Center for Multidisciplinary Research Excellence in Cyber-Physical Infrastructure Systems (MECIS)

The University of Texas Rio Grande Valley

Center for Multidisciplinary Research Excellence in Cyber-Physical Infrastructure Systems (MECIS)

Cybersecurity of Al-powered Traffic Signal Control

NSF Award No. 2112650

Mark Hernandez, Mohamadhossein Noruzoliaee, Ph.D., Fatemeh Nazari, Ph.D.

Abstract

Next-generation transportation systems are increasingly integrated cyber (e.g., AI) and physical (e.g., traffic signals) systems, which exposes these systems to high-risk cyber potentially threats, causing service disruptions and economic losses. Many Altransportation cyber-physical powered leverage reinforcement learning systems (RL) for traffic control and optimization, but RL has been recently found to be intrinsically vulnerable to cyberattacks. To tackle, a game-theoretic adversarial cyber-defense model is proposed that utilizes RL to learn an optimal adversarial policy to build a certifiably robust agent in the traffic control setting under complex, hybrid attacks. The proposed approach aims to certify the security of AIpowered transportation systems under evolving cybersecurity threats.

	Meth	odo	logy		
_			. <u>-</u>	_	

- Hybrid adversarial model perturbs both state and action
 - State attack: changes in perceived traffic data from environment
 - Action attack: manipulates agent-selected signal phase
- Alternating agent and adversary training using ATLA

Attack Type on Victim (Signal	Average Reward by Traffic Volume			
Controller)	Low	Moderate	High	
No Attack	-0.865	-1.185	-3.016	
Learned Hybrid Attack	-1.652	-1.869	-3.105	
Heuristic Hybrid Attack	-7.199	-8.002	-7.248	

Introduction & Background

- Emerging cybersecurity threats in RLdriven traffic systems arise from adversarial attacks on agent-environment dynamics
- Adversarial vulnerabilities in RL-driven traffic signal control pose risks such as high economic losses due to transportation network-wide congestion

PROBLEM

 Adversarial agents exploit RL policies by introducing perturbations into the agent-environment interaction, compromising performance, and exposing cybersecurity risks

- Adversary learns perturbations that maximize agent reward penalties
- Agent learns to adapt for robustness
- Agent and adversary implemented with neural networks, optimized via Proximal Policy Optimization

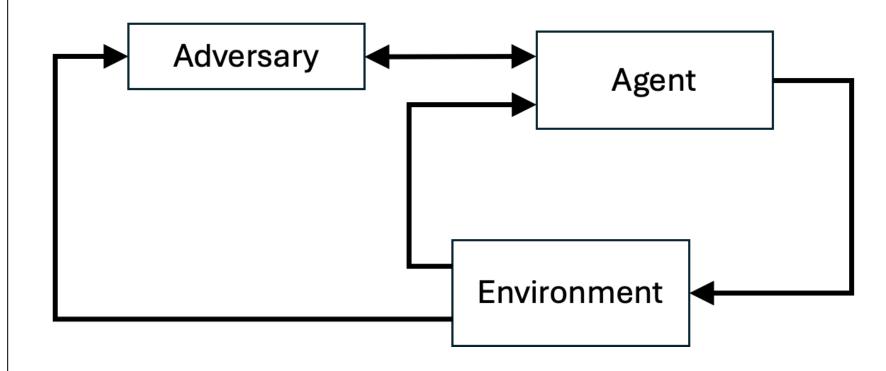


Figure 2: Agent-Adversary Zero–Sum Game Framework

Data and Results

- Reward: calculated using accumulated waiting time per lane
- *State:* phase identifier, lane densities, lane queues, minimum green time indicator
- Action: four possible green phase configurations

Conclusions & Future Work

- Evaluated baseline heuristic hybrid evasion attacks on a victim agent that simultaneously perturbs state observations and actions
- Proposed the integration of the ATLA framework into RL-driven traffic signal control to enhance policy robustness
- Demonstrated the effectiveness of the ATLA framework in mitigating cybersecurity threats and providing certifiable robustness through a learned hybrid attack

Acknowledgments

We acknowledge the financial support provided by the NSF CREST Center for Multidisciplinary Research Excellence in Cyber-Physical Infrastructure (MECIS) through NSF Award No. 2112650.

