± .00 .144 ± .01 .151 ± .01 .180 ± .02

TenSemble-CPD-S_∗

* = Median .045 ± .00 .155 ± .03 .141 ± .01 .152 ± .02
* = Mean .045 ± .00 .154 ± .03 .148 ± .02 .148 ± .02
* = MLP .043 ± .00 .117 ± .01 .134 ± .00 .156 ± .03

Table 4: CoSTCo Individual vs Ensembles (5% observed values)

NDL NAS QC QDC

Rank 10 .078 ± .01 .124 ± .01 .117 ± .02 .109 ± .02
Rank 20 .067 ± .00 .116 ± .01 .120 ± .03 .094 ± .01
Rank 32 .087 ± .02 .116 ± .00 .099 ± .02 .093 ± .02

TenSemble-CoSTCo_∗

* = Median .070 ± .01 .113 ± .01 .106 ± .02 .089 ± .01
* = Mean .069 ± .01 .114 ± .01 .107 ± .02 .089 ± .01
* = MLP .059 ± .00 .105 ± .01 .107 ± .02 .087 ± .01

Each cell is average ± standard deviation of MAE over 5 iterations.

Across these three models, CPD, CPD-S, and CoSTCo
[21], we can see that aggregating the tensor completion
methods in an ensemble usually improves upon the per-
formance of the individual models. Of the aggregation
functions, the MLP aggregation function seems it usually



Figure 3: Sparse Tensor Completion MAE using 5% observed values. Each cell represents average MAE over 5 iterations.

NDL NAS QC QDC

1 2 3 1 2 3 1 2 3 1 2 3

Naive 0.224 0.164 0.229 0.116 0.352 0.150 0.198 0.352 0.248 0.288 0.225 0.174
CPD 0.069 0.116 0.018 0.069 0.157 0.105 0.103 0.178 0.171 0.115 0.207 0.176
CPD-S 0.048 0.067 0.019 0.064 0.126 0.095 0.127 0.131 0.145 0.121 0.160 0.130
TuckER 0.190 0.085 0.151 0.126 0.316 0.120 0.288 0.262 0.258 0.276 0.315 0.269
Tensor Train 0.091 0.117 0.036 0.066 0.152 0.113 0.094 0.162 0.173 0.123 0.221 0.176
NeAT 0.159 0.119 0.155 0.108 0.245 0.120 0.150 0.222 0.198 0.185 0.179 0.146
CoSTCo 0.117 0.061 0.082 0.062 0.099 0.090 0.080 0.077 0.100 0.086 0.110 0.099

Tensors used in table:
NDL Tensors: (1) DT_Dermatology_828, (2) KNN_Alzheimers_902, (3) RF_Spambase_829
DL Tensors: (1) FCNN_Particle_ID_903_02, (2) FCNN_Dermatology_829, (3) FCNN_car_evaluation_903
QC Tensors: (1) AND_AND_801, (2) AND_OR_801, (3) OR_OR_801
QDC Tensors: (1) AND_AND_distinct_817, (2) OR_AND_distinct_817, (3) OR_OR_distinct_817

outperforms the others (mean & median), but it is unclear
how consistent this result is.

4.3. Computational Efficiency

Even though our proposed CPD-S and ensemble meth-
ods match but not necessarily outperform CoSTCo, CPD-S
and CPD-based ensembles are more lightweight in terms
of parameters to be learned and can potentially be more
efficient as a result. Tables 5 and 6 show runtimes for
the top-performing models. For the ensemble model we
have divided the runtime of serially executed base mod-
els over the number of base models to simulate the ideal
parallel case. Indicatively, CPD-S is either on par or faster
than CoSTCo while requiring much fewer parameters and
TenSemble-CPD-S was 1.9 × −78× faster than CoSTCo
1 assuming parallel execution, since each base model in
the ensemble works on a sparser tensor than an individual
model. As we are primarily focused on feasibility in this
work, these results are highly encouraging and we defer
further scalability investigation to future work.

