The University of Texas Rio Grande Valley

Center for Multidisciplinary Research Excellence in Cyber-Physical Infrastructure Systems (MECIS)

Interactive Autonomous Vehicles: Developing AV control with Reinforcement Learning, Utilizing Human Facial Emotion as an Input

NSF Award No. 2112650

Timothy Lyons, Oziel Sauceda, Mohamadhossein Noruzoliaee, Ph.D., Fatemeh Nazari, Ph.D.

Abstract

This project develops autonomous vehicle control through reinforcement learning and human emotion recognition, aiming to enhance decision-making and safety. Using the CARLA simulator, we integrate sensor data and interactive learning, allowing the vehicle to adapt to human feedback in realtime. This approach aims to create a responsive, safer AV model with future testing planned in real-world scenarios and improved object perception. Our work contributes to advancing autonomous systems for efficient intuitive transportation.

Methodology

In reinforcement learning (RL) an agent interacts with its environment and learns from experience.

- Agents can be vehicles and robots.
- Agents can take actions, make observations, receive rewards, and improve behavior.
- Objective: Use RL to control AV in CARLA, include a perception method capable of segmenting objects, and include human facial emotion.
 Implementation: Combine AV control and interactive reinforcement learning
 Control: Longitude is for speed, acceleration, and breaking. Lateral is for vehicle steering angle.

Introduction & Background

- An autonomous vehicle (AV) is a vehicle equipped with the capability to perceive and interact with its surrounding environment, enabling it to traverse its surroundings without requiring human intervention.
- This is achieved with the utilization of sensor data, advanced algorithms and control systems, enabling the AV to navigate the environment and make decision in real-time.

Facial Emotion Classification [2]

Data and Results

Collecting Data

- The control element will be simulated using the CARLA environment.
- Information will be gathered from the simulated experience and utilized for analysis.
- Human interaction will be integrated into the control algorithm to enhance the agent's capabilities.
- Participants will engage in the driving simulation to enhance data collection.

Emotion Recognition [3]

Conclusions & Future Work

Reinforcement learning enables safer, more efficient vehicle navigation, reducing accidents and improving traffic flow.

- Develop the appropriate model utilizing reinforcement learning for AV control
- Include facial emotion classification into the model
- Implement human interaction with the model
- Test the model which includes human emotion as input to the reinforcement learning algorithm
- Test the approach on the CARLA simulator and produce results.
- Test the approach in real-life scenarios.

Acknowledgments

Autonomous Vehicle Representation [1]

Importance of Avs

- Enhanced Accessibility
- Increased Safety
- Reduction of Traffic
- Economic Efficiency

CARLA Simulator

Driving Simulator

Types of sensors:

- RGB
- Semantic Segmentation

- Data is used to prove that the human interaction influences the performance of the agent.
- Further adjustments to the algorithm may be made to increase the performance of the agent within the simulation.

CREST Laboratory Experimental Setup

The authors would like to acknowledge funding provided by the National Science Foundation CREST Center for Multidisciplinary Research Excellence in Cyber-Physical Infrastructure Systems (MECIS) under NSF Award No 2112650.

References

[1] Driving autonomous vehicles forward with Intelligent Infrastructure. Smart Cities World. Retrieved from <u>https://www.smartcitiesworld.net/opinions/opinion</u> <u>s/driving-autonomous-vehicles-forward-withintelligent-infrastructure</u>.
[2] Towards Intrinsic Interactive Reinforcement Learning.
[3] Introduction to emotion recognition 2021. RecFaces. Retrieved from

https://recfaces.com/articles/emotion-recognition.

8th Annual STEM Ed Conference, South Padre Island, Texas. February 13 – 15, 2025