<u>GOAL</u>

 Enhance RL policy robustness against cybersecurity threats by integrating learned adversarial models into the training process

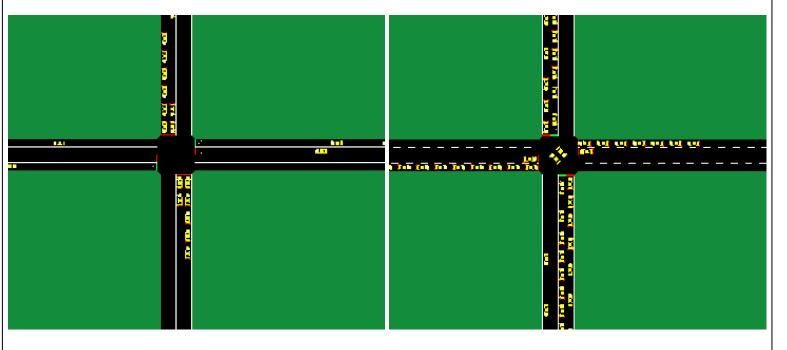


Figure 1: (Left) Traffic Signal Control via RL Agent, (Right) RL Agent Under Attack each followed by yellow phase

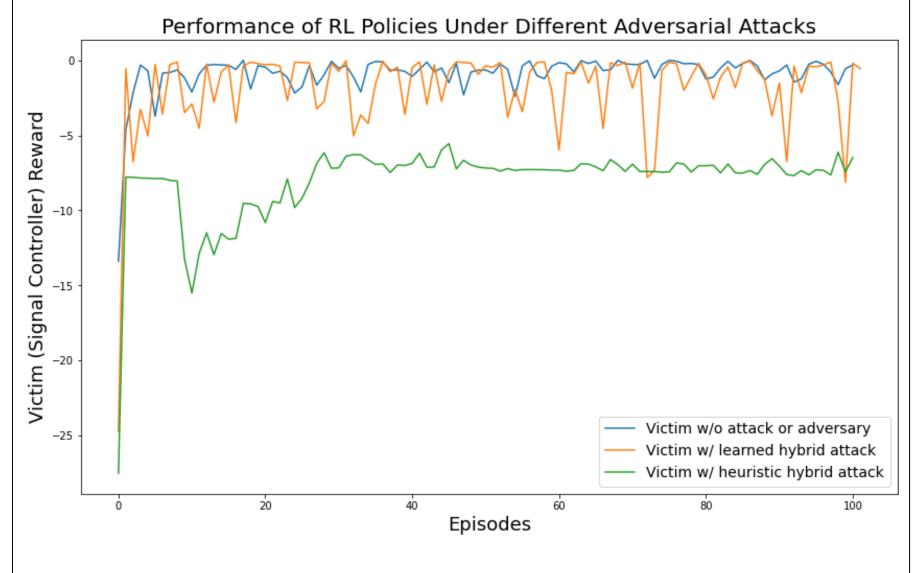


Figure 3: Robustness Gain vs Performance Loss

References

[1] Sun, Yanchao, Ruijie Zheng, Yongyuan Liang, and Furong Huang. "Who is the strongest enemy? towards optimal and efficient evasion attacks in deep rl." *arXiv preprint arXiv:2106.05087* (2021).

[2] Zhang, Huan, Hongge Chen, Duane Boning, and Cho-Jui Hsieh. "Robust reinforcement learning on state observations with learned optimal adversary." *arXiv preprint arXiv:2101.08452* (2021).

[3] LucasAlegre. sumo-rl. Github. Last modified September 4, 2024. https://github.com/LucasAlegre/sumo-rl

8th Annual STEM Ed Conference, South Padre Island, Texas. February 13 – 15, 2025