% observed CPD-S CoSTCo TenSemble-CPD-S_MLP

1% 0.635 ± 0.29 0.447 ± 0.07 0.737 ± 0.20
2.5% 1.835 ± 1.48 1.113 ± 0.12 2.346 ± 1.06
5% 2.836 ± 1.33 6.143 ± 3.10 2.612 ± 0.25
10% 1.133 ± 0.10 116.460 ± 4.79 1.479 ± 0.11

Table 5: Runtime in seconds for each model (training & inference)
on KNN_car_evaluation_828. Average ± STD over 5 iterations.

% observed CPD-S CoSTCo TenSemble-CPD-S_MLP

1% 0.173 ± 0.06 0.193 ± 0.04 0.289 ± 0.04
2.5% 0.646 ± 0.54 0.366 ± 0.06 0.538 ± 0.21
5% 0.541 ± 0.29 1.213 ± 0.31 0.625 ± 0.12
10% 0.844 ± 0.20 8.997 ± 2.63 1.387 ± 0.87

Table 6: Runtime in seconds for each model (training & inference)
on FCNN_Spambase_905_50. Average ± STD over 5 iterations.

1. For 10% observations and higher CoSTCo often fails to converge
necessitating a restart, which results in significantly higher runtime

4.4. Data Efficiency Analysis

The rationale behind using completion to recover the
entire space is to avoid evaluating a combinatorial number of
potentially very expensive experiments. We are investigating
in identifying the minimum number of observed entries (i.e.,
exact evaluations of parameter combinations) necessary in
order to perform high-quality completion. In other words,
we want to know how sparse our tensors can be.

Figure 4 displays the Mean Absolute Error (MAE) of
tensor completion on the Y-axis, and the percent of observed
entries in the sparse tensor on the X-axis (grouped by
tensor completion model). The graphs show the performance
of various tensor completion methods with respect to the
sparsity of the tensor. One distinct pattern to be seen is
the difficulty of sparse tensor completion with relation to
the rank of the tensor. Query Cardinality and Non-Deep
Learning tensors seem the easiest to complete, due to the
low rank of the tensors. The Neural Architecture Search
tensors seem harder to complete due to their high rank.

For many tasks, CoSTCo [21] has the least error with
more missing values; however, our CPD-S Ensemble model
gives very similar performance on most of the tensors. Inter-
estingly though, this is not the case for the Query Cardinality
Tensors. Across a variety of Non-Deep Learning and Neural
Architecture Search tensors, though, we see that the CPD-
S Ensemble gives very similar performance of CoSTCo,
without needing the Convolutional Neural Network .

4.5. CPD-S Smoothness Sensitivity

When adding a smoothness constraint to our CPD ten-
sor completion, we can choose to enforce this constraint
more strictly or more loosely. This is done by increasing
or decreasing the smoothness constraint’s coefficient term,
lambda, in our loss function. Note that when lambda = 0,
the loss function is just the base loss function (MSE).

We observe in Figure 5 that a positive lambda value al-
most always helps with tensor completion in our application.
In some cases, a smaller lambda value is more effective, but
this does not seem to be true for all cases.



Figure 4: Error vs. levels of sparsity for various models across all four tasks. CoSTCo [21] & its ensemble consistently perform
the best with little observed entries. Closer to 5% observed entries, the rest of the models seem to catch up. Our proposed CPD-S &
TenSemble-CPD-S_MLP , however, has similar performance to CoSTCo [21], without using as many parameters as a CNN.

(a) Non-Deep Learning Tensor (b) Neural Architecture Search Tensor

(c) Query Cardinality Tensor (d) Query Distinct Cardinality Tensor

Figure 5: CPD-S Error with different lambda coefficient values,
compared with regular CPD & Naive methods. These graphs dis-
play that a positive lambda value (enforcing smoothness constraint)
almost always decreases the error in the scope of our application.

4.6. Investigating the Latent Structure of the Data

In our tensor completion algorithms, we assume there
is structure in the tensors that we are completion, otherwise
we could not complete them. However, it is unclear whether
or not we can assume a strictly low-rank structure. In the
real world, we will not be able to find out what the exact
rank of our sparse tensor is, because to the all of the missing
values. It is for this reason that it is important to conduct
some analysis with respect to the rank of the tensors we are
completing, since we do have the completed dense tensors.

