The University of Texas C Rio Grande Valley

Center for Multidisciplinary Research Excellence in Cyber-Physical Infrastructure Systems (MECIS)

Comparative Analysis and Enhancement of Bug Algorithms for Obstacle Avoidance

Izabella Valero and Qi Lu **Department of Computer Science** The University of Texas Rio Grande Valley

Abstract

- Traditional Bug Algorithms for obstacle avoidance often struggle with inefficiency and entrapment in complex environments.
- This research introduces a new algorithm that combines the qualities of existing algorithms.
- The proposed approach shows promise in demonstrating shorter paths and reduced risk of entrapments in complex environments.

Results Cont. Time to Goal C-Trap 114.91 103.65 69.44 52.45

Introduction & Background

- Bug algorithms have low computational cost, relying on sensor data to guide the robot to its target.
- They often struggle with longer paths and getting trapped in complex scenarios.
- Improving these algorithms while maintaining low computational demands is a key challenge in robotics. For this reason, we stuck to the Bug Algorithms focused on localization, common sense, and m-line.
- The research presented proposes a new bug algorithm that enhances the existing strategies to enhance obstacle avoidance using only local sensor data.

Methodology

- **Algorithm Analysis:** Existing Bug Algorithms were analyzed using Webots simulations to identify strengths, limitations, and potential improvement, focusing on localization algorithms. Figures 1 - 4 demonstrate a simulation environment.
- Algorithm Development: The proposed algorithm is shown in Figure 6. The goal is to combine existing features to optimize the Bug's performance. Like other algorithms, it tracks m-line movement, recording hit and leave points. **Current Development:** The algorithm is being tested using Webots, and the comparative analysis is in progress.

Figure 5: Inefficient path of Rev 1 and Rev 2 [1].

Figure 6: A state diagram of ComboBug

Results

Time to Goal Basic Block

Figure 9: Comparison of average time in C-Trap

Rev 1

ComboBug

Alg 1

Data and Results

- Data collection focuses on recording the navigation patterns and obstacle avoidance behaviors of the new algorithm against the existing within simulated environments in Webots.
- The goal of the new bug is to combine features of the m-line and common-sense pattern to enhance its ability to optimize navigation. Figures 7-9 displays preliminary trials where ComboBug reaches the goal in a shorter time than existing algorithms.

Conclusions & Future Work

- While the new algorithm has been \bullet demonstrated to be promising, further comparative testing is required to validate its advantages fully.
- Continue focus on building new environments to trap the robot or delay its travel efficiency, like Figure 4.
- There are plans to extend this research beyond simulations to physical robots, where more variable factors can challenge

Figure 7: Comparison of average time in Basic Block

Time to Goal Double Block

Figure 8: Comparison of average time in Double Block

obstacle avoidance algorithms.

Acknowledgments

The authors would like to acknowledge funding provided by the National Science Foundation CREST Center for Multidisciplinary Research Excellence in Cyber-Physical Infrastructure Systems (NSF Award No. 2112650) and the NSF Minority Serving Institute program (NSF Award No. 2318682).

References

[1] McGuire, K.N., G.C.H.E. de Croon, and K. Tuyls. "A Comparative Study of Bug Algorithms for Robot Navigation." Robotics and Autonomous Systems 121. 2019.

[2] Yufka, Alpaslan, and Osman Parlaktuna. "Performance Comparison of the BUG's Algorithms for Mobile Robots." 2009.

[3] J. Antich, A. Ortiz, and J. Mínguez, "A Bug-inspired algorithm for efficient anytime path planning," 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2009.

RGV STEM Education Consortium, South Padre Island, Texas, February 13-15, 2025