In Figure 6, we perform TensorLy’s PARAFAC decom-
position [37] on our dense tensors. From this decompo-

Figure 6: These graphs display the normalized (0, 1) error when
decomposing and reconstructing a dense tensor of each task, with
respect to the decomposition rank.

sition, we reconstruct the entire dense tensor back again,
and record this error. When doing this decomposition and
reconstruction across many different ranks, we observe what
ranks are needed to accurately reconstruct the tensor. This
gives us an estimation on the tensor’s rank. For example,
the pictured Query Cardinality tensor only needs a low-rank
decomposition to accurately estimate the values of the entire
dense tensor. On the other hand, the Neural Architecture
Search tensor requires a much higher rank decomposition
to be able to estimate the values accurately.

Generally we observe this trend where Query tensors
tend to be very low rank, Non-Deep Learning tensors are



slightly higher rank, and Neural Architecture Search tensors
are significantly higher rank. This observation comes in con-
trast to previous work [17]–[19], that makes a strong low-
rank assumption, which appears to not always be the case
in the diverse set of scenarios we explore here, and further
justifies the good performance of methods like CoSTCo,
which do not make strong low-rank assumptions.

Figure 7: Completion error for low and high rank tensors. The top
right is for a query cardinality tensor, top left graph for a SVM
tensor, and the bottom two for Neural Architecture Search tensors.

Previous work on Tensor Completion for AutoML as-
sumes a low-rank structure of the tensor [17]–[19]; however,
we experimentally verify the viability of tensor completion
even for higher-rank tensors. Not only does this allow us
to extend our work into Neural Architecture Search (which
tends to produce higher rank tensors), but it also gives us
robustness when we do not know the exact rank of our sparse
tensor. Figure 7 shows results in low and high rank tensors.

Finally, we would like to note that low-rankness of a
given tensor, as measured here, does not necessarily imply
that the task is trivial. This is because our rank assessment
is done using the full tensors, while in reality we would
have to estimate that low-rank space from a small amount
of observations, which is challenging.

4.7. Cross-dataset Completion
Taking advantage of the flexibility and extendibility of

tensor modeling, we ask the question: can we introduce a
“dataset” mode and conduct joint completion across differ-
ent downstream datasets? Essentially, can we transfer results
from one dataset to another using our formulation? Figure
8 shows the effects of introducing a dataset mode. Interest-
ingly enough, CoSTCo [21] actually seems to suffer from
introducing the dataset mode, likely due to overfitting to the
other datasets’ tensors. On the other hand, we observe that
our TenSemble-CPD-S_MLP model can benefit significantly
from the introduction of a dataset mode.

Figure 8: Introducing a dataset mode, for non-deep learning and
neural architecture search tensors. The dataset mode is to simulate
where we might already have the results of previous tasks. Note the
other slices corresponding to the other datasets have 15% observed
entries for this experiment.

5. Related Work: Tensor Methods for AutoML

There exists immediately related work that addresses the
exact issue of using Sparse Tensor Completion for AutoML
[17]–[19]. In contrast to those works, we relax the strict
low-rank assumptions. This is to our benefit as we do come
across a variety of Neural Architecture Search tensors that
are quite high rank. This also adds to the robustness of this
application since it may be difficult to tell the exact rank of
the tensor when we only have a small fraction of observed
entries. Finally, we go beyond hyperparameter optimization,
as we take a broader approach and use tensor completion
methods for a variety of data science tasks.

6. Conclusions

We make the following high-level contributions:

• We cast a number of diverse data science tasks,
such as hyperparameter optimization, neural architec-
ture search, and query cardinality estimation, which
currently act as computationally intensive bottlenecks
in building data science pipelines under the unifying
umbrella of tensor completion.

• We extensively compare state-of-the-art tensor comple-
tion methods and confirm feasibility of our proposition.

• Inspired by the underlying structure that emerges in
the data and by the observed behavior of existing
completion methods, we propose a framework of novel
tensor completion methods that are able to achieve
state-of-the-art performance in our tasks.

• We publicly release our code and benchmark datasets,
empowering further research in this direction.
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